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Abstract—Run-off-Road crashes are often associated with
excessive speed in curves, which may happen when a driver is
distracted or fails to compensate for reduced surface friction.
This work introduces an Automated Emergency Cornering (AEC)
system to protect against the major effects of over-speeding
on curves, especially lateral deviation leading to lane or road
departure. The AEC architecture has two levels: an upper level
to perform motion planning, based on the optimal control of
a nonlinear particle model, and a lower level to distribute the
resulting two-dimensional acceleration reference to the available
actuators. The lower level adopts the recently introduced Mod-
ified Hamiltonian Algorithm (MHA), which continuously adjusts
the priority between mass-centre acceleration and yaw moment
demands derived from lateral stability targets. AEC makes use
of a high precision map and triggers control interventions based
on vehicle kinematic states and detailed road geometry. To avoid
false-positive interventions, AEC is triggered only when excessive
road departure is predicted for the optimal particle motion.
AEC then takes control of steering and individual wheel brake
actuators to perform autonomous motion control for speed and
path curvature at the limits of available friction. The AEC system
is tested and evaluated using the high-fidelity simulation software
CarMaker.

Index Terms—Vehicle Dynamics and Control, Autonomous
Vehicles, Active Safety, Optimal Control, Collision Avoidance,
Lane Departure Prevention.

I. INTRODUCTION

Single-vehicle roadway departure crashes account for
around 20% of all police-reported crashes in the USA [1].
Approximately one third of such crashes occur during a turn
and nearly half of those crashes involved excessive speed [2],
[3]. Furthermore, run-off-road (ROR) crashes are more likely
to occur in adverse weather conditions, indicating that vehicle
friction limits are an important factor. The ability to control
speed and path on curves also depends on driver skill and
decision-making. As noted in [1], the mechanisms behind ROR
crashes are often complex, involving a combination of factors:
driver performance, speed, path and lateral stability, together
with road surface friction. There remains a challenge in vehicle
system dynamics to address this integrated control problem,
supporting the design of future advanced driver assistance
systems (ADAS) to comprehensively reduce the risk of ROR
crashes on curved roads.

Existing implementations of ADAS to protect against ROR
and related lane departure crashes have typically suffered
from problems of false positives. In [4], results from a Field
Operational Test (FOT) of a Curve Speed Warning (CSW)
system exhibited excessive numbers of false alarms. And in
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the case of true positive alarms, successful intervention relies
on the prompt and skillful action of the driver. To avoid this
limitation, automatic control is preferable to simple driver
warning, but the problem of false positives remains to be
solved.

In this paper we propose the concept of Automated Emer-
gency Cornering (AEC). AEC is conceived to be analogous
to Autonomous Emergency Braking (AEB), a system that
automatically applies braking when the vehicle is about to
suffer a frontal collision [5]. AEB aims to prevent or mitigate
an impending collision if the driver fails to intervene, and
does so at the last possible moment. Recent statistics show
that AEB is effective in reducing the number and severity of
these crashes [6]. Hence, by sharing the same general design
concept, AEC can be expected to show similar benefits.

To achieve this requires a sophisticated chassis control sys-
tem for the simultaneous control of path, speed and stability,
with the capability of operating at or close to the limits of
tyre adhesion. Not only this; it requires a predictive capability
to engage AEC at the moment when further delay inevitably
leads to excessive road or lane departure, even if the human
driver is skilled and responsive.

ADAS control to prevent ROR crashes has been proposed
previously, see for example [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. In existing literature, the common approach
is to assume an incompetent driver and provide warning,
overriding control or shared control to trigger a crash-avoiding
intervention. For example, in [15], a fuzzy sliding mode
control (FSMC) method is proposed based on visual preview
distance to address the shared control for road departure
prevention. The system provides support for the driver, but
in a way that can interfere with normal driving, raising issues
of acceptability and unintended interactions.

Many approaches have a practical bias, e.g. in [8] a road
departure prevention system for heavy trucks was proposed
based on autonomous steering with a motion reference ob-
tained from vehicle localization relative to a digital map. The
system would detect lane or road departure based on current
position, then perform path corrections and (according to the
design concept) speed control, applied to bring the vehicle to
a safe condition using full autonomous control. The aim is to
protect (especially) a drowsy driver who loses the ability to
adequately control the vehicle.

In [13] a more formal approach was adopted using local
kinematics and road geometry to derive reachability sets to
predict road departure. However, in this work, only linear ve-
hicle dynamics and constant curvature roads were considered,
and no real-time controller was presented.



Indeed, all the above systems can be considered ‘soft’, in
the sense that the limits of friction are avoided; but friction
limits ultimately define the threshold for when road departure
becomes inevitable.

An existing ‘hard’ system, working at the limits if friction,
is Electronic Stability Control (ESC). While ESC has proven
safety benefits [17], the effect of road departure accidents
is primarily through overcoming loss of control. ESC helps
the driver maintain lateral stability, but is not equipped with
environmental sensors and cannot directly prevent road depar-
ture. Hence it is hardly ever considered in the context of road
departure prevention.

A number of control techniques have been proposed for
motion control at or near the limits of tyre adhesion [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30].
Many use a ‘black box’ approach, based on model predictive
control (MPC), especially linear-time varying MPC (LTV-
MPC) or via nonlinear programming (NMPC); in such cases
constrained numerical optimization operates within the control
loop. In [19] NMPC was used for path following in a general
framework; a hierarchical controller was used, the upper level
defining an optimized path, the lower level tracking that path.
In [20], feedback linearization was used to improve handling,
in response to driver commands, up to the limits of friction.
The approach included parameter adaptation and again used
nonlinear programming. In [26] NMPC was again used to
improve lateral stability in a general way, using driver inputs to
derive a path reference. LTV-MPC is also commonly used; it
has the advantage of reducing the complexity and challenge of
optimization, while accounting once more for friction limits,
e.g. [18], [29]. LTV-MPC has been applied to minimum time
cornering, collision avoidance etc.

While the above papers describe general control approaches
using MPC, some progress has been made in applying these
techniques to emergency scenarios similar to that of AEC. In
[31] it is noted that, in emergency scenarios, lateral stability
should sometimes play a secondary role to speed and path
control. MPC was used to track a nominal path and follow a
desired speed profile. For the AEC application, there remains
the difficulty of computing the target path in real-time; speed-
path planning becomes highly coupled and also dependent on
the low level chassis control performance.

Also, as is typical with MPC, there are a large number
of weighting parameters to be pre-tuned for the online op-
timization. In the work of [32] some aspects of the preview
control are similar to those required for AEC, using look-ahead
to determine safe cornering speeds based on CG (particle)
motion. However, again there is no attention to integration of
speed planning with lateral dynamics, an important element of
AEC control.

While ‘black box” MPC techniques can provide effective
control up to the limits of tyre friction, and can be applied
to road departure prevention, there remain a number of lim-
itations, in addition to those mentioned above. In particular,
the necessary constrained optimization is not guaranteed to
converge, and the iteration time is not fixed. Also, since the
internal working of the controller is hidden, low-level control
diagnostics are not easily available. Hence, to protect against

algorithmic failure, a completely redundant back-up controller
would be required.

As an alternative to real-time numerical optimization, ex-
plicit nonlinear control has been proposed based on simplify-
ing chassis control concepts. In [30] a simple but effective
control law for steering was used to track a desired body
side-slip angle derived from a primary target of controlling
the acceleration vector at the mass centre (CG). The approach
of [30] is similar to that of [25] which also adopts a CG
acceleration target based on a lower-level body sideslip con-
troller. A similar approach is also presented in [27], where a
simple nonlinear controller was implemented, using yaw rate
as a synthetic control input. These papers focus is primarily
on lateral dynamics, and the AEC concept relies on the highly
coordinated control of both speed and path curvature at the
upper level.

In the above literature, no approach offer all of the charac-
teristics desired for AEC:

« explicit control structure

« explicit consideration of friction limits

« combined path and speed reference

o predictive capability for future off-tracking, with near-

optimal performance

« attention to current states and road boundaries for updat-

ing the reference.
Regarding the final item, this includes the unnecessary sepa-
ration of control loops for speed and curvature.

Hence, in this work, we follow the methodology of the
Modified Hamiltonian Algorithm (MHA) [24], [33], [34],
[28] which potentially enjoys all of these attributes, with-
out introducing any high degree of complexity or iteration
within the control loop. As is common, we adopt a two-
level hierarchical controller, the upper level defining a motion
reference, the lower level allocating commands to steering
and individual wheel brake actuators. The motion reference
is based on a friction-limited particle in the form of a target
CG acceleration vector. The lower level (MHA) controller
commands yaw motion as well as CG force targets, in a form
that is easily allocated to the actuators. Details are provided
in the following.

The paper is structured as follows: Section II defines the
dynamic system, including the road (track) definition. Sec-
tion III describes the lower-level MHA chassis control system
and Section IV defines the upper-level particle reference for
AEC. Section V-A presents simulation results in CarMaker,
and Section VI provides conclusions.

II. SYSTEM DESCRIPTION

The overall dynamic system is represented in Figure 1,
comprising vehicle, driver (model), environment and safety
technology. Reduced-order vehicle models are also used for
tyre calibration and internally within the AEC controller.

A. Vehicle Models

Vehicle simulation uses IPG CarMaker, a high-fidelity ve-
hicle dynamics simulation software widely employed in the
automotive industry [35]. It includes a library of representative
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Fig. 1. Schematic of the overall system.

vehicle models, and here we select the ‘Demo Ford Focus’
model, similar to a test vehicle used for earlier validation of
the MHA controller [28]. Included is the ‘Real-Time (RT)’
tyre model with data file ‘DT_195_65R15.tdx’ [35]. The major
parameters are given in Appendix B.

The particle model, mentioned above, is formalized in
Section II-C below. A further vehicle model is used in the
form of a two-track planar model with seven mechanical
degrees of freedom, three for body motion and four for wheel
rotation. The model is used as a reference model to develop
the integrated chassis controller in Section III. The equations
of motion are as follows:

m (g — vy - ) = Fy — F¢
m (by +ve ) = Fy — Fy (1)
Izz @[}:Mz

@i = I;YT; — Ry, FY).

Here (F,;, Fy;) are respectively the longitudinal and lateral
components of the resultant forces from the tyres, resolved
in body-fixed coordinates. M, is the yaw moment arising
from the same tyre forces, and (Fy, F)) are external body
forces e.g. arising from aerodynamic drag. The fourth equation
determines the wheel rotational dynamics, controlled by the
applied torque T; at each wheel, as well as the reaction force
F!, at the contact patch. Here R,, is the wheel radius and the
wheel locations are labelled 7 = (1,2, 3,4) corresponding to
(front-left, front-right, rear-left, rear-right) respectively.

The 7-DOF model includes a tyre model, which is used
within the MHA controller [24]. It is a load-dependent
combined-slip model based on the Pacejka magic formula
(MF) [36]:

P(z) = Dsin (Ctan™! (Bz — E (Bz — tan™' Bz))) (2)

The model uses a normalized slip vector and a common
shape function, with anisotropic scaling in the longitudinal
and lateral directions — see [37], [38], [39] for further details.

B. Tyre Model Fitting

It is a deliberate choice that the controller’s internal (MF)
tyre model differs from that of the simulation model, since

in real applications we cannot guarantee an accurate match to
the tyres of an actual vehicle. However, to avoid excessive
errors, some matching of the MF model to the simulation
model is necessary. In this work, the ‘real-time’ (RT) tyre
model RT_195_65R15 [40] is selected for simulation. The
MF parameters B, C, D and F in Eqn. 2 are fitted for pure
longitudinal slip, using nonlinear least-squares optimization at
a single representative load. Then parameters B, D are re-
fitted for lower and higher loads, and the results put into
a lookup table. For simplicity, and to avoid over-fitting, the
shape parameters C, E are held constant. Further fitting of
B, D is carried out for the lateral forces, and for combined-
slip conditions a simple nonlinear interpolation procedure is
followed [37], [38], [39].

Results are shown in Figures 2 and 3. It is seen that
the simple model matches well in simple conditions, though
without the complexity of the full RT_195_65R15 model.
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Fig. 2. Longitudinal tyre force fitting with various loads. Curves represent
the RT_195_65R15 model, overlaid points are for the simpler MF model.

Fig. 3. Lateral tyre force fitting with various loads. Curves represent the
RT_195_65R15 model, overlaid points are for the simpler MF model.

C. Friction-limited Particle Model

Friction limits at the tyres result in physical constraints
on the mass-centre acceleration. Figure 4 shows an example,
with the CarMaker vehicle model driven near the limits of
friction on the Hockenheim racing circuit. When considering
friction limits only, the boundary is approximately circular.
While not an accurate representation of the vehicle dynamics,
a circular CG acceleration bound provides a simple reduced-
order model:

3)



Here [uy,u,]” is the control vector, freely chosen except for

the constraint:
\Ju2 4 uZ < g “4)

where from Figure 4 we estimate 1, ~ 0.8.
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Fig. 4. G-G diagram for the CarMaker vehicle model driven on the
Hockenheim circuit. Mass center accelerations are limited by a number of
factors — tyre friction, driver actions and engine power. A nominal friction
circle is added with p, = 0.8.

There are three related friction coefficients used in this
paper: (us, tp, pie) are respectively the surface friction in the
CM vehicle model, the estimated particle-model friction limit
used for chassis control and the particle friction limit used
in the higher level AEC reference/ trigger algorithm (Section
IV). The corresponding default values (1.0,0.8,0.8) are used
in this paper. The difference p, < s is expected, since tyre
and suspension mechanics reduce the overall available vehicle
acceleration. Alternative values are used in Section V-B where
a reduced-friction scenario is considered.

D. Road Definition

Road information is required by the controller, and for pre-
analysis to compute a speed reference. Hence, in parallel to
the internal CarMaker representation, road geometry is defined
via a standardized N x 8 track definition matrix M, with each
row of the form

M; = [Sqi, i, Yis taiy Ly, Nai, Nyi, G (5)

The ‘track’ centre-line comprises a series of segments, each
an arc of constant curvature ¢; = R;'. The i" arc starts
at node (z;,y;) in fixed inertial cartesian coordinates, and
t, = [tm,tyi]T, n, = [nm-myi]T are respectively the track
tangent and normal at node i — see Figure 5. The first
component, s.;, is the cumulative arc length from the start of
the track to the i node. Any intermediate point P on the track
centre-line is defined by the continuous arc-length s = s,,
and the 8 components corresponding to M, are determined by
interpolation relative to arc-length. A more general location for
P is represented by its track coordinates P(sg,sy), s, being
the lateral offset to the left of the centre-line, parallel to the
track normal n(s,). The mapping between cartesian and track
coordinates is well-defined and invertible in a wide region

surrounding the centre-line. Note that the model assumes a
horizontal flat surface, and when motion takes place within a
single lane, the track centre-line coincides with the centre of
the lane.

Fig. 5. Track model based on arcs of constant curvature. Each node
corresponds to one row of the track definition matrix, Eqn. 5.

E. Driver Model

CarMaker includes a driver model, ‘IPG Driver’, capable
of both speed and steering control [40]. We replace the speed
controller using a custom PID controller, implemented in
Simulink software, while retaining the IPG Driver steering
model. The speed controller is to allow over-speeding at the
entry to highway curves, and uses a reference speed vy, ($),
defined as the maximum speed of the particle model when
following the track centre-line. The limiting speed vy, (s)
is determined as follows. Assuming the maximum available

acceleration magnitude p,g, v(s) = wvim(s) > 0 is the
solution of the following nonlinear differential equation:
v(s)? V' (s)? + c(s)? v(s)" = 2 g7 (6)

where the sign of v/(s) is chosen to maximise v(s) > 0. On
a circular track of constant curvature ¢, Vi, = /ppg/c is
constant too, but more generally v, = vim(s) is position-
dependent, accounting for both lateral and longitudinal accel-
erations.

Figure 6 shows the speed profile for the Hockenheim racing
circuit (see also Figures 14, 15 below). The reference speed,
derived from Eqn. 6, is shown as the red solid line. It can
be seen that the vehicle speed (blue dashed line) tracks the
speed reference (red solid line) well, except where limited
engine power causes under-speed. A nominal ‘top speed’ has
been included, v,,,q; = 30 ms™?L. Introducing a time delay for
accelerator and braking actions, modelled as a transportation
lag 7 = 0.5s, leads to over-speeding on curves (black dotted
line). Hence, with delayed braking, the combined driver model
will approach a tightening curve too fast and the vehicle will
depart the road, providing test cases for AEC intervention.

III. CHASSIS CONTROL SYSTEM

During AEC operation, the particle model provides a ref-
erence a® = [a%,af]” for the vehicle CG acceleration. The
two-track model is then used to map this to force and moment
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Fig. 6. Speed profile on the Hockenheim racing circuit. The reference speed
Vlim (Sz) is based on the friction-limited particle with p, = 0.8. CarMaker
simulations are used for the actual speeds. The black dotted curve shows the
effect of an additional time delay in the speed controller.

requirements at the vehicle and actuator levels. The method
has similarities with control allocation [41], [42], [43] where
vehicle-level forces and moments V', the virtual controls,
are used as an intermediate-level target for chassis actuator
control.

A. Optimal Control Formulation

Firstly, an optimal control problem is formulated in terms
of the virtual controls. The dynamic equations for the body
motion in the 7-dof model have the simple form (Section II-A)

i=f(z)+GV )

where z = [v;,v,,9]T are the body motion variables, and
V = [F,, F,, M| are the body forces and moments. Matrix
G is the inverse inertia matrix, G = diag(m~,m~1, I_!).
In principle, optimal control theory can be used to determine
the virtual controls V*(¢) [44], [45]. A cost function takes the

form

ty
J = ®(xys,t5) +/ L(z,V)dt (8)
0
where ® penalizes the terminal states and L(x, V") penalizes
deviations in the state trajectory and also the control effort.
Because the focus here is on friction-limited control, it is not
necessary to penalize control effort, so L = L(x). In place
of the penalty on control effort, friction constraints limit the
virtual controls (also the actuator controls) to feasible limits.
According to optimal control theory [44], [45], the opti-
mizing control V*(t) is found by minimizing the Hamiltonian
function at each time instant

H=p-(f(z)+GV)+ L(x) )
where p(t) are the costate variables, which satisfy the adjoint
equations:

OH 0P

P==—7%- p(tf)zach' (10)

As is well known, solving the combined state and costate
equations, Eqn. 7, 10 (a two-point boundary value problem)
is computationally intensive, and requires iterative numerical
methods. Methods are not guaranteed to converge to a global
minimum, and it is not feasible to directly implement this
approach for AEC.

A simplification to the above was developed for post-impact
vehicle motion control [21], [23]. The method, quasi-linear-
optimal-control, determines the costate variables by solving
the costate equations approximately, using linearization around
a feasible (i.e. representative but sub-optimal) solution to the
state equations. The method takes advantage of the simple
form of the Hamiltonian, which is linear with respect to V:

Y

where Hi(x) combines the terms independent of V. After
the costate vector [p1,ps,p3]? is determined, the actuator
commands are found by minimizing H at the instant in
question. The costate equations should be solved at each time
step. While computationally feasible, and without iterative
optimization [21], [23], the method uses multiple simulations
within the control loop and a more direct implementation is
desirable.

The Modified Hamiltonian Algorithm, first introduced by
the authors in [24], is formulated with emphasis on the
physical interpretation of the costate functions, rather than
their formal mathematical definition. Because only the control
terms in Eqn. 11 are relevant to the minimization, and because
the optimal control is independent of the term H;, and also of
any overall scale factor, we define the modified Hamiltonian
function

H= milplFx + m71p2Fy + I;zlp3Mz + Hy (.’E)

where p = [pm,py]T is chosen as a unit-vector, reducing the
number of unknowns from three to two.

Temporarily ignoring the term in M,, it is clear that
minimizing H subject to a circular friction constraint implies
[Fy, Fy]T = —u,gp. Hence, the first assumption of MHA
control is that p is selected to oppose the target acceleration
vector,

p = —at/|al| (13)

The remaining unknown, ), acts as a Lagrange multiplier
associated with the yaw moment M,. MHA adapts the value
of A based on yaw moment demands. This is now considered
in detail.

B. Control Allocation via the Hamiltonian Function

For yaw-sideslip control, A is adapted to track a desired yaw
moment M¢ according to the rule:

A= A+ S-o(AM,) (14)

where S is a saturation limit, AM, = M, — M? is a
yaw moment error, M, is the estimated yaw moment from
the controller (including contributions from longitudinal and
lateral tyre forces) and M is the desired yaw moment defined
below. Function ¢ is linear with unit saturation:

B AM, if |BAM,| <1

sgn(AM,) otherwise (15
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Here we set S = 0.1, B = 10~%. See [28] for details of how
these parameters are chosen.

From Eqn. 12, the Hamiltonian can be expressed as a linear
function of the individual tyre forces (F;, Fy;):

Fp=Y_ Fu (16)
F,= ZFy (17)
M, = Z(xiFJi — i FY). (18)

K3
The superscript v is used to indicate the vehicle coordinate
system, with origin at the vehicle mass centre; (x;, y;) are the
fixed coordinates of the i tyre contact patch with respect to
vehicle axes.

Since the reference is defined in global coordinates (g)
and actuation takes place in local ‘tyre’ coordinate systems
(t), we perform transformations between these systems. The
various rotational angles are shown in Figure 7. In particular
we consider the general case of the i" wheel rotated through
angle d; relative to the vehicle body, and later constrain the
chassis to have parallel front steer, 61 = 6 = §, 03 = d4 = 0.
Using modified ISO coordinates, increases in yaw angle and
steering angle are associated with increases in the various slip
angles (body side-slip or tyre slip angle). This simplifies the
sign convention for the equations that follow.

Lane center-line

Fig. 7. Sign conventions for force, moment and wheel slip angle in the
modified ISO coordinate system [46]. The left plot shows vehicle body side-
slip angle 3, path angle ¢ and yaw angle . The right plot shows tyre slip
angle and tyre forces.

From Figure 7, path angle ¢ is related to yaw angle ¢ and
side-slip angle 3 via the equation:

V=948

The (modified) Hamiltonian (Eqn. 12) is a scalar variable,
invariant under coordinate transformations. M, is conveniently
defined in vehicle body coordinates, so to aggregate the force
terms we transform p from global to vehicle coordinates.
Defining

19)

| cosy —siny
R(y) = [ sint) cos ) } (20)
it follows that
p’ =R'(¢) - p’ 1)

Now decompose H into component wheel forces:

H = Z H, (22)
where
H; = poFyy + py By + Mai by — yikyy)
= (pz - /\yz)F:;]z + (pZ + AxZ)F;z (23)

= PyiFyi + ﬁzqﬂjv

=Bl F
Here p; includes the effect of the yaw moment and is local to
the individual tyre. Again, the scalar product H; is invariant
under rotation, and we rewrite H; in the individual tyre
coordinate system via the rotation matrix R(J;):

p. =R"(&;) - P} 24)

H; = p! - F! — min (25)
and p! are the linear tyre force coefficients of the ‘local
Hamiltonian’ function H;.

For online implementation this greatly simplifies the control
algorithm, since the individual tyre forces are effectively
decoupled. There is a minor interaction between the in-plane
tyre forces and the vertical loads; but the effect is moderated by
the suspension system and vertical loads can be estimated in-
dependently of the braking and cornering forces. Thus control
integration between the individual wheels is determined by a
single ‘control integration’ variable A. While further actuator
coordination is required due to constraints such as parallel
front steering (see below) the simplicity of chassis control
integration in this method is very clear.

C. Control of Tyre Forces and Moments

Figure 8 shows a typical tyre force map, each curve repre-
senting the forces available at a given slip angle due to changes
in braking torque. Lines of constant H; are shown as green
lines and H; is decreasing along the steepest descent direction
shown. Stars show the points of minimum H; on any given
curve.

For closed-loop control, we assume that brake forces can
be rapidly modulated, so the star (*) point can be rapidly
obtained. For the current slip angle, the corresponding curve
in Figure 8 determines the required value of F, and hence
the braking torque 7;. Here, for simplicity we assume 7; ~
F! - Ry, where R, is the rolling radius of the wheel.

In slower time, the slip angle can be increased or decreased
by (i) actively controlling the steer angle, or (ii) changing
the body side-slip angle of the entire vehicle. The star with
black circle shows an example of minimum Hamiltonian
with the ‘current’ side-slip angle o = 3.5°. Considering the
neighbouring curves, H; decreases with slip angle, so for this
wheel we should increase the steer angle or body side-slip
angle to increase « if possible.

Taking a small perturbation around the ‘star point’, we
obtain

8H, -~ HIL(OQ + 6) - HZ‘(O[,' — 6)
Ao 2e

(26)
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Fig. 8. Force map in tyre coordinates: each solid curve represents the range
of forces available due to changes in braking torque for a given slip angle.
Lines of constant H,; are normal to the direction of steepest descent. Stars
denote the points of minimum H; on each curve.

It is easy to show that when the vehicle side-slip angle /3
is small,

a; =6 + B — vy 27)

In the following we assume the following actuators: front
axle steer with 97 = d2 = J and the four independent wheel
braking torques T;. Coordination of slip angles at the front
axle takes the form:

gy o= 10 Do Ol oz
ST95 T Doy 90 dag 00
(28)
_OH, 0H,
o 8a1 8042

Using Eqn. 26, assuming a steering rate limit ks for the
front axle steering actuator [23], we locally reduce the value
of H via the control law

57 { —/€5 SgIl(Hg)
o 0

At the rear axle, with no steering actuator available, the body
side-slip angle is used to modify asg and ay. This requires yaw
moment control and relates back to the desired yaw moment —
see Section III-D below. Body side-slip control is determined
in a similar fashion, through the following Equation:

Hﬁ:%’;aai 0B ’;aai

Similar to Eqn. 29, we define a target side-slip rate based
on the requirement to minimize H

: —kg sgn(Hpg), if [Hg| > tol
Br =

|H5‘ > tol

otherwise (29)

(30)

. (31)
0, otherwise

Lateral stability limits are introduced to avoid increasing
side-slip angle 3 beyond some threshold value [, typically

no more than around 8°. We introduce a saturation condition
as follows

, —kp sgn(B), if|Bl> B
st =<0, if 8] > B8.NB/r>0 (32
BH, otherwise

where 0 < 1 < (3. While the switching conditions are
somewhat ad-hoc and require separate definition of threshold
parameters (kg, 31, 32), each parameter has a direct meaning
for controller design and such rules are typical of traditional
control laws for body side-slip [47].

D. Desired Yaw Moment

To complete the MHA algorithm, we need to define the
desired yaw moment MZ. From Eqn. 19 we determine the
desired yaw rate

4 . -d
=0+

Variable Bd is determined above and gb is related to path curva-

ture, which is found from the acceleration in path coordinates

(33)

mog = mal = FJ cosp — Fsin¢ (34)

v being vehicle speed and F'9 being the force components
determined from the tyre model above. Yaw moments are
applied to track the desired yaw rate via a first order control
law

di) 4
— =% - 35
o == (35)
Hence the desired yaw moment is
M =771 (9 — ) (36)

This completes the definition of the key MHA control equa-
tions.

In summary, Figure 9 shows a block diagram of the
overall vehicle-chassis control system. The above equations
describes the dashed rectangle block shown as the MHA
control allocator. As mentioned previously, MHA performs
both optimization and control allocation. Conventional control
allocation computes the high level virtual controls as targets
for actuator commands, and solves by further optimization
[41], [42], [43]. By contrast, the modified Hamiltonian func-
tion is directly resolved into wheel-level components which are
then individually minimized to determine actuator commands.

IV. AEC OPTIMALITY AND REFERENCE ACCELERATION
A. Parabolic Path Reference (PPR)

In earlier work, [22], [34], an optimal control intervention
was determined for an over-speeding vehicle driving on a
simple road geometry. There, the road comprised a straight
segment followed by an arc of constant curvature cg. The
control objective was to minimize the maximum radial off-
tracking on the curve when the entry speed was higher than
the limit imposed by friction and curvature — Figure 10. In
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Fig. 10. Comparison of the optimal particle trajectory under PPR with the
numerically optimized vehicle path (OCV) for a constant radius curve. [22].
Also shown is the vehicle path optimized through yaw moment control. Line
markers indicate the point of maximum off-tracking.

this case it is not possible for a vehicle to follow the centre-
line of the road, which is shown as the ‘reference circle’.
The optimal vehicle CG motion closely matches a ‘parabolic
particle reference’ (PPR), which is the motion of the friction-
limited particle model subject to an inertially fixed acceleration
vector a*. In this simplified scenario, the initial velocity v
is parallel to the track when intervention is triggered. The
acceleration vector a* is fixed in space at an angle 6* behind
the normal to the track at the trigger point:

cos0* = v 2. (37)

Here o Vo/Viim and vy, = +/ug/co is the limiting
speed for steady-state motion on the curved segment; we write

tp = pe = p here and in the remainder of this section. Also
shown in Figure 10 is an ESC-like intervention derived from
yaw moment optimization (labelled “YC’). This performs less
well, since speed reduction is not a control target for ESC
[22]. Indeed, any alternative control strategy which directs
the CG acceleration vector in a substantially different way, is
guaranteed to result in poorer off-tracking performance [22] —
also see Theorem 4.1 below.

Real-world feasibility simply depends on being able to track
the PPR reference acceleration while maintaining adequate
control of yaw motion. This was demonstrated in [34], [28],
where an instrumented vehicle, with manual steering and
independently control wheel brakes, was able to track the PPR
reference using the MHA algorithm of Section III, and hence
achieve speed and off-tracking performance approaching that
of the ideal particle.

B. PPR for General Road Geometries

The objective now is to generalise the previous analysis
to a wider class of road geometries, especially to determine
the target acceleration a* when road curvature c(s) is no
longer constant. Further, AEC intervention should be triggered
according maximum off-tracking demands, vehicle kinematics
and road geometry.

Consider the case where a vehicle is approaching a sequence
of positive curvature segments, with entry speed higher than
Viim (80) of Eqn. 6, so off-tracking (to the right) becomes
inevitable, see Figure 11. (Equally we could consider curvature
to the right with positive off-tracking to the left). The current
vehicle CG position, in track coordinates, is S(sg, dp), and the
CG velocity vector is vy.

The off-tracking velocity at a preview point P(sq + e, D)
is defined by

Ul(e):—np'Vp (38)

where np is the track-normal at P. The value of v, (e)
depends on the motion control applied between .S and P, and
— motivated by PPR — in the definition we assume the vehicle
follows a fixed CG acceleration aligned with np:

ap = ugnp (39)

We expect to find a preview point e; for which v (e;) > 0.
In Figure 11, this already occurs at S, so a valid choice is
e1 = 0. More generally, we make the ‘scenario assumption’
that v, (e1) > 0 for some e; > 0.

While the road geometry is to be as general as possible,
we assume it has curvature in just one direction, ¢(s) > 0 for
§ > so + e1, at least up to some distant point on the track. It
seem plausible to assume

'UJ_(@Q) <0 (40)

for some future point e > ey, i.e. the CG acceleration of Eqn.
39 eventually reverses the sign of the off-tracking velocity.
In that case, since v, (e¢) is a continuous function and its
value changes sign, there must be a preview distance e* in
the interval (e, es) for which

vi(e”)=0 (41)
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Fig. 11. Geometric definition of the previewed lateral velocity v . Parabolic
motion occurs under constant acceleration ap. Unit vectors ep, np respec-
tively define the track tangent and normal at the previewed point P’ on the
track centre-line (dashed curve). h is the distance between S and the track
normal, with SH drawn parallel to ep. v is the component of vp in the
direction —np. Line SQ represents an alternative motion under straight-line
braking, and L = |SQ)| is the minimum stopping distance.

If more than one such point exists, the value of es can be
reduced so that e* is a unique solution.

The existence of es, and hence e* may seem obvious: a
concerted path-lateral control effort will eventually reverse the
off-tracking tendency. However, it seems important enough to
provide a formal verification — Appendix A. Here the general
reasoning is given. Referring to Figure 11, motion parallel
to ep is orthogonal to the acceleration vector and hence the
velocity component is constant. Hence the time to reach P
from S is found from distance h:

h

Tp = —
Vg cos O

(42)

Motion parallel to np has constant acceleration pg and hence

vy = wvgsinf — ugTp
h
= wosing — LI (43)
Vg cos 6

Introducing the minimum straight-line stopping distance L,
then v = 2ugL , and Eqn. 43 for the lateral velocity is re-

written: A
Vo .
= - | sin20 — — ).
7 2cos6 <51n L)

Hence, increasing the preview distance will typically cause h
in Figure 11 to exceed L, so the bracketed expression in Eqn.
44 becomes negative, showing that both ey and e* exist.

Writing P* for the vertex of the parabola associated with e*
we propose the following inertially-fixed acceleration vector
as the required PPR generalization:

(44)

a* = pugn” (45)

where n* = np- is the track normal at P’*.

C. PPR Optimality

In [22], PPR optimality for the constant radius curve was
derived using Pontryagin’s Minimum Principle. Here, an al-
ternative geometric analysis is provided.

Theorem 4.1 (PPR Optimality): Under the scenario assump-
tions above, control from S under constant acceleration a*
is optimal for the friction-limited particle, i.e. for any other
control strategy, maximum off-tracking is greater than for
motion under a*.

Proof Introduce local coordinates (£,7), as shown in Figure
12, with origin at S and axes aligned with the track normal
and tangent unit vectors at P"*. The candidate optimal control
results in a path (&(¢),n1(t)) from S to P*, which is the
vertex of the parabola. Since c(s) > 0, it is sufficient to
show that any other feasible control input has a trajectory
(&2(t),m2(t)) that penetrates the shaded region in the figure,
for in that case off-tracking clearly exceeds distance |P*P™|.

Fig. 12. Coordinates (§,n) aligned to the track normal n* and tangent e*
at P’*. The optimizing acceleration vector a* is parallel to n*. P* is the
vertex of the optimizing parabola.

The candidate optimal trajectory satisfies the equations

& =—pg , =0 (46)

with initial conditions (see Figure 12) &(0) = 0, &(0) =
vo sin 6%, 11(0) = 0, 7j1(0) = vg cos 0*. We set t = 0 at point
S, and write t = T™ at the vertex.

From the friction constraint, Eqn. 4, any alternative trajec-
tory &»(t) satisfies an equation of the form:

o= —pg +alt) (47)

where «(t) > 0 and «(t) > 0 for some finite period of time —
otherwise, from the constraint, 7j = 0 and the same parabolic
trajectory is followed.

The deviation in £ between the two trajectories is £ =
(52 — fl) Then

fe=a(t) >0 (48)

with zero initial conditions. Integrating twice with respect to
t:

-
€(T7) = / / a(t) dt dt’ >0 (49)
0 0



Hence, at time T, & > &p- and the alternative trajectory
penetrates the shaded region. Hence off-tracking is greater than
for the candidate optimal control. |

Apex point. In Figure 12, P* determines where maximum
off-tracking will occur, assuming an ideal control intervention.
The off-tracking distance D* = |P*P’*| gives a best-case
estimate of the maximum future off-tracking. This is valid and
useful even if the AEC chassis controller cannot perfectly
match the acceleration reference. The above theorem shows
that maximum off-tracking is entirely dependent on the CG
acceleration response in comparison to the reference particle.
The vertex of the optimizing parabola, P*, will be called
the ‘apex point’. Finding P* is crucial for the AEC trigger
and control reference, and is found by searching an on-board
digital map — see below.

The above generalizes the PPR analysis of [22], where in
Figure 11 the track ahead of sy has constant curvature ¢y =
Ry ! and intervention is triggered with S on the track centre-
line (i.e. d = 0); further, v is parallel to the track tangent.
Simple geometry gives h = Ry sin 6, and from Eqn. 43, v, =0
occurs when

ug Ry sin 0

Vg sin = (50

v cos 6

and hence the optimizing angle is given by

vg cos 0% = ug/co (51

in agreement with Eqn. 37.

D. AEC Trigger and Apex Search

As discussed, AEC is to trigger when the best-case predicted
off-tracking exceeds some prescribed threshold, D* > D.
In the following, an implementable algorithm is proposed for
finding and evaluating the apex point P*, and hence deciding
if and when to trigger AEC.

First, an AEC event flag f. is introduced, to represent the
following conditions:

+1, AEC function on, left turn
—1, AEC function on, right turn
0, AEC function off.

fe= (52)

During normal driving, f. = 0, and this ‘off-state’ is main-
tained until v > vy, is detected. In that case a function
Foee(T, fe) is evaluated

F(LCC : (F’ f@) '_> (P*’a*7fé)

where f! is the updated event flag and T" denotes the geometric
and kinematic information required at each time step by the
AEC function. I' consists of the position and velocity states
of the vehicle, together with a digital map giving the road
information (geometry and friction level). If P* is found
with D* > Dy, then f/ = =+1 is returned, together with
the acceleration reference a*. During the following, Fj.. is
evaluated at each time-step to give an updated a*. Finally,
the AEC intervention finishes when the local lateral velocity
v, (0) switches from positive to negative. The overall decision
logic is given in Figure 13.

(53)

Startt=0

Apply Faec

Update a*

1IXeN

as|e

Fig. 13. Flow chart of the AEC reference / trigger system. Control is only
applied when fe = %1, which requires the initial detection of an over-speed
condition as well as continuous reporting of a valid detection. Intervention
continues with updating of a* (closed loop) until v(l < 0 indicates the end
of the intervention.

Function F,.. determines the initial choice of dominant
road curvature using the position of point ) in Figure 11,
as determined from v and the straight-line braking distance.
If the lateral coordinate is negative, sy(Q) < 0, the overall
curvature is deemed positive. In general,

fe = —sgn(sy(Q))-

Next, F,e. performs a one-dimensional numerical search for
the apex point, starting at the preview distance of @,

eo = 5:(Q) — 0

If v, (eg) > O the search is carried out forwards, with e > eq;
if v} (eg) < 0 the search is backwards, with e < eg. In either
case, the apex point is found with v, (e*) = 0 and hence P*
and a* are determined.

(54)

(55)

V. RESULTS
A. Hockenheim circuit

Here the AEC system is tested in simulation, using the
relatively complex geometry of the Hockenheim racing circuit.
Figure 14 shows a satellite image and Figure 15 highlights a
number of curves of interest. As mentioned in Section II-E,
ROR risk was artificially created by including a time delay
in the speed controller, so that braking into curves is delayed.
Setting Dy = 0.8 m in the above algorithm, vehicle simulation
was performed using CarMaker, both with and without AEC
protection.

AEC was triggered on the five curves, labelled A to E,
and Figures 16, 17 show the vehicle path and CG accel-
eration on two of these curves. Three acceleration vectors
are shown in each plot, also indicating the times when AEC
is active. These are: (a) the desired acceleration reference

a = a* obtained from F,.. (red); (b) a°™? predicted from
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Fig. 15. Digitized map of Hockenheim Racing Circuit including five curves
where AEC was triggered.

the MHA controller using the internal tyre model (black);
(c) the resulting vehicle CG acceleration a*“* from CarMaker
(blue). Differences between a? and a®™? arise due to actuator
limitations, while differences between ac™ and a®“? result
from simplifications in the vehicle dynamics and tyre model
used within the controller.

Discrepancies are most obvious during the transient phase
following the initial control application, with a phase lag
evident. However the three arrows converge well after the tran-
sition to more steady-state conditions. The key comparison is
between a? and a®* — if these vectors coincide, then bounded
off-tracking is guaranteed by the above theory. During the
AEC events, maximum off-tracking stays below 1 m; though
slightly in excess of the 0.8 m design target, some additional
error is expected, given the phase lag between a®* and a.
Note that the acceleration vectors are approximately fixed in
inertial coordinates, even though the reference is updated at
each time-step, confirming the results of Section IV-C.

In Figure 18, the lateral deviation from the track centre
is shown for the entire circuit, and the five interventions are
highlighted with bold marking. While the unaided driver drifts
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Fig. 16. Vehicle path and accelerations at corner A. Red arrows: acceleration
targets; black arrows: MHA commanded accelerations; blue arrows: ‘actual’
accelerations from CarMaker.
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Fig. 17. Vehicle path and accelerations at corner C'. Red arrows: acceleration
targets; black arrows: MHA commanded accelerations; blue arrows: ‘actual’
accelerations from CarMaker.

up to 6m from the centre-line, AEC limits the maximum to 1
m.

After the second intervention, at around s = 500m, off-
tracking does reach 2 m. This results from driver model
limitations: after AEC control is released, aggressive accel-
eration from the PID speed control reduces the performance
of steering control. Other, less extreme, deviations under driver
model control are also evident.

We briefly consider vehicle lateral stability in the form of
body side-slip angle — Figure 19. MHA is designed to limit
excessive body side-slip [24] and in these simulations the
upper bound was set at 8 deg, and this is a tunable parameter.
This is approximately achieved and is slightly better than the
peak values for the simulation without AEC. As with the target



bound for off-tracking, there is some additional deviation due
to transients, but overall lateral stability is maintained. Tighter
control of body side-slip is possible, but if the upper bound is
too small it will restrict the lateral forces at the rear axle and
hence reduce acceleration tracking performance.
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Fig. 18. Vehicle path plots in track coordinates. Bold markers indicates
times when AEC is active.
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Fig. 19. Vehicle body side-slip angle. Bold line style indicates system
interventions.

Figure 20 shows the front axle steering angle, with red
dots highlighting the five interventions. Figure 21 shows the
direct yaw moment contribution from the brake actuators (red),
which provides roughly 50% of the total yaw moment (shown
in black). Some brake torque ‘chatter’ is seen towards the end
of some of the events.

B. Highway Entry Curve with Reduced Friction

Here the scenario is a highway entry road with low sur-
face friction (us = 0.4) shown in Figure 22. The vehicle
approaches from the right and eventually merges onto the
highway. To represent the case where the driver over-estimates
the road friction, vy;y, used by the driver model is set with (1, =
0.42 while AEC is presumed aware of the lower friction with
s = 0.4 in the tyre model. Further, a conservative particle
friction p. = 0.35 is used within the AEC algorithm. The
vehicle path is shown Figure 23. With AEC enabled, maximum
off-tracking is limited to around 1.5m. The acceleration vectors
show slightly greater overall dispersion than previously, ex-
plaining the slightly greater off-tracking. It can be seen that the
uncontrolled vehicle leaves the road (and the simulation stops).
Note that the vehicle acceleration vector (blue arrow) has
reduced magnitude compared with the expected acceleration
(black arrow) and again there are transient delays apparent.
There are seen to be three sub-interventions on the single
curve, due to the tightening curvature and the driver model
increasing speed whenever AEC is switched off.

0 (deg)

10 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Fig. 20. Steering inputs at the front axle. AEC-controlled steering inputs
are shown as red dots.

£

Fig. 21.

total, shown in black.

Fig. 22. Highway entry curve Rasserddsmotet, Uddevalla, Sweden; map
of selected road geometry with fitted track model (courtesy: Google Maps,
1at.58.3506, long.11.9797)

Here the various control system parameters were left un-
changed from the previous scenario, i.e. there was no re-tuning
of the MHA parameters other than to revise the friction esti-
mates. The MHA internal tyre model was re-scaled according
to the new value of s, and no further tyre model fitting was
carried out. Example tyre forces are shown in Figure 24, here
for the first AEC intervention. At the front-left wheel, F

Yaw moments due to MHA action at curves A to D. The direct yaw
moment from braking is shown in red dashed line, comprising roughly 50% of the
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Fig. 23. Vehicle path on a highway entry curve; blue vehicle - no AEC system
intervention; red vehicle - AEC system eneabled. Arrow labels: see Figure 16
caption.

follows the control input slightly better than for Fyt, while
for the rear-right tyre both force components are tracked well.
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Fig. 24. Longitudinal and lateral tyre force control at the front-left tyre on
the highway entry curve. The blue solid lines represents the ‘actual’ tyre
forces (CarMaker output). The red dotted lines are the commanded forces
from MHA.

VI. CONCLUSION

This paper has presented theory, algorithms and simulations
to formulate and test a concept for a future Automated Emer-
gency Cornering (AEC) system. The proposed AEC system
uses a digital map and vehicle kinematic data to trigger and
update the motion reference. It also requires friction estima-
tion to perform in a near-optimal way. It has a hierarchical
structure, the upper level based on an optimal particle model,
the lower level distributing control objectives via the MHA
method. MHA has been shown capable of real-time operation
and is equally applicable to high and low friction surfaces.
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800 . . . .
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Fig. 25. Longitudinal and lateral tyre force control at the rear-right tyre (as
for Figure 24).

In simulation, the proposed AEC system successfully pre-
vented road departures, analogous to the way Autonomous
Emergency Braking (AEB) systems anticipate and mitigate
frontal collisions. AEC intervention was triggered at the point
when further delay or sub-optimal response will necessarily
lead to excessive lane departure. Because the system uses
all available actuators and all available friction, a human
driver could not be expected to achieve similar off-tracking
performance, except by intervening earlier. Hence AEC is not
expected to interfere with normal driving.

While simplified models are used for theoretical develop-
ment and within in the controller, the high-fidelity vehicle
dynamics software CarMaker was used to test the ability of
AEC to achieve its purpose. The AEC system compares well
to the predictions from the friction-limited particle on the high
friction tests. On the lower friction there are longer transient
delays is building the required forces, and some compensation
may be necessary in terms of trigger timing. While refinements
will be needed for robust implementation, this paper has
defined the essential building blocks of a feasible AEC system.

APPENDIX A
LATERAL VELOCITY REVERSAL

This appendix verifies the existence of ey for the particle
motion under constant acceleration ap given in Eqn. 39,
assuming the conditions of Section I'V-C:

1) e; > 0 exists such that v, (e) > 0 (scenario assumption)

2) v > vim(So) (over-speed condition)

3) c(e) > 0 for e > ey (unidirectional curvature)

The scenario of Figure 11 is drawn again in Figure 26, now
with initial point S corresponding to e = e; and therefore
v1 (S) > 0. Inertial coordinates (X,Y") are selected at this
point, with the X -axis parallel to the track tangent. The dashed
curve SP’ follows the path of the track but may be laterally
offset at a constant distance from the track centre-line. Here
u denotes the longitudinal distance from S along the curve;
because of lateral offset, it differs slightly from the centre-line
distance e — e, but is more convenient for this analysis.



Fig. 26. Particle motion from S to P along a path of positive curvature.
6 = 0y + 01 is the angle given in Eqn. 56.

For preview point P, the track-normal is drawn to define
points P’, P”, as shown; line SH is parallel to the track
tangent and is hence normal to line PH. Angle 6 = 6y + 6,
is the angle between the current path and the normal at the
preview point. Condition c¢(e) > 0 implies 6; is a non-
decreasing function of u, while v, (S) > 0 implies 6y > 0.

The requirement is to show v, (e) < 0 for some e > ej.
Equivalently, the bracketed expression in Eqn. 44 should
become negative for some u > 0:

. h
sin20 — — <0 (56)
L

Since the stopping distance L is a positive constant, and
h > 0 for all possible road geometries, Eqn. 56 is immediately
satisfied if sin26 < 0, i.e. if 8 > 7/2 for a sufficiently large
distance along the track.

Hence we can limit attention to the case where the road
does not turn through a full 90° within the assumed preview
horizon. Then we naturally expect h to increase without any
upper limit and this is now shown.

01 §71'/2780. (57)
and hence cos 67 is bounded below
cosf; > sinfy >0 (58)

In Figure 26, let = be the X-coordinate of point P’. Since
the tangent at P’ is parallel to line SH,

d—x = cos 01 (59)
dy
Hence, using Eqn. 58,
z(u) = /cos 01 du > /sin 0o du = usin 6 (60)

Also, it is clear that distance |SP”| = h/cos6; is greater
than x, hence
h > xcosfy > xsinfy > usin? 6. 61)

where Eqn. 60 has been used. Hence, if u > L/ sin? 6y, Eqn.
56 is again satisfied.

APPENDIX B
VEHICLE PARAMETERS

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

(10]

Parameter Physical Unit Value
Meaning

m total mass kg 1174

ms sprung mass kg 1020

My unsprung mass kg 154

I, yaw moment of | kgm? 1360
inertia

Lo roll moment of kgm2 350
inertia

Ly pitch moment of | kgm? 1290
1nertia

ly CG to front axle m 1.043

Ir CG to rear axle m 1.637

w track width m 1.530

h mass centre hight | m 0.605

Ip particle friction | - 0.8
coefficient

Le AEC-estimated - 0.8
friction

Us surface friction | - 1.0
of the tyre model

Ry loaded tyre ra- | m 0.3
dius

Iy nominal  wheel kgm2 0.5
rotational inertia

A front and rear | - 0.5
suspension ratio

P air mass density kgm? 1.2

Cq air drag coeffi- | - 0.3
cient

Ap front area of the | m? 2.4
vehicle

T brake/drive S 0.05
torque time
constant

B,C,D,E MF tyre coeffi- | - 0.7094,1.4097,1.0,4
cients

is steering  system | - 17.0
ratio
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