brought to you by **CORE** provided by University of Lincoln Institutional Repository

## Running Head: FLOW EXPERIENCE IN EXERCISE

| 1  |                                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                  |
| 3  |                                                                                                                                  |
| 4  | Flow states in exercise: A systematic review                                                                                     |
| 5  |                                                                                                                                  |
| 6  | Patricia C. Jackman <sup>a*</sup> , Rebecca M. Hawkins <sup>a</sup> , Lee Crust <sup>a</sup> and Christian Swann <sup>b, c</sup> |
| 7  |                                                                                                                                  |
| 8  | <sup>a</sup> School of Sport and Exercise Science, University of Lincoln, Brayford Pool, Lincoln,                                |
| 9  | United Kingdom                                                                                                                   |
| 10 | <sup>b</sup> School of Health and Human Sciences, Southern Cross University, Coffs Harbour, Australia                            |
| 11 | <sup>c</sup> Centre for Athlete Development, Experience and Performance, Southern Cross University,                              |
| 12 | Coffs Harbour, Australia                                                                                                         |
| 13 |                                                                                                                                  |
| 14 | * Corresponding author: Patricia Jackman, School of Sport and Exercise Science, University                                       |
| 15 | of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom. Email:                                                               |
| 16 | pjackman@lincoln.ac.uk                                                                                                           |
| 17 |                                                                                                                                  |
| 18 |                                                                                                                                  |
| 19 |                                                                                                                                  |
| 20 |                                                                                                                                  |
| 21 |                                                                                                                                  |
| 22 |                                                                                                                                  |

| 1  |   | Highlights                                                                               |
|----|---|------------------------------------------------------------------------------------------|
| 2  | • | The first systematic review of flow research in exercise was conducted.                  |
| 3  | • | Exergame design features, music, and virtual stimuli can affect at least some flow       |
| 4  |   | dimensions.                                                                              |
| 5  | • | A range of conceptual and methodological issues must be addressed in the field.          |
| 6  | • | Initial qualitative findings offer a potential step towards explaining the occurrence of |
| 7  |   | flow.                                                                                    |
| 8  | • | Researchers need to direct more attention towards developing an explanatory theory       |
| 9  |   | for flow states in exercise.                                                             |
| 10 |   |                                                                                          |

1

#### Abstract

Objectives: The purpose of this study was to systematically identify, review, synthesise, and
appraise current literature on flow in exercise. By doing so, this study aimed to highlight gaps
and future research directions that will help to advance understanding and application of flow
states in this setting.

6 **Design:** A systematic review using PRISMA guidelines.

Methods: Eight electronic databases were searched in February 2019. Inclusion criteria were
peer-reviewed studies focused on the investigation of flow in exercise. Exclusion criteria
were studies that did not exclusively include exercise participants, or that focused on
instrument development and/or validation. Data from included studies were extracted and
reported in a narrative synthesis.

12 **Results:** A total of 26 studies that were conducted with 4478 participants met the inclusion criteria. Several issues with the conceptualisation and measurement of flow in exercise were 13 identified, which makes it difficult to draw meaningful conclusions about this literature. 14 15 Nevertheless, there is tentative evidence that exergame design features, music, and virtual stimuli can affect at least some dimensions of flow. While little attention has been directed 16 towards developing an explanatory theory, initial findings concerning the contexts and 17 process underlying flow occurrence could offer a potential avenue for progress. 18 19 **Conclusions:** The review advances knowledge by synthesising quantitative and qualitative 20 evidence on flow states in exercise. By doing so, the review also highlights a range of conceptual and methodological issues in the field. Recommendations to address these issues 21 and suggestions for making meaningful progress to develop understanding of flow states in 22 23 exercise are advanced.

24 **Keywords:** adherence; clutch state; exergame; fitness; optimal experience; physical activity.

25

1

#### Flow states in exercise: A systematic review

2 Understanding optimal experiences is a key area of research in the field of positive psychology (Seligman & Csikszentmihalyi, 2000). The most advanced framework for 3 4 understanding optimal experience is flow (Csikszentmihalyi, 1975), which is defined as an intrinsically rewarding psychological state in which individuals experience total absorption in 5 6 an activity, perceptions of control, and a sense that everything clicks together, even in challenging situations (Csikszentmihalyi, 2002). Flow is most commonly conceptualised in 7 terms of the nine-dimensions framework (Csikszentmihalyi, 2002), which describes the 8 9 experience as an amalgam of: challenge-skills balance; action-awareness merging; clear goals; unambiguous feedback; concentration on the task at hand; sense of control; loss of 10 self-consciousness; transformation of time; and autotelic experience. This multifaceted 11 12 experience could be particularly relevant for exercisers, as flow has been associated with increased motivation (Schüler & Brunner, 2009) and long-term adherence (Elbe, Barene, 13 Strahler, Krustrup, & Holtermann, 2016). In turn, flow can offer a potential foundation for 14 building long-term exercise<sup>1</sup> engagement (Petosa & Holtz, 2013). Therefore, a robust 15 evidence base is essential to inform the development of recommendations for exercisers and 16 practitioners to increase the frequency and intensity of flow states in exercise settings. 17 Since the initiation of flow research in sport<sup>2</sup> in the early 1990's (e.g., Jackson, 1992), 18 there has been extensive progress in understanding of flow in athletes (see Swann, Keegan, 19 20 Piggott, & Crust, 2012 for a systematic review). While sport shares some characteristics with exercise (e.g., bodily movement), these subcategories of physical activity are considered to be 21 distinct (Caspersen, Powell, & Christenson, 1985; World Health Organisation, 2018). Indeed, 22

<sup>&</sup>lt;sup>1</sup> Exercise is defined as a structured, planned, repetitive bodily movement undertaken to enhance or maintain at least one aspect of physical fitness (Caspersen, Powell, & Christenson, 1985; World Health Organisation, 2018). <sup>2</sup> Sport is defined as "an activity involving physical exertion, skill and/or hand-eye coordination as the primary focus of the activity, with elements of competition where rules and patterns of behaviour governing the activity exist formally through organizations" (World Health Organisation, 2018, p. 101).

researchers have highlighted the need to view exercise-specific literature on flow
 independently on the basis that findings in sport might not be transferable to exercise (e.g.,
 Grove & Lewis, 1996). In accordance with this distinction, a great deal of research has
 focused on developing understanding of flow in exercise settings, with growing literature on
 the experience across a range of exercise activities (e.g., Elbe et al., 2016; Karageorghis,

6 Vlachopoulos, & Terry, 2000; Monedero, Murphy, & O'Connor, 2017).

Despite the considerable growth in flow research in exercise, no studies have yet 7 reviewed this literature systematically. A systematic review was conducted on the experience, 8 9 occurrence, and controllability of flow in elite sport (Swann et al., 2012), while various book chapters and narrative reviews have been published on flow in sport and exercise (e.g., 10 Kimiecik & Harris, 1996; Jackson & Kimieick, 2008; Swann, Piggott, Schweickle, & Vella, 11 12 2018). However, the increasing body of literature specifically on flow in exercise has yet to be systematically reviewed and synthesised. To move forward with flow research in exercise, 13 it is important and timely to systematically review the knowledge base to provide a 14 15 comprehensive, unbiased account of current understanding in this domain. Further, given that systematic reviews can highlight research gaps (Petticrew & Roberts, 2006) and provide 16 direction for further empirical studies (Gurevitch, Koricheva, Nakagawa, & Stewart, 2018), a 17 review of this nature could provide a robust foundation of knowledge to inform the design 18 and direction of future research that seeks to advance understanding of flow in exercise. 19 20 Therefore, the purpose of this study was to systematically review, synthesise, and appraise existing research on flow in exercise. Specifically, this review aimed to address the 21 following questions: (i) how has flow been measured in exercise?; (ii) how has flow been 22 23 conceptualised in exercise?; (iii) what is the quality of research in this field?; (iv) what evidence is available regarding mechanisms of occurrence and strategies for inducing flow?; 24 and (v) what are the correlates and outcomes of flow in exercise? By doing so, this study 25

sought to provide a platform for future research on flow in exercise, with the ultimate goal of
 helping exercisers experience flow states more regularly and reliably.

3

#### Method

## 4 **Protocol**

This systematic review followed guidelines from the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses Statement (see Supplementary File 1 for checklist;
Moher, Liberati, Tetzlaff, Altman, & PRISMA Group, 2009).

#### 8 Search Strategy

9 The online search was conducted using eight electronic databases, comprising: Academic Search Complete; MEDLINE; PsycARTICLES; PsycINFO; PubMed; Scopus; 10 SPORTSDiscus with Full Text; and Web of Science (Core Collection). Databases were 11 12 searched four times (July 2018 - February 2019) to ensure that all newly published or in press articles were included. The final search was conducted on February 1st 2019. The search 13 string employed the following Boolean search terms: [flow AND (state\* OR experienc\* OR 14 15 theory)] AND (exer\* OR physical\* activ\* OR health\* OR fit\* OR gym\*) AND (psycholog\*) NOT (expirat\* flow OR optic\* flow OR \*water flow OR blood flow OR gene\* flow). These 16 keywords were selected following: initial scoping searches by the first and fourth authors on 17 the EBSCOhost database; critical discussions between both authors after the initial searches; 18 19 and a review of the search strategy in a previous systematic review in a similar but distinct 20 domain (Swann et al., 2012). The search string was adapted appropriately for each database and, where possible, results were limited to peer-reviewed journal articles in the English 21 language. The first two blocks in the search string were searched in the title and abstract 22 23 fields, while the second two blocks were searched, at a minimum, in the title, abstract, and keyword fields (see Supplementary File 2 for the full search strategy). A range of synonyms 24 for exercise were employed in the second block to ensure the comprehensiveness of this 25

1 review (cf. Siddaway, Wood, & Hedges, 2019). Truncated terms were used, where possible,

2 to ensure that as many variant spellings of a term as possible were captured. All retrieved

3 titles and abstracts were exported into Endnote X8 reference management software.

4 Duplicates were identified through the automatic de-duplication feature and manual searches.

5 Eligibility Criteria

6 Inclusion and exclusion criteria were established to ensure that the review parameters 7 were clearly defined and that all literature relevant to the review objectives was identified (Smith, 2018). The inclusion criteria (a-e) stipulated that included studies were required to: 8 9 (a) be a peer-reviewed journal article in the English language; (b) contain original empirical data; (c) be published or in press prior to February 1<sup>st</sup> 2019 (when the final search was 10 undertaken); (d) refer to flow (i.e., psychological state) and an activity defined as exercise, or 11 matching the definition of exercise<sup>1</sup> (Caspersen et al., 1985; World Health Organisation, 12 2018), either in the title or abstract (i.e., if the study referred to sport, or other terms, and 13 could not clearly be interpreted as exercise, it was excluded); and (e) refer to the investigation 14 of flow in exercise as a purpose of the inquiry. The exclusion criteria (f-g) specified that 15 studies were ineligible if they: (f) involved participants in activities<sup>3</sup> that were not relevant to 16 the objectives of the review; or (g) focused on instrument development and/or validation. 17

18 Screening Process

All titles and abstracts were initially read and checked for eligibility against the
aforementioned criteria by the first and second authors independently. A meeting then took
place to discuss the results of the screening process and resolve any discrepancies. Full texts
were obtained for studies that referred to sport and exercise to check whether data for

<sup>&</sup>lt;sup>3</sup> Common activities that did not correspond with the definition of exercise<sup>1</sup> and were excluded from the review included: adventure or sport tourism; physical education; recreational physical activity (e.g., housework); and sport<sup>2</sup>. These activities were excluded on the basis that the motive for participation might not be improving physical fitness (e.g., individuals in physical education classes might be participating to meet educational requirements), which is necessary for an activity to be deemed as exercise<sup>1</sup>.

1 participants in exercise could be separated (i.e., inclusion/exclusion criteria f; samples that 2 mixed sport and exercise participants but could not be separated at the full text stage were excluded). After screening the titles and abstracts for compliance with the inclusion criteria, 3 4 manual searching was performed by the first author to identify further potentially relevant articles through: (i) reference lists of each identified study; (ii) titles of publications by 5 6 authors of each identified study; (iii) titles in journals that published the identified studies; and (iv) titles of forward citations of the identified studies on Google Scholar. This process 7 was then repeated for all articles identified through manual searching until no further 8 9 potentially relevant studies were located. After concluding the manual search, all full texts of the relevant articles were obtained and searched in detail for compliance with the eligibility 10 criteria by the first and second authors independently. Both researchers met to discuss the 11 12 outcomes of the screening process and agree reasons for excluding rejected studies. Any disagreements or uncertainties that arose were assessed by the fourth author and a final 13 consensus was reached. To ensure the accuracy of the study selection process, the third 14 15 author acted as a 'critical friend' (Smith & McGannon, 2018) by judging a random selection of 10 titles and abstracts, and five full texts against the eligibility criteria. The third author 16 17 discussed their decisions with the first author, with both authors agreeing on the decision for each randomly selected article. 18

19

## Data Extraction, Analysis, and Synthesis

Following the identification of all relevant studies, the first author read each included study twice to enhance familiarity with the data before extracting and synthesising findings (cf. Smith, 2018). For this review, the following data were extracted: authors; date of publication; sample characteristics; exercise activity/activities; design; measurement of dispositional flow (i.e., tendency to experience flow in general) or state flow (i.e., flow experience in a specific activity); method and procedure; and key findings (i.e., findings not

1 relevant to the aim of the review were not extracted). A weighted mean age for the sample 2 was calculated by multiplying the mean age by the number of participants that reported mean age for each study, with these values then added together and divided by the total quantity of 3 4 participants that reported mean age in all included studies. Where possible, effect sizes (Cohen's d) were calculated for differences between means (see Supplementary File 3 for all 5 6 effect sizes) using Comprehensive Meta-Analysis (Version 3; Borenstein, Hedges, Higgins, & Rothstein, 2015). Effect sizes were calculated based on means, standard deviations, and 7 sample sizes. If such information was not available, F-statistics were used. WebPlotDigitizer 8 9 (Rohatgi, 2019) was used to extract data that was only published in figures and could not be retrieved. Given the heterogeneity in study design and outcomes assessed, a meta-analysis 10 was not performed to summarise the quantitative findings. Key findings from the included 11 12 studies were reviewed and integrated through narrative synthesis (Popay et al., 2006), similar to previous systematic reviews (e.g., Norris, Didymus, & Kaiseler, 2017; Swann et al., 2012). 13 This interpretative, iterative, and integrative process enabled a synthesis of the findings into 14 five broad categories (see *Results*) and facilitated the construction of a textual summary. 15

#### 16 Assessing Study Quality

The assessment of study quality helps to ensure that studies included in a systematic 17 review reach an acceptable scientific standard (Smith, 2018). Study quality was assessed 18 19 using the 16-item quality assessment tool (QATSDD; Sirriyeh, Lawton, Gardner, & 20 Armitage, 2012), which can be used to assess the quality of quantitative and qualitative studies. The QATSDD contains a list of criteria for quantitative and qualitative studies that 21 are rated on a 4-point scale, ranging from 0 (not at all) to 3 (complete). All studies were 22 assessed with respect to relevant criteria (i.e., criteria that applied to quantitative, qualitative, 23 or mixed method) with the exception of criterion 14, which was omitted due to recent 24 criticism of reliability strategies for qualitative research (Smith & McGannon, 2018). The 25

1 total score for each included study was divided by the maximum possible score and reported 2 as a percentage (M = 63.57%) for standardisation purposes (see Table 1 and Supplementary File 4). In line with recommendations (Milner, 2015), study quality was assessed by multiple 3 4 authors. Initial scoring of 25 studies was undertaken by the first author, and both the third and fourth authors each assessed half of the studies included in the review (i.e., 13 studies each). 5 6 One paper (Swann, Jackman, Schweickle, & Vella, 2019) was not assessed by the first or 7 fourth author due to potential conflict of interest, but was reviewed by the second and third authors. After this process, the first author collated and synthesised the scores. The inter-rater 8 9 agreement coefficient indicated a substantial level of agreement ( $\kappa = 0.75$ ). Any discrepancies were resolved through critical discussions between the first author and the research team in 10 accordance with the critical friends process (Smith & McGannon, 2018). During these critical 11 12 discussions, the authors highlighted some concerns with the study quality scores as the QATSDD was unable to detect many of the conceptual and methodological issues identified 13 by this review (see Measurement of Flow in Exercise and Conceptualisation of Flow in 14 15 *Exercise*). Thus, although study quality scores are presented, we advise that caution should be taken when using these scores to judge study quality and suggest that any appraisal of the 16 17 evidence quality should consider issues identified by this review.

18

#### Results

The electronic database generated a total of 2422 records, with 1172 unique records
remaining after the removal of duplicates. After screening the titles and abstracts, 1141
articles were excluded. An additional 12 articles were identified through manual searches.
Full texts for the remaining 43 records were reviewed for eligibility. Following this process,
26 articles met the inclusion criteria and were included (Figure 1). Most excluded studies
involved sport participants (*n* = 10). In addition, data for specific samples in three studies
(Butzer, Ahmed, & Khalsa, 2016; Elbe et al., 2016; Elbe, Strahlet, Krustrup, Wikman, &

1 Stelter, 2010) were excluded as the samples did not satisfy the eligibility criteria (i.e., 2 participants were not involved in activities matching the definition of exercise). Similarly, qualitative data for two studies (Karageorghis & Jones, 2014; Loveday & Burgess, 2017) 3 4 were excluded as the qualitative component in each study did not seek to investigate flow (i.e., did not satisfy eligibility criterion e). Findings were segregated and reviewed in terms of 5 6 five categories, which are presented below: (i) study characteristics; (ii) measurement of 7 flow; (iii) conceptualisation of flow; (iv) mechanisms of occurrence and strategies to induce flow; and (v) correlates and outcomes of flow. Within these categories, higher-order and 8 9 lower-order thematic sections are used to explicate the findings. Where relevant, the type of exercise activity and study design is included in the narrative to contextualise the findings. 10

11

## [INSERT FIGURE 1 ABOUT HERE]

#### 12 Study Characteristics

A summary of characteristics of studies included in the review is presented in Table 1. 13 The sample comprised: 24 quantitative papers; one mixed methods paper; and one qualitative 14 paper. All included studies were published between 1996 and 2019. Of the 4478 participants, 15 2820 (62.97%) were female, 1369 (30.57%) were male, and gender was not specified for 289 16 (6.46%) participants. The weighted mean age of samples in the review that included details 17 on participant mean ages was 36.51 years. The most common study design was cross-18 19 sectional (n = 11), followed by experimental (n = 10), longitudinal (n = 4), and exploratory investigation (n = 2). Flow was studied in activities including: exergaming<sup>4</sup> (n = 13; further 20 information on the specific exergames is provided in Table 1); traditional gym-based (TGB) 21 exercise (i.e., balance and weight training; n = 7); running (n = 5); treadmill walking/running 22 (n = 3); cycling (n = 2); tai chi (n = 2); yoga (n = 2); "cardiovascular exercise" (n = 1); Ersöz 23

<sup>&</sup>lt;sup>4</sup> An exergame is a video console game that incorporates exercise (e.g., Maddison et al., 2007). In this review, the terms 'exergame' and 'exergaming' will be used as a synonym for: active video games; body-movement controlled video games; mobile exergames; and virtual-reality based exercise games.

1 & Eklund, 2017, p. 95); circuit-training (n = 1); dance aerobics (n = 1); duathlon (n = 1); half ironman (n = 1); hiking (n = 1); indoor climbing (n = 1); surfing (n = 1); and Zumba (n = 1). 2 Two studies involved participants in unspecified exercise activities (Ersöz, Altiparmak, & 3 4 Hülya Aşçı, 2016; Ersöz & Eklund, 2017). Most studies investigated flow in specific exercise bouts (n = 22) while the remainder examined dispositional flow (i.e., frequency of flow 5 6 experiences in general; n = 4).

7

# [INSERT TABLE 1 ABOUT HERE]

**Measurement of Flow in Exercise** 8

9 This section reviews the ways in which flow has been measured in exercise to date. Findings are discussed in terms of: (i) quantitative research on flow in exercise; (ii) 10 qualitative research on flow in exercise; and (iii) mixed-method research on flow in exercise. 11

12 Quantitative research on flow in exercise. In total, 25 studies used quantitative measures. The majority (n = 21) assessed flow intensity (i.e., the degree to which individuals 13 experienced flow), while the remainder (n = 4) measured dispositional flow. Three measures 14 15 were used to examine dispositional flow, but there was substantial heterogeneity in the measurement of flow intensity, with 16 measures used to assess this construct (see Table 2). 16

17

## [INSERT TABLE 2 ABOUT HERE]

**Psychometric properties of quantitative measures.** In total, 68% (n = 17) of studies 18 19 that used quantitative measures in the review used a validated psychometric inventory (i.e., 20 included all items in the validated measure; see Table 2), while just under half (n = 11; 44%)reported information on the internal consistency of the measure used. The most frequently 21 used validated measures were the: Flow State Scale (FSS; n = 3; Jackson & Marsh, 1996); 22 23 Short Flow State Scale-2 (SFS; n = 3; Jackson, Martin, & Eklund, 2008); Flow Short Scale (n = 2; FShS; Rheinberg, Vollmeyer, & Engeser, 2003); Flow State Scale-2 (n = 2; 24 Jackson & Eklund, 2004, 2002); and Dispositional Flow Scale-2 (DFS-2; *n* = 2; Jackson & 25

1 Eklund, 2004). As the majority of measures conceptualised flow based on the nine-2 dimensions framework (Csikszentmihalyi, 2002), this suggests that most knowledge stemming from quantitative research on flow in exercise is based on this framework. 3 4 Five studies (Grove & Lewis, 1996; Huang et al., 2018; Iida & Oguma, 2013; Lee, Myers, Park, Hill, & Feltz, 2018; Wollseiffen et al., 2016) removed items from validated 5 6 measures, which raises concerns about the validity of the final measures employed. Additionally, four studies assessed flow using measures that were not previously validated. 7 Two studies (Bronner, Pinsker, & Noah, 2015, 2013) combined items from a range of 8 9 previously validated inventories, but did not assess the validity or reliability of the adapted measures. Kliem and Wiemeyer (2010) used items that "derived from" and "referred to" (p. 10 84) the game-flow model (Sweetser & Wyeth, 2005), but did not elaborate on the contents of 11 12 the measure. Likewise, Park and Noh (2017) operationalised exercise flow "based on the theoretic background... of the experiment" (p. 1679), but did not provide information on the 13 content or validity of the 5-item measure used. 14 15 Only one study in the review (Karageorghis et al., 2000) conducted a confirmatory

factor analysis to test an a priori flow measurement model in exercise. Karageorghis et al. 16 17 (2000) examined the factor structure of the FSS, which was previously validated in athletes (Jackson & Marsh, 1996). While Karageorghis et al. (2000) found that the nine-factor and 18 19 hierarchical FSS measurement models demonstrated "satisfactory fit" and "reasonable fit" (p. 20 239), respectively, another study in exercisers reported that the unidimensional, nine-factor, and hierarchical FSS models displayed inadequate model fit (Vlachopoulos, Karageorghis, & 21 Terry, 2000). Thus, caution should be taken when interpreting findings from studies that 22 23 employed the FSS (Barry, van Schaik, MacSween, Dixon, & Martin, 2016; Karageorghis et al., 2000; Robinson, Dixon, MacSween, van Schaik, & Martin, 2015). Overall, just over two-24 thirds of included studies assessed flow using the full contents of validated measures and 25

under half reported the internal consistency of the measurement tool used to assess flow.
Collectively, only 24% of studies (n = 6) that employed quantitative measures used every
item from a validated measure *and* examined the internal consistency of that measure in the
study. Therefore, substantive questions exist regarding the psychometric properties of
measures used in a large proportion of studies on flow in exercise.

6 Qualitative research on flow in exercise. The only qualitative study in the review 7 (Swann et al., 2019) explored the experience, occurrence, and outcomes of flow in exercise through event-focused interviews (i.e., conducted within two days of the exercise activity on 8 average). Swann et al. (2019) reported that flow was one of two<sup>5</sup> optimal psychological states 9 experienced by exercisers (n = 18). Overall, findings reported by Swann et al. (2019) provide 10 a multifaceted account of the flow experience in exercise, which encompassed the contexts, 11 12 processes of occurrence, experience, and outcomes of flow (discussed below). While further work is required to substantiate and critically test this initial evidence, findings in relation to 13 flow in the Integrated Model of Flow and Clutch States (Swann et al., 2019) appear to 14 15 represent a promising attempt to explain the occurrence of flow in exercise. Mixed method research on flow in exercise. Only one study adopted a mixed 16 method design to investigate flow in exercise. Lee et al. (2016) collected quantitative data 17 through the FSS-2 and qualitative data via verbal responses to open-ended questions on a 18

19 questionnaire. However, as the quantitative data related to the exergame session as a whole

20 and the qualitative data pertained to the eight individual exergames played during the session,

21 the datasets were not reconcilable. Consequently, the quantitative and qualitative data were

22 not integrated at any point in the analysis or interpretation of findings.

## 23 Conceptualisation of Flow in Exercise

<sup>&</sup>lt;sup>5</sup> The second optimal psychological state experienced by exercise participants was defined as a 'clutch state' (Swann et al., 2019). Exercisers reported that flow and clutch states shared some features, but each state occurred through a different process, contained distinct elements, and produced unique outcomes (Swann et al., 2019).

1 A range of conceptualisations of flow have been employed in this field to date. These are discussed below in terms of two higher-order themes: (i) conceptual underpinning of 2 quantitative measures; and (ii) conceptualisation of flow from qualitative research in exercise. 3

4 Conceptual underpinning of quantitative measures. Various conceptual frameworks have been applied to quantitative research on flow in exercise. The majority of 5 6 studies (n = 17; 68%) that collected quantitative data used measures that conceptualised flow based on the nine-dimensions framework (Csikszentmihalyi, 2002). While Huang et al. 7 (2018) adopted Hoffman and Novak's (1996) unidimensional model of flow, Hoffman and 8 9 Novak (1996) stated that this conceptual model was influenced by the nine-dimensions framework (Csikszentmihalyi, 2002). Similarly, although Monedero et al. (2017) assessed 10 "core flow", this construct is "consistent with original conceptualizations of subjective 11 12 optimal experience underpinning flow" (Martin & Jackson, 2008, p. 150). In addition, several studies applied either the game-flow model (n = 3; Sweetser & Wyeth, 2005) or Rheinberg's 13 (2008) flow model (n = 3), which both broadly reconcile with the nine-dimensions 14 15 framework. Specifically, Rheinberg's (2008) conceptualisation of flow is an adaptation of the earliest description of flow (Csikszentmihalyi, 1975), with the autotelic experience omitted 16 on the basis that this characteristic did not constitute a separate or additional component of 17 flow. Likewise, the eight dimensions of the game-flow model, with the exception of social 18 interaction, are proposed to "relate to" elements of Csikszentmihalvi's (2002) nine-19 20 dimensions framework (Sweetser & Wyeth, 2005, p. 3).

The two remaining quantitative studies did not conceptualise flow based on an 21 existing framework. Park and Noh (2017) operationally defined "exercise flow" as a state of 22 complete focus in which "unnecessary external information of thoughts do not enter the 23 mind" (p. 1679), but did not explicate the conceptual underpinnings of the measure used. 24 Grove and Lewis (1996) included flow within the 'flowlike states' construct based on 25

overlapping characteristics between flow, peak experience, and peak performance. Therefore,
 given that flowlike states are conceptually broader than flow, this term will be used in
 reference to findings reported by Grove and Lewis (1996).

4 Conceptualisation of flow from qualitative research in exercise. Flow was characterised by 12 features in the qualitative study by Swann et al. (2019): absence of 5 6 negative thoughts; absorption; altered perceptions; automatic skill execution; confidence; ease/reduced effort; effortless attention; enjoyment; feeling in control; optimal arousal; 7 8 motivation for more; and positive-in-the-moment feedback. Although some of these 9 characteristics broadly reconcile with those reported during flow previously, findings reported by Swann et al. (2019) represent an alternative conceptual model of flow in exercise. 10 To date this is the only conceptual model of flow that has been developed through qualitative 11 12 interviews with exercisers. Furthermore, this model also proposes that flow states share conceptual overlaps with another optimal "clutch" state, and that traditional 13 conceptualisations of flow may not be able to distinguish between both (Swann et al., 2019). 14 15 Summary. The majority of quantitative studies on flow in exercise have employed measures based on the nine-dimensions framework (Csikszentmihalyi, 2002), which means 16 17 that most understanding of flow in this setting is based on this conceptual model. However, given the lack of consensus regarding the conceptualisation of flow in studies that employed 18 19 quantitative measures, this makes it difficult to amalgamate the findings. In addition, one

20 qualitative study has reported an alternative conceptualisation of flow based on event-focused

21 interviews with exercisers. While only a single study based on that conceptualisation has

been conducted in exercise to date, this may be a promising avenue for future research.

## 23 Mechanisms of Occurrence and Strategies to Induce Flow in Exercise

A total of 18 studies examined mechanisms through which flow occurs or strategies to induce flow in exercise. The study designs ranged from experimental (n = 10), to longitudinal

1 (n = 4), cross-sectional (n = 3), and qualitative (n = 1). Findings are discussed below in terms 2 of six higher-order themes, comprising: (i) changes over time; (ii) virtual stimuli; (iii) exergame design features; (iv) music; (v) qualitative findings; and (vi) dispositional flow. 3

4 Changes over time. Seven studies obtained repeated measures of flow intensity over time, with six studies examining between-session differences and two studies assessing 5 6 changes within exercise sessions. In longitudinal studies that obtained measures of global flow intensity in at least two exercise sessions, small increases from baseline to the final 7 measurement point were found in Zumba (d = 0.46 - Elbe et al., 2016) and tai chi (d = 0.21 -8 9 Iida & Oguma, 2014) participants, while large increases were found in exergamers (d = 0.95 -Lee et al., 2018). Grove and Lewis (1996) found that the overall increase in circuit trainers 10 from baseline was negligible (d = 0.19), although the length of time between measurement 11 12 points (i.e., 6 weeks) was briefer than the aforementioned studies. Barry et al. (2016) observed no significant time-by-exercise interaction effects in exergamers and TGB 13 exercisers for any of the nine FSS subscales in a 4-week intervention. However, small 14 15 increases were evident in seven of the nine subscales in the exergamers ( $0.22 \le ds \le 0.46$ ), although an effect was only found in two subscales for the TGB group (d = 0.24 and d = 0.5016 17 - Barry et al., 2016). In a similar timeframe, Robinson et al. (2015) found moderate and large changes in all nine subscales from baseline in exergamers ( $0.50 \le ds \le 1.24$ ), but small or 18 moderate increases ( $0.25 \le ds \le 0.62$ ) were only found in four subscales in the traditional 19 20 balance training group.

Two studies examined within-session changes in global flow intensity during 21 exercise. Grove and Lewis (1996) found a significant increase (p < .0005) in flowlike states 22 23 in circuit trainers from the first to the second half of 45-50-minute sessions, although increases in flowlike states from the first half to the second half of sessions were greater and 24 only significant (d = 0.34, p < .0005) in circuit trainers with high hypnotic susceptibility. In 25

endurance running, flow increased from pre-run to the first hour (d = 0.79, p < .05) of a 6-</li>
hour run, before declining from the 1-hour to 3-hour (d = -0.54, p < .05) and 3-hour to 5-hour</li>
(d = -0.56) points (Wollseiffen et al., 2016).

4 Taken together, the findings from studies that assessed flow longitudinally highlight the dynamic nature of this psychological state. In terms of between-session changes, the 5 6 findings offer cross-study evidence that continued engagement in exercise has a positive effect on flow intensity, or at least some dimensions of the flow experience. The findings 7 from studies that examined within-session changes in flow intensity demonstrated the 8 9 potential variability in flow intensity during exercise sessions. However, given the disparity in the length of the events examined, differences in findings, and potential influence of 10 extraneous variables, this makes it difficult to draw strong inferences about the nature or 11 12 extent of within-session changes in flow intensity at present.

Virtual stimuli. Five studies examined virtual stimuli and flow intensity by 13 comparing levels of flow in exergaming to conventional exercise activities. Three studies 14 15 used experimental approaches (Barry et al., 2016; Monedero et al., 2017; Robinson et al., 2015), while two employed cross-sectional designs (Lee et al., 2016; Thin, Hansen, & 16 McEachen, 2011). A cross-over experimental study found a large effect of exercise type on 17 core flow ( $\eta^2 = .52, p < .05$ ), with higher scores reported in an entertainment-themed video 18 19 game and a fitness-themed video game compared to treadmill running at moderate (d = 0.63) 20 and d = 0.41, respectively) and self-selected intensities (d = 0.54 and d = 0.41, respectively; Monedero et al., 2017). In a randomised controlled trial that assessed flow intensity in the 21 first and final session of 4-week TGB exercise and exergame interventions, Robinson et al. 22 (2015) reported a main effect of group on all nine FSS subscales post-intervention, with 23 higher scores reported in exergamers across eight of the nine subscales  $(0.43 \le ds \le 1.71)$ . 24 Similarly, exergamers reported higher scores in all nine FSS subscales in the first ( $0.44 \le ds \le$ 25

0.96) and final (0.66 ≤ ds ≤ 1.05) sessions of a 4-week intervention compared to a TGB
 exercise group (Barry et al., 2016).

Two cross-sectional studies examined differences in flow intensity between 3 4 exergamers and TGB exercise participants. Both studies (Lee et al., 2016; Thin et al., 2011) compared scores on the FSS-2 in small samples of exergamers (n = 25 and n = 14, 5 6 respectively) to previously published normative scores in exercisers (n = 200 - Jackson & Eklund, 2004) but reported different findings. Although each study reported significantly 7 higher (p < .05) scores for two of the nine FSS-2 subscales in exergamers, there was no 8 9 consistency in terms of the dimensions that displayed significant differences. Taken together, evidence from higher quality studies suggests that virtual stimuli 10 could be associated with higher values in at least some dimensions of flow. However, given 11 12 that 80% of studies that investigated differences between traditional exercise and exergaming failed to analyse flow at a global level (i.e., obtaining a total score for flow), it is difficult to 13 make firm conclusions about the relationship between virtual stimuli and global flow 14 15 intensity. Exergame design features. Five experimental studies examined the effect of 16 exergame design features on flow intensity, with all five studies employing a different 17

19 generated partner [SGP]), exergaming with a SGP that was not always superior had a large

18

measure of flow. Compared to a control condition (i.e., cycling exergame without a software

and significant positive effect on flow at both the second (d = 1.12, p = .029) and third (d =

1.17, p = .021) measurement points in a 24-week exergame intervention, whereas exergaming with an SGP that was always superior did not have an effect at the second (d = 0.62, p = .182) or third (d = 0.01, p = .985) blocks (Lee et al., 2018). Bronner et al. (2015, 2013) reported a significant difference in game-flow between exergames ( $\eta_p^2 = .49$ , p = .002 and p = .025,

respectively). Post hoc comparisons were non-significant in each sample (both n = 7), but

1 small, moderate, and large differences were evident between exergames ( $0.22 \le ds \le 2.12$  -Bronner et al., 2015, 2013). Park and Noh (2017) reported higher exercise flow (d = 0.53, p < 0.532 .01) in an "enhanced interactivity" condition, which included "exercise command narration", 3 compared to a "weaker interactivity" condition (p. 1679). However, little information was 4 provided on the content of the 5-item flow measure, or the nature of the 10-minute exercise 5 6 activities, which raises concerns about the results. Finally, higher core flow (d = 0.26) was reported in an entertainment-themed exergame compared to a fitness-themed exergame, 7 8 although the difference was not significant (Monedero et al., 2017). Overall, due to the 9 limited data available, the degree of variation in design features examined, and heterogeneity in measurement approaches, it is difficult to reconcile the findings. Nevertheless, there is 10 cross-study evidence that the design of an exergame affects flow intensity. 11

12 Music. Two experimental studies examined the effect of music on global flow intensity during treadmill exercise. Karageorghis et al. (2008) found a large, significant main 13 effect ( $\eta_p^2 = .49$ , p = .000) of music tempi on flow intensity, with participants reporting 14 15 significantly higher flow intensity (p = .000) in fast tempi (d = 1.26), medium tempi (d =1.40), and mixed tempi (d = 1.64) music conditions compared to a no-music control 16 condition. Similarly, Karageorghis and Jones (2014) reported significant differences in flow 17 across music tempo conditions ( $\eta_p^2 = .28$ , p = .002) in treadmill walking/running, with flow 18 intensity significantly higher (p < .05) in the slow (d = 0.46), medium (d = 0.76), fast (d =19 20 (0.79), and very fast (d = 0.50) tempi conditions compared to the no-music condition. While it is difficult to draw firm conclusions about knowledge based on two studies, the available 21 evidence suggests that music has a positive effect on flow intensity in walking/running. 22

Qualitative findings. Two studies reported qualitative data on the occurrence of flow
in exercise. In the only mixed method study in the review, Lee et al. (2016) collected
qualitative data by asking participants to identify which of eight 2.5-minute exergames

1 produced the "most" and "least" (p. 244) flow and then to verbally explain the reason 2 underlying these selections. The most common reasons for experiencing the most flow in specific exergames were 'correct level of difficulty' and 'clear goals', while 'inadequate level 3 4 of difficulty' and 'pain' were reported most frequently as reasons for experiencing flow the least (Lee et al., 2016). However, no information was provided regarding how these factors 5 6 influenced the level of the flow experience, thus providing little insight into the potential causal mechanisms underpinning the occurrence of flow states. The only qualitative study in 7 the review reported that flow states occurred in exercise contexts that involved flexible 8 9 outcomes, exploration, and novelty/variation (Swann et al., 2019). In such contexts, the process of flow occurrence was initiated by a positive event, which provided positive 10 feedback. This feedback increased confidence and led exercisers to challenge themselves and 11 12 set open goals (i.e., that did not include specific outcomes), which enabled the transition into flow. These findings suggest that flow occurs through a combination of mechanisms, which, 13 together, may constitute necessary and sufficient conditions of flow. While only one study 14 15 has been conducted from this perspective in exercise, the findings may provide useful avenues for future research seeking to develop an explanation of flow. 16

17 Dispositional flow. Two studies examined effects of intervention programmes on dispositional flow. Kliem and Wiemeyer (2010) found no significant difference in game-flow 18 19 between participants in 3-week balance training and exergaming programmes. However, as 20 this study employed a measure of game-flow for both samples, it is arguable that this might not have been as appropriate for the traditional balance training group given that this 21 construct stems from the computer-gaming literature. In turn, this raises concerns with the 22 23 quality of this evidence. Butzer et al. (2016) examined changes in dispositional flow at the beginning and end of an 8-week yoga intervention in adult musicians and found a small 24 improvement in dispositional flow over time (d = 0.48). With evidence only drawn from two 25

1 studies, this illustrates that there is limited knowledge of mechanisms of occurrence or

2 strategies for enhancing dispositional flow in exercise.

#### **3** Correlates and Outcomes of Flow in Exercise

A total of 15 studies reported correlates and factors associated with flow, while five
studies examined outcomes related to flow. These findings are discussed below in terms of
two higher-order themes: (i) correlates of flow in exercise, within which there are a number
of lower-order themes; and (ii) outcomes associated with flow in exercise.

8 Correlates of flow in exercise. The findings relating to correlates of flow are
9 presented in terms of six lower-order themes: (i) physiological correlates of flow states; (ii)
10 gender; (iii) age; (iv) exercise experience; (v) additional findings pertaining to flow intensity;
11 and (vi) correlates of dispositional flow.

12 *Physiological correlates of flow states.* Five studies reported data on flow intensity and physiological indices. Grove and Lewis (1996) found a non-significant relationship 13 between self-reported heart rate and flowlike states in circuit training. Bronner et al. (2013) 14 15 found a positive association between game-flow and  $VO_2$  (r = .57), while two studies (Bronner et al., 2015, 2013) found a moderate association (r = .52 and r = .59, respectively) 16 between metabolic equivalent of the task (MET) and game-flow in small exergaming samples 17 (n = 7). In contrast, while the relationship between MET and flow was not statistically tested, 18 19 Monedero et al. (2017) reported that core flow was highest in the condition with the lowest 20 MET output, which equated to moderate-intensity exercise. In previously inactive males, no significant relationship was found between global flow intensity in a mid-intervention session 21 and future physiological improvements after 12-week strength or interval running 22 23 interventions (Elbe et al., 2010). Collectively, findings pertaining to the physiological correlates of flow in exercise are equivocal. Furthermore, due to the variance in the 24 physiological and flow measures employed, it is difficult to draw firm conclusions at present. 25

| 1  | Gender. Three studies investigated differences in flow intensity between men and                          |
|----|-----------------------------------------------------------------------------------------------------------|
| 2  | women. Wollseiffen et al. (2016) found that women ( $n = 5$ ) reported higher flow intensity              |
| 3  | than men ( $n = 6$ ) before and during a 6-hour run ( $0.80 \le ds \le 2.00$ ). In contrast, a cross-     |
| 4  | sectional study only found significantly higher scores ( $d = 0.64$ , $p = .028$ ) for women in two       |
| 5  | of the 26 Activity Flow State Scale (AFSS) items in exergaming (Marston et al., 2016), thus               |
| 6  | suggesting negligible differences. While men reported higher flow intensity in a no-music                 |
| 7  | control condition ( $d = 1.04$ ) in treadmill walking/running, negligible differences were found          |
| 8  | in the slow and very fast music tempi conditions, while only small differences were found in              |
| 9  | the medium and fast conditions, with women reporting higher flow intensity ( $d = 0.26$ and $d$           |
| 10 | = 0.27, respectively - Karageorghis & Jones, 2014). In short, based on the small sample size              |
| 11 | (Wollseiffen et al., 2016) and equivocal nature of the findings (Karageorghis & Jones, 2014;              |
| 12 | Marston et al., 2016) it appears that gender differences in flow intensity are negligible.                |
| 13 | Age. Two cross-sectional studies examined the relationship between flow intensity                         |
| 14 | and age in exergaming. Lee et al. (2016) found no significant relationship between flow                   |
| 15 | intensity and age in a single exergame session. Similarly, Marston et al. (2016) observed no              |
| 16 | significant difference in flow intensity between different age groups in exergaming. Although             |
| 17 | the evidence stems from two small samples ( $n = 25$ and $n = 50$ , respectively), there is               |
| 18 | tentative evidence that age is not significantly related to flow intensity in exergaming.                 |
| 19 | Exercise experience. Two studies assessed the relationship between exercise                               |
| 20 | experience and flow intensity. Grove and Lewis (1996) found that experienced circuit trainers             |
| 21 | (i.e., $\geq$ six months experience) reported higher flowlike states ( $d = 0.43$ , $p < .021$ ) compared |
| 22 | to their less experienced counterparts. A cross-sectional study found a significant positive              |
| 23 | relationship ( $\beta = .33$ , $p < .001$ ) between years of tai chi experience and global flow intensity |
| 24 | (Iida & Oguma, 2013). While based on a small number of studies, the findings offer tentative              |
| 25 | evidence that prior experience is positively associated with flow intensity.                              |

1 Additional findings pertaining to flow intensity. Several other findings in relation to flow intensity were examined in single studies and were subsequently not coded into themes. 2 A cross-sectional study found no significant relationship between flow intensity and either 3 4 physical dysfunction or perceptions of knee pain in exergamers (Lee et al., 2016). Marston et al. (2016) reported significant differences in 19 of the 26 AFSS items between three 5 6 international study sites, but found no significant differences in global flow intensity or the nine dimensions of flow between locations. On this basis, caution should be taken when 7 8 considering the significant findings reported. Another cross-sectional study found a 9 significant, but small, positive relationship between flow intensity and perceived challenge (r = 0.21, p < .05), but no significant relationship was observed between flow intensity and 10 either need for exercise or need for achievement (Huang et al., 2018). Finally, an online, 11 12 questionnaire study in exergamers reported that flow intensity was significantly predicted by game level ( $\beta = .25, p < .001$ ), playing alone ( $\beta = .23, p = .002$ ), nostalgia ( $\beta = .20, p = .002$ ), 13 and playing with family ( $\beta = .15$ , p = .024), but was not significantly predicted by playing 14 15 with friends or strangers (Loveday & Burgess, 2017). Overall, as each of these findings are drawn from single studies, it is difficult to generate firm conclusions about them at present. 16

Correlates of dispositional flow. Two quantitative studies used cross-sectional 17 designs to examine factors associated with dispositional flow. Ersöz et al. (2016) found 18 significant differences (p < .05) in global dispositional flow between underweight, normal, 19 20 and overweight and obese exercisers, with higher scores observed in underweight participants compared to overweight and obese participants. Ersöz and Eklund (2017) found no 21 significant differences ( $-0.20 \le ds \le 0.17$ ) in any of the nine DFS-2 subscales between 22 genders but reported a significant multivariate effect for stage of change in exercise on the 23 DFS-2 subscales ( $\eta_p^2 = .075$ , p < .05). However, as significant effects were only apparent in 24 three of the nine subscales (.03  $\le \eta_p^2 \le$  .08,  $p \le$  .02), this provides little evidence of a 25

1 relationship between stages of changes and global dispositional flow. Further, Ersöz and 2 Eklund (2017) found that some dimensions of dispositional flow were significantly (p < .05) and positively related to intrinsic regulation, identified regulation, and introjected regulation, 3 4 and inversely associated with external regulation, and amotivation. However, only intrinsic regulation was significantly related to all nine dimensions ( $.27 \le rs \le .66$ ), while only one 5 6 dimension of flow, autotelic experience, displayed a significant association (p < .05) with intrinsic regulation (r = .66), identified regulation (r = .46), introjected regulation (r = .26), 7 external regulation (r = -.19), and amotivation (r = -.27). Collectively, as there is only a 8 9 single study to draw upon for each finding in relation to correlates of dispositional flow, this demonstrates a lack of evidence in this area. In turn, this makes it difficult to generate 10 meaningful conclusions about correlates of dispositional flow in exercise at present. 11

12 Outcomes associated with flow in exercise. Five studies quantitatively examined relationships between flow intensity and various outcome variables. In a longitudinal study, 13 Iida and Oguma (2014) reported that global flow intensity in a single tai chi class 14 15 significantly predicted ( $\beta = .18$ , p = .019) sense of coherence one year later in experts, but not in non-experts or the entire sample. A cross-sectional study in aerobic dance exercisers 16 17 (Karageorghis et al., 2000) found significant, moderate-to-strong, positive associations between flow intensity and post-exercise feelings of positive engagement ( $\beta = .59, p < .05$ ), 18 revitalisation ( $\beta = .55, p < .05$ ), and tranquillity ( $\beta = .46, p < .05$ ), and a significant, but 19 weak, negative relationship with physical exhaustion ( $\beta = -.12, p < .05$ ). In addition, flow 20 intensity explained significant variance (p < .01) in positive engagement, revitalisation, and 21 tranquillity (35%, 31%, and 22%, respectively), but accounted for little variance in physical 22 23 exhaustion (Karageorghis et al., 2000). In a cross-sectional study, Iida and Oguma (2013) found that flow intensity in tai chi was significantly and positively associated ( $\beta = .51, p < .51$ ) 24 .05) with 'ikigai', which is regarded as an indicator of wellbeing in Japanese culture (e.g., 25

Sone et al., 2008). Another cross-sectional study found a significant, but small, positive relationship (r = 0.18, p < .05) between flow and exercise enjoyment (Huang et al., 2018). In a qualitative study (Swann et al., 2019), exercisers reported a range of positive consequences after the activity, including: a sense of achievement; confidence; energy; intrinsic motivation; and positive mood and emotions. Taken together, there is tentative evidence that flow is associated with a range of positive and desirable outcomes. However, given that these findings primarily stem from cross-sectional studies, it is not possible to infer causality.

#### 8

#### Discussion

9 The purpose of this study was to systematically review, synthesise, and appraise current knowledge on flow in exercise settings. Research on flow in exercise has only been 10 conducted relatively recently, with the first study published in 1996 (Grove & Lewis, 1996). 11 12 Since then, the area has grown and an in-depth body of research has developed. Indeed, this study illustrates that research on flow in exercise has grown rapidly in recent years, with the 13 vast majority (n = 23; 88%) of included studies published in or after 2010. In contributing the 14 15 first systematic review, synthesis, and appraisal of flow research in exercise settings, this study aimed to address the following questions: (i) how has flow been measured in exercise?; 16 (ii) how has flow been conceptualised in exercise?; (iii) what is the quality of research in this 17 field?; (iv) what evidence is available regarding mechanisms of occurrence and strategies for 18 inducing flow?; and (v) what are the correlates of flow in exercise? 19

#### 20 Summary of Findings

The majority of studies in the review collected data on flow using quantitative measures, with only two studies (8%) obtaining qualitative data. Most quantitative studies in the review conceptualised flow based on the nine-dimensions framework (Csikszentmihalyi, 2002) or conceptually similar models (Rheinberg, 2008; Sweetser & Wyeth, 2005). Findings concerning the experience of flow in exercise generated by the only qualitative study in the review (Swann et al., 2019) largely reconcile with these frameworks, but do offer a slightly
different perspective on the conceptualisation of flow in this context. Overall, quantitative
measures and the nine-dimensions framework (Csikszentmihalyi, 2002) have been widely
used to study flow in exercise, but the findings of this review highlight a range of conceptual
and methodological issues in the field (see below). In turn, this raises some doubts about the
quality of this evidence base.

Flow has been studied across an array of exercise activities and the findings of this 7 review demonstrate that a broad evidence base is apparent. However, there was limited data 8 9 available in relation to a range of themes identified in the review, which makes it difficult to draw firm conclusions about many aspects of this literature at present. Nevertheless, there 10 was some tentative, cross-study evidence (i.e., similar findings in  $\geq 2$  studies) regarding 11 12 several findings, particularly in relation to flow intensity. In terms of mechanisms of occurrence and strategies for inducing flow, there was cross-study evidence from a number of 13 higher-quality, experimental studies that flow intensity, or at least some dimensions of this 14 15 phenomenon, could be influenced by: the presence of virtual stimuli during exercise (i.e., in exergames; Barry et al., 2016; Monedero et al., 2017; Robinson et al., 2015); design features 16 of exergames (Bronner et al., 2015, 2013; Lee et al., 2018; Monedero et al., 2017; Park & 17 Noh, 2017); and music (Karageorghis & Jones, 2014; Karageorghis et al., 2008). 18 19 Furthermore, although based on limited data, recent findings from qualitative research 20 (Swann et al., 2019) offer potential insights into the contexts and process underlying the occurrence of flow in exercise, which could provide an avenue to move towards developing 21 an explanation for flow in this context. 22

In observational studies, some tentative evidence, albeit from a limited number of
studies, suggests that exercise experience (e.g., years participating in exercise) is positively
related to flow intensity (Grove & Lewis, 1996; Iida & Oguma, 2013). A noteworthy finding

1 from this review was that flow has been associated with a variety of positive outcomes in 2 exercisers, including: a sense of achievement; confidence; positive energy and emotions after exercise; and intrinsic motivation. Given the desirability and relevance of these outcomes for 3 4 exercisers of all ages and standards, the findings of the review support the contention that flow could offer a potential avenue to promote long-term engagement in physical activity 5 6 (Petosa & Holtz, 2013). While further work is required to determine whether flow is a causal determinant of exercise adherence, findings concerning the potential behavioural and 7 psychological benefits of flow states in exercise highlight the importance of developing the 8 9 exercise-specific knowledge base on this experience to enable exercisers to achieve this state and its associated outcomes more reliably and consistently. 10

## 11 Conceptual Issues

12 Findings of this review reveal a number of conceptual issues in flow research in exercise. First, there is considerable variation in the conceptualisation of flow applied to 13 quantitative research in exercise. While the majority of studies adopted the nine-dimensions 14 15 framework (Csikszentmihalyi, 2002), two additional conceptual models (Rheinberg, 2008; Sweetser &Wyeth, 2005) were also employed. Furthermore, Grove and Lewis (1996) 16 incorporated flow within another construct, 'flowlike states', based on overlapping 17 characteristics between flow, peak experience, and peak performance in sport, which is 18 19 problematic given that these three phenomena are regarded as distinct optimal experiences 20 (Jackson & Kimiecik, 2008). Although the various models concerning flow research in exercise share some common conceptual ground, several differences are apparent (e.g., in the 21 dimensions of flow), which makes it difficult to interpret and reconcile findings in this area. 22 23 Second, flow is most commonly conceptualised based on the nine-dimensions framework (Csikszentmihalyi, 2002), but this conceptualisation has been subjected to 24 extensive criticism (e.g., Drengner, Jahn, & Furchheim, 2018; Hassmén, Keegan, & Piggott, 25

1 2016; Jackman, Fitzpatrick, Lane, & Swann, 2019). Within sport and exercise, concerns have 2 been raised about the lack of precision in flow dimensions, overlapping and missing dimensions, low endorsement of some characteristics, and uncertainty regarding the number 3 4 of dimensions that must be present to constitute a flow state (see Swann et al., 2018). Due to the ambiguity surrounding Csikszentmihalyi's (2002) framework, Swann et al. (2018) argued 5 6 that "it is difficult to confidently proceed with the traditional nine-dimension paradigm" (p. 7 259). Thus, there are doubts about the most common conceptualisation of flow used in exercise research. Against this backdrop of uncertainty, there is a clear need for researchers to 8 9 question fundamental assumptions concerning the conceptualisation of flow in exercise and to move towards developing a more refined conceptualisation of the phenomenon in this 10 context. 11

12 Third, a noteworthy finding in this review was that no measure developed or validated specifically in exercise<sup>6</sup> was employed to assess flow. Prior to proceeding with further 13 research on a new phenomenon, it is advisable to conduct qualitative research to check 14 15 whether existing theoretical frameworks suitably describe the phenomenon (Giner-Sorolla, 2019). However, the first and only qualitative study to explore what it is like to experience 16 flow in exercise (Swann et al., 2019) was published after each of the remaining 25 studies 17 included in this review. While more than half of studies that employed quantitative measures 18 19 evaluated measurement qualities from a statistical perspective (i.e., by examining internal 20 consistency and/or conducting confirmatory factor analysis), little consideration has been 21 given to critically testing the quality of the measurement tools used in exercise from a conceptual perspective. Indeed, of those that did critically test an a priori measurement model 22 23 of flow in exercise, one raised concerns (Vlachopoulos et al., 2000) and the other only

<sup>&</sup>lt;sup>6</sup> Although samples involved in the validation of the FSS-2 and DFS-2 included exercise participants (Jackson & Eklund, 2002), their data were combined with dance and sport participants for data analysis.

offered tentative support for the nine-dimensions framework (Karageorghis et al., 2000).
Taken together, the evidence suggests that there are some questions about the validity of
existing measures used to assess flow in exercise. Therefore, new or refined measures are
arguably required to re-examine and extend knowledge of flow in exercise.

5

## **Theoretical Explanation for Flow States**

6 An important finding from this review is that little research has been directed towards developing a causal explanation for the occurrence of flow in exercise. As pointed out by 7 Kimiecik and Stein (1992) "it is one thing to know, for example, that a flow experience is 8 9 accompanied by focused concentration, feelings of control, and clear goals. It is quite another to know why or how the flow experience actually occurred... The former emphasizes 10 description; the latter focuses on the mechanisms underlying the experience" (p. 148). Similar 11 12 to research in sport (see Swann, Piggott, Crust, Keegan, & Hemmings, 2015), most understanding of flow occurrence in exercise is based on association rather than explanation. 13 Only one study in this review explicitly sought to investigate the causal mechanisms 14 15 underlying the occurrence of flow in exercise (Swann et al., 2019). Although numerous quantitative studies investigated flow using experimental designs, flow was typically assessed 16 as a secondary outcome (i.e., of an independent variable) and none of these studies explicitly 17 sought to induce flow based on empirical findings or an explanatory theory for flow. 18

While some experimental studies found positive effects of different variables on flow intensity (i.e., with flow as a secondary outcome), few attempts were made to explain *how* and *why* these variables might have influenced or could be involved in the occurrence of flow. Occasionally researchers offered tentative proposals, with some suggesting that the immersive nature (Barry et al., 2016) and distractive elements (e.g., Robinson et al., 2015) of the activity could facilitate specific dimensions of flow. In contrast, Elbe et al. (2010) suggested that "the heart rates of the participants were kept rather high, which might be an

1 explanation for the high experiences of flow" (p. 116), although the relationship between 2 heart rate and flow was not tested and no information on the mechanisms underlying this proposed explanation was advanced. Some researchers alluded to the challenge-skills balance 3 4 proposition (see Fong, Zaleski, & Leach, 2015 for a meta-analysis) by suggesting that flow was facilitated by perceiving the difficulty of a task as being a manageable challenge (Lee et 5 6 al., 2018) or equal to personal skills (Lee et al., 2016). However, while challenge-skills balance might be an important factor underlying the occurrence of flow, it is argued that this 7 8 condition alone is not sufficient for flow states to occur (Swann et al., 2018). Taken together, 9 the findings suggest that further research that seeks to develop an understanding of the causal mechanisms underlying the occurrence of flow in exercise is required. 10

## 11 Methodological Critique

12 Developing valid and reliable methods to assess subjective experiences is one of the greatest challenges for flow researchers (Jackson & Kimiecik, 2008) and a number of 13 methodological issues are apparent in flow research in exercise. First, although quantitative 14 15 and qualitative methods can each provide unique understanding of flow (Jackson & Kimiecik, 2008), 96% (n = 25) of included studies employed quantitative measures while 16 only 8% (n = 2) collected qualitative data (i.e., one study used quantitative and qualitative 17 methods). Further, it should be noted that qualitative data collected by Lee et al. (2016) as 18 19 part of a mixed method study were obtained through open-ended survey questions, which 20 may have limited the depth of information acquired. Indeed, given that interviews can yield rich, detailed insights into lived experiences (e.g., Jackson & Kimiecik, 2008; Swann et al., 21 2012), it is surprising that only one interview study (Swann et al., 2019) has been conducted 22 on flow in exercise in over two decades of research. Thus, given the limited amount of 23 qualitative data collected to date, it is possible that valuable insights have yet to be attained. 24

| 1  | Second, there is considerable heterogeneity in the quantitative measurement of flow in        |
|----|-----------------------------------------------------------------------------------------------|
| 2  | exercise, which makes it difficult to reconcile findings in this area. Eighteen quantitative  |
| 3  | measures were used in 25 studies, with this variety highlighted most ostensibly in exergaming |
| 4  | research, where 12 quantitative measures were used across 13 studies. The review raises       |
| 5  | substantive questions with the psychometric properties of measures employed to study flow     |
| 6  | in many studies, with some of the most noteworthy issues including the: use of measures that  |
| 7  | were previously found to display inadequate model fit; development of measures to assess      |
| 8  | flow without testing their validity; and absence of information about the items used to       |
| 9  | represent flow. Further, the measurement tools employed by flow researchers in exercise are   |
| 10 | underpinned by a range of conceptual frameworks (e.g., Csikszentmihalyi, 2002; Rheinberg,     |
| 11 | 2008; Sweetser & Wyeth, 2005), which means that literature in this area was not only          |
| 12 | generated through different measures but is also based on different conceptualisations of     |
| 13 | flow. In turn, this diversity creates a somewhat confusing picture and makes it difficult to  |
| 14 | form a clear judgement about findings in this area to date.                                   |
| 15 | Finally, it is interesting to note the relative absence of qualitative research on flow in    |
| 16 | exercise compared to sport, where this methodology has been used in many classic studies      |
| 17 | (e.g., Jackson, 1995, 1996). Notably, recent findings from the only qualitative study on flow |
| 18 | in this review (Swann et al., 2019) offer an alternative perspective on what it is like to    |

19 experience flow during exercise compared to the conceptual models underpinning the

20 majority of quantitative research on flow in this domain. That description of flow in exercise

21 was consistent with studies in sport (Jackman, Crust, & Swann, 2017; Swann et al., 2017a,

22 2017b; Swann, Crust, & Vella, 2017; Swann, Keegan, Crust, & Piggott, 2016), and suggests

that a "clutch" state is conceptually similar to flow, but occurs in different contexts and

through other processes (Swann et al., 2019). In turn, this raises further questions about the

25 discriminant validity of quantitative measures used in flow research in exercise to date

(Swann et al., 2018). Further, it is important to note that Swann et al. (2019) employed
'event-focused' interviews, which were conducted within two days of the participant's
experience on average, thus enabling a more detailed examination of the contexts, process of
occurrence, experience, and outcomes of flow states in exercise. As such, this method may be
a useful avenue for future research.

#### 6 Limitations

7 This study attempted to systematically review a growing literature on flow in exercise. Although there are several strengths in the current review, including the strict 8 9 definition of eligible participants and employment of trustworthiness procedures (e.g., critical friends, article screening, and assessment of study quality by multiple authors), it is important 10 to note several issues with the approach employed. Some findings in this review are based on 11 12 as little as one or two papers, which makes it difficult to draw firm conclusions about the evidence base. The eligibility criteria might have excluded participants that could have been 13 relevant to the aim of this review but did not satisfy all of the inclusion/exclusion criteria. For 14 15 example, this review only included peer-reviewed articles in the English language and might therefore be affected by a language bias and publication bias. Similarly, the review excluded 16 potentially relevant participants due to the merging of sport and exercise participants in 17 several studies. Further, it is also possible that relevant studies could have been missed in the 18 19 electronic database search due to the search terms that were employed (e.g., by including the term "psycholog\*"). While the limitations of this review are acknowledged, some of these 20 issues (e.g., basing findings on a limited number of studies) could not be circumvented due to 21 the nature of research pertinent to this review. 22

## 23 Future Research Directions

Based on the findings of this review, a series of recommendations are proposed to
improve future research and advance understanding of flow in exercise. First, there is a need

1 to assess the validity of flow measures used in exercise to: (i) enable a more informed 2 evaluation of current knowledge on flow in exercise; (ii) establish whether existing measures represent the flow experience in exercise (i.e., assess construct validity and discriminant 3 4 validity) and should continue to be used; and (iii) identify if there is a need to develop new measures for flow in this context. Second, future studies should continue to obtain real-time 5 6 measures of flow during exercise (e.g., Grove & Lewis, 1996) to capture the complex and dynamic nature of this state and permit more fine-grained analysis. While it has been 7 acknowledged that it is impractical to interrupt an athlete during sport to obtain such data 8 9 (Jackson & Kimiecik, 2008), exercise activities, which often include scheduled breaks (e.g., between sets), could offer a more practical setting in which to collect real-time data (e.g., 10 self-report and physiological) on flow. Indeed, by obtaining in-the-moment data on flow 11 12 states during exercise activities, this could help to advance understanding about the conceptualisation and occurrence of flow in exercisers. Third, in future, researchers using 13 componential measures should analyse flow at both a global and subscale level, and ensure 14 15 that findings at a subscale level are not interpreted as being representative of the flow experience. Fourth, researchers should seek to understand whether questionnaire scores can 16 be used to identify exercisers who did or did not experience flow and determine the most 17 valid and reliable method to do so. Finally, and most importantly, further research should be 18 19 explicitly directed towards understanding the causal mechanisms underpinning the 20 occurrence of flow states in exercise, and thus move towards developing an explanatory theory for this phenomenon (cf. Swann et al., 2018). At present, the lack of explanation and 21 understanding of causal mechanisms underlying the occurrence of flow makes it difficult to 22 23 develop experiments or design evidence-based interventions that can reliably induce flow. By taking steps towards developing an explanatory theory, this could provide a more robust 24

- 1 platform to develop practical recommendations that allow exercise participants to experience
- 2 flow and its associated positive outcomes more reliably and consistently.

| 1  | References                                                                                        |
|----|---------------------------------------------------------------------------------------------------|
| 2  | Notes: (1) Author details and references for validated quantitative measures used by included     |
| 3  | studies are available in Supplementary File 5.                                                    |
| 4  | Barry, G., van Schaik, P., MacSween, A., Dixon, J., & Martin, D. (2016). Exergaming               |
| 5  | (XBOX Kinect <sup>TM</sup> ) versus traditional gym-based exercise for postural control, flow and |
| 6  | technology acceptance in healthy adults: a randomised controlled trial. BMC Sports                |
| 7  | Science, Medicine and Rehabilitation, 8(25), 1-11. doi: 10.1186/s13102-016-0050-0                 |
| 8  | Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. (2015). Comprehensive Meta-           |
| 9  | Analysis: Version 3.0 [Computer Program]. Englewood, NJ: Biostat.                                 |
| 10 | Bronner, S., Pinsker, R., & Noah, J. A. (2013). Energy cost and game flow of 5 exer-games         |
| 11 | in trained players. American Journal of Health Behaviour, 37(3), 369-380. doi:                    |
| 12 | 10.5993/AJHB.37.3.10                                                                              |
| 13 | Bronner, S., Pinsker, R., & Noah, J. A. (2015). Physiological and psychophysiological             |
| 14 | responses in experienced players while playing different dance exer-games. Computers              |
| 15 | in Human Behaviour, 51, 34-41. doi: 10.1016/j.chb.2015.04.047                                     |
| 16 | Butzer, B., Ahmed, K., & Khalsa, S. B. S. (2016). Yoga enhances positive psychological            |
| 17 | states in musicians. Applied Psychophysiology and Biofeedback, 41, 191-202. doi:                  |
| 18 | 10.1007/s10484-015-9321-x                                                                         |
| 19 | Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise and     |
| 20 | physical fitness: Definitions and distinctions for health-related research. Public Health         |
| 21 | Reports, 100(2), 126-131.                                                                         |
| 22 | Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. San Francisco, CA: Jossey-Bass,          |
| 23 | Inc.                                                                                              |
| 24 | Csikszentmihalyi, M. (2002). Flow: The classic work on how to achieve happiness. London:          |
| 25 | Rider Books.                                                                                      |

| 1  | Drengner, J., Jahn, S., & Furchheim, P. (2018). Flow revisited: process conceptualisation and |
|----|-----------------------------------------------------------------------------------------------|
| 2  | a novel application to service contexts. Journal of Service Management, 29(4), 703-734.       |
| 3  | doi: 10.1108/JOSM-12-2016-0318                                                                |
| 4  | Elbe, AM., Barene, S., Strahler, K., Krustrup, P., & Holtermann, A. (2016). Experiencing      |
| 5  | flow in a workplace physical activity intervention for female health care workers: A          |
| 6  | longitudinal comparison between football and Zumba. Women in Sport and Physical               |
| 7  | Activity, 24, 70-77. doi: 10.1123/wspaj.2015-0011                                             |
| 8  | Elbe, AM., Strahler, K., Krustrup, P., Wikman, J., & Stelter, R. (2010). Experiencing flow    |
| 9  | in different types of physical activity intervention programs: three randomized studies.      |
| 10 | Scandinavian Journal of Medicine and Science in Sports, 20(Suppl. 1), 111-117. doi:           |
| 11 | 10.1111/j.1600-0838.2010.01112.x                                                              |
| 12 | Ersöz, G., & Eklund, R. C. (2017). Behavioural regulations and dispositional flow in exercise |
| 13 | among American students relative to stages of change and gender. Journal of American          |
| 14 | College Health, 65(2), 94-102. doi: 10.1080/07448481.2016.1239203                             |
| 15 | Ersöz, G., Altiparmak, E., & Hülya Aşçı, F. (2016). Does body mass index influence            |
| 16 | behavioural regulations, dispositional flow and social physique anxiety in exercise           |
| 17 | setting? Journal of Sports Science and Medicine, 15, 295-300.                                 |
| 18 | Fong, C. J., Zaleski, D. J., & Leach, J. K. (2015). The challenge-skill balance and           |
| 19 | antecedents of flow: A meta-analytic investigation. The Journal of Positive Psychology,       |
| 20 | 10(5), 425-446.                                                                               |
| 21 | Giner-Sorolla, R. (2019). The past thirty years of emotion research: appraisal and beyond.    |
| 22 | Cognition and Emotion, 33(1), 48-54. doi: 10.1080/02699931.2018.1523138                       |
| 23 | Grove, J. R., & Lewis, M. A. E. (1996). Hypnotic susceptibility and the attainment of         |
| 24 | flowlike states during exercise. Journal of Sport & Exercise Psychology, 18, 380-391.         |
| 25 | doi: 10.1123/jsep.18.4.380                                                                    |

| 1  | Gurevitch, J., Koricheva, J., Nakagawa, S., & Stewart, G. (2018). Meta-analysis and the         |
|----|-------------------------------------------------------------------------------------------------|
| 2  | science of research synthesis. Nature, 555, 175-182. 10.1038/nature25753.                       |
| 3  | Hassmén, P., Keegan, R., & Piggott, D. (2016). Rethinking sport and exercise psychology         |
| 4  | research. London, UK: Springer Nature.                                                          |
| 5  | Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated                |
| 6  | environments: Conceptual foundations. Journal of Marketing, 60, 50-68. doi:                     |
| 7  | 10.2307/1251841                                                                                 |
| 8  | Huang, H-C., Pham, T. T. L., Wong, M-K., Chiu, H-Y., Yang, Y-H., & Teng, C-I. (2018).           |
| 9  | How to create flow experience in exergames? Perspective of flow theory. Telematics and          |
| 10 | Informatics, 35, 1288-1296. doi: 10.1016/j.tele.2018.03.001                                     |
| 11 | Iida, K., & Oguma, Y. (2013). Relationships between flow experience, IKIGAI and sense of        |
| 12 | coherence in tai chi practitioners. Holistic Nursing Practice, 27(5), 260-267. doi:             |
| 13 | 10.1097/HNP.0b013e31829b9199                                                                    |
| 14 | Iida, K., & Oguma, Y. (2014). The relationship between flow experience and sense of             |
| 15 | coherence: A 1-year follow-up study. Holistic Nursing Practice, 28(2), 91-97. doi:              |
| 16 | 10.1097/HNP.000000000000018                                                                     |
| 17 | Jackman, P. C., Crust, L., & Swann, C. (2017). Systematically comparing methods used to         |
| 18 | study flow in sport: A longitudinal multiple-case study. Psychology of Sport & Exercise,        |
| 19 | 32, 113-123. doi: 10.1016/j.psychsport.2017.06.009                                              |
| 20 | Jackman, P. C., Fitzpatrick, G., Lane, A., & Swann, C. (2019). Exploring bodily sensations      |
| 21 | experienced during flow states in professional national hunt jockeys: a connecting              |
| 22 | analysis. Qualitative Research in Sport, Exercise and Health, 11(1), 92-105. doi:               |
| 23 | 10.1080/2159676X.2017.1380693                                                                   |
| 24 | Jackson, S. (1995). Factors influencing the occurrence of flow state in elite athletes. Journal |
| 25 | of Applied Sport Psychology, 7, 138–166. doi: 10.1080/10413209508406962                         |

| 1  | Jackson, S., & Eklund, R. (2002). Assessing flow in physical activity: The Flow State Scale-2     |
|----|---------------------------------------------------------------------------------------------------|
| 2  | and Dispositional Flow Scale-2. Journal of Sport & Exercise Psychology, 24, 133-150.              |
| 3  | Jackson, S., & Eklund, R. (2004). The flow scales manual. Morganstown, WV: Fitness                |
| 4  | Information Technology.                                                                           |
| 5  | Jackson, S., & Kimiecik, J. (2008). Optimal experience in sport and exercise. In T. Horn          |
| 6  | (Ed.), Advances in sport psychology (pp. 377-399). Champaign, IL: Human Kinetics.                 |
| 7  | Jackson, S., & Marsh, H. (1996). Development and validation of a scale to measure optimal         |
| 8  | experience: The Flow State Scale. Journal of Sport & Exercise Psychology, 18, 17-35.              |
| 9  | doi: 10.1123/jsep.18.1.17                                                                         |
| 10 | Jackson, S., (1992). Athletes in flow: A qualitative investigation of flow states in elite figure |
| 11 | skaters. Journal of Applied Sport Psychology, 4, 161-180. doi:                                    |
| 12 | 10.1080/10413209208406459                                                                         |
| 13 | Jackson, S., Martin, A. J., & Eklund, R. C. (2008). Long and short measures of flow:              |
| 14 | Examining construct validity of the FSS-2, DFS-2 and new brief counterparts. Journal of           |
| 15 | Sport & Exercise Psychology, 30, 561-587.                                                         |
| 16 | Karageorghis, C. I., & Jones, L. (2014). On the stability and relevance of the exercise heart     |
| 17 | rate-music-tempo preference relationship. Psychology of Sport and Exercise, 15, 299-310.          |
| 18 | doi: 10.1016/j.psychsport.2013.08.004                                                             |
| 19 | Karageorghis, C. I., Vlachopoulos, S. P., & Terry, P. C. (2000). Latent variable modelling of     |
| 20 | the relationship between flow and exercise-induced feelings: An intuitive appraisal               |
| 21 | perspective. European Physical Education Review, 6(3), 230-248. doi:                              |
| 22 | 10.1177/1356336X000063002                                                                         |
| 23 | Karageorghis, C., Jones, L., & Stuart, D. P. (2008). Psychological effects of music tempi         |
| 24 | during exercise. International Journal of Sports Medicine, 29(7), 613-619. doi:                   |
| 25 | 10.1055/s-2007-989266                                                                             |

| 1  | Kimiecik, J. C., & Harris, A. T. (1996). What is enjoyment? A conceptual/definitional analysis |
|----|------------------------------------------------------------------------------------------------|
| 2  | with implications for sport and exercise psychology. Journal of Sport & Exercise               |
| 3  | Psychology, 18, 247-263. doi: 10.1123/jsep.18.3.247                                            |
| 4  | Kimiecik, J., & Stein, G. (1992). Examining flow experiences in sport contexts: Conceptual     |
| 5  | issues and methodological concerns. Journal of Applied Sport Psychology, 4, 144–160.           |
| 6  | doi: 10.1080/10413209208406458                                                                 |
| 7  | Kliem A. & Wiemeyer, J. (2010). Comparison of a traditional and a video game-based             |
| 8  | balance training program. International Journal of Computer Science in Sport, 9(Special        |
| 9  | Edition), 80-91.                                                                               |
| 10 | Lee, M., Suh, D., Son, J., Kim, J., Eun, S-D., & Yoon, B. (2016). Patient perspectives on      |
| 11 | virtual reality-based rehabilitation after knee surgery: Importance of level of difficulty.    |
| 12 | Journal of Rehabilitation Research and Development, 53(2), 239-252. doi:                       |
| 13 | 10.1682/JRRD.2014.07.0164                                                                      |
| 14 | Lee, S., Myers, N. D., Park, T., Hill, C. R., & Feltz, D. L. (2018). An exploratory study on   |
| 15 | the Köhler effect and flow in long-term exergaming. Simulation and gaming, 49(5), 538-         |
| 16 | 552. doi: 10.1177/1046878118776043                                                             |
| 17 | Loveday, P., & Burgess, J. (2017). Flow and Pokémon GO: The contribution of game level,        |
| 18 | playing alone, and nostalgia to the flow state. E-Journal of Social & Behavioural              |
| 19 | Research in Business, 8(2), 16-28.                                                             |
| 20 | Maddison, R., Mhurchu, C. N., Jull, A., Jiang, Y., Prapavessis, H., & Rodgers, A. (2007).      |
| 21 | Energy expended playing video console games: an opportunity to increase children's             |
| 22 | physical activity? Pediatric exercise science, 19(3), 334-343. doi: 10.1123/pes.19.3.334       |
| 23 | Marston, H. R., Kroll, M., Fink, D., & Gschwind, Y. J. (2016). Flow experience of older        |
| 24 | adults using the iStoppFalls exergame. Games and Culture, 11(1-2), 201-220. doi:               |
| 25 | 10.1177/1555412015605219                                                                       |
|    |                                                                                                |

- 1 Milner, K. A. (2015). Systematic reviews. *Oncology Nursing Forum*, 42(1), 89-93. doi:
- 2 10.1188/15.ONF.89-93
- 3 Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA. Group. (2009). Preferred
- 4 reporting items for systematic reviews and meta-analyses: The PRISMA statement.
- 5 *PLoS Medicine*, *6*(7), e1000097. doi: 10.1371/journal.pmed.1000097
- 6 Monedero, J., Murphy, E. E., & O'Gorman, D. J. (2017). Energy expenditure and affect
- 7 responses to different types of active video game and exercise. *PLoS ONE*, *12*(5),
- 8 e0176213. doi: 10.1371/journal.pone.0176213
- 9 Norris, L. A., Didymus, F. F., & Kaiseler, M. (2017). Stressors, coping, and well-being among
- 10 sports coaches: A systematic review. *Psychology of Sport and Exercise*, *33*, 93-112. doi:
- 11 10.1016/j.psychsport.2017.08.005
- Park, J. M., & Noh, G. Y. (2017). Effects of the interactivity of mobile fitness application on
  exercise self-efficacy and attitude. *Advanced Science Letters*, *23*, 1677-1681. doi:
- 14 10.1166/asl.2017.8622
- 15 Petosa, R. L., & Holtz, B. (2013). Flow for exercise adherence: Testing an intrinsic model of
- health behaviour. *American Journal of Health Education*, 44(5), 273-277. doi:
- 17 10.1080/19325037.2013.811364
- 18 Petticrew, M., & Roberts, H. (2006). *Systematic reviews in the social sciences*. Oxford:
- 19 Wiley-Blackwell.
- 20 Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M.,... Duffy, S. (2006).
- 21 *Guidance on the conduct of narrative synthesis in systematic reviews.* University of
- 22 Lancaster, UK: ESRC Methods Programme.
- 23 Rheinberg, F. (2008). Intrinsic motivation and flow-experience. In H. Heckhausen, & J.
- 24 Heckhausen (Eds.), *Motivation and action* (pp. 323-348). Cambridge, UK: Cambridge
- 25 University Press. doi:10.1017/CBO9780511499821.014

| 1  | Rheinberg, F., Vollmeyer, R., & Engeser, S. (2003). Die Erfassung des Flow Erlebens          |
|----|----------------------------------------------------------------------------------------------|
| 2  | [Measuring flow experience]. In J. Stiensmeier-Pelster & F. Rheinberg (Eds.),                |
| 3  | Diagnostik von Motivation und Selbstkonzept (pp. 261–279). Göttingen: Hogrefe.               |
| 4  | Robinson, J., Dixon, J., MacSween, A., van Schaik, P., & Martin, D. (2015). The effects of   |
| 5  | exergaming on balance, gait, technology acceptance and flow experience in people with        |
| 6  | multiple sclerosis: a randomised controlled trial. BMC Sports Science, Medicine and          |
| 7  | Rehabilitation, 7(8), 1-12. doi: 10.1186/s13102-015-0001-1                                   |
| 8  | Rohatgi, A. (2019). WebPlotDigitizer (Version 4.2) [Computer software]. Retrieved from:      |
| 9  | https://automeris.io/WebPlotDigitizer                                                        |
| 10 | Schüler, J., & Brunner, S. (2009). The rewarding effect of flow experience on performance in |
| 11 | a marathon race. Psychology of Sport and Exercise, 10, 168-174.                              |
| 12 | Seligman, M., & Csikszentmihalyi, M. (2000). Positive psychology: An introduction.           |
| 13 | American Psychologist, 55, 5-14. doi: 10.1037/0003-066X.55.1.5                               |
| 14 | Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: A       |
| 15 | best practice guide for conducting and reporting narrative reviews, meta-analyses, and       |
| 16 | meta-syntheses. Annual Review of Psychology, 70, 747-770. doi: 10.1146/annurev-              |
| 17 | psych-010418-102803                                                                          |
| 18 | Sirriyeh, R., Lawton, R., Gardner, P., & Armitage, G. (2012). Reviewing studies with diverse |
| 19 | designs: The development and evaluation of a new tool. Journal of Evaluation in              |
| 20 | Clinical Practice, 18(4), 746-752. doi: 10.1111/j.1365-2753.2011.01662.x.                    |
| 21 | Smith, B., & McGannon, K. R. (2018). Developing rigor in qualitative research: problems      |
| 22 | and opportunities within sport and exercise psychology. International Review of Sport        |
| 23 | and Exercise Psychology, 11(1), 101-121. doi: 10.1080/1750984X.2017.1317357                  |
|    |                                                                                              |

24 Smith, M. F. (2018). *Research methods in sport*. London: SAGE.

| 1  | Sone, T., Nakaya, N., Ohmori, K., Shimazu, T., Higashiguchi, M., Kakizaki, M., Tsuji, I.  |
|----|-------------------------------------------------------------------------------------------|
| 2  | (2008). Sense of life worth living (ikigai) and mortality in Japan: Ohsaki study.         |
| 3  | Psychosomatic Medicine, 70(6), 709-715. doi: 10.1097/PSY.0b013e31817e7e64.                |
| 4  | Swann, C., Crust, L., & Vella, S. A. (2017). New directions in the psychology of optimal  |
| 5  | performance in sport: flow and clutch states. Current Opinions in Psychology, 16, 48-53.  |
| 6  | doi: 10.1016/j.copsyc.2017.03.032                                                         |
| 7  | Swann, C., Crust, L., Jackman, P., Vella, S. A., Allen, M. S., & Keegan, R. (2017b).      |
| 8  | Psychological states underlying excellent performance in sport: Toward an integrated      |
| 9  | model of flow and clutch states. Journal of Applied Sport Psychology, 29(4), 375-401.     |
| 10 | doi: 10.1080/10413200.2016.1272650                                                        |
| 11 | Swann, C., Crust, L., Jackman, P., Vella, S., Allen, M., & Keegan, R. (2017a). Performing |
| 12 | under pressure: Exploring the psychological state of clutch performance in sport.         |
| 13 | Journal of Sport Sciences, 35(23), 2272-2280. doi: 10.1080/02640414.2016.1265661          |
| 14 | Swann, C., Jackman, P. C., Schweickle, M., & Vella, S. (2019). Optimal experiences in     |
| 15 | exercise: A qualitative investigation of flow and clutch states. Psychology of Sport and  |
| 16 | Exercise, 40, 87-98. doi: 10.1016/j.psychsport.2018.09.007                                |
| 17 | Swann, C., Keegan, R. J., Piggott, D., & Crust, L. (2012). A systematic review of the     |
| 18 | experience, occurrence and controllability of flow states in elite sport. Psychology of   |
| 19 | Sport and Exercise, 13(6), 807-819. doi: 10.1016/j.psychsport.2012.05.006                 |
| 20 | Swann, C., Keegan, R., Crust, L., & Piggott, D. (2016). Psychological states underlying   |
| 21 | excellent performance in professional golfers: "Letting it happen" vs. "making it         |
| 22 | happen". Psychology of Sport and Exercise, 23, 101-113. doi:                              |
| 23 | 10.1016/j.psychsport.2015.10.008                                                          |
| 24 | Swann, C., Piggott, D., Crust, L., Keegan, R., & Hemmings, B. (2015). Exploring the       |
| 25 | interactions underlying flow states: A connecting analysis of flow occurrence in          |

- 1 European Tour golfers. *Psychology of Sport and Exercise*, *16*, 60–69.
- 2 doi:10.1016/j.psychsport.2014.09.007
- 3 Swann, C., Piggott, D., Schweickle, M., & Vella, S. (2018). A review of scientific progress in
- 4 flow in sport and exercise: Normal science, a crisis point, and a progressive shift.
- 5 *Journal of Applied Sport Psychology*, *30*(3), 249-271. doi:
- 6 10.1080/10413200.2018.1443525
- Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in
  games. ACM Computers in Entertainment, 3(3), art. 3A.
- 9 Thin, A. G., Hansen, L., & McEachen, D. (2011). Flow experience and mood states while
- 10 playing body movement-controlled video games. *Games and Culture*, 6(5). 414-428.
- 11 doi: 10.1177/1555412011402677
- 12 Vlachopoulos, S. P., Karageorghis, C. I., & Terry, P. C. (2000). Hierarchical confirmatory
- 13 factor analysis of the Flow State Scale in exercise. *Journal of Sport Sciences*, 18(10),

14 815-823. doi: 10.1080/026404100419874

- 15 Wollseiffen, P., Schneider, S., Martin, L. A., Kerherve, H.A., Klein, T., & Solomon, C.
- 16 (2016). The effect of 6 h of running on brain activity, mood, and cognitive performance.
- 17 *Experimental Brain Research*, 234, 1829-1836. doi: 10.1007/s00221-016-4587-7
- 18 World Health Organisation. (2018). *Global action plan on physical activity 2018-2030: More*
- 19 *active people for a healthier world*. Geneva, Switzerland: World Health Organisation.

20

|                                                                                                      | Participant                                  | information                                                       |                                                                                                   |                                                 | Measu                          | arement of flow                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
|------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Authors (year of publication)                                                                        | Size (Male/<br>Female)                       | Mean age<br>(SD)                                                  | Activity                                                                                          | Design                                          | Dispositional or<br>state flow | Measure(s) and<br>procedure                                                                                                                  | Key findings                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quality<br>score <sup>1</sup> |
| Barry, van Schaik,<br>MacSween, Dixon,<br>and Martin (2016)                                          | 47 (27/20) <sup>2</sup>                      | 33 (12)                                                           | Exergaming (balance<br>training) and TGB<br>exercise interventions                                | Quant/Between-<br>subjects repeated<br>measures | State                          | Completed the FSS after<br>sessions at baseline<br>(T1) and the end of a<br>4-week intervention<br>(T2)                                      | <ul> <li>FSS subscale mean scores higher at T1 and T2 in exergamers.</li> <li>FSS subscale mean scores all higher at T2 compared to T1 in exergamers, and higher in seven subscales in the TGB exercise group at T2.</li> <li>Significant differences in the exergaming group compared to the TGB exercise group in six of the nine FSS subscales.</li> <li>No significant time-by-exercise type interaction effect found for any flow subscale.</li> </ul> | 52.38%                        |
| Bronner, Pinsker,<br>and Noah (2013)                                                                 | 7 (4/3)                                      | 29 (9.34)                                                         | Lab-based<br>exergaming (dance)                                                                   | Quant/Within-<br>subject                        | State                          | Completed the Video<br>Game Training Effect<br>Questionnaire<br>immediately after<br>each condition                                          | <ul><li>Significant difference in game-flow intensity between games, but no significant post hoc pairwise comparisons.</li><li>Moderate, positive association between flow intensity and both VO<sub>2</sub> and MET.</li></ul>                                                                                                                                                                                                                             | 54.76%                        |
| Bronner, Pinsker,<br>and Noah (2015)                                                                 | 7 (4/3)                                      | 29 (9)                                                            | Lab-based<br>exergaming (dance)                                                                   | Quant/Within-<br>subject                        | State                          | Completed the Exer-<br>game Questionnaire<br>immediately after<br>exposure to each<br>condition                                              | <ul> <li>Significant difference in game-flow intensity<br/>between games, but no significant post hoc<br/>comparisons.</li> <li>Game-flow intensity significantly and positively<br/>correlated with MET and engagement.</li> <li>No significant correlation between flow and<br/>usability.</li> </ul>                                                                                                                                                     | 52.38%                        |
| Butzer, Ahmed,<br>and Khalsa (2016;<br>yoga) <sup>3</sup>                                            | 60 (25/35)                                   | 25.2 (3.2)                                                        | Yoga intervention                                                                                 | Quant/Between-<br>subjects repeated<br>measures | Dispositional                  | Completed the DFS-2<br>before (T1) and after<br>(T2) an 8-week<br>intervention                                                               | Mean scores for global dispositional flow and all DFS-2 subscales improved from T1 to T2.                                                                                                                                                                                                                                                                                                                                                                   | 71.43%                        |
| Elbe, Barene,<br>Strahler, Krustrup,<br>and Holtermann<br>(2016; Zumba) <sup>3</sup>                 | 33 (0/33)                                    | 46.3 (9.6)                                                        | Zumba intervention                                                                                | Quant/<br>Longitudinal                          | State                          | Completed the FShS<br>after baseline (T1),<br>mid-intervention (T2),<br>and late-intervention<br>(T3) sessions in a 12-<br>week intervention | <ul><li>Flow increased from T1 to T2 and from T2 to T3.</li><li>45% were participating in self-organized physical activity 18 weeks post-intervention.</li></ul>                                                                                                                                                                                                                                                                                            | 61.90%                        |
| Elbe, Strahler,<br>Krustrup,<br>Wikman, and<br>Stelter (2010;<br>excluding<br>football) <sup>2</sup> | 20 (0/20)<br>8 (8/0)<br>10 (10/0)<br>8 (8/0) | 36.9 (5.6)         36.2 (5.0)         31 (6.0)         37.3 (7.2) | Running interventionInterval runninginterventionRunning interventionStrength trainingintervention | Quant/Cross-<br>sectional <sup>4</sup>          | State                          | Completed the FShS<br>after a single session<br>midway through 12-<br>week or 16-week<br>interventions                                       | No significant difference in flow between strength<br>and interval training.<br>No significant relationship between flow intensity in<br>a mid-intervention session and post-intervention<br>physiological improvements in male strength<br>training or interval running groups.                                                                                                                                                                            | 66.67%                        |

# Table 1: Study characteristics and quality of the included studies.

| Ersöz and Eklund<br>(2017)                     | 251<br>(104/147)      | Males:<br>23.57<br>(4.18)<br>Females:<br>22.76<br>(3.96) | Exercise (running $n =$ 76, weightlifting $n =$ 66, cardiovascular exercise n = 77, unspecified exercise activity $n = 32$ ) | Quant/Cross-<br>sectional | Dispositional | Completed the DFS-2<br>online                                                                        | <ul> <li>Significant multivariate effect for stages of change in exercise on the DFS-2 subscales. Significant, small-to-medium effect for CG, C, and AE, with higher scores in the action and maintenance stages than those in the preparation stage.</li> <li>DFS-2 subscales significantly and positively associated with intrinsic, identified, and introjected regulation and negatively related to external regulation and amotivation.</li> <li>No significant differences in the DFS-2 subscales between males and females.</li> </ul>                                                 | 59.92% |
|------------------------------------------------|-----------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Ersöz, Altiparmak,<br>and Hülya Aşçı<br>(2016) | 782 (369,<br>413)     | 21.87<br>(2.17)                                          | Unspecified                                                                                                                  | Quant/Cross-<br>sectional | Dispositional | Completed the Turkish<br>DFS-2 after an<br>exercise class                                            | Significant differences between BMI groups in the<br>DFS-2 subscales. Underweight participants<br>reported higher dispositional flow than<br>overweight and obese exercisers.<br>No significant differences in the DFS-2 subscales<br>between genders.                                                                                                                                                                                                                                                                                                                                        | 69.05% |
| Grove and Lewis<br>(1996)                      | 96 (30/66)            | 25.5 (9.33)                                              | Circuit training                                                                                                             | Quant/<br>Longitudinal    | State         | Completed an adapted<br>PEQ during and<br>immediately after two<br>weekly sessions for<br>six weeks  | <ul> <li>Significant two-way interaction for time of assessment x HS. Increases in flowlike state intensity from early to late assessments across the sample, but a significant increase was only apparent in high HS participants.</li> <li>Significant main effect of prior circuit training experience on flowlike state intensity. Greater flowlike state intensity in circuit trainers with &gt; 6 months of experience.</li> <li>No significant relationship between changes in self-reported HR and flowlike state intensity between the early and late stages of sessions.</li> </ul> | 78.57% |
| Huang et al.<br>(2018)                         | 583<br>(362/221)      | n/a <sup>5</sup>                                         | Lab-based exergaming                                                                                                         | Quant/Cross-<br>sectional | State         | Completed an adapted<br>FS after a single<br>session                                                 | Flow intensity significantly and positively related to<br>perceived challenge and enjoyment.<br>Flow intensity not significantly related to need for<br>exercise or need for achievement.                                                                                                                                                                                                                                                                                                                                                                                                     | 66.67% |
| Iida and Oguma<br>(2013)                       | 469 (97/372)          | 67.3 (8.8)                                               | Tai-chi classes                                                                                                              | Quant/Cross-<br>sectional | State         | Completed an adapted<br>JFSS-2 after a single<br>class                                               | Flow intensity significantly higher in those with 1-2,<br>4-5, 5-10, and ≥ 10 years of experience compared<br>to those with < 1 year of experience.<br>Statistically significant path from flow intensity to<br>ikigai.                                                                                                                                                                                                                                                                                                                                                                       | 61.90% |
| Iida and Oguma<br>(2014)                       | 279 (not<br>reported) | 67.9 (7.9)                                               | Tai chi classes                                                                                                              | Quant/<br>Longitudinal    | State         | Completed the JFSS-2<br>after a baseline class<br>(T1) and follow-up<br>class one year later<br>(T2) | <ul> <li>Flow intensity significantly higher at T2 compared to T1 in the entire sample. Flow intensity at T2 significantly higher in non-experts but not in experts.</li> <li>Flow intensity at T1 positively predicted SoC at T2. Flow intensity at T1 significantly predicted SoC at T2 in experts, but not in non-experts.</li> <li>SoC at T1 did not significantly predict flow intensity at T2, regardless of experience.</li> </ul>                                                                                                                                                     | 73.81% |

| Karageorghis and<br>Jones (2014 -<br>quantitative) | 22 (11/11)                                    | Males:<br>19.6 (1.6)<br>Females:<br>20.3 (1.6)       | Lab-based treadmill walking/running                               | Quant/Within-<br>subject and<br>between-subjects                                          | State         | Completed the SFS after<br>exposure to each<br>condition                                                                                                           | Significant two-way interaction of music tempo x<br>gender, with a significant interaction for flow.<br>Flow intensity significantly higher in the slow,<br>medium, fast, and very fast music tempi<br>conditions compared to the control condition.                                                                                                                                                                                                                                            | 83.33% |
|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Karageorghis,<br>Jones, and Stuart<br>(2008)       | 29 (14/15)                                    | Males:<br>20.7 (1.1)<br>Females:<br>20.4 (1.4)       | Lab-based treadmill walking                                       | Quant/Within-<br>subject                                                                  | State         | Completed the FSS-2<br>after exposure to each<br>condition                                                                                                         | Flow intensity significantly higher in the mixed,<br>medium, and fast tempi groups compared to the<br>control condition.                                                                                                                                                                                                                                                                                                                                                                        | 78.57% |
| Karageorghis,<br>Vlachopoulos, and<br>Terry (2000) | 1231<br>(211/1014)<br>(6 did not<br>indicate) | 31.43 years<br>(9.13) (120<br>did not<br>report age) | Aerobic dance<br>exercise classes                                 | Quant/Cross-<br>sectional                                                                 | State         | Completed the FSS after<br>a single class                                                                                                                          | Significant positive associations between flow<br>intensity and post-exercise feelings of positive<br>engagement, revitalisation, and tranquillity, and a<br>significant, but weak, negative relationship<br>between flow intensity and physical exhaustion.<br>Flow intensity explained variance in positive<br>engagement, revitalization, and tranquillity, but<br>negligible variance in physical exhaustion.                                                                               | 80.95% |
| Kliem and<br>Wiemeyer (2010)                       | 22 (5/17)                                     | 47.36<br>(13.14)                                     | Lab-based<br>exergaming (balance)<br>and TB training              | Quant/Cross-<br>sectional <sup>4</sup>                                                    | Dispositional | Responded to questions<br>assessing game-flow<br>after the final session<br>of a 3-week<br>intervention                                                            | No significant differences in game-flow intensity<br>between TB training and exergaming groups.                                                                                                                                                                                                                                                                                                                                                                                                 | 38.10% |
| Lee et al. (2016)                                  | 25 (11/14)                                    | 36.4 (14.8)                                          | Lab-based<br>exergaming (yoga,<br>strength, and<br>balance)       | Mixed<br>method/Cross-<br>sectional (Quant)<br>and descriptive<br>investigation<br>(Qual) | State         | Completed a Korean<br>version of the FSS-2<br>and responded to<br>closed-ended and<br>open-ended (verbally)<br>questions on the<br>KUUEQ after a single<br>session | <ul> <li>Age, perceptions of pain, and physical dysfunction<br/>not significantly related to flow intensity.</li> <li>Compared to previously published exercise values<br/>(Jackson &amp; Eklund, 2004), exergamers reported<br/>significantly higher C and AE.</li> <li>Level of difficulty was the most common reason for<br/>highest and lowest flow intensity. Excessive or<br/>insufficient difficulty was adversative, whereas<br/>optimal difficulty levels facilitated flow.</li> </ul> | 46.66% |
| Lee, Myers, Park,<br>Hill, and Feltz<br>(2018)     | 15 (10/5)                                     | 44.8 (9.72)                                          | Home-based<br>exergaming (cycling)<br>and cycling<br>intervention | Quant/Between-<br>subjects and<br>repeated measures                                       | State         | Completed an adapted<br>FShS after sessions at<br>days nine and 10 (T1),<br>41 and 46 (T2), and<br>65 and 70 (T3) in a<br>24-week intervention                     | <ul> <li>Flow intensity mean scores increased over time in the entire sample</li> <li>Compared to the control condition, a NASP had a significant large effect on flow intensity at T2 and T3, while an ASP had a non-significant medium and negligible effect on flow intensity at T2 and T3, respectively.</li> </ul>                                                                                                                                                                         | 88.10% |
| Loveday and<br>Burgess (2017 –<br>quantitative)    | 202 (74/124)<br>(4 did not<br>indicate)       | 29.3 (8.7)                                           | Exergaming (mobile exergame)                                      | Quant/Cross-<br>sectional                                                                 | State         | Completed the SFS online                                                                                                                                           | Flow intensity significantly predicted by game level,<br>playing alone, nostalgia, and playing with family,<br>but not by playing with friends or strangers.                                                                                                                                                                                                                                                                                                                                    | 45.24% |
| Marston, Kroll,<br>Fink, and<br>Gschwind (2016)    | 50 (23/27) <sup>6</sup>                       | n/a                                                  | Home-based<br>exergaming (balance<br>training) intervention       | Quant/Cross-<br>sectional <sup>4</sup>                                                    | State         | Completed the AFSS<br>after the final session<br>of a 16-week<br>intervention                                                                                      | No significant differences in global flow intensity or<br>the nine AFSS subscales between age groups or<br>study sites.<br>Significantly higher mean scores for females on two<br>of the 26 AFSS items.<br>Significant differences in scores for 19 of the 26                                                                                                                                                                                                                                   | 66.67% |

AFSS items between study sites.

| 23 (11/12)     | 24.8(1)                                                                                       | Lab-based running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quant/Within-                                                                                                                                                                                                                                                                                                                                                                          | State                                                                                                                                                                                                                                                                                                                                                                                                          | Completed the CES after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Significant effect of exercise type on core flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . ,            | 21.0(1)                                                                                       | and exergaming (ET-<br>VG and FT-VG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | subject                                                                                                                                                                                                                                                                                                                                                                                | Suite                                                                                                                                                                                                                                                                                                                                                                                                          | exposure to each<br>condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Higher flow intensity for ET-VG, followed by<br>FT-VG, self-selected intensity running, and<br>running at 55% VO2Reserve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100 (50/50)    | -                                                                                             | Lab-based<br>exergaming<br>(unspecified exercise<br>with mobile fitness<br>applications)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quant/Within-<br>subject                                                                                                                                                                                                                                                                                                                                                               | State                                                                                                                                                                                                                                                                                                                                                                                                          | Completed an<br>unspecified measure<br>after exposure to both<br>conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Significant difference in flow intensity based on<br>fitness application interactivity. Higher flow<br>intensity reported while using an enhanced<br>interactivity fitness application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54.76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| an             | 52 (5.8)                                                                                      | Lab-based<br>exergaming (postural<br>control) and TB<br>training                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quant/Between-<br>subjects and<br>repeated measures                                                                                                                                                                                                                                                                                                                                    | State                                                                                                                                                                                                                                                                                                                                                                                                          | Completed the FSS after<br>the first (T1) and final<br>(T2) sessions of a 4-<br>week intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul><li>Significantly higher scores in exergamers compared<br/>to the TB group in five FSS subscales at T2.</li><li>Mean scores higher in T2 versus T1 for exergamers<br/>in all FSS subscales, but only higher in seven<br/>subscales for the TB training group at T2.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 66.67%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , , ,          | 32.94<br>(10.18)                                                                              | Yoga, duathlon,<br>running, treadmill<br>running/walking,<br>surfing, weight-<br>training, hiking, half<br>ironman, and indoor<br>climbing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qual/Descriptive<br>investigation                                                                                                                                                                                                                                                                                                                                                      | State                                                                                                                                                                                                                                                                                                                                                                                                          | Participated in event-<br>focused, semi-<br>structured interviews<br>(M = 55  minutes)<br>within two days of a<br>self-reported<br>rewarding exercise<br>activity on average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Flow was characterised by 12 features: absence of negative thoughts; absorption; altered perceptions; automatic skill execution; confidence; ease/reduced effort; effortless attention; enjoyment; feeling in control; optimal arousal; motivation for more; and positive-in-the-moment feedback.</li> <li>Flow occurred in contexts that involved exploration, novelty/variation, and flexible outcomes through a gradual build-up of five stages: initial positive event; positive feedback; increase in confidence; challenge appraisal; and setting open goals.</li> <li>After flow, participants reported a sense of achievement, positive mood and emotions, intrinsic motivation, confidence, and energy.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | 19 (1.5)                                                                                      | Lab-based<br>exergaming and<br>cycling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quant/Cross-<br>sectional                                                                                                                                                                                                                                                                                                                                                              | State                                                                                                                                                                                                                                                                                                                                                                                                          | Completed the FSS-2<br>after completing a<br>single session                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compared to previously published values in<br>exercise (Jackson & Eklund, 2004), exergamers<br>reported significantly higher CSB and AA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| t al. 11 (6/5) | 36.5 (7)                                                                                      | Outdoor running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quant/<br>Longitudinal                                                                                                                                                                                                                                                                                                                                                                 | State                                                                                                                                                                                                                                                                                                                                                                                                          | Completed the SFS<br>before and during a 6-<br>hour run.<br>Completed an adapted<br>FSS-2 after the<br>activity <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Significant changes in flow intensity over time in the<br>run. Significant increase in flow intensity from<br>pre-run to 1-hour, before a significant decrease<br>from 1-hour to 3-hours, and declining thereafter.<br>Flow intensity was higher in females before, during,<br>and after the run, with significantly higher values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | xon, 56 (18/38) <sup>7</sup><br>an<br>fartin<br>han, 18 (9/9)<br>nd<br>, and 14 (9/5)<br>011) | $\begin{array}{c} 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 (50/50) & - \\ 100 ($ | and exergaming (ÉT-<br>VG and FT-VG)<br>100 (50/50) - Lab-based<br>exergaming<br>(unspecified exercise<br>with mobile fitness<br>applications)<br>Lab-based<br>exergaming (postural<br>control) and TB<br>training<br>han, 18 (9/9) 32.94 Yoga, duathlon,<br>running, treadmill<br>running, treadmill<br>running, weight-<br>training, hiking, half<br>ironman, and indoor<br>climbing | and exergaming (ET-<br>VG and FT-VG) subject<br>100 (50/50) - Lab-based<br>exergaming (unspecified exercise<br>with mobile fitness<br>applications) Lab-based<br>exergaming (postural<br>control) and TB<br>training 18 (9/9) 32.94 Yoga, duathlon,<br>running/walking,<br>surfing, weight-<br>training 14 (9/5) 19 (1.5) Lab-based<br>exergaming and<br>cycling tal. 11 (6/5) 36.5 (7) Outdoor running Quant/ | 017)       and exergaming (ET-VG)       subject         100 (50/50)       -       Lab-based exergaming (unspecified exercise with mobile fitness applications)       Quant/Within-State         xon,       56 (18/38) <sup>7</sup> 52 (5.8)       Lab-based exergaming (postural control) and TB training       Quant/Between-State         fartin       18 (9/9)       32.94       Yoga, duathlon, rrunning, treadmill running/walking, surfing, weight-training, hiking, half ironman, and indoor climbing       Qual/Descriptive State         and       14 (9/5)       19 (1.5)       Lab-based exergaming and cycling       Quant/Cross-sectional         tal.       11 (6/5)       36.5 (7)       Outdoor running       Quant/ State | 017)     and exergaming (ĒT-<br>VG and FT-VG)     subject     exposure to each<br>condition       100 (50/50)     -     Lab-based<br>exergaming<br>(unspecified exercise<br>with mobile fitness<br>applications)     Quant/Within-<br>subject     State     Completed an<br>unspecified measure<br>after exposure to both<br>conditions       xon,<br>an<br>fartin     56 (18/38) <sup>7</sup> 52 (5.8)     Lab-based<br>exergaming (postural<br>control) and TB     Quant/Between-<br>subjects and<br>repeated measures     State     Completed the FSS after<br>the first (T1) and final<br>(T2) sessions of a 4-<br>week intervention       nan,<br>nan,<br>nan,<br>and     18 (9/9)     32.94<br>(10.18)     Yoga, duathlon,<br>running/walking,<br>surfing, weight-<br>training, hiking, half<br>irronman, and indoor<br>climbing     Quant/Descriptive<br>investigation     State     Participated in event-<br>focused, semi-<br>structured interviews<br>(M = 55 minutes)<br>within two days of a<br>self-reported<br>rewarding exercise<br>activity on average       at at     14 (9/5)     19 (1.5)     Lab-based<br>exergaming and<br>cycling     Quant/Cross-<br>sectional     State     Completed the FSS-2<br>after completed the FSS-2<br>after completed the SFS<br>after completed the SFS<br>before and during a 6-<br>hour run.<br>Completed an adapted | <ul> <li>and exergaming (<u>G</u>T).</li> <li>VG and FT-VG, 'Glowed by FT-VG, 'Glowed by PT-VG, 'Gl</li></ul> |

Notes: (1) full details on the study quality assessment can be found in Supplementary File 4; (2) Barry et al. (2016) reported that data for 44 participants (exergame group n = 23 and TGB exercise group n = 21) were analysed due to data capture errors; (3) Some findings were not reported as the analyses included data for non-exercise participants; (4) Studies that involved exercise interventions but only collected data at a single point in time were categorised as cross-sectional designs; (5) no mean age was provided but the age ranges were as follows: 19-21 years old n = 285; 22-24 years old n = 283; 25-29 years old n = 14; missing n = 1; (6) Although a total of 153 participants were recruited, only 50 of the 95 exergame participants returned data on flow. The mean age for the sample (n = 153) was 76.15 years; (7) Data analysed for 46 participants due to the withdrawal of 10 participants; (8) Only data for items matching the SFS were analysed; (9) Abbreviations used as follows: AA = action-awareness merging; AE = autotelic experience; AFSS = Activity Flow State Scale; ASP = always superior partner; BMI = Body mass index; C = concentration on the task at hand; CFS = Core Flow Scale; CG = clear goals; CSB = challenge-skills balance; DFS-2 = Dispositional Flow Scale; FS = Flow State Scale; FSS = Flow State Scale; FSS-2 = Flow State Scale-2; FT-VG = Fitness themed-video game; FS = Flow Survey; FShS = Flow Short Scale; FSS = Flow State Scale; SoC = sense of coherence; T1 = time point 1; T2 = time point 2; T3 = time point 3; TB = traditional balance; TGB = traditional gym-based.

| Conceptual                                 | Measure                                         | Study                                                                    | Items          | Validated measure of | Internal consistency      | Reportin | - Issues <sup>1</sup> |       |
|--------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------|----------------|----------------------|---------------------------|----------|-----------------------|-------|
| framework                                  |                                                 | -                                                                        |                | flow                 | reported (a)              | Subscale | Global                |       |
| Nine-dimensions                            | Activity Flow State Scale                       | Marston, Kroll, Fink, and Gschwind (2016)                                | 26             | Yes                  | No                        | Yes      | Yes                   | E     |
| framework                                  | Dispositional Flow Scale-2                      | Butzer, Ahmed, and Khalsa (2016)                                         | 36             | Yes                  | No                        | Yes      | Yes                   |       |
|                                            |                                                 | Ersöz and Eklund (2017)                                                  | -              | Yes                  | Yes (.7689)               | Yes      | No                    | А     |
|                                            | Flow State Scale                                | Barry, van Schaik, MacSween, Dixon, and<br>Martin (2016)                 | 36             | Yes                  | No                        | Yes      | No                    | A,C   |
|                                            |                                                 | Karageorghis, Vlachopoulos, and Terry (2000)                             | -              | Yes                  | Yes (.6584 for subscales) | No       | Yes                   | B,C   |
|                                            |                                                 | Robinson, Dixon, MacSween, van Schaik, and<br>Martin (2015)              | -              | Yes                  | No                        | Yes      | No                    | A,C   |
|                                            | Flow State Scale-2                              | Karageorghis, Jones, and Stuart (2008)                                   | 36             | Yes                  | No                        | No       | Yes                   | В     |
|                                            |                                                 | Thin, Hansen, and McEachen (2011)                                        | -              | Yes                  | No                        | Yes      | No                    | А     |
|                                            | Japanese Flow State Scale-2                     | Iida and Oguma (2014)                                                    | 36             | Yes                  | Yes (.91)                 | No       | Yes                   | В     |
|                                            | Korean Flow State Scale-2                       | Lee et al. (2016)                                                        | 36             | Yes                  | No <sup>2</sup>           | Yes      | Yes                   |       |
|                                            | Short Flow State Scale-2                        | Karageorghis and Jones (2014)                                            | 9              | Yes                  | No                        | No       | Yes                   | В     |
|                                            |                                                 | Wollseiffen et al. (2016)                                                | _              | Yes                  | No                        | No       | Yes                   | В     |
|                                            |                                                 | Loveday and Burgess (2017)                                               | _              | Yes                  | No                        | No       | Yes                   | В     |
|                                            | Turkish Dispositional Flow<br>Scale-2           | Ersöz, Altiparmak, and Hülya Aşçı (2016)                                 | 36             | Yes                  | Yes (.82)                 | No       | Yes                   | В     |
|                                            | Adapted Flow State Scale-2                      | Wollseiffen et al. (2016)                                                | 9 <sup>3</sup> | Yes                  | No                        | No       | Yes                   | B,F   |
|                                            | Adapted Japanese Flow State<br>Scale-2          | Iida and Oguma (2013)                                                    | 284            | No                   | Yes (.93)                 | No       | Yes                   | B,F   |
|                                            | Adapted Flow Survey                             | Huang et al. (2018)                                                      | 3              | No                   | Yes (.86)                 | No       | Yes                   | B,F   |
|                                            | Core Flow Scale                                 | Monedero, Murphy, and O'Gorman (2017)                                    | 10             | Yes                  | No                        | No       | Yes                   | В     |
| Game-flow                                  | Video Game Training Effect<br>Questionnaire     | Bronner, Pinsker, and Noah (2013)                                        | 14             | No                   | No                        | No       | Yes                   | B,D   |
|                                            | Exer-game Questionnaire<br>(game-flow subscale) | Bronner, Pinsker, and Noah (2015)                                        | Unspecified    | No                   | No                        | No       | Yes                   | B,D   |
|                                            | Unspecified                                     | Kliem and Wiemeyer (2010)                                                | Unspecified    | No                   | No                        | No       | Yes                   | B,E   |
| Eight-dimensions<br>framework <sup>5</sup> | Flow Short Scale                                | Elbe, Barene, Strahler, Krustrup, and<br>Holtermann (2016; Zumba)        | 10             | Yes                  | Yes (.76)                 | No       | Yes                   | B,G   |
|                                            |                                                 | Elbe, Strahler, Krustrup, Wikman, and Stelter (2010; excluding football) | 10             | Yes                  | Yes (.75)                 | No       | Yes                   | B,E,G |
|                                            | Adapted Flow Short Scale                        | Lee, Myers, Park, Hill, and Feltz (2018)                                 | 8              | No                   | Yes (.85)                 | No       | Yes                   | B,F   |
| Flowlike state                             | Adapted Privette Experience<br>Questionnaire    | Grove and Lewis (1996)                                                   | 10             | No                   | Yes (.81)                 | No       | Yes                   | B,D   |
| Unspecified                                | Unspecified                                     | Park and Noh (2017)                                                      | 5              | No                   | Yes (.83)                 | No       | Yes                   | B,D   |

Table 2: Conceptual frameworks, item quantity, psychometric properties, result reporting levels, and issues with quantitative flow measures.

UnspecifiedUnspecifiedPark and Noh (2017)5NoYes (.83)NoYesB,DNotes: (1) key issues that could not be detected by the quality assessment tool were as follows: (a) analysed flow at a subscale/dimensional level only; (b) analysed flow at a global level only; (c) measure used found to<br/>have inadequate model fit (Vlachopoulos, Karageorghis, & Terry, 2000); (d) measure used not previously validated; (e) longitudinal interventions that only assessed flow at a single time point; (f) removed items from a<br/>previously validated questionnaire; and (g) used cut-off points generated from data outside of exercise to classify the level of flow; (2) the internal consistency ( $\alpha = .61$ ) of this translated questionnaire was below<br/>acceptable in previous research; (3) used two measures of flow and only analysed data in relation to the nine items on the Flow State Scale-2 that correspond with the Short Flow State Scale-2; (4) only seven of the

nine dimensions were assessed; (5) the eight dimension framework (Rheinberg, 2008) includes all components of the nine-dimensions framework, with the exception of autotelic experience; (6) Author details and references for validated quantitative measures used by included studies are available in Supplementary File 5.

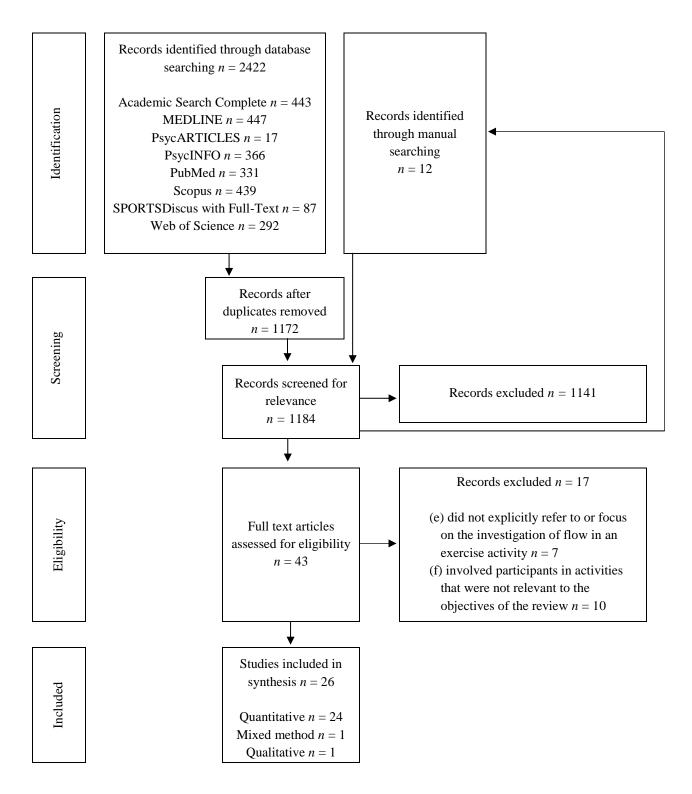



Figure 1: Flow diagram illustrating the screening process.