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Abstract

Background modeling is one of the fundamental tasks in the computer vision,

which detects the foreground objects from the images. This is used in many

applications such as object tracking, traffic analysis, scene understanding and

other video applications. The easiest way to model the background is to obtain

background image that does not include any moving objects. However, in some

environment, the background may not be available and can be changed by the

surrounding conditions like illumination changes (light switch on/off), object re-

moved from the scene and objects with constant moving pattern (waving trees).

The robustness and adaptation of the background are essential to this problem.

Mixture of Gaussians (MOG) is one of the most widely used methods for

background modeling using color informations, whereas the depth map provides

one more dimensional information of the images that is independent of the color.

In this thesis, the color only based methods such as Gaussian Mixture Models

(GMM), Hidden Markov Models (HMM), Kernel Density Estimation (KDE) are

thoroughly reviewed firstly. Then the algorithm that jointly uses color and depth

information is proposed, which uses MOG and single Gaussian model (SGM) to

represent recent observations of the color and depth respectively. And the color-

depth consistency check mechanism is also incorporated into the algorithm to

improve the accuracy of the extracted background.

The spatial resolution of the depth images captured from consumer depth

camera is generally limited due to the element size of the senor. To overcome

the this limitation, depth image super-resolution is proposed to obtain the high

resolution depth image from the low resolution depth image by making the infer-
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ence on high frequency components. Deep convolution neural network has been

widely successfully used in various computer vision tasks like image segmenta-

tion, classification and recognitions with remarkable performance. Recently, the

residual network configuration has been proposed to further improve the per-

formance. Inspired by the this residual network, we redesign the popular deep

model Super-Resolution Convolution Neural Network (SRCNN) for depth image

super-resolution. Based on the idea of residual network and SRCNN structure,

we proposed three neural network based approaches to address the problem of

depth image super-resolution. In these approaches, we introduce the deconvolu-

tion layer into the network which enables the learning directly from original low

resolution image to the desired high resolution image, instead of using conven-

tional method like bicubic to interpolate the image before entering the network.

Then in order to minimize the sharpness loss near the boundary regions, we add

layers at the end of network to learn the residuals.

The main contributions of this thesis are investigating the utilization of the

depth information for background modeling and proposing three approaches on

depth image super-resolution. For the first part, the property of depth image

is exploited and added into the commonly used background models. By doing

so, the background model can be constructed more efficiently and accurately

because the depth information is not affected by the color information. During

the investigation, we found that the depth image usually has two problems, which

are spatial resolution and accuracy, which need to be addressed. Most of the

depth images either have small resolution or the accuracy is very bad. In the

second part of this thesis, we investigate three methods to obtain the accurate

high resolution depth image from the low resolution one.
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Chapter 1

Introduction

1.1 Background

In every second of our daily life, our brains has processed huge amount of informa-

tion. Among these information, visual information occupies the major parts. We

can accomplish many tasks through our powerful vision system like recognition

of objects and person, understanding the scene. But how to give these abilities

to the computers is a very challenge task due to different ways of perceiving the

world. Let’s take an example shown in Figure. 1.1. From humans perspective,

this is a photo which contains river, mountain and trees. For computer, this is

one large array of numbers that describes intensity at each position.

Figure 1.1: A sample photo.
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In order to make computer ”see” and ”understand” the image/video, we need

to find some certain patterns from array of numbers and transform them into a

high level representations. These representations should be robust to the vari-

ations of objects and distinguishable from other kinds of objects. For example,

representation of cat should be able to describe all kinds of cat no matter of

what color or what size the cat is. Meanwhile, representations should be able to

recognize the cat from a group of pets. This is a classic problem in computer

vision which is a research field that aims to teach computer to see the world like

humans.

The background modeling and depth image super resolution are two funda-

mental problems in computer vision. Background modeling algorithms are to

construct background model to classify the objects into foreground and back-

ground. This procedure is crucial to the performance of many high level appli-

cations like object detection, image segmentation. Depth image super resolution

is the technique that can obtain the high resolution image from low resolution

image by some inference/mapping process. In many practical applications, high

resolution depth images are desired. But due to the limited sensor size of Time-

of-Flight (TOF) camera, the depth image resolution is highly limited compare

to the color images. Although these two topics have been study for years, the

challenge remains.

1.2 Challenges

A typical problem in background modeling is the similar color distributions exist

in both background and foreground objects. This is a very common situation in

the real life. For example, the video captured by surveillance camera in a shopping

mall often contains various color distributions. To distinguish the background

from foreground would be a difficult task from color space point of view.

Sudden illumination change is another difficult situation to deal with. There

are many aspects that can cause these changes. The light in the office is switched

2



on/off. This usually causes significant change in pixel intensities, which may make

computer ”see” a totally different image. The most background model will make

false classification in this case because the whole image has been ”changed”. A

model that quickly updates the background information is needed for the case.

Based on the common definitions of background and foreground, background

should be more stable than foreground. This poses anther difficulty for back-

ground modeling. Object with repetitive motions is easily misclassified as back-

ground due to its relatively stable state. The model should account for these

kinds of objects in order to make the right classification.

Unlike the color images, the depth image usually contains many piece-wise

smooth regions and sharp boundaries due to depth discontinuity. These char-

acteristics make depth image super resolution more difficult than color image.

The artifacts like blurred edges are often hard to minimize. The super resolution

algorithm needs to take these two characteristics into the consideration.
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1.3 Contributions

In this thesis, the objective is to improve the performance of the background

model algorithm by introducing the depth information and to investigate the

algorithm that can obtain high resolution depth images. The main contributions

of the thesis are:

• Gaussian Mixture Model for Background Modeling Using Depth

Map: Gaussian mixture model is one commonly used algorithm for back-

ground modeling. To handle the backgrounds with dynamic textures (such

as waves on the river or trees shake by the wind), the intensity of each pixel

is characterized by a mixture of K Gaussian. Once the background model is

constructed, any newly observed pixel value will be classified based on the

difference to its corresponding position in the background model and then

update the background model. However, for this approach, the model will

fail when the object has constant movement like rotations. To solve this

problem, depth information is introduced to the model. The result shows

that a more accurate background model can be achieved.

• Directional Approaches of Depth Image Super-resolution Using

Convolutional Neural Networks: Unlike the color images that give

more information on texture, depth image is more about the structures and

the shapes. The essential characteristics of depth image are sharpness on

boundaries and the more smooth region on the other parts. In this thesis,

we propose to firstly decompose the high resolution depth image to three

low resolution images based on vertical, horizontal and diagonal direction.

Then three independent trainings are applied to train the network to learn

how to super resolve the images along the directions. The result shows that

the proposed method has better performance on the computer generated

depth images.
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• Depth Image Super Resolution with Residual Learning: Deeper

neural network usually gives superior performance on the same task. But

with the number of layers increasing, it becomes more difficult to train the

network. Residual learning [6] is proposed to enable the training of much

deeper neural network. In addition, residual block provides ability to learn

the difference between the estimated high resolution depth image and the

ground truth image.

• Iterative approach for Depth Image Super Resolution: The layers

in convolutional neural network have the ability to learn their own features.

We propose a network that contains three subnets instead of one end to

end network for depth image super resolution. Each subnet will focus on

learning features from low level to high level. We treat super resolution as

a refinement process. The output of previous subnet will flow into the next

subnet as input. In order to guarantee the consistency, the current subnet

will keep partial structure of the previous subnet. Two different subnet

structures have been constructed for better performance.

1.4 Organization of This Thesis

The thesis is organized as follows. Chapter 2 presents work on background

modeling with depth map. Chapter 3 provides a general introduction to

deep learning and depth image super-resolution. Then, Chapter 4 presents

three neural network based methods to address the problem of depth image

super resolution. Finally in chapter 5, contributions and limitations are

summarized. Also, the future works are also included.
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Chapter 2

Background Modeling Using
Depth Map

2.1 Introduction

Stationary cameras are the most common video settings for capturing the activ-

ities at indoor or outdoor environment. The foreground objects can be obtained

by making the comparison between current frame and the representation of back-

ground scene. This process is usually the first step for various computer vision

tasks like object tracking, image segmentations, scene understandings.

The key to build a representation of the scene background is to find the proper

features to construct a background model. Many types of features have been

investigated for building an accurate background model including pixel based

features (depth, color distributions, edges) and region based features (the corre-

lation between blocks). The accuracy and adaptivity of the background model

are depended on the selection of the features.

For either indoor or outdoor scene, there are changes that occur over time

and may be classified as the changes in background. It is essential for the back-

ground model to adapt them since these changes could affect some parts of the

background or the entire background. Based on the sources these changes can be

categorized as:

Motion changes:

• Motions are already existed in the background. For example, waving tree
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leaves and rippling water.

• Changes are caused by camera displacement. This is common for the out-

door environment due to the strong wind.

Illumination changes:

• Sudden illumination change often occurs in the indoor situation. For ex-

ample, switching the lights on or off.

• Gradual illumination change is usually caused by the changes in the position

of the sun.

• Shadows cast on the background scene by objects itself.

Changes become the background: When a object moving into scene and

stays long enough or permanent, this object will become the part of the new

background. For example, if someone puts a chair into scene, or if a car is parked

in the scene.

2.2 Related Work

There are many researchers who have proposed methods to deal with some of

the problems for the background modeling. The following is a brief review of the

relevant work.

Pixel intensity is one of the most common features for background modeling.

One typical background model is using running Gaussian average [7] to model the

background independently at each (i, j) pixel location. The model is based on

fitting a Gaussian probability density function on the previous n pixels’ values.

In this approach, the moving object (foreground) is modeled as a connected

set of blobs. Each blob is represented by a spatial and color Gaussian distribu-

tion, and a support map that tells which pixels belong to the blob. The blob is
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interpreted as a Gaussian model:

Pr(O) =
exp[−1

2
(O − µ)TK−1(O − µ)]

(2π)
m
2 |K|

1
2

(2.1)

where the µ and K are the spatial means and covariance matrices respectively,

and O is the matrix of the blob. And the support map is defined as:

sk(x, y) =

{
1 (x, y) ∈ k
0 otherwise

(2.2)

where sk gives indication value for the pixel at (x, y) location in blob k.

However, this model would fail when the scene contains background motion,

such as moving leaf or ripples in the water. Various researchers have proposed

other temporal average filters that have a better performance than running Gaus-

sian average. In [8], the median value of recent n frames is regarded as the back-

ground model. The main disadvantage of this kind of approach is that a buffer of

recent observations is required for the computation. Moreover, the median filter

does not have an accurate statistical analysis for the scene.

Non stationary backgrounds have been modeled by GMM algorithms [9–11].

The pixel intensity is modeled as a mixture of Gaussian distributions. The Gaus-

sian mixture is weighted by frequency that matches the corresponding background

pixel. The Gaussian model’s parameters are updated at each new coming frame

using EM algorithm to identify the changes in the scene. The drawback of this

model is the adaptation speed. If the adaptation of the Gaussian model’s pa-

rameters is fast, the foreground objects with slow movement will be classified as

part of the backgrounds. But if the adaptation speed is slow, the model would

fail to identify some fast changes of the background such as sudden illumination

changes (switch on/off light).

Another approach to model the pixel intensity variation is using the discrete

states. Hidden Markov models have been investigated in [12], [13]. In [12], the

pixel intensity is modeled by a three state HMM for traffic monitoring system

and the three states are representing foreground, shadows and background re-
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spectively. This model is constrained by the pixel intensity temporal continuity.

Once a pixel classified as foreground state, it will keep this state for some period

time before switching into background or shadow state. And this situation also

apply to the pixel in other state. In [13], the topology of HMM is used to repre-

sent the global image intensity. The pixel intensity in each state is modeled by a

single Gaussian distribution.

Kernel Density Estimation is a non-parametric approach that can be used to

model a multi-modal Probability Density Function (PDF). In the work of [14], the

model maintains a sample of intensity values for each pixel of the entire image.

This sample is used to make the estimation of the density function of the pixel

intensity distribution and then to predict the probability of each newly observed

frame. Let x1, x2, ..., xN be a sample of one pixel’s values observed from time 1

to time n. The estimated probability of the observed intensity at time t is:

Pr(xt) =
1

N

N∑
i=1

Kσ(xt − xi) (2.3)

Where Kσ is the kernel function with bandwidth σ. For color images, the esti-

mates can be generalized by kernel products:

Pr(xt) =
1

N

d∑
i=1

d∏
j=1

Kσj(xtj − xij) (2.4)

where xt is a color feature with dimension d and Kσj is a kernel function with

bandwidth σj in jth color space dimension. The pixel will be classified as fore-

ground if the Pr(xt) is less than predefined threshold. Despite the good perfor-

mance achieved, the computational cost is very high because of density estimation

process.

In [15], [16], convolutional neural network (CNN) based background subtrac-

tion is proposed. In [15], the fixed background model is obtained from temporal

median operation over N frames. Then, the CNN is trained with scene specific

data to build the background model. However, since the training data is scene

specific, the network will have limited adaptation for the different scenes. For
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the new non-relevant scene, the network has to do the training again with cor-

responding data. In [16], they proposed to generate the background model by

combining the segmentation mask from SuBSENSE algorithm [17] and the out-

put of the flux tensor algorithm [18]. And the spatial median filter is applied to

get rid of the outliers from the segmentation process.

Depth data is considered as fourth channel in GMM besides three channels of

the color space such as RGB or YUV in [19, 20]. This approach gives less strict

match condition for the depth data than texture data. But it does not utilize

enough of the depth information and results can be further improved by more

investigation on depth data. In [21], the depth information is exploited to identify

the background regions which are covered by the object with reciprocal motion

that the GMM fails to recover. The problem with this approach is the inaccuracy

of the depth map, that may absorb part of foreground object into background

especially at the transition positions between foreground and background regions.

This thesis describes an algorithm that fully utilize the depth data combined

with GMM algorithm to estimate the background. It applies the adapting Gaus-

sian mixture model with modified update mechanism and single Gaussian model

to the expected background appearance and depth values respectively. The result

greatly outperforms the prior GMM algorithms.

2.3 Proposed Method

2.3.1 Background model from GMM

The Gaussian Mixture Model has been widely applied to model the stable back-

ground and detect the moving objects. GMM is pixel based algorithm, where

each pixel is modeled as a mixture of K Gaussian distributions (K is usually

from 3 to 5) independently [10]. The probability of observing the current pixel

value is

p(xt) =
K∑
i=1

ωi,t ∗ η(xt, µi,t, σ
2
i,t) (2.5)
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where K is the number of distributions, ωi,t,µi,t and σ2
i,t are the estimates of

weight, mean value and variance of ith Gaussian respectively at time t. And η is

the Gaussian probability density function.

Every new pixel value xt is checked against the existing K Gaussian distri-

butions, until a match is found. The matched new pixel value is the pixel value

that is within 2.5 standard deviations of a distribution [10]. And the parameters

will be updated as following [9]

ωi,t = (1− α)ωi,t−1 + α (2.6)

µi,t = (1− ρ)µi,t−1 + ρxt (2.7)

σ2
i,t = (1− ρ)σ2

i,t−1 + ρ(xt − µi,t)2 (2.8)

where α is the learning rate and ρ is

ρ = α ∗ η(xt, µi,t, σ
2
i,t) (2.9)

If there is no match to K distributions for current pixel value, the least prob-

able distribution will be replaced with a new distribution that has the current

pixel value as its mean, an initially high variance, and low prior weight. The least

probable distribution is defined as the distribution with the smallest ratio of ω/σ.

2.3.2 The exploitability of depth map

Based on the nature of the GMM, the background pixels are the pixels with tem-

poral stable intensity. However, If the foreground object has reciprocal motion

(e.g. rotation movement), which means the background is occluded by the fore-

ground object in most frames, the GMM will erroneously classify this foreground

object as part of the background. In this scenario, the GMM will not be able

to recover the occluded background information. The typical example is shown

Figure. 2.1, where the main body of the dancer is classified as background. The

11



GMM can not model a satisfactory background reference in this case.

Figure 2.1: The background reference obtained using GMM after 100 frames

In this thesis, we proposed to solve this kind of problem by exploiting the

depth map information. In 3D video data, the depth map measures the distance

between the objects and the camera. The regions with large depth value are far

away from the camera and the regions with small depth value are close to the

camera. Hence, it is reasonable to assume the regions with large depth value

have the high probability to be the background. Base on this assumption, by

investigating the depth value of each pixel, the far field regions appear only in

a small fraction of the video can be extracted and modeled as background. As

illustrated in Figure. 2.3, it is clear to see that the depth value of marked area

is not temporal stable. However, the depths of these areas are obviously larger

compare to the depth obtained from GMM, which means these areas are highly

likely to be regarded as the background.

Since the depth map is more intuitive and less complicated than texture infor-

mation, we decided to applying the single Gaussian model (SGM) which is faster

and requires less computations to the depth map. The SGM can be treated as a

special case of GMM where only one Gaussian distribution is used for modeling

the new observed depth map will be checked against the distribution of the depth

model. The matched pixels will be updated using GMM. The unmatched pixels

are classified into two categories. One category is the pixel with much smaller

depth value, which can be coarsely regards as foreground. Another category is the

pixels with larger depth value, which has the high possibility that the occluded

12
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Figure 2.2: The framework of proposed algorithm

background is revealed. The general framework is shown in Figure. 2.2.

Figure 2.3: The depth map comparison between GMM result and some frames

2.3.3 Depth-color consistency check

The depth map based classification is coarse due to the accuracy limitation of

the depth map. In order to refine the classification, the depth-color consistency

check mechanism is required for the process, especially for the pixels could be the

revealed background. These new pixels’ values will be checked against the most

probable Gaussian distribution. If there is no match, these new pixels’ values

can be regarded as part of the background. Otherwise, it shows that this kind of

scenario is caused by the inaccuracy of depth map as mentioned before. One more

possibility of this case is that the region with similar color and long distance is

revealed, which will not affect the estimated background since there is no major

change in color. For the pixels with smaller depth values, we just simply do not

13



update those pixels since the background information is the major concern.

The flowchart for the operations on each incoming frame is illustrated in

Figure. 2.4 and the details of proposed method is explained in Algorithm 1.
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Algorithm 1: Gaussian Mixture Model using Depth Map

1: The empty set of models for color is initialized at the time t0.

• Assigning the pixel value of current frame to the mean value µi,t0 of

the first Gaussian model and the rest is set to 0.

• The variance σ2
i,t0

of all Gaussian model is set to predefined large value,

e.g., 900 in this work.

• The weight of first Gaussian model is set to 1, and the others are set

to 0.

• The model of depth map is set according to single Gaussian model [7].

2: Compare the current depth observations with the existing model.

3: For the pixels that match to the existing model, the pixels’ value will be

updated by using GMM. The pixels with unmatched small depth value

will not be updated and their corresponding mixture model remains the

same. The rest pixels will go through the depth color consistency check

mechanism.

4: The mixture model of the pixels with consistent depth-color change will be

reset as the procedure 1. The other pixels’ model will be updated by GMM.

2.4 Experimental results

In this section, we tested the proposed depth assisted GMM algorithm on three

video sequences. The test sequences include: Microsoft data set Ballet (1024×768,

100 frames), Break-dancer (1024×768, 100 frames) and the MPEG-3DTV test

sequence Arrive-book (1024×768 , 50 frames). And the depth maps of the
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Figure 2.4: The detailed flowchart of the proposed method

test sequences are obtained from the MPEG depth estimation reference software

(DERS) based on graph cuts [22]. The results are compared with the manually

marked ground truth which is available in www.mmtlab.com/download.

The results shown in Figure. 2.5, 2.6, 2.7 for proposed method are compared

with previous GMM method at a few selected video frames from test videos.

In the ballet video, the female dancer is continuously rotating with small move-

ment on the floor. The male is almost static and he only moved his body very

slightly. It is obvious to see the GMM method failed to recover the background

that is occluded by the dancing women. Our approach is able to recover the

most occluded background region even for the small part covered by the hand

of male dancer. For the arrive-book and the break-dancer video, since there is

no large background region constantly occluded by the foreground objects, the

proposed method still has slightly gain in subjective view. In addition, the mov-

ing objects in the scene are quite close to the static background, which makes

the modeling process more challenging. As shown in Figure. 2.5 and Figure.
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2.6, our method recovered the small part of background occluded by the sitting

man and the most part of background covered by dancing man in the front, in

arrive-book and break-dancer video respectively. The noise appears in the result

of proposed method, e.g., the small black blocks on the ground in Figure. 2.7

is caused by the imperfect depth map information. For the objective assessment

of the proposed method, PSNR is used. The frame by frame objective results

are demonstrated in Figure. 2.9, 2.8, 2.10. The red line represents the PSNR

results of our proposed method and the green dash line represents the results of

GMM method. The PSNR is calculated by comparing the output of GMM and

the proposed method with the ground-truth image frame by frame. The PSNR

curves show that the proposed method is much better than the GMM method for

ballet and arrive-book video sequences. As for break-dancer sequence, PSNR of

our method is slightly less than the GMM method. This is due to the inaccurate

depth map estimated from DERS. The accuracy of the depth map is decreased

along with the increased degree of the object’s movement. In the break-dancer

sequence, the dancer made huge movement which caused the major changes in

depth map especially when dancer’s leg moved to the position that is very close

to the ground. It is worth to mention that the depth process do not increase

computational time too much. The proposed method runs at about 12fps while

the GMM runs at about 15fps.

2.5 Discussion

The performance of the proposed method highly depends on the accuracy of the

depth map. While we conducted experiments on the depth map based method,

we have noticed that the depth map obtained from stereo matching algorithm

or Microsoft kinetic camera does not have good quality (accuracy) although the

spatial resolution is high. In Figure. 2.11 it shows 9 consecutive depth frames

of ChairBox sequence [23], which clearly shows the discontinuity of depth. It

is easy to find that the depth of many regions are changed dramatically in the
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consecutive frames. A more quantitative results shown in the Figure. 2.12 is the

plot of the depth value of some random pixels from the first frame to the end.

This phenomena encourages us to make efforts on investigating the depth map

super-resolution technique.

2.6 Conclusion

In this thesis, we proposed a depth map assisted Gaussian Mixture Model ap-

proach to handle the foreground object with reciprocal motions in the video.

Through the experimental evaluation, we have showed this approach has a much

better performance for the object with reciprocal motion in the popular test se-

quences. For the future works, we will exploit the spatial correlation between the

pixels for both depth and color data and then combine all the information to im-

prove the background subtraction algorithm. In addition, the motion information

of the texture will be investigated to enhance the performance.

Since quality of the depth map is very important to accuracy of the proposed

method and it is not easy to obtain the depth map with good quality and proper

spatial resolution corresponding to the color image at the time of conducting this

research. We decided to make some efforts on investigating depth map super-

resolution techniques to get high resolution depth map from time of flight camera

which generates high quality depth map with very low resolution. This is the

reason why this thesis has two parts - one for GMM modeling and the other for

the depth map super-resolution.

18



(a)

(d)

(b)

(e)

(c)

(f)

Figure 2.5: The experiment results for GMM (from a to c) and the proposed
method (from d to f) at frame 10, 30, 50 of ballet sequence.
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Figure 2.6: The experiment results for GMM (from a to c) and the proposed
method (from d to f) at frame 10, 30, 50 of arrive-book sequence
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Figure 2.7: The experiment results for GMM (from a to c) and the proposed
method (from d to f) at frame 10, 30, 50 of dancer sequence
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Figure 2.8: PSNR evaluation for Break dancer Sequence.
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Figure 2.9: PSNR evaluation for Arrive-book Sequence.
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Figure 2.10: PSNR evaluation for Ballet Sequence.
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Figure 2.11: The first 9 consecutive depth frames in ChairBox sequence
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Chapter 3

Introduction to Depth Image
Super-resolution and Deep
learning

3.1 Depth Image Super-resolution

During the past several years, consumer depth cameras like Microsoft Kinect and

time-of-flight cameras have become more and more popular in many research

fields human computer interaction [24], computer graphics [25] and 3D modeling

[26]. However, depth images obtained from these cameras are either bad quality

(low accuracy and not stable) or have very limited spatial resolution. For example

Figure. 3.1 showed a typical depth map generated by Kinect. The depth image

super-resolution (DSR) has gained great attention in the community. The DSR

aims to restore the high resolution image from low resolution image by inferring

the lost high frequency contents (image details), this makes DSR an ill-posed

problem due to the insufficient knowledge.

3.2 Related Work

Single Image Super Resolution: Image super resolution is one of the most ac-

tive topics in the field of low level computer vision. Single image super resolution

has been studied for many years. In [27] and [28], they proposed a multi-class

Markov Random Field (MRF) model to solve the super resolution problem. In
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Figure 3.1: Depth map obtained from Kinect

this MRF model, each hidden node is used to represent the label of the high reso-

lution patch. The reconstruction process largely depends on the available training

examples. The performance will be degraded if there is no correspondence to be

found.

Dictionary learning and sparse representation of images are also exploited to

deal with image super resolution problems. Based on assumptions that low res-

olution and high resolution patches could share some reconstruction coefficients,

[29] and [30] proposed a method that uses sparse linear combination of the learned

dictionary to reconstruct the high resolution images. In [31] and [32], the high

resolution image is obtained by learning a mapping from low resolution image

to high resolution image with relaxed fully coupled constraint. The work in [33]

proposed a self learning super resolution algorithm that employs support vector

regression (SVR) with sparse representation. High resolution reconstruction is
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obtained from SVR model that is learned by minimizing the error function. The

disadvantage of this algorithm is that data collection of low and high resolu-

tion training image and prior knowledge of the self similarity are needed. These

requirements are not usually satisfied.

Self-similarity is also widely exploited for the task of image super resolution.

These methods suggest that patches of natural image will re-occur within and

across scales of the same image. The work of [34] proposed to super resolve

the low resolution image by gathering the information of similar image patches

while there is no need to prepare the training data beforehand. However, the

assumption of existence of the image patch redundancy is not guaranteed. This

is the key issue for which the self-similarity based methods are not very suitable

for depth image which does not have much texture patterns.

Recently, the deep learning methods have showed a powerful capability for

super resolution. In [2], the convolutional neural network for image super resolu-

tion is proposed (SRCNN). SRCNN has the ability to learn a non-linear mapping

between low resolution and high resolution images.

Depth Super Resolution With Multiple Images: Conventional depth im-

age super resolution is to combine the information [35–37] of the multiple com-

plimentary low resolution images. Although good results have been achieved,

the requirement for multiple available static image with small camera movement

is not always satisfied for many real applications. In addition, the camera pose

estimation errors have large influence on the super resolution result.

High frequency components of the pre-aligned high resolution color images

can be exploited to help the depth image super resolution. In [38–42], edge

information from high resolution image is utilized to perform a joint color and

depth upsampling. In order to keep the detailed structure of depth image, the

work of [41] proposed to use non-local means filter (NLM) for the task of super

resolution.

Single Depth Image Super Resolution: Single depth image resolution posed
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more challenges than color images because of the sharpness on boundary and

less texture information. In [43] and [44], they extended the work in [27] to

depth image by applying patch based MRF model to super resolve the depth

image. In addition, the bilateral filter is often used to maintain the sharp edges

while reducing the noise of the depth image. The work of [45] tried to look for

self-similar 3D patch correspondence through the rigid body transformation and

then to construct the high resolution image patches. However, despite the good

results obtained, the performance of these methods will be degraded when the

patch correspondence from extra dataset or within the same image is failed to be

established. In [46] and [47], sparse representation of depth image is introduced

to prevent the over-fitting problem of the learning based methods.

3.3 Introduction to Deep Learning

Deep learning (Deep neural networks) has draw great attention during past sev-

eral years for its outstanding performance in many challenging machine learning

and computer vision tasks. Since all of the following proposed methods are based

on neural network, we will provide the necessary technical background about deep

learning especially the Convolutional Neural Network (CNN) in this section. For

a more comprehensive introduction, please refer to the deep learning book from

Goodfellow et al. [48].

3.4 Supervised Learning

For many practical problems, the learning task can be formulated as training

the computer to perform a mapping f : X → Y , where X and Y are the input

and output space respectively. For image super-resolution task, X could be the

space of low resolution image (LR) and Y could be the space of upscaled high

resolution (HR) image. Due to the complexity of image structures, it is very

difficult to explicitly write down a program that upscale a LR image to a HR

27



image by using conventional methods. The supervised learning provides a second

option by learning a mapping from LR images to HR images since it is relatively

easy to have the paired examples (x,y) ∈ X, Y . In this thesis, the paired examples

are datasets of LR images and their corresponding HR images.

3.4.1 Objective

Considering we have a training dataset of n examples from a data distribution

D, {(x1, y1), . . . , (xn, yn)} that are independent and identical distributed i.i.d.

samples. The learning objective is to find the mapping f : X → Y by searching

from a set of candidate functions and finding the one that is a best fit for the

training examples. More specifically, we will choose some particular class of

functions F as candidates and a loss function L(ŷ, y) that measures the difference

between the estimated label ŷi = f(xi) for some f ∈ F and the true label yi. Then

our objective is to find f ∗ ∈ F that minimize the loss over the training examples.

Once the f ∗ is determined, we can use it to map X to Y without keeping the

original training data.

3.4.2 Linear Regression

Linear regression is one of the commonly used algorithms in supervised learning.

As shown in Figure. 3.2, the directed edge between two nodes shows the output

of one node is fed into the another. And one node can receive (transmit) the

signal from (to) multiple nodes. The signal on each edge will be multiplied by its

corresponding weight. This can formulated as:

ŷi =
n∑
i=1

xiwi + b (3.1)

where ŷi is the output of linear node that takes all p incoming values multiplied

by the weight of the edge, wi is the weight of i-th edge, and b is a bias of the

node. By using this linear unit, we create a simple neural network that can learn

some unknown function f given a training dataset D.
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Figure 3.2: Illustration of simple linear regression network

The objective is to search for a vector of weights w = [w1, . . . , wn]T that

gives minimum loss on the training set D. This can be achieved by minimizing

the squared error between the true output y(i) and the estimated output ŷi with

respect to w using Stochastic Gradient Descent (SGD) method:

ŵ = arg min
w

n∑
i=1

((yi − ŷi))2 + λR (3.2)

where R is the regularization term, and λ is the strength of R. Regularization

is method to avoid the model over-fitting to training dataset by controlling the

complexity of the model.

It is easy to find that this kind of structure can mimic linear function well.

When it is applied to approximate a non-linear function, this network is not

expected to give an accurate approximation. This is why the deep neural network

should be considered.
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Figure 3.3: LEFT: a sketch of biological neuron, RIGHT: mathematical model of
biological neuron. Figure is from [1]

3.5 Deep Neural Network

In the previous section, we have briefly introduced linear regression which can be

regarded as simple neural network. Deep neural network has more layers between

the input and output layer and it has non-linear activate function which gives its

capability to mimic all kinds of functions especially non-linear functions. In the

following section, we will give some detailed descriptions on deep neural network.

3.5.1 Model

The basic computation unit in neural network is called neuron. As show in Figure.

3.3, it gets inspiration of biological neuron. Each neural perform the computation

with activation function. Figure. 3.4 shows an example of deep neural network

with 2 hidden layers. Each hidden layer has four neurons. In Figure. 3.4, the

leftmost layer of the network is input layer, and the rightmost layer is output

layer. The 2 layers in the middle are the hidden layers.

The computation of hidden layer 2 and final in this network can be represented

as following:

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3) (3.3)

a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 +W

(2)
14 a

(2)
4 ) (3.4)

y = f(W
(3)
11 a

(3)
1 +W

(3)
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(3)
2 +W

(3)
13 a

(3)
3 +W

(3)
14 a

(3)
4 ) (3.5)
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Figure 3.4: Illustration of a 3 layer neural network example: The input layer has
3 inputs, wij is the weight on the edge of i-th neuron and j-th input, a

(l)
i is the

activation of i-th neuron of l-th layer

3.5.2 Activation Function

The non-linear activation function of the deep neural network plays an essential

role in learning a good unknown function approximation. There are three mainly

used activation functions.

Sigmoid function The mathematic form of sigmoid function is

f(x) =
1

1 + e−x
(3.6)

The sigmoid function adjusts the output in the interval (0, 1) as shown in Figure.

3.5 using this function is easy to obtain the gradient. It can be used as output

layer. However, if the neuron is saturated at 0 or 1, the gradient vanishing

problem will appear and the backpropagation algorithm will fail at updating the

parameters. This could lead to some unexpected training problems.

Tanh function The tanh function is defined as:

f(x) =
ex − e−x

ex + e−x
(3.7)

The tanh function maps the input into the output interval (−1, 1) as shown in
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Figure 3.5: Illustration of sigmoid function

Figure. 3.6 Compared with sigmoid function, the tanh function has the advantage

of faster convergence speed and it is centered at 0. But it still has the gradient

vanishing problem when the neuron reaches saturated state just like sigmoid

function.
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Figure 3.6: Illustration of tanh function

ReLU Rectified Linear Unit (ReLU)[49] is defined as

f(x) = max (0, x) (3.8)
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The ReLU has become a very popular choice of activation functions in the past

several years. It demonstrated its capability of accelerating the convergence speed

when the neural network uses stochastic gradient descent method. In addition,

unlike the sigmoid and tanh function, ReLU does not have the problem of van-

ishing gradient. It gives neural network ability for sparse representations. The

drawback of ReLU is the possibility of appearing dead neuron during the training

process. The weights of those dead neurons will not be updated since its gradient

is always zero. In [50], Parametric ReLU is proposed. Compare to ReLU, it

can adaptively learn the parameters which provides the possibility to reduce the

number of dead neurons.

f(xi) =

xi, ifxi > 0

aixi, ifx≤0

3.6 Convolutional Neural Networks

Regular neural network only has linear layers, which is not quite suitable to

process the inputs with some spatial topology (e.g images, videos, characters

in documents). Convolutional Neural Networks [51] is proposed to take spatial

relationships into considerations.

Convolutional Layer. This is the essential building block of the convolu-

tional neural network. It performs convolution on the input tensor with a set of

filters and then generates the output tensor as shown in Figure. 3.7. For instance,

images will be the input tensor. Let’s take a color image with resolution of 256

by 256 as example to illustrate the process of this layer. The input tensor I will

have the size of 256 × 256 × 3. Assume that the size of the filter w is 5 × 5 × 3

i.e. there are 5 × 5 × 3 parameters to learn. The convolution is performed by

sliding the filter w on every possible spatial positions of the input and the dot

product of a block of I and filter w will be computed. Then the activation map

is generated, which has the dimension of 251 × 251 if there is no zero paddings
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on the boarders (the activation map will have the same dimension of the input

tensor when zero padding is applied). This is the process for one filter. Usually

we will have a set of filters and each filter will generate its own activation map.

These activation maps will be put together to produce a final output tensor. It

is easy to find out each filter has the ability to learn some certain feature.

Figure 3.7: Illustration of convolution of 5× 5 filer on a 32× 32× 3 image, figure
is from [1]

Pooling. This layer performs downsampling process on all activation maps

independently to reduce the dimension of each activation map while the most

important features are retained. This procedure is helpful to control the over

fitting problem. In addition, it makes network invariant to certain level of trans-

formations, distortions and translations. One of the most common settings is to

use 2 × 2 filters with stride of 2, where max operation is applied to the filter as

show in Figure. 3.8.

Batch Normalization. This layer is proposed in [52] to handle the phe-

nomenon called internal covariate shift which indicates that the parameters up-

date will affect the input distribution of the next layer so that the weights are

needed to re-initialization and reduce the learning rate. Batch normalization

is to do normalization on each batch of each layer. The mini-batch mean and

variance are computed first and then the feature map is normalized. By doing
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Figure 3.8: Illustration of Max pooling with 2 by 2 filter and stride is 2

so, it helps the neural network to converge quickly without consuming too much

computational power.
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Chapter 4

CNN based Depth Image
Super-resolution

4.1 Iterative Network Approach

Authors in [82] proposed to stack 2 SRCNN networks into one and then start the

training process from scratch. The estimated high resolution images are closer to

the ground truth images than the images estimated by single SRCNN network.

Inspired by this work, we treat super resolution task as refinement process from

coarse interpolated images to well interpolated images. Different from [82], we

propose a super resolution network that consists of three sub-net as show in

Figure. 4.1. Each sub-net consists of a set of convolution layers and one residual

learning block. Many research experiments indicated that the features learned by

convolution layer has the order from low to high i.e. convolution layer in the front

will learn low level features and layer in the later part will learn high level features.

So we make later sub-net adopt the first convolution layer of previous sub-net,

which has the learning rate of zero, to keep the learned features unchanged in the

first layer.

The work flow of the network training process is shown from Figure. 4.2 to

Figure. 4.4. The low resolution image is firstly interpolated to the same size of

ground truth image by bicubic method. There are three phases for the network

training. Firstly, training is on sub-net 1. The estimated image Est im1 is

produced and the low level features are also learned and passed to the sub-net 2.
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Then, the Est im1 will be fed into sub-net 2 as input for training. Layers L2.2

to L2.5 will be tuned and the higher level features will be learned in sub-net 2.

Finally, the sub-net 3 takes output of sub-net 2 Est im2 for training along with

the learned features of sub-net 1 and sub-net 2.

L 1.2 L 1.3 L 1.4 L 1.5L 1.1

L 2.2 L 2.3 L 2.4 L 2.5

L 3.3 L 3.4 L 3.5

Figure 4.1: The overall structure of the iterative nets

L 1.2 L 1.3 L 1.4 L 1.5L 1.1
loss

Tr_im GT_im

Figure 4.2: Training Phase 1

4.1.1 Subnet Structure

The unified network structures in each iteration has limited the network’s ability

to learn the different kinds of features of the input image patches. And the

image can be treated as the composition of the low frequency and high frequency

components. In this proposed network, each sub-net will have two path of training
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L 1.1

L 2.2 L 2.3 L 2.4 L 2.5

loss

Est_im1

Learning rate is zero

GT_im

Figure 4.3: Training Phase 2

L 1.1

L 2.2

L 3.3 L 3.4 L 3.5

Est_im2

loss

Learning rate is zero

Learning rate is zero
GT_im

Figure 4.4: Training Phase 3

and then combining together to generate the high resolution depth image. In each

sub-net, one shallow path will have a relative simple network to concentrate on

training the network to learn the low frequency part. Another deep path will

have the complex structures with more residual blocks to perform the identity

mapping through short cut (skip the several following layers), which allows the

network learn more about the high frequency part i.e image details. With multiple

identity mappings in the network, the gradient flow is going to be even better

since we adopt SGD as the optimization method for training the neural network.

In addition, inspired by work [58, 62, 83] , multi-scale inference has been added to

the later part of the network for better reconstruction performance. The working
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flow for one sub-net is shown in Figure. 4.5.

Deconvolution

Feature 
extaction Reconstruction

Deconvolution Reconstruction

Figure 4.5: The work flow of the second propose network.

Before we come up with the idea of using two path subnet structure, the

one deep path subnet structure is also tested for this iterative approach. Then

network will lose the ability to learn high frequency and low frequency information

separately. Theoretically, the performance will not be as good as the two path

network. And the data in experiment part also agrees with this conclusion.

4.1.2 Residual Learning

Either paths of the subnet can be analyzed as one individual residual learning

network. The only difference is just complexity of the network structure (number

of the layers). The following parts provide detailed explanation for the residual

learning network.

Blocks for Residual Learning. In SRCNN nets, the model is learned from

directly mapping between interpolated image and ground truth high resolution

image. A high resolution image can be treated as a composition of low frequency

information (shared with low resolution image) and high frequency information

(the details like edges). While the depth image usually has lots of piece-wise
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smooth regions (low frequency information), this makes SRCNN network diffi-

cult to properly learn the mapping for the high frequency information since the

network will get saturated by learning the low frequency information. The super-

resolution of a image is an interpolation process. The value of the interpolated

pixel will be output of the weighted average value of surrounding pixels. When

network gets saturated by learning the low frequency information, the edge pixel

will not be accurately interpolated which will cause the blur on the edge regions.

This is the main reason why we propose to add the residual block shown in Fig-

ure. 4.6 into the network so that the network will have more focus on learning the

difference between interpolated images and ground truth high resolution images

i.e. the details in high resolution image, which is helpful to reduce the blur on

edge regions.

Weight	layer

Weight	layer

+
ReLU

𝑥

𝑥

𝐹(𝑥)

𝐹(𝑥)+ 𝑥

Identity

Figure 4.6: The building block for residual learning.

Deconvolution Layer. Most of the neural network based method [63, 68]

will first apply the interpolation kernels (bicubic or bilinear) to the original low

resolution images and then take the interpolated images as the input for training.

However, the traditional interpolation method has the fixed upsampling kernels

for the inputs and the parameters will not be used efficiently. The deconvolution

can be regarded as reverse operation of convolution as shown in Figure. 4.7.

By introducing the deconvolution layer to network, the network will have the
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ability to upsample and aggregate the previous feature maps by training a set

of deconvolution filters through backpropagation. The upsampling kernel is no

longer fixed and it gives more accuracy for the interpolation process.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 4.7: Illustration of the Deconvolution

Activation Function. In the proposed network, we suggest that the Para-

metric Rectified Linear Unit (PReLU) should be used after each convolution layer

instead of commonly used Rectified Linear Unit (ReLU). Different from ReLU,

PReLU has the learnable coefficients on the negative part while the ReLU force

these coefficients to be zero. Since we aim to make the network to focus on

learning the difference between low resolution image and ground truth image,

the PReLU could be more suitable for our network. In addition, by employing
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the PReLU as the activation function, the existence of dead features [69] cause

by zero gradients in ReLU can be effectively avoided. So the network can fully

utilize all the parameter.

Proposed Subnet Structure. The overall network structure is shown in

Figure. 4.8. The description for each is presented in details as following:

Non-linear 
mapping

Deconvolution
Feature 
extaction Non-linear 

mapping

Reconstruction

Figure 4.8: The structure of the proposed network.

1. Feature Extraction. This part is similar to the SRCNN network except for

the size of the input images. The input images in SRCNN network are

interpolated into the same size of the ground truth images while in our

network the original low resolution is fed into the network directly. Then

a high dimensional feature vector is produced by convolving with a set

of filters. Since the input size becomes much smaller especially for lager

upscale factors, we propose to use more filters with very small kernel size in

order to capture more details on high frequency components of the images.

2. Non-linear Mapping. In the feature extraction process, the dimension of

feature vector is extremely high due to the large number of filters. The

computation complexity will be pretty high if we directly map the low

resolution features to high resolution features. By learning from [70] where

the 1×1 layers are applied to reduce the computation complexity, we suggest
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to add one more layer that adopts much smaller number of filters compared

to the number used in feature extraction process. In this configuration,

the number of parameters are significantly reduced and the computational

complexity is also maintained in a more proper level.

Non-linear mapping is still the most important part in the network, which

have a large effect on the super resolution performance. There are two major

influence factors for non-linear mapping layer, where they are the number

of the filters in the layer and the number of used layers. In the work of [71],

the author demonstrated that a good super resolution performance can be

achieved by using larger filter size and employing multiple layers for non-

linear mapping. In the design of our network, non-linear mapping consists

of 5 layers with filter size of 5× 5.

3. Deconvolution Layer. As explained in previous section, deconvolution layer

consists of a set of trainable filters to upsample the low resolution image into

high resolution image. The stride in this layer is the same as the upscale

factor. The output image from deconvolution layer will have the resolution

of its original size multiplied by the upscale factor.

4. Residual Blocks. Assume we have a training dataset x, y, our aim is to train

the network to learn a mapping function f that predicts value ŷ = f(x),

where ŷ is the predicted high resolution image. Then we apply SGD to

minimize the mean squared error 1
2
(y− f(x))2 over the training set. This is

the common approach for CNN based methods and the vanishing gradient

is the critical problem for this approach especially for deeper network. For

depth images, the output of deconvolution layer will be similar to the ground

truth image due to its piece-wise smooth characteristic. So we propose to

employ residual learning [72] for the network.

The residual image is defined as r = y − x. Since the image residual is the

learning target, the loss function becomes 1
2
(r − f(x))2, where the f(x) is
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the high resolution image interpolated by the deconvolution layer. The loss

layer in our network takes three inputs: image residual, interpolated image

and ground truth image and the loss is the Euclidean distance between

estimated image (sum of the network output and the deconvolution layer

output) and ground truth image.

4.1.3 Experiments

Data generation. We generate the training dataset from MPI Sintel depth

dataset [55] and RGBD images from Middlebury dataset [56, 73, 74]. The training

images are divided into image patches with small spatial size and overlapping

with neighbors. The training time can be reduced by this approach according

to [63]. The MPI dataset is made of computer generated images with all the

depth information available in the image. However, the Middlebury dataset is

real depth image that is obtained from stereo matching algorithm. The depth

information is not available in for all pixels in the dataset due to the occlusion

phenomenon as shown in Figure. 4.9. The image patches that does not contain

available depth information are excluded from the training set.

Data processing for Evaluation. The evaluation data consists of addi-

tional 10 images with different spatial resolution from Middlebury datasets. As

mentioned before, the depth images from Middlebury datasets does not have all

the depth information. Before we evaluate our trained model, the hole-filling

process is applied to these 10 images.

Implementation details for two path subnet The network is also built

on top of the caffe CNN implementations [75]. The shallow path consists of 3

trainable layers followed by ReLU to introduce the non-linearity. The first one in

shallow path is the deconvolution layer with large filter size (9× 9) since we only

want the network to learn more about the low frequency part information. The

rest two both are 9×9 convolution layers which generate large depth image. The

deep path contains three parts. The first part is made of two 3 × 3 convolution
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Figure 4.9: The depth information is not available in black regions.

layers for feature extractions. The middle part is made of the deconvolution layer

followed by two convolution layers. This part performs upsampling task. The

final part is for multi-scale reconstructions, that consists of 3 convolution layer

with 3× 3, 5× 5 and 7× 7 kernel size.

Implementation details for one path subnet The network is also built on top

of the caffe CNN implementations [75]. The number of filters in all convolution

layers are set to 64. In order to capture the features in different levels, the

filter size is set to 11 × 11, 7 × 7, 3 × 3 for sub-net 1, sub-net 2 and sub-net 3

respectively. The stepwise decrease learning policy is also adopted, which has 5

steps with learning rate multiplier γ = 0.9. Each sub-net will be trained for 1

million iterations.

Implementation details residual network Our network is built on top of the

caffe CNN implementations [75]. All the layers in the feature extraction stage

have same settings for filter size and the number of the filters which are 3 × 3

and 64 respectively. In order to facilitate gradient flow, the reconstruction layer
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and the deconvolution layer forms a block, where the output of deconvolution

layer can be added to the output of the block through a short cut with identity

mapping. The 1 × 1 convolution layer serves as dimension reduction layer that

maps the high dimension input feature map to the desired low dimension feature

map. As for the non-linear mapping stage, we employ 4 convolution layers with

filter size 5×5. We adopt stepwise decrease (4 steps with learning rate multiplier

γ = 0.9) because this settings helps to reduce the fluctuations in convergence

curve at the later part of network training. it takes one and half days to finish

2 million iterations training on GPU Titan X. The trained network needs two

seconds to perform super-resolution for each frame.

Evaluations. We adopt root mean square error (RMSE) as our evaluation met-

ric. The detailed quantitative evaluations are shown in Table 4.1 to Table 4.11.

With different network structures ensemble in each sub-net, the ability of the

network for making proper inference has been increased by intermediate level.

This can be easily found from the RMSE evaluation on all test images with 4

different upscale factors (3 for one dataset). The subjective results are shown in

Figure. 4.17.

4.2 Directional Network Approach

In this work, based on the fact that depth image contains more information about

the geometric structures, we propose a directional approach with convolutional

neural network to super resolve the low resolution images. Unlike the SRCNN

which trains one network for perform the super-resolution on whole image, we

build 3 networks to do the training for different directional components based on

the structure of SRCNN and then fuse them into one large depth map.

Low resolution depth acquisition. In Figure. 4.10, we give labels to the

different parts of the high resolution image based on directions i.e. label v for

vertical parts, label h for horizontal parts and label x for diagonal parts. Then

low resolution depth image labeled with o can be obtained by a mechanism which
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is equivalent to downsample a high resolution depth image as shown in Figure.

4.10. Based on the three main directions-vertical, horizontal and diagonal, the

high resolution image can be decomposed into four downsampled sub-images.

Lets name these sub-images as sub-image o, sub-image h, sub-image d and sub-

image v respectively. Then the super resolution problem became how to find the

sub-images on each direction and fuse them into high resolution image i.e. how

to map the sub-image o into other sub-images.

High resolution depth 

Low resolution depth 

o o o o o

o o o o o

o o o o o

o o o o o

o _ o _ o _ o _ o _

| X | X | X | X | X

o _ o _ o _ o _ o _

| X | X | X | X | X

o _ o _ o _ o _ o _

| X | X | X | X | X

o _ o _ o _ o _ o _

| X | X | X | X | X

Downsample

Figure 4.10: Low resolution image can be seen as downsampled version of high
resolution image

CNN training for directional components. Inspired by deep learning

methods, we construct three neural networks to learn the mapping relation be-

tween input low resolution image and the directional sub-image separately. We

adopt the same network configuration from SRCNN [2]. As shown in Figure.

4.11, there are three main convolution layers in SRCNN settings:

1. Patch extraction and representation. This layer extracts image patches from

the low resolution image X by convolving the image by a set of filters and

output a high dimensional vector as the representation of the each patch.

These vectors form a set of feature maps and the number of feature maps
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Figure 4.11: The main structure of SRCNN. Figure is from [2]

equals to the dimensionality of the vectors. This layer can be formulated

as an operation F1:

F1(X) = max(0,W1 ∗X +B1) (4.1)

where W1 represent the filters with size of c× f1× f1×n1. c is the number

of channels of the input image and f1 is the spatial size of the filters. The

kernel size of each convolution is c × f1 × f1. n1 is the number of filters

and the number of feature maps of the output. B1 represents the biases

and it is n1 dimensional vector. The ReLU is applied on the filter, which is

equivalent to use the max(0, X) operation.

2. Non-linear mapping. The previous layer extracts a n1 dimensional feature

vector for each image patch. In this layer, the n1 dimensional vectors are

mapped into n2 dimensional ones by convolving with n2 filters that has

spatial size of 1× 1. This layer can formulated as F2:

F2(X) = max(0,W2 ∗ F1(X) +B2) (4.2)

W2 has the size of n1 × 1 × 1 × n2, and B2 is n2 dimensional biases. The

mapped vectors are the representations of high resolution image patch and

will be used for reconstruction process. Also, these mapped vectors com-

prise a new set of feature maps.

3. Reconstruction. In this layer, the mapped n2 dimensional vector i.e. the

representation of high resolution image patch generated from last layer will
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go through an averaging process to finally reconstruct the high resolution

image. This layer is formulated as:

F3(X) = W3 ∗ F2(x) +B3 (4.3)

W3 has size of n2 × f3 × f3 × c, where f3 is the spatial size of the filter in

this layer. B3 is c dimensional vector representing biases. There is no need

to apply ReLU for the filter.

The mapping function F is learned from the estimation of the parameters

Θ that comprise {W1,W2,W3, B1, B2, B3}. This is achieved by minimizing the

difference between ground truth high resolution image Y and the reconstructed

high resolution image F (X; Θ). For a set of training image examples-high reso-

lution images Yi and low resolution images Xi, the mean squared error (MSE) is

introduced as loss function:

L(θ) =
1

n

n∑
i=1

(F (Xi; θ)− Yi)2 (4.4)

With SRCNN configurations, we set up three networks with same input i.e.

sub-image o. The ground truth images are sub-image d, sub-image h and sub-

image v because each of these sub-images contains directional details. We want

the network to learn a mapping from sub-image o to other sub-images. Each

network will have working flow like Figure. 4.12. Once we obtain the mapping

function for each direction, the final high resolution image is reconstructed by

fusing the sub-image o, estimated sub-image d, sub-image h and sub-image v as

shown in Figure. 4.13.

4.3 Experiments

Dataset generation. Depth image is more about geometric structures and

shapes. In order to properly train the network to learn the mapping functions,

we use software BLENDER to generate a dataset which contains over 1000 depth
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Low resolution input

o o o o o

o o o o o
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o o o o o

CNNh

_ _ _ _ _

_ _ _ _ _

_ _ _ _ _
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Low resolution ground truth    

fitting 

Backpropogation Channel

Figure 4.12: CNN work flow for the directional image details training

images. These depth images have different number of objects and the complexity

also varies from one to another. Some example training images are demonstrated

in Figure. 4.14.

Data Preprocessing. In order to get low resolution sub-image o and ground

truth sub-images, we downsampled high resolution image without using conven-

tional method like bicubic or bilinear because these methods usually have filtering

process that changes pixel values before downsampling the high resolution. Since

the pixel value of depth image keeps information of the real distance, the pixel

values should not be altered.

Implementation Details. For the network setting details, we set f1 = 9,

f3 = 5, n1 = 64 and n2 = 32 for evaluations. In the training stage, the ground

truth images are generated with size of 32 × 32. And the convolution stride

is set to be 3 in order to capture the fine details of the high resolution depth

image. Due to the border effects in the training phase, there is no padding

applied to all convolution layers. The filter weights of each layer are initialized

by randomly taken from a Gaussian distribution with zero mean and standard

deviation 0.001. The learning rate is set to be 10−4. The training iteration is
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HR output
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Figure 4.13: Fusion stage. H.out, V.out and D.out are the estimated version of
sub-image h, sub-image v, sub-image d

set to be 10 millions which takes two days on GTX Titan X GPU. Since we

network has multiple layers, the ReLU is chosen for the activation function to

accelerate the convergence speed and help to avoid local optimal [53, 54]. Besides,

the conventional activation functions are more likely causing vanishing gradient

problem than ReLU in multilayer neural network configurations.

Quantitative Evaluation. We test our models on the computer generated

depth images [55] and real depth image dataset Middlebury [56]. The evaluation

on Middlebury dataset is only on the valid area because there are some region that

does not contain depth information. As shown in Figure. 4.15, it is clear to see the

proposed method has more superior performance compare to the bicubic method.

The PSNR difference is calculated by subtracting PSNR of proposed method from

PSNR of bicubic method. The difference above the 0 means the proposed method

outperforms the bicubic method. However, the test on Middlebury dataset shown

in Figure. 4.16 does not give good results. The proposed method fails on most

images. This could be caused by the high complexity of structures of real depth

image. The network is not able to learn these complex structures from computer
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(a)

(d)
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Figure 4.14: Some example training image generated from BLENDER

graphic images.

4.4 Summary

We have proposed two iterative network with different subnet configurations

training approaches for depth image super resolution. The proposed network

uses three sub-nets to learn the different level of features in a hierarchical way

and the later sub-net takes the output of previous sub-net to continue the train-

ing process. Due to the similar subnet settings, the quantitative results show

slight improvements for most test cases compare to the approach descried in the

previous section. The proposed network II contains two subnets with different

settings in terms of network depth, in order to learn low frequency part and high

frequency part, which has more performance gain than proposed network I with

only one learning path structure. However, the global optimal solution for all test

images on different upscale factor remains unknown. Despite using the identity

mapping through short cut, the overall training time for convergence is still more

longer than non deep neural network methods.
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We have also proposed an end-to-end network configurations for depth image

super resolution. Unlike the SRCNN, we incorporate deconvolution layer into the

network, which performs upsampling of the low resolution image directly within

the network instead of using methods like bicubic to interpolate the image outside

of the network. The residual block is also added into the network to learn the

high frequency components of the high resolution image and to accelerate the

deep network to converge. However, the sharpness at the boundaries is lost at

some certain level. The edges are also getting blurred after the super resolution

process. For the future work, constructing a network that can learn the high

frequency components of the high resolution images could be a better approaches

for the depth image super resolution task. And the corresponding color image

may be added into network to guide the training process.

We have investigated a direction based network training for the depth image

super resolution based on the understanding that depth image contains more

information about structures and shapes instead of complex textures. The whole

network consists of three separate networks that each one is responsible for one

direction details. Our evaluation shows some improvement over Bicubic method

over the computer generated dataset. However, the evaluation on real depth

images shows that this approach also has a drawback. When we decompose the

high resolution image into low resolution sub-images, the original structures in

high resolution image may be damaged and the network will not be able to learn

a proper mapping in these parts, especially for the real depth image which has

much more complex structures or shapes than the computer generated images.

And the image resolution and upscale factor will also affect the decomposition

process.
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Art Books Moebius
MRFs 3.119 1.205 1.187
Bilateral 4.066 1.615 1.069
Park 2.833 1.088 1.064
Kiechle 1.246 0.652 0.640
Ferstl 3.032 1.290 1.129
Lu 1.133 0.523 0.537
Wang 1.670 0.668 0.641
Residual net 1.02 0.650 0.680
one path net 1.008 0.662 0.672
two path net 0.952 0.571 0.549

Table 4.1: Quantitative comparison in RMSE on dataset A for upscale 2 with
proposed networks

Art Books Moebius
MRFs 3.794 1.546 1.439
Bilateral 4.066 1.701 1.386
Park 3.498 1.530 1.349
Kiechle 2.007 0.918 0.887
Ferstl 3.785 1.603 1.458
Lu 2.017 0.935 0.913
Wang 2.525 1.098 0.979
Residual net 2.06 0.949 0.921
one path net 2.03 0.961 0.933
two path net 1.953 0.839 0.814

Table 4.2: Quantitative comparison in RMSE on dataset A for upscale 4 with
proposed networks

Art Books Moebius
MRFs 5.503 2.209 2.054
Bilateral 4.712 1.949 1.820
Park 4.165 1.994 1.804
Kiechle 3.231 1.274 1.272
Ferstl 4.787 1.992 1.914
Lu 3.829 1.726 1.579
Wang 3.957 1.646 1.459
Reisdual net 3.676 1.687 1.320
one path net 3.655 1.702 1.308
two path net 3.457 1.639 1.228

Table 4.3: Quantitative comparison in RMSE on dataset A for upscale 8 with
proposed networks
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Art Books Moebius
MRFs 8.657 3.400 3.078
Bilateral 8.268 3.325 2.494
Park 6.262 2.760 2.377
Guided 7.876 3.186 2.851
Kiechle 5.744 1.927 2.128
Ferstl 7.102 2.941 2.630
Lu 7.648 3.549 3.118
Wang 6.226 2.428 2.202
Residual net 5.080 2.700 2.100
one path net 4.982 2.752 2.076
two path net 4.461 2.707 1.859

Table 4.4: Quantitative comparison in RMSE on dataset A for upscale 16 with
proposed networks

Dolls Laundry Rendeer
Park 0.963 1.552 1.834
Aodha 1.801 1.735 1.953
CLMF0 0.990 1.689 1.955
CLMF1 0.972 1.689 1.948
Ferstl 1.118 1.989 2.407
Kiechle 0.696 0.746 0.920
AP 1.147 1.715 1.803
Wang 0.670 1.039 0.556
Residual net 0.683 0.766 0.734
one path net 0.663 0.801 0.723
two path net 0.621 0.781 0.774

Table 4.5: Quantitative comparison in RMSE on dataset B for upscale 2 with
proposed networks

Dolls Laundry Rendeer
Park 1.301 2.132 2.407
Aodha 1.977 2.969 3.178
CLMF0 1.271 2.312 2.690
CLMF1 1.267 2.512 2.699
Ferstl 1.355 2.511 2.712
Kiechle 0.921 1.212 1.559
AP 1.350 2.255 2.431
Wang 0.989 1.630 1.914
Residual net 1.003 1.200 1.489
one path net 0.975 1.286 1.397
two path net 1.112 1.364 1.265

Table 4.6: Quantitative comparison in RMSE on dataset B for upscale 4 with
proposed networks
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Dolls Laundry Rendeer
Park 1.745 2.770 2.987
CLMF0 1.878 3.084 3.417
CLMF1 1.707 2.892 3.331
Ferstl 1.859 3.757 3.789
Kiechle 1.295 2.077 2.583
AP 1.646 2.848 2.949
Wang 1.445 2.466 2.878
Residual net 1.650 2.05 2.314
one path net 1.644 2.102 2.286
two path net 1.741 2.033 2.149

Table 4.7: Quantitative comparison in RMSE on dataset B for upscale 8 with
proposed networks

Dolls Laundry Rendeer
Park 2.412 4.158 4.294
CLMF0 2.291 4.312 4.674
CLMF1 2.232 4.302 4.774
Ferstl 3.574 6.407 7.271
Kiechle 1.736 3.621 4.644
AP 2.323 4.656 5.249
Wang 2.107 3.834 4.526
Residual net 2.501 3.312 3.253
one path net 2.439 3.368 3.207
two path net 2.261 3.294 3.317

Table 4.8: Quantitative comparison in RMSE on dataset B for upscale 16 with
proposed networks

Tskuba Venus Teddy Cones
Park 6.61 1.27 3.73 4.0
Li 8.29 2.29 2.78 3.24
Ferstl 7.2 2.151 2.71 3.5
Ferstl 5.254 1.108 1.694 2.185
kiechle 3.48 0.8 1.28 1.7
kwon 2.31 0.53 0.83 0.92
Aodha 8.993 2.175 3.233 4.262
Timofte 9.135 2.099 3.253 4.257
wang 3.979 0.828 1.368 1.856
Residual net 2.016 0.46 1.15 1.54
one path net 1.998 0.446 1.131 1.499
two path net 1.791 0.519 1.011 1.464

Table 4.9: Quantitative comparison in RMSE on dataset C for upscale 2 with
proposed networks
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Tskuba Venus Teddy Cones
Park 9.75 1.8 4.89 5.64
Li 11.9 3.55 4.92 6.34
Ferstl 10.3 2.52 3.3 4.45
Ferstl 7.352 1.742 2.595 4.17
kiechle 5.95 1.17 2.94 3.498
kwon 5.56 1.14 1.80 2.13
Aodha 12.39 2.597 4.030 5.740
Timofte 12.09 2.331 3.718 5.490
Lu 10.29 1.734 2.723 3.585
wang 6.281 1.191 2.026 3.078
Residual net 3.02 0.73 1.78 2.628
one path net 2.976 0.68 1.74 2.632
two path net 2.821 0.592 1.81 2.532

Table 4.10: Quantitative comparison in RMSE on dataset C for upscale 4 with
proposed networks

Tskuba Venus Teddy Cones
Park 15.1 2.99 7.15 7.73
Li 15.84 5.76 7.24 8.9
Ferstl 17.2 4.04 5.39 7.14
kiechle 10.9 1.76 2.76 5.11
kwon 5.67 1.68 2.19 2.37
Lu 13.77 2.134 3.468 5.345
wang 9.589 1.786 3.015 4.865
Residual net 5.765 1.788 2.09 2.748
one path net 5. 682 1.763 2.03 2.744
two path net 5. 572 1.701 1.94 2.469

Table 4.11: Quantitative comparison in RMSE on dataset C for upscale 8 with
proposed networks
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Figure 4.15: PSNR difference ( PSNR (proposed) - PSNR (bicubic) ) between
proposed method and bicubic method

Figure 4.16: PNSR evaluation on Middelbury dataset
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Figure 4.17: Usample results for dataset A. (a) color image and the ground
truth,Upsample resluts from (b) [3], (c) [4], (d) [5]and (e) proposed
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Chapter 5

Conclusion

5.1 Contributions

In this thesis, we have developed an algorithm that combines color and depth

information for the task of background modeling. During the process, we found

that the performance of developed algorithm largely depend on the accuracy of

the depth image with proper resolution, which is usually not easily satisfied. We

made investigations in image super resolution techniques that help us to obtain

the accurate high resolution image from low resolution images. Main contribution

of this thesis is to investigate the convolutional neural network based methods

for super resolving the low resolution depth image.

Specifically, the contributions of this thesis are listed in details as following:

1. A new algorithm for background extraction using Gaussian Mixture Models

(GMM) combined with depth map is presented, where the per-pixel mixture

model and single Gaussian model are used to model the recent observation

in color and depth space respectively. We also incorporated the color-depth

consistency check mechanism into the algorithm to improve the accuracy

of extracted background. Our results show much better performance than

prior state of the art methodology for the background extraction task even

when used for challenging scenes.

2. Based on the affect that the depth image is more about geometric structure
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and shapes, the low resolution image can be obtained by a mechanism

which is equivalent to decompose the high resolution image. We developed

a neural network that is used to learn the mapping from low resolution

image to the image decomposed from high resolution image, which contains

directional details of ground truth. After we obtained estimated images on

all three directions (vertical, horizontal and diagonal), all 4 images are then

fused into final high resolution image.

3. To address the problem of the artifact on sharp boundary, we proposed to

add residual blocks into the network for enabling the network to learn the

mapping of the difference between estimated high resolution image and the

ground truth high resolution image. To further improve the performance,

the deconvolution layer is incorporated to make the interpolation kernel

trainable and optimized through backpropagation process. And by using

the ensemble structure for separate learning first then combining together,

the iterative network has achieved much better performance.

5.2 Future Work

1. Deep learning has been proved to be a very powerful tool for many computer

vision task. In the future work for background modeling, it could be good

to build our model on the top of deep learning framework with combine

information of color and depth images.

2. The generative adversarial network (GAN) [84, 85] has demonstrated a

great performance on the color image super resolution. So it could be good

to construct a network on the top of GAN framework. Also it could be

good to continue to work on the iterative approach for depth image super

resolution.
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