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Abstract

In order to integrate uncertainty estimates into
deep time-series modelling, Kalman Filters (KFs)
(Kalman et al., 1960) have been integrated with
deep learning models, however, such approaches
typically rely on approximate inference tech-
niques such as variational inference which makes
learning more complex and often less scalable
due to approximation errors. We propose a new
deep approach to Kalman filtering which can be
learned directly in an end-to-end manner using
backpropagation without additional approxima-
tions. Our approach uses a high-dimensional fac-
torized latent state representation for which the
Kalman updates simplify to scalar operations and
thus avoids hard to backpropagate, computation-
ally heavy and potentially unstable matrix inver-
sions. Moreover, we use locally linear dynamic
models to efficiently propagate the latent state to
the next time step. The resulting network architec-
ture, which we call Recurrent Kalman Network
(RKN), can be used for any time-series data, simi-
lar to a LSTM (Hochreiter & Schmidhuber, 1997)
but uses an explicit representation of uncertainty.
As shown by our experiments, the RKN obtains
much more accurate uncertainty estimates than
an LSTM or Gated Recurrent Units (GRUs) (Cho
et al., 2014) while also showing a slightly im-
proved prediction performance and outperforms
various recent generative models on an image im-
putation task.
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1. Introduction
State-estimation in unstructured environments is a very chal-
lenging task as observations or measurements of the envi-
ronment are often high-dimensional and only provide partial
information about the state. Images are a good example:
Even for low resolution, the number of pixels can quickly
exceed tens or hundreds of thousands and it is impossible
to obtain any information about the dynamics, such as ve-
locities, from a single image. Additionally, the observations
may be noisy or may not contain useful information for the
task at hand. Such noise can, for example, be introduced by
poor illumination or motion blur and occlusions can prevent
us from observing some or all relevant aspects of the scene.
In addition to state estimation, it is also often desirable to
predict future states or observations, for example, in order
to assess the consequences of future actions. To this end, an
initial estimate of the current state is necessary which again
has to be inferred from observations. In such environments,
we typically also have to deal with high uncertainties in
the state estimates. Being able to model this uncertainty
is crucial in many decision making scenarios, e.g., if we
need to decide to perform an action now or wait until more
information about the scene is available.

Deep learning models have been very successful for time-
series modelling in unstructured environments. Classical
models such as LSTMs (Hochreiter & Schmidhuber, 1997)
or GRUs (Cho et al., 2014) perform well but fail to capture
the uncertainty of the state estimate. Recent probabilistic
deep learning approaches have used the Kalman Filter (KF)
as a tool to integrate uncertainty estimates into deep time-
series modelling (Haarnoja et al., 2016; Watter et al., 2015;
Archer et al., 2015; Fraccaro et al., 2017; Krishnan et al.,
2017). These approaches use the KF to perform inference
in a low-dimensional (latent) state space that is typically
defined by a deep encoder. However, using KF in such a
state space comes with two main limitations. In order to
be usable for non-linear dynamics, we have to introduce
approximations such as the extended KF (Haarnoja et al.,
2016) and variational inference methods (Krishnan et al.,
2017; Fraccaro et al., 2017). Moreover, the KF equations
require computationally expensive matrix inversions that
are hard to scale to high dimensional latent spaces for more
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complex systems and computationally demanding to fully
backpropagate in an end-to-end manner. Most of these
methods are implemented as (variational) auto-encoders and
are therefore also limited to predicting future observations
or imputing missing observations and can not be directly be
applied to state estimation.

We introduce the Recurrent Kalman Network, an end-to-
end learning approach for Kalman filtering and prediction.
While Kalman filtering in the original state space requires
approximations due to the non-linear models, the RKN uses
a learned high-dimensional latent state representation that
allows for efficient inference using locally linear transition
models and a factorized belief state representation. Exploit-
ing this representation allows us to avoid the expensive and
numerically problematic matrix inversions involved in the
KF equations.

Conceptually, this idea is related to kernel methods which
use high-dimensional feature spaces to approximate non-
linear functions with linear models (Gebhardt et al., 2017).
However, in difference to kernel feature spaces, our fea-
ture space is given by a deep encoder and learned in an
end-to-end manner.

The RKN can be used for any time-series data set for which
LSTMs and GRUs are currently the state of the art. In con-
trast to those, the RKN uses an explicit representation of
uncertainty which governs the gating between keeping the
current information in memory or updating it with the cur-
rent observation. While the RKN shows a slightly improved
performance in terms of state estimation errors, both LSTMs
and GRUs struggle with estimating the uncertainty of the
prediction while the RKN can provide accurate uncertainty
estimates. In relation to existing KF-based approaches, our
approach can be used for state estimation as well as for
generative tasks such as image imputation. We also show
that we outperform state of the art methods on a complex
image imputation task.

1.1. Related Work

Using encoders for time-series modelling of high-
dimensional data such as images is a common approach.
Such encoders can also be easily integrated with well known
deep time-series models such as LSTMs (Hochreiter &
Schmidhuber, 1997) or GRUs (Cho et al., 2014). These
models are very effective but do not provide good uncer-
tainty estimates as shown in our experiments.

Pixel to Torques (P2T) (Wahlström et al., 2015) employs
an autoencoder to obtain low dimensional latent represen-
tations from images together with a transition model. They
subsequently use the models to perform control in the latent
space. Embed to Control (E2C) (Watter et al., 2015) can be
seen as an extension of the previous approach with the dif-

ference that a variational autoencoder (Kingma & Welling,
2013) is used. However, both of these approaches are not
recurrent and rely on observations which allow inferring the
whole state from a single observation. They can therefore
not deal with noisy or missing data.

The BackpropKF (Haarnoja et al., 2016) applies a CNN
to estimate the observable parts of the true state given the
observation. Similar to our approach, this CNN additionally
outputs a covariance matrix indicating the model’s certainty
about the estimate and allows the subsequent use of an
(extended) Kalman filter with known transition model. In
contrast, we let our model chose the feature space that is
used for the inference such that locally linear models can be
learned and the KF computations can be simplified due to
our factorization assumptions.

Another family of approaches interprets encoder-decoder
models as latent variable models that can be optimized effi-
ciently by variational inference. They derive a correspond-
ing lower bound and optimize it using the stochastic gradi-
ent variational Bayes approach (Kingma & Welling, 2013).
Black Box Variational Inference (BB-VI) (Archer et al.,
2015) proposes a structured Gaussian variational approxi-
mation of the posterior, which simplifies the inference step
at the cost of maintaining a tri-diagonal covariance matrix of
the full state. To circumvent this issue, Structured Inference
Networks (SIN) (Krishnan et al., 2017) employ a flexible
recurrent neural network to approximate the dynamic state
update. Deep Variational Bayes Filters (DVBF) (Karl et al.,
2016) integrate general Bayes filters into deep feature spaces
while the Kalman Variational Autoencoder (KVAE) (Frac-
caro et al., 2017) employs the classical Kalman Filter and
allows not only filtering but also smoothing. Variational
Sequential Monte Carlo (VSMC) (Naesseth et al., 2017)
uses particle filters instead, however, they are only learn-
ing the proposal function and are not working in a learned
latent space. Disentangled Sequential Autoencoder (DSA)
(Yingzhen & Mandt, 2018) explicitly partitions latent vari-
ables for separating static and dynamic content from a se-
quence of observations however, they do not model state
space noise. Yet, these models cannot be directly used for
state estimation as they are formulated as generative mod-
els of the observations without the notion of the real state
of the system. Moreover, the use of variational inference
introduces an additional approximation that might affect the
performance of the algorithms.

Recently, Rangapuram et al. (2018) introduced Deep State
Space Models for Time Series Forecasting (DSSM). They
employ a recurrent network to learn the parameters of a time
varying linear state space model. The emissions of that state
space model are the model’s final output, i.e. there is no
decoder. While this makes the likelihood of the targets given
the predicted state space model parameters tractable it limits
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Table 1. Qualitative comparison of our approach to recent related
work.

scale- state uncer- noise direct
able est. tainty opt.

LSTM X X ×/X X X
GRU X X ×/X X X

P2T X X ×/X × X
E2C X × X × ×
BB-VI × × X X ×
SIN X × X X ×
KVAE × × X X ×
DVBF X × X X ×
VSMC X × X X ×
DSA X × X × ×
DSSM × X (1D) X × X
PRSSM × X X X ×
RKN X X X X X

them to simple latent spaces. Additionally, their approach
is only derived for 1 dimensional output data. Probabilis-
tic Recurrent State-Space Models (PRSSM) (Doerr et al.,
2018) use Gaussian processes to capture state uncertain-
ties, however, their approach is not demonstrated for high
dimensional observations such as images.

A summary of all the approaches and their basic properties
can be seen in Table 1. We compare whether the approaches
are scalable to high dimensional latent states, whether they
can be used for state estimation, whether they can provide
uncertainty estimates, whether they can handle noise or miss-
ing data, and whether the objective can be optimized directly
or via a lower bound. All probabilistic generative models
rely on variational inference which optimizes a lower bound,
which potentially affects the performance of the algorithms.
P2T and E2C rely on the Markov assumption and therefore
can not deal with noise or need very large window sizes.
The approaches introduced in (Archer et al., 2015; Fraccaro
et al., 2017; Haarnoja et al., 2016) directly use the Kalman
update equations in the latent state, which limits these ap-
proaches to rather low dimensional latent states due to the
expensive matrix inversions.

Traditional recurrent models such as LSTMs or GRUs can
be trained directly by backpropagation through time and
therefore typically yield very good performance but are lack-
ing uncertainty estimates. However, as in our experiments,
they can be artificially added. Our RKN approach combines
the advantages of all methods above as it can be learned by
direct optimization without the use of a lower bound and it
provides a principled way of representing uncertainty inside
the neural network.

2. Factorized Inference in Deep Feature
Spaces

Lifting the original input space to a high-dimensional fea-
ture space where linear operations are feasible is a common
approach in machine learning, e.g., in kernel regression and
SVMs. The Recurrent Kalman Network (RKN) transfers
this idea to state estimation and filtering, i.e., we learn a
high dimensional deep feature space that allows for effi-
cient inference using the Kalman update equations even for
complex systems with high dimensional observations. To
achieve this, we assume that the belief state representation
can be factorized into independent Gaussian distributions as
described in the following sections.

2.1. Latent Observation and State Spaces

The RKN encoder learns a mapping to a high-dimensional
latent observation spaceW = Rm. The encoder also out-
puts a vector of uncertainty estimates σobs

t , one for each en-
try of the latent observation wt. The latent state space Z =
Rn of the RKN is related to the observation spaceW by the
linear latent observation model H =

[
Im 0m×(n−m)

]
,

i.e., w = Hz with w ∈ W and z ∈ Z . Im denotes the
m×m identity matrix and 0m×(n−m) denotes am×(n−m)
matrix filled with zeros.

The idea behind this choice is to split the latent state vector
zt into two parts, a vector pt for holding information that
can directly be extracted from the observations and a vector
mt to store information inferred over time, e.g., velocities.
We refer to the former as the observation or upper part and
the latter as the memory or lower part of the latent state. For
an ordinary dynamical system and images as observations
the former may correspond to positions while the latter
corresponds to velocities. Clearly, this choice only makes
sense for m ≤ n and in this work we assume n = 2m, i.e.,
for each observation unit pi, we also represent a memory
unit mi that stores its velocity information.

We initialize z+
0 with an all zeros vector and Σ+

0 with 10 ·
I. In practice, it is beneficial to normalize wt since the
statistics of noisy and noise free images differ considerably.

2.2. The Transition Model

To obtain a locally linear transition model we learn K con-
stant transition matrices A(k) and combine them using state
dependent coefficients α(k)(zt), i.e.,

At =

K∑
k=1

α(k)(zt)A
(k).

A small neural network with softmax output is used to learn
α(k). Similar approaches are used in (Fraccaro et al., 2017;
Karl et al., 2016).
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Figure 1. The Recurrent Kalman Network. An encoder network extracts latent features wt from the current observation ot. Additionally,
it emits an estimate of the uncertainty in the features via the variance σobs

t . The transition model At is used to predict the current latent
prior

(
z−
t ,Σ

−
t

)
using the last posterior

(
z+
t−1,Σ

+
t−1

)
and subsequently update the prior using the latent observation (wt,σ

obs
t ). As

we use a factorized representation of Σt, the Kalman update simplifies to scalar operations. The current latent state zt consists of the
observable units pt as well as the corresponding memory units mt. Finally, a decoder produces either

(
s+t ,σ

+
t

)
, a low dimensional

observation and an element-wise uncertainty estimate, or o+
t , a noise free image.

Using a dense transition matrix in high-dimensional latent
spaces is not feasible as it contains too many parameters and
causes numerical instabilities and overfitting, as preliminary
experiments showed. Therefore, we design each A(k) to
consist of four band matrices

A(k) =

[
B

(k)
11 B

(k)
12

B
(k)
21 B

(k)
22

]

with bandwidth b. Here, B
(k)
11 , B

(k)
12 , B

(k)
21 , B

(k)
22 ∈ Rm×m

since we assume n = 2m. This choice reduces the number
of parameters while not affecting performance since the
network is free to choose the state representation.

We assume the covariance of the transition noise to be diag-
onal and denote the vector containing the diagonal values
by σtrans. The noise is learned and independent of the state.
Moreover, it is crucial to correctly initialize the transition
matrix. Initially, the transition model should focus on copy-
ing the encoder output so that the encoder can learn how
to extract good features if observations are available and
useful. Additionally, it is crucial that A does not yield
an instable system. We choose B

(k)
11 = B

(k)
22 = I and

B
(k)
12 = −B

(k)
21 = 0.2 · I.

2.3. Factorized Covariance Representation

Since the RKN learns high-dimensional representations, we
can not work with the full state covariance matrices Σ+

t and
Σ−
t . We can also not fully factorize the state covariances by

diagonal matrices as this neglects the correlation between
the memory and the observation parts. As the memory part
is excluded from the observation model H, the Kalman
update step would not change the memory units nor their
uncertainty if we would only use a diagonal covariance ma-
trix Σ+

t . Hence, for each observation unit pi, we compute
the covariance with its corresponding memory unit mi. All
the other covariances are neglected. This might be a crude
approximation for many systems, however, as our network

is free to choose its own state representation it can find
a representation where such a factorization works well in
practice. Thus, we use matrices of the form

Σt =

[
Σu
t Σs

t

Σs
t Σl

t

]
where each of Σu

t ,Σ
s
t,Σ

l
t ∈ Rm×m is a diagonal matrix.

Again, we denote the vectors containing the diagonal values
by σu

t ,σ
l
t and σs

t.

2.4. Factorized Inference in the Latent Space

Inference in the latent state space can now be implemented,
similar to a standard KF, using a prediction and an observa-
tion update.

Prediction Update. Equivalently to the classical Kalman
Filter, the next prior

(
z−t+1,Σ

−
t+1

)
is obtained from the

current posterior
(
z+
t ,Σ

+
t

)
by

z−t+1 = Atz
+
t and Σ−

t+1 = AtΣ
+
t AT

t +I·σtrans. (1)

However, the special structure of the covariances enables
us to significantly simplify the equation for the covariance.
While being straight forward, the full derivations are rather
lengthy, thus, we refer to the supplementary material where
the equations are given in Eqs. 10,11 and 12.

Observation Update. Next, the prior is updated using the
latent observation (wt,σ

obs
t ). Similar to the state, we split

the Kalman gain matrix Qt into an upper Qu
t and a lower

part Ql
t. Both Qu

t and Ql
t are squared matrices. Due to the

simple latent observation model H =
[

Im 0m×(n−m)

]
and the factorized covariances all off-diagonal entries of Qu

t

and Ql
t are zero and we can work with vectors representing

the diagonals, i.e., qu
t and ql

t. Those are obtained by

qu
t = σu,−

t �
(
σu,−
t + σobs

t

)
(2)

and ql
t = σs,−

t �
(
σu,−
t + σobs

t

)
, (3)
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where � denotes an elementwise vector division. With this
the update equation for the mean simplifies to

z+
t = z−t +

[
qu
t

ql
t

]
�
[

wt − zu,−
t

wt − zu,−
t

]
(4)

where � denotes the elementwise vector product. The up-
date equations for the individual covariance parts are given
by

σu,+
t = (1m − qu

t )� σu,−
t , (5)

σs,+
t = (1m − qu

t )� σs,−
t (6)

and σl,+
t = σl,−

t − ql
t � σs,−

t , (7)

where 1m denotes the m dimensional vector consisting of
ones. Again, we refer to the supplementary material for a
more detailed derivations.

Besides avoiding the matrix inversion in the Kalman gain
computation, the factorization of the covariance matrices
reduces the total amount of numbers to store per matrix
from n2 to 3m. Additionally, working with σs makes it
trivial to ensure that the symmetry and positive definiteness
of the state covariance are not affected by numerical issues.

2.5. Loss and Training

We consider two different potential output distributions,
Gaussian distributions for estimating low dimensional ob-
servations and Bernoulli distributions for predicting high
dimensional observations such as images. Both distributions
are computed by decoders that use the current latent state es-
timate z+

t as well its uncertainty estimates σu,+
t ,σs,+

t ,σl,+
t .

Inferring states. Let s1:T be the ground truth sequence
with dimension Ds, the Gaussian log-likelihood for a single
sequence is then computed as

L
(
s(1:T )

)
= (8)

1

T

T∑
t=1

logN
(

st

∣∣∣∣decµ(z+
t ), decΣ(σu,+

t ,σs,+
t ,σl,+

t )

)
,

where decµ(·) and decΣ(·) denote the parts of the decoder
that are responsible for decoding the latent mean and latent
variance respectively.

Inferring images. Let o1:T be images with Do pixels.
The Bernoulli log-likelihood for a single sequence is then
given by

L
(
o(1:T )

)
=

1

T

T∑
t=1

Do∑
i=0

o
(i)
t log

(
deco,i

(
z+
t

))
...

...+
(

1− o(i)
t

)
log
(
1− deco,i

(
z+
t

))
, (9)

where o(i)
t is the ith pixel of the tth image. The pixels are

in this case represented by grayscale values in the range
of [0; 1]. The ith dimension of the decoder is denoted by
deco,i

(
z+
t

)
, where we use a sigmoid transfer function as

output units for the decoder.

Gradients are computed using (truncated) backpropagation
through time (BPTT) (Werbos, 1990) and clipped. We op-
timize the objective using the Adam (Kingma & Ba, 2014)
stochastic gradient descent optimizer with default parame-
ters.

2.6. The Recurrent Kalman Network

The prediction and observation updates result in a new type
of recurrent neural network, that we call Recurrent Kalman
Network, which allows working in high dimensional state
spaces while keeping numerical stability, computational
efficiency and (relatively) low memory consumption.

Similar to the input gate in LSTMs (Hochreiter & Schmid-
huber, 1997) and GRUs (Cho et al., 2014) the Kalman gain
can be seen as a gate controlling how much the current
observation influences the state. However, this gating ex-
plicitly depends on the uncertainty estimates of the latent
state and observation and is computed in a principled man-
ner. While the sparse transition models and factorization
assumptions may seem restrictive, they allow stable and ef-
ficient computations in high dimensional spaces. Since the
high dimensional representation is learned jointly with the
dynamics, this can yield very powerful models, as shown in
our experiments.

In comparison to LSTMs and GRUs the number of param-
eters is considerably smaller. For a fixed bandwidth b and
number of basis matrices k it scales linearly in the state size
for the RKN while it scales quadratically for LSTMs and
GRUs.

Moreover, the RKN provides a principled method to deal
with absent inputs by just omitting the update step and
setting the posterior to the prior.

3. Evaluation and Experiments
A full listing of hyperparameters and data set specifications
can be found in the supplementary material. Code is avail-
able online1. We compare to LSTM and GRU baselines for
which we replaced the RKN transition layer with generic
LSTM and GRU layers. Those were given the encoder out-
put as inputs and have an internal state size of 2n. The
internal state was split into two equally large parts, the first
part was used to compute the mean and the second to com-
pute the variance. We additionally executed most of the
following experiments using the root mean squared error to

1https://github.com/LCAS/RKN
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Table 2. Our approach outperforms the generic LSTM and GRU
baselines. The GRU with m = 8 and the LSTM with m = 6 were
designed to have roughly the same amount of parameters as the
RKN with b = 3. In the case where m = b the RKN uses a full
transition matrix. fc stands for full covariance matrix, i.e., we do
not use factorization of the belief state.

Model Log Likelihood

RKN (m = 15, b = 3,K = 15) 6.182± 0.155
RKN m = b = 15,K = 3) 6.248± 0.1715
RKN (m = 15, b = 3,K = 15, fc ) 6.161± 0.23
RKN (m = b = 15,K = 15, fc ) 6.197± 0.249

LSTM m = 50 5.773± 0.231
LSTM m = 6 6.019± 0.122

GRU m = 50 5.649± 0.197
GRU m = 8 6.051± 0.145

illustrate that our approach is also competitive in prediction
accuracy. The RMSE results can be found in the appendix.

3.1. Pendulum

We evaluated the RKN on a simple simulated pendulum
with images of size 24 × 24 pixels as observations. Gaus-
sian transition noise with standard deviation of σ = 0.1 was
added to the angular velocity after each step. In the first
experiment, we evaluated filtering in the presence of high
observation noise. We compare against LSTMs and GRUs
as these are the only methods that can also perform state es-
timation. The amount of noise varies between no noise at all
and the whole image consisting of pure noise. Furthermore,
the noise is correlated over time, i.e., the model may observe
pure noise for several consecutive time steps. Details about
the noise sampling process can be found in the appendix.
We represent the joint angle θt as a two dimensional vector
st = θt = (sin(θt), cos(θt))

T to avoid discontinuities. We
compared different instances of our model to evaluate the
effects of assuming sparse transition models and factorized
state covariances. The results are given in Table 2. The
results show that our assumptions do not affect the perfor-
mance, while we need to learn fewer parameters and can
use much more efficient computations using the factorized
representation. Note that for the more complex experiments
with a higher dimensional latent state space, we were not
able to experiment with full covariance matrices due to lack
of memory and massive computation times. Moreover, the
RKN outperforms LSTM and GRU in all settings.

In a second experiment, we evaluated the image prediction
performance and compare against existing variational infer-
ence approaches. We randomly removed half of the images
from the sequences and tasked the models with imputing

Table 3. Comparison on the image imputation task. The informed
models were given a mask of booleans indicating which images are
valid and which not. The uninformed models were given a black
image whenever the image was not valid. E2C and SIN only work
in the informed case. Since the KVAE is capable of smoothing in
addition to filtering, we evaluated both. Our approach outperforms
all models. Only the informed KVAE yields comparable, but
still slightly worse results while E2C and SIN fail to capture the
dynamics. The uninformed KVAE fails at identifying the invalid
images.

Model Log Likelihood

RKN (informed) −12.782± 0.0160
RKN (uninformed) −12.788± 0.0142

KVAE (informed, filter) −14.383± 0.229
KVAE (informed, smooth) −13.337± 0.236
KVAE (uninformed, filter) −46.320± 6.488
KVAE (uninformed, smooth) −38.170± 5.399

E2C (informed) −95.539± 1.754
SIN (informed) −101.268± 0.567

those missing frames, i.e., we train the models to predict
images instead of the position. We compared our approach
to the Kalman Variational Autoencoder (KVAE) (Fraccaro
et al., 2017), Embed to Control (E2C) (Watter et al., 2015)
and Structured Inference Networks (SIN) (Krishnan et al.,
2017). The results can be found in Table 3. Again, our RKN
outperforms all other models. This is surprising as the vari-
ational inference models use much more complex inference
methods and in some cases even more information such as
in the KVAE smoothing case. Sample sequences can be
found in the supplementary material. All hyperparameters
are the same as for the previous experiment.

3.2. Multiple Pendulums

Dealing with uncertainty in a principled manner becomes
even more important if the observation noise affects differ-
ent parts of the observation in different ways. In such a
scenario the model has to infer which parts are currently
observable and which parts are not. To obtain a simple
experiment with that property, we repeated the pendulum
experiments with three colored pendulums in one image.
The image was split into four equally sized square parts
and the noise was generated individually for each part such
that some pendulums may be occluded while others are vis-
ible. Exemplary images are shown in the supplementary
material. A comparison to LSTM and GRU baselines can
be found in Figure 2 and Table 4 as well as an exemplary
trajectory in Figure 3. The RKN again clearly outperforms
the competing methods. We also computed the quality of
the uncertainty prediction by showing the histograms of
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Table 4. Results of the multiple pendulum experiments.

Model Log Likelihood

RKN m = 45 11.51± 1.703
b = 3, k = 15

LSTM m = 50 7.5224± 1.564
LSTM m = 12 7.429± 1.307

GRU m = 50 7.541± 1.547
GRU m = 12 5.602± 1.468

Figure 2. To evaluate the quality of our uncertainty prediction we
compute the normalized error s

(j)−s(j),+
σ(j),+ for each entry j of s for

all time steps in all test sequences. This normalized error should
follow a Gaussian distribution with unit variance if the prediction
is correct. We compare the resulting error histograms with a unit
variance Gaussian. The left histogram shows the RKN, the right
one the LSTM. The RKN perfectly fits the normal distribution
while the LSTM’s normalized error distribution has several modes.
Again we designed the smaller LSTM and GRU to have roughly
the same amount of parameters as the RKN.

the normalized prediction errors. While this histogram has
clearly a Gaussian shape for the RKN, it looks like a less
regular distribution for the LSTMs.

3.3. Quad Link

We repeated the filtering experiment on a system with much
more complicated dynamics, a quad link pendulum on im-
ages of size 48× 48 pixels. Since the individual links of the
quad link may occlude each other different amounts of noise
are induced for each link. Two versions of this experiment
were evaluated. One without additional noise and one were
we added noise generated by the same process used in the
pendulum experiments. You can find the results in Table 5.

Furthermore, we repeated the imputation experiment with
the quad link. We compared only to the informed KVAE,
since it was the only model producing competitive results
for the pendulum. Our approach achieved −44.470± 0.208
(informed) and −44.584± 0.236 (uninformed). The KVAE
achieved −52.608± 0.602 for smoothing and −59.0218±
0.580 for filtering . Sample images can be found in the
appendix.

Table 5. Comparison of our approach with the LSTM and GRU
Baselines on the Quad Link Pendulum. Again the RKN performs
significantly better than LSTM and GRU who fail to perform well.

Model without noise with noise
Log Likelihood Log Likelihood

RKN (m = 100, 14.534± 0.176 6.259± 0.412
b = 3,K = 15)

LSTM (m = 50) 11.960± 1.24 5.21± 0.305
LSTM (m = 100) 7.858± 4.680 3.87± 0.938

GRU (m = 50) 10.346± 2.70 4.696± 0.699
GRU (m = 100) 5.82± 2.80 1.2± 1.105

3.4. KITTI Dataset for Visual Odometry

Next, we evaluate the RKN on the task of learning visual
odometry from monocular images on the KITTI visual
odometry dataset (Geiger et al., 2012). It consists of 11
labeled image sequences collected by driving a vehicle in
an urban environment.

We use the unsupervised approach proposed by (Zhou et al.,
2017) to extract features from the images. Using these fea-
tures, we first evaluate a simple forward network, which we
refer to as sfmlearner-s. We then augment this architecture
with LSTMs, GRUs, and our proposed RKN. Additionally,
we compare to DeepVO (Wang et al., 2017), an approach
tailored to the problem of visual odometry. In Table 6 we
show results using the common KITTI evaluation scheme.
The results show that the RKN shows better performance
in comparison to LSTMs and GRUs, and even performs
comparably to the tailored DeepVO approach.

3.5. Pneumatic Brook Robot Arm

We consider another real world task, learning the dynamics
of a pneumatically actuated joint of a Hydro-Lek HLK-7W
robot arm. The data consists of measured joint positions
and the input current to the controller of the joint sampled at
100Hz. Pneumatic robots are very hard to model as there is
a large amount of hysteresis, requiring recurrent prediction
models.

During training, we work with sequences of length 500. For
the first 300 time steps those sequences consist of the full
observation, i.e. joint position and current. The remain-
ing 200 time steps only the current is given. The models
have to impute the missing joint positions in an uninformed
fashion, i.e., the absence of a position is only indicated by
unrealistically high values.

In order to evaluate the learned dynamics, we used them to
predict future joint positions. After an initial burn-in phase,
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Figure 3. Predicted sine value of the tree links with 2 times standard deviation (green). Ground truth displayed in blue. The crosses
visualize the current visibility of the link with yellow corresponding to fully visible and red to fully occluded. If there is no observation
for a considerable time the predictions become less precise due to transition noise, however, the variance also increases.

Table 6. Comparison on the KITTI dataset using the common evaluation scheme. The RKN performs better than the non-recurrent
sfmlearner-s baseline as well as the recurrent LSTM and GRU baselines. It performs comparably to DeepVO (Wang et al., 2017), an
approach tailored to the task of visual odometry.

Deep VO sfmlearner-s LSTM GRU RKN
Sequence trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦)

3 8.49 6.89 13.21 6.70 8.99 4.55 9.34 3.81 7.83 3.57
4 7.19 6.97 13.56 4.56 11.88 3.44 12.36 2.89 11.61 2.61
5 2.62 3.61 13.06 5.70 8.96 3.43 10.02 3.43 7.29 2.77
6 5.42 5.82 10.87 4.47 9.66 2.80 10.99 3.22 8.08 2.32
7 3.91 4.60 13.47 8.41 9.83 5.48 13.70 6.52 9.38 4.83
10 8.11 8.83 16.69 6.26 13.85 3.49 13.37 3.25 12.71 3.09

mean 5.96 6.12 13.48 6.02 10.53 3.87 11.63 3.85 9.48 3.20
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Figure 4. Predicted joint values for the pneumatic joint prediction
task. The initial burn-in phase is 200 time steps long, afterwards
only the predictions are displayed. GT denotes the ground truth.
As can be seen, only our approach manages to give feasible pre-
dictions.

the model was tasked with predicting the joint position 2
seconds into the future, given only the future control inputs.
Afterwards, the next observation was given to the model
and the prediction process repeated.

Using a 60 dimensional latent space, 32 basis matrices and a
bandwidth of 3, the RKN achieved a log likelihood of 4.930.
This is considerably better than the LSTM and GRU base-
lines, which achieved 0.952 and 1.186 respectively. Figure 4
shows exemplary predictions of all approaches.

4. Conclusion
In this paper, we introduced the Recurrent Kalman Network
that jointly learns high-dimensional representations of the
system in a latent space with locally linear transition models
and factorized covariances. The update equations in the
high-dimensional space are based on the update equations
of the classical Kalman filter, however, due to the factor-
ization assumptions, they simplify to scalar operations that
can be performed much faster and with greater numerical
stability. Our model outperforms generic LSTMs and GRUs
on various state estimation tasks while providing reasonable
uncertainty estimates. Additionally, it outperformed sev-
eral generative models on an image imputation task and we
demonstrated its applicability to real world scenarios. Train-
ing is straight forward and can be done in an end-to-end
fashion.

In future work, we want to exploit the principled notion of a
variance provided by our approach in scenarios where such
a notion is beneficial, e.g. reinforcement learning. Similar
to (Fraccaro et al., 2017) we could expand our approach to
not just filter but smooth over trajectories in offline post-
processing scenarios which could potentially increase the
estimation performance significantly. Additionally, differ-
ent, more complex, factorization assumptions can be inves-
tigated in the future.
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