
IET Research Journals

Acoustic Diagnostics of Electrical Origin Faults

Acoustic Diagnostics of Electrical Origin
Fault Modes with Readily Available
Consumer-Grade Sensors

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Jarek Grebenik 1∗, Chris Bingham 2, Saket Srivastava 3

1,2,3School of Engineering, The University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, United Kingdom
* E-mail: jgrebenik@lincoln.ac.uk

Abstract: Acoustic diagnostics, traditionally associated with mechanical fault modes, can potentially solve a wider range of moni-
toring applications. Typically, fault modes are induced purposefully by the researcher through physical component damage whilst
the system is shutdown. This paper presents low-cost real-time fault diagnostics of a previously unreported acute electrical origin
fault that manifests sporadically during system operation with no triggering intervention. A suitability study into acoustic measure-
ments from readily available consumer-grade sensors for low-cost real-time diagnostics of audible faults, and a brief overview of
the theory and configuration of the wavelet packet transform (including optimal wavelet selection methods) and empirical mode
decomposition processing algorithms is also included. The example electrical origin fault studied here is an unpredictable current
instability arising with the PWM-controller of a BrushLess DC motor. Experimental trials positively detect 99.9 % of the 1160 resul-
tant high-bandwidth torque transients using acoustic measurements from a USB microphone and a smartphone. While the use of
acoustic techniques for detecting emerging electrical origin faults remains largely unexplored, the techniques demonstrated here
can be readily adopted for the prevention of catastrophic failure of drive and power electronic components.

1 Introduction

Acoustic condition monitoring is well reported for the assessment of
operational integrity in many mechanically-based industrial applica-
tions with proven advantages over established techniques, e.g. vibra-
tion monitoring. Acoustic measurements can offer earlier and more
accurate detection of emerging changes in system characteristics,
improved cost-benefit trade-off, readily accessible transducers, ease
of setup and operation, and no detrimental impact on nominal system
integrity by virtue of employing remote sensors. Nevertheless, estab-
lished confidence and reliance on traditional vibration-based tech-
niques has largely impeded the uptake of acoustic-based counter-
parts for industrial system monitoring, despite their advantages [1]–
[11]. Moreover, much of the published research employing acous-
tic methods focus on detecting mechanically-seeded, impact-based
faults, usually identifying the initial acoustic front with specialist
Acoustic Emission (AE) sensors [1]–[4], [11]–[14]. Roller Element
Bearing (REB) faults are particularly prevalent due to their pro-
portionally high failure rate and the breakdown of vibration-based
methods at slow rotational speeds [15], [16].

Several authors [1]–[3], [11], [14], compare acoustic and vibra-
tion measurements experimentally and all largely agree on the
relative advantages: the responsiveness to early-stage defects and
greater diagnostic accuracy. A distinctive feature of AE detection
is the traditional use of specialist transducers that require surface
mounting to the component to detect ultrasonic frequencies which
would otherwise rapidly attenuate through an air medium.

To-date consumer-grade sensors have been used largely for urban
noise mapping and voice monitoring for medical and speech recogni-
tion purposes, although extensions to system monitoring have been
previously reported by [17] where a mobile smartphone and tablet
is used to detect air leakage from an industrial air compressor by
differentiating healthy and leaking states through audio feature clas-
sification. A prior investigation in [18] diagnoses six common faults
in REBs using very similar sensors to those given here. In laboratory
conditions, the sensors achieved 100% and 95% accurate detection
from the USB microphone and smartphone, respectively. The inves-
tigation demonstrated the suitability of such consumer-grade sensors
for identifying mechanical faults. Nevertheless, the computational

and memory technology present in mobile smartphones and tablets
remains restrictive for complex real-time signal processing, currently
preventing a black-box all-in-one solution.

Most reported fault detection techniques concerning induction
motors focus on broken rotor bars, shorted windings or bearing
defects, where the damage is often intentionally induced by the
researcher as a laboratory exercise, whilst the system is offline. From
a measurement perspective this provides data only in the extreme
healthy and unhealthy states, whereas in real-world systems damage
often emerges slowly as the components damage over a protracted
period. Reviews of many such faults are given in [19]–[24] with
notable comparisons of different methods. For instance, [25] diag-
noses shorted stator coils using acoustic measurements analysed
using a line spectrum frequency technique. A set of feature vec-
tors are then calculated to be classified using a k-nearest neighbour
algorithm that clusters similar vectors based on their Minkowski
distance, allowing separation between healthy and fault condition
classifications. More recently in [26], [27] differential diagnoses
between several REB defects and a number of seeded physical struc-
ture changes that cause electrical faults, including shorted coils of
auxiliary and main windings, shorted coils of auxiliary windings,
broken rotor bars, and broken squirrel-cage ring on a single-phase
induction motor using acoustics. Feature extraction is based on fre-
quency vectors that help form a feature vector of between 1 and
22 frequency components. Training data allows a nearest neighbour
classifier to then match new data to known values. The microphone
used is inexpensive and readily available but the faults are identified
offline and require relevant training data to provide correct diag-
noses. [28] distinguish between broken rotor bars and several REB
defects under various operating conditions by analysing a smoothed-
pseudo Vigner-Ville distribution, and in [29] an interesting method
to estimate three-phase induction motor torque from acoustic sig-
nals is presented. The authors utilise a six-level relational-dilation
wavelet transform to preserve frequency resolution in the lower
bands. During diagnostics of REB cage faults, broken rotor bars
and single phasing faults, the authors show that the estimated torque
from the acoustic signals is very close to the measured torque. A
different approach to detect imbalance and bearing damage on an
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induction motor is presented in [30] where triple-axis vibration mea-
surements are analysed using a quaternion-based algorithm. This
method is very computationally efficient using basic mathematical
operations and not requiring space transformations which are com-
monplace when considering most other techniques. [31] detect a
broken rotor bar with a Field-Programmable Gate Array (FPGA)
implementation for faster, real-time processing of the motor current
signal, while [32] diagnose stator inter-turn, dynamic eccentricity,
and a combination of both using a finite element system model and
frequency analysis from an oscilloscope. These latter investigations
[31], [32], demonstrate the commercial requirement for fault detec-
tion in real-time, delivering near instant operator feedback, where all
previously discussed literature reports post-trial analysis. Real-time
detection allows timely intervention, possibly during the commis-
sioning process, to ameliorate costly on-site operational faults and
prevent catastrophic failure.

Despite the electrical basis of the above fault research, the failure
mechanism continues to be a physical change from human interven-
tion whilst the system is shutdown. In contrast, electrically-seeded
faults, which are often transient and with unpredictable recurrence
characteristics, are typically detected using three broad methods,
viz. quantitative detection [33], high-frequency injection [34], [35],
and Motor Current Signature Analysis (MCSA) [33], [36]. High-
frequency injection operates on the same principle as sensorless
motor control, where the saliency is used to estimate rotor posi-
tion by superimposing a low-magnitude, high-frequency sinusoidal
signal on the excitation voltage and measuring the high-frequency
modulation changes. By profiling these to healthy and unhealthy
states these signatures can be used to detect faults in the windings
or elsewhere in the electromagnetic circuit [34], [36]. MCSA is a
well-established technique that can be used to detect a wide-range of
motor faults. However, it remains computationally intensive, requir-
ing frequency analysis to determine harmonic components and fault
signatures. This makes it unsuitable to detect transient characteristics
[19], [20], [34], [36]. Nevertheless, this problem has been partially
addressed in [23] where the authors detect bar breakage through
transient MCSA realised through Continuous Wavelet Transform
(CWT) and Discrete Wavelet Transform (DWT). Another example
is given in [37] where stator currents are analysed using a four-
level Wavelet Packet Transform (WPT) to detect broken rotor bar
fault. However, the accuracy of fault detection deteriorates under
light or no-load conditions. These electrically-based fault detection
techniques, whilst effective and widely adopted, require special-
ist expertise, equipment, access to system components and can be
difficult to install on established systems.

Building on previous research in [38], this paper demonstrates the
suitability of acoustic measurements from consumer-grade sensors
for the real-time detection of sporadic, unpredictable and transient
current instabilities of electrical origin. Specifically, as an exam-
ple case study, a permanent magnet BLDC motor drive system that
exhibits sporadic current instabilities which only occur during well-
bounded operating regimes (at relatively high rotor speeds under
light load conditions) is considered in this instance. It is notable
that a 25% change in the proportional gain element of the current
controller negates the unstable operation thereby indicating that the
instability is controller induced, and a result of the non-linear inter-
action of the motor electrical parameters, parasitic components and

digital controller realisation. By way of example, Fig. 1 shows each
phase current supplied to the BLDC motor under no-load operation
(hence the voltage overhead is insufficient to produce classical ‘flat-
topped’ current waveforms). In this case, four discrete periods of
unstable controller induced current oscillations that remain for the
commutation period can be seen. These unstable events have the
potential to propagate to drive system failure, poor performance or
possible demagnetisation of the motor (if the commutation sequence
is disrupted). Although a single significant event could initiate these
failure modes, a more likely scenario is that multiple minor events
would occur over a prolonged period, causing long-term damage that
would otherwise remain undetected. The current instabilities induce
an audible, mechanical torque transient within the motor, produc-
ing an acoustic signature in the audible range (20Hz to 20 kHz)
commensurate with typical PWM frequencies and AC sources,
and making consumer-grade acoustic transducers appropriate. This
differs from prior investigations that typically employ vibration sen-
sors or specialised piezoelectric transducers, surface mounted for
higher-frequency pickup (typically 100 kHz to 1MHz). Such sensor
systems are of comparatively high-cost, require complex special-
ist setup and operation (low-noise transmission and amplification,
and fast data acquisition), are more susceptible to operational dam-
age, and are intrusive to the system under test. Electrical origin
fault modes are traditionally diagnosed electrically with techniques
such as MCSA. Furthermore, to date, research has focussed on
detecting faults caused by mechanical changes to the system. The
method presented here is widely applicable to both mechanical and
electrically-seeded faults that result in an audible signature. The
particular case considered in this paper represents one practical
example. The key contributions of this paper are:

• the diagnosis of electrical origin faults where the failure mode
is unseeded (i.e. not by human intervention) and manifests
sporadically during continuous system operation,

• the proposed use of consumer-grade acoustic sensors that are
readily available for low-cost continuous real-time monitoring,

• a brief comparison of methods for optimal selection of the
mother wavelet when using wavelet transformations.

2 Underlying Principles

2.1 Acoustic Transducers

Consumer-grade acoustic transducers are designed to measure lon-
gitudinal pressure waves in air within the audible frequency range
(consistent with the music and telephonic industries). These inte-
grated sensor systems are highly-developed and mass produced,
and are therefore widely available, low-cost and easy to use. Four
main acoustic sensor categories exist; capacitive, inductive, piezo-
electric and optical. Most surface mounted ‘research-grade’ sensors
are piezoelectric, whereas consumer-grade sensors usually operate
on capacitive principles as follows. Typically, a thin gold-coated
mylar diaphragm forms a flexible capacitor plate that moves with
respect to the other plate in response to acoustic pressure waves,
Fig. 2. This changes the capacitance, usually in the region of 10

Fig. 1: Three-phase BLDC motor currents with four distinct current instabilities circled.
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Fig. 2: Diagram of a simple capacitive microphone circuit.

to 50 pF. A phantom power source provides a DC voltage (usually
48V) that pulls the diaphragm taut. As the capacitance changes, the
small voltage fluctuations across a high load resistor are amplified
and measured as the audio signal. These remote sensors commonly
exhibit directional sensitivity that are depicted as polar patterns of
four primary types: omni-direction, bi-directional, cardioid or super-
cardioid. The cardioid pattern is most suitable in this case and for
condition monitoring since it is most sensitive at the front with
reduced lateral and minimal rear pick-up [39].

Unlike surface-mounted counterparts these consumer-grade sen-
sors suffer from signal attenuation through the air which is more
pronounced at higher frequencies. They are also prone to superim-
posed noise from a variety of external sources, and careful selection
of the feature extraction algorithm is therefore necessary.

2.2 Fault Signature Extraction

Separating the acoustic fault signature from unwanted noise can
prove challenging in a real-world environment. Noise from the sur-
rounding environment and auxiliary electrical sources, combined
with signal attenuation through medium transmission, sensor imper-
fections, and analogue to digital conversion, can result in the fault
signatures becoming buried. The goal of feature extraction is to iso-
late as much fault information as possible with minimal computation
overhead.

Mathematically, there are three primary domains in which sig-
nals are traditionally analysed. Firstly is the time domain with
a plethora of mathematical techniques and algorithms available,
ranging in complexity from basic mathematical operations such
as multiplication through to composite sequential operations form-
ing algorithmic analysis. Secondly, the Fourier transform or vari-
ations thereof, which converts a time or spatial domain signal to
a frequency representation. In signal processing the Fast Fourier
Transform (FFT) is commonly utilised to determine underlying fre-
quency content. The third domain, known as the time-frequency
domain, allows the study of both time and frequency information
simultaneously. However, there is a trade-off in resolution between
time and frequency domains. Fig. 3 illustrates the concept of how
these different domains can trade-off resolution. Although excellent
resolution can be achieved in both time and frequency using tech-
niques such as Short-Time Fourier Transform (STFT), a significantly
disproportionate amount of computation is required, making this
technique unsuitable for low-cost real-time continuous processing
and for larger datasets. An advantage of so-called wavelet trans-
forms is in the configuration of the domain resolutions, making
the algorithm significantly more efficient whilst still achieving the
required resolution performance.

Fault detection algorithms can be broadly categorised into those
that can detect continuous (e.g. a mechanically worn component or
a pressurised leak) or transient (e.g. a mechanical impact such as
damage to the race of a roller bearing) faults. Identifying a continu-
ous fault is relatively straightforward as marked differences between
healthy and unhealthy states would usually be evident in the fre-
quency spectrum. Equally in the time domain a change from a
healthy to an unhealthy state may also be evident. However, transient

Fig. 3: Diagram illustrating the resolution differences between time,
frequency, and time-frequency domains.

fault types can prove more challenging as the fault signature is often
hidden in the time domain and may only result in very low-level
changes in the frequency domain. A time-frequency algorithm can
then be used to better identify such conditions. When considering
different feature extraction methods, it is critical that the nature of the
fault features are well-understood. In this case, as is common with
transient fault detection, the signature is of high frequency and short
time duration. Therefore, an optimal detection algorithm would seek
to reveal frequency changes with respect to time, as corroborated in
[3], [5]–[10], [12], [40]–[45].

There are many well-known time-frequency techniques such as
the STFT, spectrogram analysis, wavelet transform, Wigner distri-
bution, Wigner-Ville, Choi-Williams, and Hilbert-Huang Transform
(HHT), from which many variations are derived. For this work, two
feature extraction algorithms, WPT and Empirical Mode Decom-
position (EMD), are chosen for comparative purposes. These tech-
niques are prominent in the field and their suitability and excellent
performance for such applications are well-documented. Aiming to
demonstrate the suitability of real-time acoustic signal processing
for previously unexplored fault types (of electrical origin and with
no physical change to nominal system integrity), it is desirable to
use WPT and EMD as they are commonly used and well-understood
in the wider industry to provide an initial investigation into this novel
application sector [44]. An overview of both techniques is now pro-
vided along with some insight on why these specific variations are
particularly suited to this application.

2.2.1 Wavelet Theory: The wavelet transform can be consid-
ered a dynamic extension to the classical Fourier transform which
uses the sum of complex exponentials, but instead employs a dyadic
dilation of a scaling function and translation of a mother wavelet
function (example given in Fig. 4). The CWT of a finite energy sig-
nal x(t) is the result of convolving that signal with a dyadic scaling
and translation of a mother wavelet Ψ(t) of the form:

W(α,b) = α
1
2

∫∞
−∞

x(t)Ψ ∗
(
t− b
α

)
dt (1)

where W(α,b) is the wavelet coefficient, α is the dyadic scaling, b is
the dyadic translation and Ψ is the mother wavelet.
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Fig. 4: The dmey mother wavelet and scaling function. Axes units not relevant here.

A true CWT requires an infinite number of functions that generate an
infinite number of coefficients, which is impossible to realise practi-
cally. Letting α = 2m and b = n2m (where m and n are integers),
the CWT becomes discrete and forms an orthonormal basis set;

Ψ(m,n)(t) = 2−
m
2 Ψ(2−mt− n) (2)

allowing realisable calculation overhead. The base scale is usually a
fractional power of 2 in the form 2

j/v , where j represents the num-
ber of scales and v represents the fidelity of each scale (sometimes
known as the number of ‘voices per octave’). The resulting number
of coefficients remains very high - an M by N matrix, where N is
the input signal length and M is the number of scales.

The DWT discretises the scale to 2
j/1 with only a single ‘voice per

octave’ and base scale of 2. This results in the number of coefficients
being equal to an L+ 1 by N matrix, where L is the decomposition
level. The DWT convolves the original signal with a low pass filter
h(n) and high pass filter, g(n), and downsamples by a factor of 2.
h(n) and g(n) are a coarse discretisation of the dyadic scaling and
wavelet function, and take the form:

h(n) =
1√
2
〈ϕ(t), ϕ(2t− n)〉 (3)

g(n) =
1√
2
〈Ψ(t), Ψ(2t− n)〉 = (−1n)h(1− n) (4)

where ϕ(t) is the dyadic scaling function.

This results in approximate coefficients cA1 and detail coefficients
cD1. The process can be repeated on the approximation coefficients
to give a multi-level decomposition, as depicted in Fig. 5. Recon-
struction of the signal involves upsampling by two and convolving
the approximation and detail coefficients with low and high pass
reconstruction filters respectively, giving the real approximation and
detail that are then summed [7], [44].

The WPT follows the same principle but additionally decomposes
the ‘detail path’ and the ‘approximation path’ at each level. This

Fig. 5: Example three level DWT. Original time domain signal is
x (t), and signal reconstruction uses cA3 and cD1 to cD3.

results in an even wavelet packet tree shown in Fig. 6. Frequency
folding which occurs with WPT results in low pass filtered signals
containing information on the high frequency content. Consequently,
the reconstruction order is aligned to the frequency order by invert-
ing the position of each right-hand branch (illustrated by the red
swap arrows and text). For example, at the third level the natural
order is 0, 1, 2, 3, 4, 5, 6, 7 but the frequency order becomes 0, 1, 3,
2, 7, 6, 4, 5 [7], [44].

Although the CWT offers high-fidelity, it is excessive for this
purpose and the computational resources required are generally too
large for low-cost real-time continuous processing. The DWT or
WPT offers a sparse representation of the signal providing com-
pression, but also reconstruction of the original signal from the
approximation and detail coefficients. The additional terminal nodes
of WPT over DWT allows deeper analysis of the different frequen-
cies and the complex reconstruction can use specific terminal nodes
facilitating unparalleled isolation of fault information, revealing the
abrupt changes in hidden frequencies [3], [6], [7], [44].

2.2.2 Empirical Mode Decomposition Theory: EMD forms
the first part of the Hilbert-Huang Transform [46] and is a
time domain signal decomposition method particularly suited to
analysing non-linear and non-stationary systems and signals. Each
decomposition level begins with a sifting operation where smooth
upper and lower envelopes of the signal based on local maxima and
minima (using cubic spline interpolation) are generated. The mean
of the two envelopes m1 is then subtracted from the original sig-
nal to give the first sifted component, h1 = x(t)−m1. The second
sifting iteration treats h1 as the input and m11 is the mean of the
new input upper and lower envelopes giving h11 = h1 −m11. This
process is repeated k times, h1k = h1(k−1) −m1k until a termina-
tion criterion is reached. This forms the first Intrinsic Mode Function
(IMF), c1 = h1k which is subtracted from the original signal to give
the first residue r1 = x(t)− c1. The residue is then treated as the
input and the sifting process repeats j times until the stoppage cri-
terion, rj = r(j−1) − cj is reached. Various stoppage criteria can
be used, such as a standard deviation match, a predefined threshold,
energy difference tracking or S-number (the number of consecutive
sifting iterations where the number of zero crossings and extrema are
the same or differ by one). The IMFs are oscillatory functions with
higher IMF decomposition levels revealing subsequently lower fre-
quencies. All the IMFs are the same length as the original signal and
they must satisfy the two criteria below such that their superposition
will reconstruct the original signal:

• the number of IMF extrema (the sum of the maxima and min-
ima) and the number of zero crossings must either be equal or
differ at most by one;

• at any point of an IMF the mean value of the envelope defined
by the local maxima and the envelope defined by the local
minima shall be zero.

It is well known that EMD is prone to mode mixing and alias-
ing issues with more intermittent signals, resulting in IMFs that are
devoid of physical meaning. EMD also degrades when multiple con-
current data points form a flat or non-oscillatory part of the signal
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Fig. 6: Example three level WPT tree showing the frequency range corresponding to each node coordinate. Dashed lines show the additional
branches of WPT compared to DWT.

Fig. 7: Experimental setup diagram.

e.g. a square wave. To counter these disadvantages Ensemble Empir-
ical Mode Decomposition (EEMD) [47] adds white noise to the input
signal and then takes the ensemble mean of multiple outputs to form
a single IMF. Accuracy is increased by using more ensembles, can-
celling the white noise. However, this is computationally intensive
and makes EEMD unsuitable for low-cost real-time processing. Fur-
ther, since acoustic signals are highly-oscillatory EEMD would not
provide any significant advantage over conventional EMD. Although
EMD remains a time domain algorithm, it does provide an analysis
of pseudo-time-frequency information. However, the result is devoid
of physical meaning and the IMFs are not precisely orthogonal.
For the acoustic signals analysed here, EMD can imprecisely reveal
the short-time transient frequency changes with excellent detec-
tion accuracy providing isolation of an empirically-derived fault
signature.

3 Experimental Setup

A three-phase BLDC 36V 1600W Unite MY1020 motor is pow-
ered through a bespoke digital current controller. Internal Hall-effect
sensors are used to facilitate commutation. Consumer-grade acoustic
transducers, specifically an Audio-Technica AT2020 USB+ micro-
phone and a Samsung Galaxy S7 smartphone using WO Mic, are
both positioned ≈10 cm from the motor with their sensitive planes
directed toward the motor. A setup diagram is given in Fig. 7. Both
acoustic sensors have their own inbuilt analogue to digital converter
and connect digitally for continuous real-time sampling at 48 kHz
with 16-bit resolution using Matlab. In parallel with the sampling,
Matlab discretises the data into packets and processes each one
using the feature extraction techniques, delivering real-time analy-
sis every 0.2 s. A posteriori knowledge of the instability duration
(approximately 1.5ms) is used to define the system refresh rate of
5Hz; sufficiently long to capture entire instability periods but fast

enough to prevent damage to the motor drive. The three motor phase
currents are measured using three isolated high-bandwidth Hall-
effect current sensors, sampled at 250 kHz with 16-bit resolution
on an oscilloscope. The high sampling rate allows inter-PWM cur-
rent characteristics to be captured. The motor and acoustic sensors
are sited in a semi-anechoic chamber, ensuring minimal background
noise. Nevertheless, signal processing is still required to adequately
separate the fault information from unwanted motor noise.

3.1 Wavelet Packet Transform Configuration

Optimal selection of the mother wavelet is critical to the performance
of the WPT and is dictated by the similarity of the wavelet shape
to the signal of signature through dilation and translation. In other
words, through dilation and translation how well can the wavelet
match the signal or signature. There is no defined method to deter-
mine this, and researchers have devised various quantitative mea-
sures, all fundamentally based on experimentation and a posteriori
knowledge of relevant signatures. Typically, a selection of different
wavelets are tested for various quantitative performance factors such
as maximum energy, minimum entropy, minimum reconstruction
error, cross-correlation to name a few. In [48], five attributes (energy,
Shannon-entropy, signal power to noise power ratio, mean square
error, and maximum absolute squared deviation) are evaluated for
twenty-six different wavelets. Three separate weighting schemes are
applied to the attributes using the analytic hierarchy process (based
on pairwise comparison matrix of the attributes). Each weighting
scheme revealed a performance ranking order of the wavelets anal-
ysed where the highest-ranking wavelet is deemed to deliver the best
performance for the given application. A slightly simpler approach
is given in [49], where the maximum energy to Shannon-entropy
ratio is used as a measure of wavelet performance. This method is
undertaken for the investigation in this paper, as the acoustic fault
signature is known to be of a transient nature within the normal
operational characteristics of the motor. Although for certain appli-
cations it may be necessary to undertake a further comparative study
of information measures (joint entropy, conditional entropy, mutual
informal, relative entropy and comparative information entropy for
example), it is unnecessary in this case due to the transient nature of
the fault signature. Therefore, the best maximum energy to Shannon-
entropy ratio is used to select the wavelet. Sixty different wavelet
types from the Haar, Daubechies, Symlets, Coiflets, Biorthogonal,
Reverse-Biorthogonal, Discrete approximation of Meyer (dmey) and
Fejer-Korovkin families are analysed; revealing the dmey wavelet
(from Fig. 4) to be most suitable for these signals.

The required number of decomposition levels is visually deter-
mined through inspection of the terminal node coefficients using the
Matlab wavelet analyser; aiming to maximise the isolation of the
fault signature from unwanted noise. This analysis, Fig. 8 shows
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Fig. 8: Microphone data dmey 3-level WPT terminal node coefficients. The instability information from Fig. 1 can be seen as dark patches in
terminal node [3,1] or 8. First one circled for clarity.

Fig. 9: EMD 4-levels with microphone data on the left, and smartphone data on the right. Only relative amplitude are significant on the IMFs
(in descending order), with the red circle marking the first of four instabilities.

excellent fault signature isolation into terminal node [3, 1] or 8.
The higher coefficient values are colour mapped darker. The orig-
inal signal is reconstructed from these coefficients thus excluding
most of the unwanted noise and erroneous frequencies and delivering
the fault information signature. Reconstruction is realised through
upsampling by two and convolving the approximation and detail
coefficients with low and high pass reconstruction filters respec-
tively which gives the real approximation and detail that is summed
together.

3.2 Empirical Mode Decomposition Configuration

An empirical approach is used to establish the required number of
decomposition levels. Both microphone and smartphone measure-
ments are initially decomposed into four levels giving the four IMFs
shown in Fig. 9. As the fault information is expected to be high-
frequency it would likely be contained in the early IMFs. The default
stopping criterion is based on standard deviation matching and a
maximum of 2000 sifting iterations allow normal operation of the
sifting process.

The results, Fig. 9, shows the majority of the fault information is
preserved in IMF 1. Hence, only a 2-level decomposition is nec-
essary; providing the first IMF for further analysis and a residue
signal containing everything else i.e. the remaining noise. Interest-
ingly, there is no apparent information relating to the instabilities in
any of the remaining IMFs indicating only higher-frequency fault
information.

3.3 Fault Diagnostic Method

In summary, the acoustic measurements from the USB microphone
and smartphone sensors are pre-processed using the WPT and EMD
algorithms described above delivering four sensor / algorithm com-
binations, Fig. 10. A standard peak finding approach is the final step
to detect the instabilities in each pre-processed signal. Detection is

qualified using an amplitude threshold based on the standard devi-
ation of each processed signal (data from a preliminary test run).
Windowing discretises individual instabilities using a lower limit
separation of 0.02 s (sufficiently long to distinguish between insta-
bility periods, but short enough to not class two separate instabilities
together as a single entity). Fig. 10 shows the detection threshold line
along with the identified instability start and end points.

4 Experimental Results

The results from three experimental trials are now presented with
analysis of the sensor and feature extraction algorithm relative per-
formance, and detection rates of the electrically-seeded instabilities.

4.1 Consumer Transducer Performance

Firstly, the number of unstable periods for each trial are counted
from the motor phase current measurements, and are compared in
Table 1 against the four sensor and algorithm combinations (top row
of each trial). The bottom row of each trial is a percentage of the
sensor/algorithm detection rate against the actual occurrences. The
green values show that the microphone/WPT combination provided
100% accuracy in detecting the fault periods during trials 1 and
2, with only a single missed instability period during trial 3. This
excellent performance is further highlighted in Table 2, where the
mean percentage of correct detection across all three trials reveals
the performance of the sensors, algorithms and combinations. The
USB microphone marginally outperforms the smartphone by 1.7%,
achieving an overall detection rate of 99.9%. This is attributable to
its larger, open diaphragm, compared to the smartphone which has
a water-resistant microphone within a small aperture. Nevertheless,
the smartphone performance remains impressive considering the
relative disadvantages. The semi-anechoic environment minimises
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Fig. 10: Processed signals showing almost exclusively fault information. The peak detection threshold is shown by the horizontal red line with
detected peaks marked in red, and the start and end of each discrete instability in yellow and purple respectively.

Table 1 The total number of unstable features found for each trial using the phase current measurements as a reference for the acoustically detected faults. Blue
indicates that some unstable periods were missed, orange indicates false positive detections (which also result in percentages over 100%), and green shows the best
performance.

TRIAL INSTABILITY PERIODS
DURING TRIAL

ACOUSTIC DETECTOR PERFORMANCE

MICROPHONE SMARTPHONE

WPT EMD WPT EMD

1 327
327 326 309 290

100.0% 99.7% 94.5% 88.7%

2 690
690 658 685 668

100.0% 95.4% 99.3% 96.8%

3 143
142 142 147 145

99.3% 99.3% 102.8% 101.4%

TOTAL 1160
1159 1126 1141 1103

99.9% 97.1% 98.4% 95.1%

background noise and is partially responsible for the high detec-
tion rates achieved. Even so, the results do demonstrate the potential
benefits of the proposed methodology.

4.2 Fault Signature Extraction Algorithm Performance

Results in Tables 1 and 2 show that the WPT algorithm outper-
forms EMD in detection performance by isolating the fault signature
entirely into one terminal node. In some cases, EMD failed to sep-
arate events that occurred in close proximity, resulting in multiple
instabilities being classed as one by the detection algorithm.

Regarding real-time processing, the mean data packet process-
ing times provide an indication of computational efficiency for the
feature extraction algorithms as given in Table 3. The times are nor-
malised to the system refresh rate (0.2 s) for clarity. Processing times
are seen to be very close to the system refresh rate. A slower pro-
cessing rate is not suitable for real-time systems as the time lag will
continue to increase and the system will run out of memory. Both
feature extraction algorithms performed well overall, with EMD
exhibiting the slowest and fastest processing. However, WPT proved
to be consistently faster, delivering the fastest mean processing time.

5 Conclusion

This paper presents the use of acoustic measurements for low-
cost real-time detection of an acute electrical origin fault mode
that manifests sporadically under well-bound operating conditions

Table 2 Correct detection percentage across all three trials.

WPT EMD MEAN

MICROPHONE 99.9% 97.1% 98.5%
SMARTPHONE 98.4% 95.1% 96.1%

MEAN 99.1% 96.1%

Table 3 Mean processing times across all trials normalised to the system
refresh rate.

TRIAL WPT EMD

1 -0.31 1.69
2 -0.55 -2.37
3 -0.52 -0.18

MEAN -0.46 -0.28

on a BrushLess Direct Current (BLDC) motor drive system. The
example fault mechanism investigated is a transient current insta-
bility that arises in the motor supply from the controller due to
the non-linear interaction of the PWM-controller parameters, par-
asitic components and digital controller realisation. This case study
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verifies that acoustic measurements are capable of detecting electri-
cal origin faults. Low-cost continuous real-time acoustic monitoring
is realised through the readily available consumer-grade sensors
employed, specifically a USB microphone and portable smartphone.
These sensor types can be easily and readily adopted to solve a
wide variety of real-world condition monitoring and fault detection
requirements in both mechanical and electrical systems and of both
mechanical and electrical origin fault modes. Across the three exper-
imental trials undertaken, 1160 discrete unstable controller induced
current oscillations were present. An investigation into the suit-
ability of consumer-grade sensors and feature extraction algorithm
performance, (specifically combinations of a USB microphone and
smartphone acoustic transducers with Wavelet Packet Transform
(WPT) or Empirical Mode Decomposition (EMD) feature extrac-
tion) revealed that all combinations delivered excellent performance.
However, it was the USB microphone and WPT feature extraction
that performed best - correctly identifying 1159 (99.9%) of the
instabilities. This is attributed to the larger diaphragm of the USB
microphone and optimal selection of the analysing wavelet by the
highest energy to Shannon-entropy ratio method. Although the USB
microphone performed marginally better, the smartphone offers the
potential to become an all-in-one future diagnostic tool given the
obvious advantages of being established, easily accessible, relative
low-cost, self-powering, remote from the system, and with internet
and other communication built in. This research may provide the
stimulus for the widespread adoption of consumer-grade sensors and
smartphone technology for fault detection and monitoring of both
mechanical and electrical systems and fault modes.
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