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Abstract

Purpose - The purpose of this paper is to investigate the effect of nanofluid over rotating

disk with the exponential variable thickness Z = ce
− bR

R0 , (c > 0, b > 0) and to analyze Brow-
nian motion and thermophoresis of Buongiorno model on the disk embedded in nanofluid-
saturated porous media.
Design/methodology/approach - Employing the generalized Von Karman transforma-
tion, the boundary layer governing equations are transformed into semi-similar forms solved
by bvp4c in Matlab.
Findings - The effects of the thickness parameter a, the shape parameter b, the Brownian
motion parameter Nb and thermophoresis parameter Nt on flow, heat and mass transfer are
analyzed. With the increase of thickness parameter a, the radial velocity first decreases and
then increases, showing the opposite trend on the two sides of the peak value. Moreover,
temperature and concentration rise as the Brownian motion parameter becomes larger.
Originality/value - It is the first work that has been done on rotating disk with exponen-
tial variable thickness in nanofluid. The impact of the two slip effects, namely, Brownian
motion and thermophoresis, on the nanofluid boundary layer flow, heat and mass transfer

due to rotating disk with exponential variable thickness Z = ce
− bR

R0 , (c > 0, b > 0) has been
addressed in this study.
Keyword - Variable thickness rotating disk, Nanofluid, Generalized Von Karman transfor-
mation, Porous media
Paper type - Research paper

1. Introduction

Nanofluid has received wide attention due to its high thermal conductivity and heat
transfer capability. The concept of nanofluid was first proposed by Choi and Eastman in 1995
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[1]. Eastman et al. (2001) [2] focused on higher thermal conductivities of ethylene glycol-
based nanofluids containing copper nanoparticles instead of oxide nanoparticles. Buongiorno
(2006) [3] investigated seven possible slip mechanisms with relative velocity between the
nanoparticles and the base fluid and concluded that Brownian motion and thermophoresis
are the most important slip mechanisms in nanofluid. The above research stimulated the
scholars to Brownian motion and thermophoresis on two-phase nanofluid. Kuznetsov and
Nield (2010) [4] studied the natural convective flow of a nanofluid past a vertical plate.
Sheikholeslami et al. (2013) [5] depicted two-phase simulation of nanofluid flow and heat
transfer. Reddy and Chamkha (2017) [6] studied natural convection flow of nanofluid along
a vertical cone with chemical reaction. More literatures on nanofluid flow and heat transfer
have been presented in Refs.(Nield and Kuznetsov, 2009; Mohsen et al., 2014; Chamkha et
al., 2015; Zhang et al., 2016, 2017; Wakif et al. 2018) [7–11].

The problem of the flow and heat transfer in porous media is important in many indus-
trial fields, such as food processing, geothermal extraction, and diffusion of underground
pollutants. Darcy put forward the transport phenomena in porous media for the first time
in 1856 (Khayargoli et al, 2004) [12]. Later, Yih (1998) [13] studied the effect of uniform
suction/blowing on forced MHD Hiemenz flow in a porous medium against a variable wall
temperature plate. Chamkha and Al-Humoud (2007) [14] presented mixed convection of a
power-law fluid over a vertical plate embedded in a fluid-saturated porous medium. Has-
sanien and Al-Arabi (2009) [15] considered the unsteady stagnation point flow near a heated
vertical plate in a porous medium. Chamkha et al. (2014) [16] investigated heat and mass
transfer with Soret and Dufour effects through a porous medium under the inclined mag-
netic field. Barnoon and Toghraie (2018) [17] showed heat transfer of kerosene/MWCNT
nanofluid in a double-layer microchannel through a porous medium.

Flow induced by the rotation of disk has been used in the field of engineering and tech-
nology such as turbine, aircraft propeller, and centrifugal pump. The governing equations of
steady flow on rotating disk were originally reduced to similarity forms by Karman (1921)
[18]. Based on this work, Millsaps and Pohlhausen (1951) [19] considered laminar flow and
heat transfer from a rotating-plate by Keller box method. Ackroyd (1978) [20] investigated
series solution of rotating disk flow with either surface suction or injection. The influence of
porous media on the steady flow due to a rotating disk was examined in (Turkyilmazoglu,
2010; Devi and Devi, 2012; Rashidi et al., 2013; Khan et al., 2016) [21–24]. The fluid flow
model on the rotating disk is more mature.

Recently, Xun et al. (2016) [25] studied power-law fluids over a variable thickness rotating
disk with index decreasing by Runge-Kutta method coupled with multi-shooting technique.
Hayat et al. (2017) [26] reported nanofluid flow with homogeneous-heterogeneous reactions
due to rotating disk with variable thickness through the homotopy analysis method (HAM).
Several recent studies on the modeling of variable thickness rotating disk with index de-
creasing have been discussed by Hayat et al. (2017; 2018; 2018) [27–29]. On the other hand,
Liu et al. (2016) [30] investigated approximate analytical solutions of Bingham fluid over a
variable thickness rotating disk with exponential decreasing by HAM. The above-mentioned
works are based on the similarity transformation method, and then numerical or analytical
solutions are obtained to solve a set of ordinary differential equations. Also there exist some
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novel methods which can be used to solve the boundary layer problems directly (Mirzaei and
Dehghan, 2012; Dehghan and Abbaszadeh, 2016; 2017; Kamranian et al., 2017; Dehghan
and Abbaszadeh, 2018)[31–35]. To the best of our knowledge, very few studies have been
conducted for investigating rotating disk with exponential variable thickness flow problems.

Motivated by the discussions mentioned above, it is meaningful to investigate flow, heat
and mass transfer of two-phase nanofluid model over rotating disk with exponential variable
thickness in porous media. Boundary layer governing partial equations are solved by the
generalized Von Karman transformation and bvp4c in Matlab. Impacts of pertinent parame-
ters on velocity, temperature and concentration fields are discussed by displaying figures and
tables. Moreover, physical quantities at the disk (local Nusselt number and local Sherwood
number) are discussed graphically. The structure of the paper is as follows:
In Section 2, the governing equations of model and generalized Von-Karman transformations
are highlighted.
In Section 3, the numerical results and discussions are given.
Finally, the conclusions are eventually summarized in Section 4.
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Nomenclature
a =thickness parameter, (a > 0), [−]
b =shape parameter, (b > 0), [−]
c =variable thickness parameter, [m]
C =concentration, [kg m−3]
Cfr =local skin-friction coefficient, [−]
C∞ =ambient concentration, [kg m−3]
DB =Brownian diffusion coefficient, [m2 s−1]
DT =thermophoretic diffusion coefficient, [m2 s−1]
k =thermal conductivity, [Wm−1 K]
K =permeability of porous medium, [m2]
M =permeability parameter, [−]
Nb =Brownian motion parameter, [−]
Nt =thermophoresis parameter, [−]
Nur =local Nusselt number, [−]
P =pressure, [Pa]
Pr =Prandtl number, [−]
qm =mass flux, [kg m−2s−1]
qW =heat flux, [W m−2]
R0 =feature radius, [m]
Re =Reynolds number, [−]
Sc =Schmidt number, [−]
Shr =local Sherwood number, [−]
T =temperature, [K]
TW =temperature of disk, [K]
T∞ =ambient temperature, [K]
(U ,V ,W ) =velocity in R,Φ,Z-axis direction, [m s−1]
(R,Φ,Z) =R,Φ,Z-axis, [m]
Greek symbols
(ρcp)f , (ρcp)s =heat capacity of fluid, nanoparticle, [kg m−3K]
τrz, τφz =radial stress, tangential stress, [N ]
τ =nanoparticle heat capacity ratio, [−]
η =similarity variable, [−]
ξ =similarity variable after coordinate transformation, [−]
µ =dynamic viscosity, [Ns m−2]
ρ =density, [kg m−3]
ω =constant angular velocity, [s−1]
Subscripts
W =condition at the disk, [−]
∞ =ambient condition, [−]
f =fluid, [−]
s =nanoparticle, [−]
Superscripts
′ =differentiation with respect to η or ξ, [−]
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2. Mathematical model

Consider the steady incompressible three-dimensional flow of two-phase nanofluid on a

radially variable thickness rotating disk with exponential decreasing form Z = ce
− bR

R0 , (c >
0, b > 0) shown in Fig. 1, where c is the variable thickness parameter of disk, b is the shape
parameter of disk. The disk embedded in nanofluid-saturated porous media is rotating about
the Z-axis with constant angular velocity ω in the cylindrical coordinate system (R,Φ, Z).
The continuity equation, momentum equation, energy equation and mass transfer equation
in the boundary layer can be written as follows

∂U

∂R
+
U

R
+
∂W

∂Z
= 0 (1)
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The relevant boundary conditions are

Z = ce
− bR

R0 : U = 0, V = ωR,W = 0, T = TW , C = CW
Z →∞ : U = 0, V = 0, T = T∞, C = C∞

(6)

where U , V and W are velocity components in the directions of R, Φ, Z, respectively. T is
the temperature, C is the concentration, ρ is the density and µ is the dynamic viscosity. k
is the thermal conductivity, cp is the specific heat of nanofluid, K is the permeability of the
porous media. DB is the Brownian diffusion coefficient, DT is the thermophoretic diffusion
coefficient, P is the pressure and R0 is the feature radius. TW is the temperature of disk
and T∞ is the temperature of ambient fluid. CW is the concentration of disk and C∞ is the
concentration of ambient fluid.
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The following dimensionless variables are introduced

r =
R

R0

, z =
Z

R0

, u =
U

ωR0

, v =
V

ωR0

, w =
W

ωR0

, t =
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,
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2

µ
,M =

R0
2

K
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k
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,
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µ
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µT∞
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µ

ρDB

, p =
P

µω

(7)

where Pr is the Prandtl number, Re is the Reynolds number, Sc is the Schmidt number
and M is the permeability parameter. Nb is the Brownian motion parameter and Nt is
the thermophoresis parameter and τ is the ratio between the effective heat capacity of the
nanoparticle and heat capacity of the fluid.

Eqs. (1)-(6) are reduced to the following system of equations by using Eq. (7):
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subject to the boundary conditions

z = ae−br : u = 0, v = r, w = 0, t = 1, c′ = 1
z →∞ : u = 0, v = 0, t = 0, c′ = 0

(13)

where a = c/R0 is the variable thickness parameter.
Consider the generalized Von-Karman transformations

η = ebrz, u = rF (η) , v = rG (η) , w = e−brH (η) , t = ϕ (η) , c′ = θ (η) (14)

where η is similarity variable. Substituting Eq. (14) in Eqs. (8)-(13), we obtain the following
system of semi-similarity equations:

2F + rF ′bη +H ′ = 0 (15)
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The transformed boundary conditions become

η = a : F = 0, G = 1, H = 0, ϕ = 1, θ = 1,
η →∞ : F = 0, G = 0, ϕ = 0, θ = 0

(20)

where a is the thickness parameter, and η = a indicates the rotating disk surface. The prime
denotes derivative with respect to η.

In order to facilitate the computation, we define

F (η) = f(η − a) = f(ξ), G(η) = g(η − a) = g(ξ), H(η) = h(η − a) = h(ξ),

ϕ(η) = s(η − a) = s(ξ), θ(η) = q(η − a) = q(ξ)
(21)

Eqs.(15)-(20) become

2f + rf ′b (ξ + a) + h′ = 0 (22)

Re
(
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)
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r
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ReSc (rfb (ξ + a) + h) q′ =

((
b2(ξ + a)2+e2br

)
q′′ + (b+

1

r
)b (ξ + a) q′

)
+
Nt

Nb

((
b2(ξ + a)2+e2br

)
s′′ + (b+

1

r
)b (ξ + a) s′

) (26)

with these boundary conditions

f (0) = 0, g (0) = 1, h (0) = 0, s (0) = 1, q (0) = 1

f (∞) = 0, g (∞) = 0, s (∞) = 0, q (∞) = 0
(27)

where the prime denotes the differentiation with respect to the similarity variable ξ.
Quantities of practical interest in this model are the local skin-friction coefficient Cfr,

the local Nusselt number Nur and the local Sherwood number Shr. These are defined by

Cfr =

√
τ 2rz + τ 2φz

ρ(Rω)2
, Nur =

RqW
k (TW − T∞)

, Shr =
Rqm

DB (CW − C∞)
(28)

Further the radial stress τrz, tangential stress τφz, heat flux qW and mass flux qm are obtained
as follows:

τrz = µ
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− bR
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(29)

Substituting Eq. (29) in Eq. (28), we obtain

Cfr =
ebr
√

(rf ′ (0) + e−2brb (ah′ (0)− h (0)))2 + (rg′ (0))2

Rer2
,

Nur = −rs′ (0) ebr, Shr = −rq′ (0) ebr.

(30)

3. Results and Discussions

The flow, heat and mass transfer of two-phase model of nanofluid over a rotating disk
with variable thickness radially through porous media are studied. The set of nonlinear
ordinary differential Eqs. (22)-(27) are solved by bvp4c in Matlab. A comparison among
previous results given by Turkyilmazoglu (2010) [21], Rashidi et al. (2013) [23] and our
results of Newtonian fluid is illustrated in Table 1. An excellent agreement in all results is
found. Table 2 presents the used CPU times for the presented method with different Re.
For the sake of simplicity, Prandtl number is 1 and Schmidt number is 1. The effects of
other physical parameters, namely permeability parameter M , thickness parameter a, shape
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parameter b, Brownian motion parameter Nb and thermophoresis parameter Nt on flow,
heat, and mass transfer are discussed.

The variation of the radial velocity profiles for different values of the thickness parameter
a and permeability parameter M is shown in Fig. 2. With the increase of the thickness
parameter a, the maximum value of the radial velocity profile remarkably reduces, but the
thickness of momentum boundary layer increases slightly in Fig. 2 (a). The influence of
the permeability parameter M on the component of radial velocity is depicted in Fig. 2 (b).
With the increase of the permeability parameter M , both radial velocity and thickness of
momentum boundary layer decrease.

The dependence of the radial and tangential velocity profiles on different values of the
shape parameter b is shown in Fig. 3. Fig. 3 (a) indicates the radial velocity first decreases
and then increases, showing the opposite distribution around the peak value for the increase
of shape parameter b. Moreover, as the shape parameter b becomes larger, the thickness
of the radial velocity boundary layer is thicker and the peak value of the radial velocity
is far from the disk. An increase in thickness parameter b corresponds to lager tangential
velocity and thicker thickness of the tangential velocity boundary layer as shown in Fig. 3
(b). That is to say, physically, the increase of the steepness of the disk promotes the radial
and tangential velocity.

The variation of the axial velocity profiles for different values of the thickness parameter
a and permeability parameter M is plotted in Fig. 4. Fig. 4 (a) shows the axial velocity
increases with the increase of the thickness parameter a until it is close to the maximum and
is maintained, where the axial velocity decreases with augment of the thickness parameter
a. It is noteworthy that the thickness of axial velocity boundary layer decreases with the
thicker disk. Fig. 4 (b) discloses the axial velocity and its boundary layer thickness both
decrease with the increase of the permeability parameter M in the entire boundary layer.
From the physical point of view, the flow resistance of porous media restrains the axial
velocity.

The dependence of the temperature profiles for different values on the Brownian motion
parameter Nb and thermophoresis parameter Nt is shown in Fig. 5, which exhibits that
the temperature rises as the increase of Brownian motion parameter Nb and thermophoresis
parameter Nt, and the thickness of the thermal boundary layer also becomes thicker, which
means that the thermal resistance enlarges.

The variation of the temperature profiles for different values of the thickness parameter
a and shape parameter b is shown in Fig. 6. It can be obtained from Fig. 6 (a) and (b)
that the temperature rises as the thickness parameter a and thickness parameter b become
larger, which demonstrate a loss of the thickness of the thermal boundary layer. It is worth
mentioning that the steepness has a more significant effect on the temperature curve.

The dependence of the concentration profiles for different values on the shape parameter
b and Brownian motion parameter Nb is shown in Fig. 7. The concentration and the
thickness of concentration boundary layer are observed to increase as the magnitude of the
shape parameter b increases in Fig. 7 (a). The effect of Brownian motion parameter Nb
on the concentration profile is displayed in Fig. 7 (b). The result shows that the Brownian
motion parameter Nb enhances the concentration of nanofluid, together with the thickness
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of concentration boundary layer.
Fig. 8 shows the variation of the radial and tangential velocity profiles for different values

of the Reynolds number. In Fig. 8 (a), the values of the peak of radial velocity increase with
the increasing Reynolds number Re, and its location moves slightly towards the disk. As the
Reynolds number increases, the radial velocity boundary layer thickness becomes thinner.
It is noted that the tangential velocity distribution shows decreasing behavior corresponding
to higher values of Reynolds number. Higher values of the Reynolds number result in the
reduction of tangential velocity boundary layer thickness as presented in Fig. 8 (b). Fig. 9
indicates the effects of the Reynolds number for the axial velocity. There is an enhancement
in axial velocity near the disk while there is a reduction in axial velocity far away from the
disk. It is observed that the boundary layer thickness decreases correspondingly.

Effects of the Reynolds number on temperature and concentration are captured in Fig.
10. There is a reduction in temperature and thermal layer thickness within the frame of
Reynolds number Re. For higher Reynolds number, a reduced concentration of the nanofluid
is considered in Fig. 10 (b). Therefore, the thickness of the concentration boundary layer
becomes thinner and the ability of mass transfer is enhanced.

In Fig. 11, the variation of the local skin-friction coefficient and the local Sherwood
number for different values of the thickness parameter a and the shape parameter b. Fig. 11
(a) shows that there is an increase in the local skin-friction coefficient with the increasing
values of the thickness parameter a and shape parameter b. Fig. 11 (b) displays an increasing
trend in the profile of local Sherwood number is observed at all values of the thickness
parameter a and shape parameter b. A high local Sherwood number indicates that the
intensity of fluid convective mass transfer near the disk is enhanced. The change of skin
friction coefficient is nonlinear with shape parameter, while the growth of local Sherwood
number is the approximately linear correlation.

Fig. 12 illustrates the variation of local Nusselt number and the local Sherwood number
for different values of the Brownian motion parameter Nb and thermophoresis parameter Nt.
It is evident that the local Nusselt number is seen to be sufficiently reduced for Brownian
motion parameter Nb and thermophoresis parameter Nt increase in Fig. 12 (a). Howev-
er, the local Sherwood number rises as the values of Brownian motion parameter Nb and
thermophoresis parameter Nt increase in Fig. 12 (b). It is worth mentioning that the local
Sherwood number presents nonlinear growth with the Brownian motion.

Finally, Table 3 describes the effect of thickness parameter a and shape parameter b
variations on the local Nusselt number. As the thickness parameter a increase, there is a
rise in the local Nusselt number at the disk. But, an increase in the thickness number b
leads to a decrease in local Nusselt number. Physically, a thinner disk with steeper surface
results in small heat transfer rate.

4. Conclusions

Boundary layer flow of two-phase nanofluid over a rotating disk with exponential variable
thickness in porous media has been studied. The generalized Von Karman transformation
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is used to convert the partial differential equations into a system of nonlinear ordinary d-
ifferential equations that can be solved numerically by bvp4c in Matlab. Comparison with
previous solutions is also made to ensure the accuracy and efficiency of the applied numerical
technique. Related physical parameters (thickness parameter a, shape parameter b, perme-
ability parameter M , Brownian motion parameter Nb and thermophoresis parameter Nt)
are analyzed graphically. Key points of the present study are listed below:

(I) With the increase of shape parameter b, the radial velocity first decreases and then
increases, showing the opposite trend on the sides of the peak value.

(II) Temperature rises as both the thickness parameter a and shape parameter b become
larger.

(III) Temperature and concentration profiles decline with an increase of Brownian motion
parameter Nb. At the same time, their boundary layers also become thicker.

(IV) The thickness parameter a enhances the heat transfer rate of the disk while shape
parameter b decreases the heat transfer rate.
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Figures

Fig. 1: Schematic diagram of the model.

Table 1: Comparison of f ′(0) for b = 0, Re = 1 with the previous works.

M Turkyilmazoglu (2010) [21] Rashidi et al. (2013) [23] Present work
0 – 0.510186 0.509450
1 0.309258 0.309237 0.309253
4 0.165703 0.165701 0.165704

Table 2: The used CPU time(s) for the bvp4c and shooting method for momentum equations.

Re = 30 Re = 35 Re = 40

CPU times (s) bvp4c 0.089501 0.096779 0.108943
shooting method 0.095570 0.107075 0.146863
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Fig. 2: Radial velocity profiles with the variation of thickness parameter and permeability parameter.
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Fig. 3: Radial and tangential velocity profiles with the variation of shape parameter.
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Fig. 4: Axial velocity profiles with the variation of thickness parameter and permeability parameter.
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Fig. 5: Temperature profiles with the variation of Brownian motion parameter and thermophoresis param-
eter.
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Fig. 6: Temperature profiles with the variation of thickness parameter and shape parameter.
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Fig. 7: Concentration profiles with the variation of shape parameter and Brownian motion parameter.
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Fig. 8: Radial and tangential velocity profiles with the variation of Reynolds number.
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Fig. 9: Axial velocity profiles with the variation of Reynolds number.
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Fig. 10: Temperature and concentration profiles with the variation of Reynolds number.
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Fig. 11: Physical quantities at the disk with the variation of thickness parameter and shape parameter.
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Fig. 12: Physical quantities at the disk with the variation of Brownian motion parameter and thermophoresis
parameter.

Table 3: Local Nusselt number Nur for various values of a and b.

b
Nur 0.1 0.2 0.3 0.4 0.5

a 0.3 0.6713 0.66328 0.65428 0.64447 0.63405
0.5 0.673 0.66543 0.65609 0.64551 0.63419
0.7 0.67504 0.66689 0.65546 0.64215 0.62816
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