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Learning Replanning Policies With Direct
Policy Search

Florian Brandherm , Jan Peters , Gerhard Neumann, and Riad Akrour

Abstract—Direct policy search has been successful in learning
challenging real-world robotic motor skills by learning open-loop
movement primitives with high sample efficiency. These primi-
tives can be generalized to different contexts with varying initial
configurations and goals. Current state-of-the-art contextual pol-
icy search algorithms can however not adapt to changing, noisy
context measurements. Yet, these are common characteristics of
real-world robotic tasks. Planning a trajectory ahead based on an
inaccurate context that may change during the motion often results
in poor accuracy, especially with highly dynamical tasks. To adapt
to updated contexts, it is sensible to learn trajectory replanning
strategies. We propose a framework to learn trajectory replanning
policies via contextual policy search and demonstrate that they
are safe for the robot, can be learned efficiently, and outperform
non-replanning policies for problems with partially observable or
perturbed context.

Index Terms—Learning and adaptive systems, reactive and
sensor-based planning, motion control, policy search, replaning.

I. INTRODUCTION

A POPULAR approach to learn robotic skills is the com-
bination of direct policy search with structured trajectory

representations that can be easily initialized from demonstra-
tions via imitation learning [1], [2]. Successful applications
include the Ball-in-a-cup game [3], pancake flipping [4], dart-
throwing [5] and table tennis [6]. To generalize over task vari-
ations, robotic tasks are often phrased as multitask problems
where the motion trajectory is determined by the context. Such
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a context may include features of the initial and goal config-
uration. For example, in robot table tennis, the context could
include the ball position at the start of the motion and a goal po-
sition on the opponent’s side of the table. However, determining
an entire trajectory from just the initial conditions can be dif-
ficult in real-world applications as they might only be partially
observable or subject to later perturbations. In real world table
tennis, the context is typically affected by noise, unobservable
states (e.g., ball spin) and the ball trajectory might be perturbed
by external forces. These issues require the online adaption of
trajectories to such changes in context.

Formulating the problem of learning robot skills in terms of
reinforcement learning and modeling it as a Markov decision
process [7], [8] or partially observable Markov decision process
[9] is a solution to online adaption. Value-based methods can
yield a control policy that continuously produces motor actions
from the current state of the task. However, it has become ap-
parent that the resulting model complexity is often challenging
for real-world tasks as the sample-complexity is often too large
for real experiments to be feasible. Moreover, safety concerns
may arise in case of discrete context changes due to updated
measurements.

One approach to robot reinforcement learning is to learn
the Q-function of a time-dependent control policy [10], [11].
Nevertheless, such a trajectory representation can be problem-
atic. Although it is capable of instant context adaption, discrete
jumps in context can result in dangerous movements [12]. This
is an important issue since in reality, the frequency of context
measurement can be orders of magnitude slower that the robot
control frequency (e.g., optical tracking). Furthermore, such a
time-dependent policy typically requires a large number of pa-
rameters to produce complex trajectories.

An alternative approach that requires to learn much fewer pa-
rameters is to learn a simple policy that determines the param-
eters of a low-dimensional structured trajectory representation
[3]. For this purpose, a variety of direct policy search algorithms
have been suggested [13]. Many policy search algorithms are
based on gradient ascent [10], [14], [15]. An example for an
information-theoretic approach is relative entropy policy search
(REPS) [16]. Model-based extensions, such as GPREPS [17]
(Gaussian process reward model) or Model-based relative en-
tropy stochastic search (MORE) [18] (quadratic reward model)
were introduced in order to improve data efficiency. For this pa-
per we chose the contextual variant of MORE, but the principles
could be applied to other algorithms as well.
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The main contributions of this article are as follows:
1) We propose a policy search algorithm that leverages the

sample efficiency of contextual policy search (Sec. III)
while incorporating a replanning step that takes into ac-
count new context information (Sec. IV), akin to step-
based RL algorithms.

2) We provide a safety constraint to bound the maximum
change in the generated trajectories.

3) The ability of our proposed approach to handle non-
stationary and noisy context measurements is demon-
strated and analyzed on three tasks in simulation and on a
real robot ball tracking task (Sec. VII). This demonstrates
that contextual direct policy search algorithms, when
coupled with smooth parameterized trajectory generators
are more powerful than they are given credit for in the
literature.

II. RELATED WORK

One approach to improve performance under uncertain or
changing contexts is to delay the planning of a trajectory until
enough information is collected or the motion has to be started
because of timing constraints [2], However, this fails in cases
where the context measurements are not accurate enough at the
time a trajectory’s execution must be started because of timing
constraints.

Defining trajectories rigidly (e.g., based on splines [19]) has
the disadvantage that trajectories are precomputed and cannot
react online to perturbations. While advanced control meth-
ods like model predictive control [20] can handle perturbations,
they are not capable of large modifications to the overall tra-
jectory. Therefore, many state of the art approaches to adapt
trajectories online use dynamical trajectory representations that
are formed by attractor landscapes [2], [12], [21]–[25]. What all
these approaches have in common is the utilization of dynamical
systems to generate smooth trajectories with a low-dimensional
parameterization.

Dynamical movement primitives (DMPs) [21], [22] are
widely used for robotic tasks in conjunction with direct pol-
icy search [3], [6], [18], [26]. Our method also builds on DMPs
(see Sec. V). Ude, Gams, Asfour, et al. [27] demonstrated how
DMPs can be adapted online by continuously updating the goal
position of a motion using a vision system. An alternative ap-
proach that was presented by Kober, Mohler, and Peters [23]
is the introduction of a term that directly couples a DMP to
an external state, demonstrating effective online adaptation to
perturbed states. Similarly, Pastor, Righetti, Kalakrishnan, et al.
demonstrated how DMPs can be used to adapt a grasping mo-
tion online by adding a feedback term in order to match pre-
recorded forces [24]. Khansari-Zadeh and Billard introduced
autonomous dynamic systems [25] which is an alternative for-
mulation of dynamical trajectories that models the dynamical
system with Gaussian mixture models and has the ability to
adapt to perturbations instantly.

State of the art contextual policy search typically assumes
that the context is always completely specified ahead of the mo-
tion execution [13], allowing to pre-generate a trajectory. The
present paper relaxes this assumption. We address both issues

of perturbations in the state and uncertain state measurements
by replanning trajectories after their execution has started. Re-
planning steps are introduced at which the trajectory parameters
are updated in order to adapt to changes in the context.

We propose a combination of replanning policies with re-
plannable DMPs and show how they can be learned with policy
search by introducing some light assumptions. This is followed
by an experimental evaluation on tasks that are difficult without
rapid adaptation.

III. PRELIMINARIES

The goal of episodic contextual policy search is to learn a
contextual stochastic policy π(θ|c) directly while treating the
problem as a black box. The output parameters of the policy
θ could for example be the parameters of a dynamical move-
ment primitive [21]. The parameters are sampled dependent on
a context c which defines the configuration of the task at hand.
Such a context can contain features of an observed system state
or the definition of a desired goal state. The distribution of this
context is considered unknown. The policy π(θ|c) is learned by
maximizing the expected reward J(π) = Eθ∼π (θ|c) [R(θ, c)].
The reward function R(θ, c) �→ R maps parameters, chosen by
the policy given the context to a real number that represents the
quality of that choice. It is defined carefully as a goal definition
of the problem at hand. In other words, if the parameters define a
trajectory, R(θ, c) scores the quality of the generated trajectory.

Our choice of contextual policy search algorithm is Model-
Based relative Entropy Stochastic Search (MORE) [18]. MORE
samples a fixed number of parameters from the current policy
πi(θ|c), executes them on the task and receives the resulting re-
wards R(θ, c). This set of parameter samples and their rewards
is then used to improve the expected reward of the policy distri-
bution, shifting it towards more successful parameters samples.
The updated, improved policy πi+1(θ|c) is obtained by solving
the optimization problem given by

maximize
π

∫∫
μi(c)π(θ|c)R(θ, c)dθdc,

subject to Ec∼μ(c)
[
KLπ(θ|c)πi(θ|c)

] ≤ ε,

Ec∼μ(c) [H (π(θ|c)))] ≥ β.

with μi(c) being the current empirical state distribution. The
optimization determines the policy that maximizes the expected
reward. Meanwhile, the Kullback-Leibler (KL) divergence of
the policy update is bounded to limit the rate of convergence.
The KL-divergence between distributions p and q is given by
KLpq =

∫
p(x) log p(x)

q(x) . Furthermore, placing a lower bound
on the entropy of the policy update limits the reduction of the
covariance of the policy, which is needed for exploration. The
entropy of a distribution p is given byH(p) = −∫ p(x) log p(x).

This optimization problem is solved using the method of
Lagrange multipliers, yielding a closed solution for the policy
update which is given by

πi+1(θ|c) ∝ πi(θ|c)η/(η+ω ) exp
(R(θ, c)

η + ω

)
, (1)

where η and ω are Lagrange multipliers.
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In order to enable an analytic solution for the corresponding
dual function, a quadratic reward model

R(θ, c) ≈
(

θ

c

)T (
Rθθ Rθc/2

Rθc
T /2 Rcc

)

︸ ︷︷ ︸
symmetric

(
θ

c

)

+

(
θ

c

)T(
rθ

rc

)
+ r0 (2)

is learned from the samples. Akrour, Neumann, Abdulsamad
et al. [11] showed that with this quadratic model and assuming
a linear Gaussian policy π(θ|c) = N (θ|Kc + b,Σ), the policy
update simplifies to

πi+1(θ|c) = N (θ| FL︸︷︷︸
K( i + 1 )

c + F f︸︷︷︸
b( i + 1 )

,F (η + ω)︸ ︷︷ ︸
Σ i + 1

)

with F = (ηΣ−1 − 2Rθθ )−1 , L = ηΣ−1K + Rθc and f =
ηΣ−1b + rθ .

IV. REPLANNING POLICIES

Contextual learning often assumes a Gaussian policy
π(θ|c) = N (θ|Kc + b,Σ) that is linear in context features.
Commonly, such a policy is used to pre-generate a trajectory. In
case there are multiple planning steps k ∈ 1 . . . ρ such a policy
can be divided into one independent linear Gaussian sub-policy
πk (θ|c) = N (θ|Kkc + bk ,Σk ) for each planning step. These
sub-policies can be evaluated successively with the current con-
text at their respective planning step. Because of the simple
linear relationship of πk (θ|c), replanning can happen quasi-
instantaneously in the robot controller whenever a replanning
step is triggered. While the initial planning step must remain at
the start of a trajectory, the following replanning steps can be
spaced arbitrarily along the trajectory’s time frame. This allows
the adaption of trajectory parameters to a changing context.

If the Markov property holds, the sub-policies can be assumed
to be independent because of causality. The Markov property
can be achieved by either including the robot state in the context
or by including the entire history of contexts and parameters
of previous planning steps. However, we make the simplifying
assumption that the sub-policies are always independent. Thus,
replanning policies can be described by a single multivariate
Gaussian distribution

π(θ|c) = N (θ|Kc + b,Σ) (3)

that is linear in context features with stacked vectors for
the output parameters θ = (θT

1 ,θT
2 , . . . ,θT

ρ )T , context c =
(cT

1 , cT
2 , . . . , cT

ρ )T and biasb = (bT
1 ,bT

2 , . . . ,bT
ρ )T along with

block matrices for the gain and covariance

K =

⎛
⎜⎜⎜⎜⎜⎝

K1 · · · 0

K2
...

...
. . .

0 · · · Kρ

⎞
⎟⎟⎟⎟⎟⎠

Σ =

⎛
⎜⎜⎜⎜⎜⎝

Σ1 · · · 0

Σ2
...

...
. . .

0 · · · Σρ

⎞
⎟⎟⎟⎟⎟⎠

.

Clearly, the number of parameters of the replanning policy
π(θ|c) grows linearly with the number of planning steps ρ.
Retaining this block shape during the policy update requires
further constraints on the reward model in equation (2). It is
necessary to assume that Rθθ , Rθc and Rcc are block-diagonal.
With this assumption, the policy update of MORE will trivially
preserve the independence of the policies by preserving the
block-diagonality of K(i+1) and Σ(i+1) which is imperative to
preserving the independence of the sub-policies.

In fact, any policy search algorithm with linear gaussian pol-
icy can be adapted to replanning if the set of learned parameters
and covariances can be restricted to the block-diagonal while
fixing the remaining parameters of the gain matrix and covari-
ance matrix at zero.

The most powerful replanning policy model is a set of distinct
sub-policies for every possible measurement step. Yet, increas-
ing the number of parameters increases the search space and will
slow down learning (more on this tradeoff in Sec. VI-A). We
present two approaches to limit the number of parameters. The
first approach uses the same sub-policy for all planning steps,
allowing the number of replanning steps to be independent of
the number of parameters. The second approach uses one sub-
policy per planning step but limits the number of replanning
steps.

A. Stationary Replanning Policy

If replanning has to occur constantly during a trajectory, the
number of parameters for independent sub-policies becomes
very large. In this case, a desirable assumption is π̂(θ|c) :=
π1(θ|c) = π2(θ|c) = · · · = πρ(θ|c), keeping the same num-
ber of parameters as the equivalent non-replanning policy. This
means that the same policy is evaluated multiple times during
a trajectory and it enables trajectories with a varying number
of replanning steps. However, this requires that the context of
all planning steps is stationary. This requirement arises from
the fact that we are using a linear model for generalization. For
example, if the context of a table tennis setup is defined as the
current ball position, it violates this condition. In some cases,
this limitation might be overcome by using a model of the state
progression and defining the context as features of the model
(e.g., a prediction at some point in the future). However, this
is only feasible if 1) a sufficiently good model of the system
state is available, and 2) unpredictable system state perturba-
tions (external or by the robot itself) can be ruled out until after
the last replanning step. We denote such a policy with equal
sub-policies a stationary policy.

The reward model for the policy update can be learned from
a set of policy samples using linear ridge-regression, given by

w = (ΦT Φ + λI)−1ΦT Y , with

Y =
(
R(1) ,R(2) , ...,R(n)

)T

Φ =
(
φ(θ(1) , c(1)), φ(θ(2) , c(2)), ..., φ(θ(n) , c(n))

)T
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where n is the number of samples, R(i) , c(i) and θ(i) are the
reward, context and corresponding parameters of sample i re-
spectively and λ is a regularization constant. The regression
solves for the vector w that contains all parameters of the re-
ward model in equation (2). φ(θ, c) are the features of the policy
sample (θ, c).

For our stationary policy, solving the reward model for all
model parameters yields the parameter vector

w = (r0 ,wlinear,wquadratic)
T

with the parameters for the linear part wlinear = (r̂θ
T , r̂c

T )T

and the parameters for the quadratic part wquadratic =

(vech(R̂θθ )
T
, vec(R̂θc)

T
, vech(R̂cc)

T
)T . vec(·) is the vector-

ization function, reordering all elements of a matrix into a col-
umn vector. Due to the symmetry of Rθθ and Rcc , we also
utilize the half-vectorization function vech(·), which reorders
all elements of a lower triangular matrix into a column vector.

The corresponding features for the regression are defined as

φ(θ, c) = (1, φlinear, φquadratic)
T

with linear features φlinear = (
∑ρ

i=1 θT
i ,

∑ρ
i=1 cT

i )T and

quadratic features φquadratic = (vech(
∑ρ

i=1 θi · θT
i )

T
, vec(

∑ρ
i=1

θi · cT
i )T , vech(

∑ρ
i=1 ci · cT

i )T )T .

B. Non-Stationary Replanning Policy

The second, more general variant of replanning policy can
utilize differently distributed contexts for different planning
steps, exploiting the independence of the sub-policies. This
implies that even the dimensionality of the context can dif-
fer between planning steps. Because of its capability to handle
non-stationary contexts, we denote this policy variant as non-
stationary. An example for such a task is robot table tennis,
where the ball state distribution is different at different points
in time due to the progressing motion of the ball. As a result
of non-stationarity, the number of parameters for the regres-
sion increases significantly. The vector of linear parameters for
this case is given by wlinear = (rθ

T
1 , . . . , rθ

T
ρ , rc

T
1 , . . . , rc

T
ρ )T .

Likewise, the vector of quadratic parameters wquadratic =
(vech(Rθθ 1)

T , . . . , vech(Rθθ ρ)
T , vec(Rθc1)

T , . . . , vec(Rθc ρ)
T ,

vech(Rcc1)
T , . . . , vech(Rcc ρ)

T )T contains all elements of the
block-diagonal matrices Rθθ , Rθc and Rcc .

V. REPLANNING CONTROL

To react to unforeseen state changes after the initial plan
for the trajectory, additional replanning steps are introduced. A
common approach to robot reinforcement learning is to exploit
a structured trajectory representation and train a policy to gen-
eralize only a small subset of parameters (e.g., goal position)
that adjust a demonstrated trajectory. This allows very low-
dimensional policies since all relevant trajectory parameters θ
are determined by a small set of initial conditions c.

For our replanning framework, we build on the formulation
of dynamical movement primitives (DMP) [21], [22]. The tra-

jectory is produced by the differential equation

ẍ(t) = α(β(g − x(t)) − ẋ(t)) + f(t) , (4)

where x is the vector of joint positions and α, β are constants.
As time progresses, the goal attractor becomes dominant and the
trajectory converges at the goal position g. This representation as
a differential equation enables on-the-fly trajectory generation,
which can be exploited to smoothly adapt online to updated
parameters.

Replanning can be achieved by updating the goal position
g or the weights w of the forcing function f that defines the
shape of the motion. At every planning step, the relevant sub-
set of these trajectory parameters is initialized/updated by the
(re)planned parameters θ1 , . . . ,θρ However, in the original for-
mulation, such an update results in noticeable jerky trajectories,
because it causes discrete jumps in acceleration. Such trajecto-
ries can cause damage to real robots. We mitigate jerky behavior
by updating the desired goal position gd and weights wd and
smoothly transitioning g and w with the differential equations
ġ = cg (g − gd) and ẇ = cw (w − wd), where cg and cw are
constants that bound the jerk that is introduced by parameter
updates.

A. Safety of Replanning

We show in this section, that a trajectory that results from
an update of the goal position can be guaranteed to be
bounded. For this, we assume that the exploratory noise of
the policy is small and we can express an updated goal po-
sition as gi+1 = Kci+1 + b. The DMP equation for this up-
ated goal position then becomes ẍi+1 = α(β(Kci+1 + b −
xi+1) − ẋi+1) + f . This new trajectory can be expressed as
ẍi+1(t) = ẍi(t) + ḧ(t)KΔc , where Δc = ci+1 − ci is the
change in context and h(t) is an unknown function of time.
It follows from the definition of the DMP that

ẍi+1(t) = ẍi(t) + [αβ(1 − h(t)) − βḣ(t)]︸ ︷︷ ︸
ḧ(t)

KΔc .

Solving the differential equation

ḧ(t) = αβ(1 − h(t)) − βḣ(t),

with initial condition h(0) = 0 (both plans start from the same
position) and with standard setting β = 4α we obtain h(t) =
1 − exp(−2αt). Since |h(t)| = |1 − exp(−2αt)| ≤ 1, the
maximum joint position deviation Δmax = maxt |xi+1(t) −
xi(t)| is bounded and we obtain Δmax ≤ |KΔc |. In other
words, provided that the maximum change Δc in context is
bounded, we can ensure the safety of the re-planning by bound-
ing a norm on the policy parameters. In practice one can perform
a line-search, starting from the η returned by the dual function
minimization (see Sec. III) to ensure that |K| < ξ, where ξ is
some hand defined hyper-parameter of the algorithm. Note that
such a value of η always exists since as η goes to infinity, the
limit of the updated policy is the old policy (KLπi+1πi = 0)
and the linear term of the previous policy has norm smaller
than ξ.
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Fig. 1. Hole Reaching Task. Two variants of the Hole Reaching task with
moving hole position (left) or hole position with noisy measurement (right).
Left: Initial hole position (gray, dashed) and current hole position (black, solid).
Right: Noisy measurement of the hole position. The amount of noise is inversely
proportional to the distance between end-effector and hole. An end-effector
trajectory that was replanned by a non-stationary policy is shown in red before
the hole position change and in green after the change.

VI. SIMULATION RESULTS

To evaluate the replanning policies, we conducted experi-
ments that compare the performance of stationary and non-
stationary policies, as well as MORE on two variants of a planar
hole reaching task and a simulated hole reaching task.

A. Planar Hole Reaching With State Perturbations

Our first experiment is a planar hole reaching task with per-
turbations in the state. A simulated robot arm is tasked with
reaching into a hole in the ground at a randomized distance
in front of it. At a random time during the motion, the hole
position changes a small random amount. This is an example
where replanning is necessary to adapt the motion to a changing
context.

As pictured in Figure 1 we simulated a 3-link robot arm. It
follows the trajectory of a set of DMPs with 3 basis functions
per joint that define the trajectory for each joint angle, starting
from an upright position. The task is to move the end-effector
into the bottom of the hole while avoiding contact with the
floor and walls (black). Therefore, shortly before the end of
the simulation, a reward is given proportional to the negative
squared distance of the end-effector to the center of the bottom
of the hole. Meanwhile, every step of contact with the floor or
hole walls is punished. Additionally, the problem is regularized
by punishing joint accelerations. After a random time which is
drawn from a uniform distribution, the hole position changes
position by a small random distance. The context is defined as
a set of 3 radial basis function features of the hole position,
while the output parameters of the policy are the weights of the
DMP forcing functions and the DMP goal positions (in total 12
parameters per independent planning step).

For the experiments, 10 trials of 1000 episodes were evalu-
ated. In each episode, 50 samples were generated while keeping
the last 1000 for the policy update.

1) No Replanning (MORE): The black curve in Figure 3
shows the performance of the hole reaching task without re-

Fig. 2. Comparing Different Numbers of Replanning Steps. Average final re-
wards after 1000 episodes for different numbers of replanning steps ρ. While the
performance initially rises du to increased model power, it eventually degrades
because it can’t converge within 1000 episodes.

Fig. 3. Hole Reaching Task with State Perturbations. Average rewards and
variances per episode of hole-reaching with state perturbations for MORE and
replanning.

planning. Unable to adapt to a change in the hole position, it
fails to reach adequate performance.

2) Replanning With Stationary Policy: We spaced the re-
planning steps uniformly within the simulation interval for all
experiments. The red graph shows that replanning with a sta-
tionary policy improves the performance radically, although the
number of parameters (12) is the same as for the non-replanning
policy. It has 4 replanning steps. The average rewards are af-
fected by a similar level of noise as the non-replanning version.
This is because the summation of noisy contexts increases the
total noise of the reward model estimation.

3) Replanning With Non-Stationary Policy: The best per-
formance was reached with a non-stationary replanning policy
(blue). This boost in performance over the stationary policy
can be explained by the more powerful model. The policies for
the different replanning steps differ greatly, allowing advanced
strategies like waiting until the hole change has occurred before
moving down into the hole.

We also analyzed the effect of different numbers of replan-
ning steps. As shown in Fig. 2, more replanning steps ρ are not
always better and there exists a task-specific optimum value for
ρ. While increasing ρ yields more powerful models, the prob-
lem also becomes more difficult. Thus, the available budget for
sample generation is an important factor for the choice of ρ.
In the non-stationary case, increasing the number of planning
steps results in a higher number of parameters that have to be
learned, rendering the problem more difficult. Similarly, increas-
ing the number of planning steps for the stationary case leads to
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Fig. 4. Hole Reaching Task with Partial Observability. Average rewards and
variances per episode of hole-reaching with partial observablity for MORE and
replanning.

increased noise in the estimation of the reward model, likewise
making the problem more difficult. This demonstrates that the
number of planning steps ρ is an important hyper-parameter that
needs to be chosen carefully.

A further consequence of this quasi-bound on ρ (and therefore
the number of learned parameters) is that the computational cost
of learning is bounded as well. It was observed that the cost of
sample generation is in practice much higher than the cost of
computing policy updates.

B. Hole Reaching With Partial Observability

We performed an additional experiment with a partially ob-
servable variant of the hole reaching task. Instead of changing
the hole position, the hole position remains fixed. However, for
this experiment the context features of the hole position are af-
fected by additive uniform noise. The noise level is proportional
to the distance of the end-effector to the entry of the hole. The
reasoning behind this is to simulate a camera that is mounted to
the end-effector.

Again, 10 trials of 1000 episodes were evaluated. In each
episode, 50 samples were generated, keeping the last 1000 for
the policy update.

1) No Replanning (MORE): The black curve in Figure 4
shows the performance without replanning. The noise level of
the initial context is significant. Thus, it is unable to locate the
hole reliably enough.

2) Replanning With Stationary Policy: The performance of
a replanning policy with a stationary policy is displayed in red.
The performance cannot be improved compared to the non-
replanning policy. Although the mean of the context feature are
the same for each replanning step, variance differs drastically,
which violates the stationarity requirement. Policies needs to be
aware of the higher accuracy of updated measurements to plan
more precisely, requiring a non-stationary policy.

3) Replanning With Non-Stationary Policy: As before, the
best performance was achieved with a non-stationary replanning
policy (blue). This demonstrates that simple replanning policies
can be used to learn problems that suffer from partial observable
states with non-trivial noise models.

Fig. 5. Table Tennis Task. Depiction of the simulated table tennis setup. A
table tennis racket is attached to the end-effector of a ceiling-mounted barret
robot.

C. Simulated Table Tennis

Another task that we evaluated in this letter is simulated robot
table tennis. In our setup, a ceiling-mounted robot arm is tasked
to return incoming balls to a point on the other side of the table.
This is a difficult problem in the real world because of imperfect
ball tracking and tight timing constraints. For this reasons it
has been used frequently in reinforcement learning research
([2], [16], [11], [6], [28], [26]). Ball state measurements tend
to increase in accuracy the closer it gets to the hitting moment
due to filtering. However, the hitting motion must be initiated
before a perfect estimate of the ball state is available, leading
to decreased performance of trajectories that are planned ahead.
These challenges make the table tennis task a good candidate
for the application of replanning.

The setup consists of a table tennis table and a ceiling-
mounted barret robot arm which has table tennis paddle attached
to its end-effector (see Fig. 5). A simulated ball cannon shoots
a table tennis ball in a fixed direction such that it bounces once
on the robot’s side of the table. However, the trajectories of the
ball cannon are affected by noise, similar to a real ball cannon,
requiring the adaption of each hitting motion to the given ball
context. The robot is tasked to perform a forehand stroke that
returns the ball to a specified point on the opposite side of the
table. It is controlled by a PD-controller that follows a DMP
trajectory which is initialized by imitation-learning. The policy
has to adapt the DMP goal position to the variations in the ball
trajectories. The issue of noisy ball measurements is simulated
by adding Gaussian noise to the simulated ball position. This
ball measurement is then filtered by an extended Kalman filter to
maximize the performance of policy search without replanning,
resulting in the black curve in Figure 6. Despite the filtering,
the ball state remains noisy and can never be determined ex-
actly. Moreover, the uncertainty of the ball state measurement
decreases with time, due to the extended Kalman filtering. Be-
cause the robot’s acceleration is limited, the trajectory must be
initiated before the measurement becomes accurate enough.

We simulated 7 trials table tennis experiments with 1000
episodes for the non-replanning policy and the non-stationary
replanning policy. Each episode, 100 samples are generated. For
the policy update, the last 500 samples are used.
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Fig. 6. Table Tennis Learning Curves. Comparison of the average reward of
the table tennis task and its variance per episode for non-stationary replanning
policies and non-replanning policies.

1) No Replanning (MORE): As shown in Figure 6, learn-
ing the table tennis task without replanning only reaches poor
performance. The remaining noise in the filtered measurements
renders the generated trajectories very inaccurate. Furthermore,
the achieved rewards are very noisy.

2) Replanning With a Non-Stationary Policy: Because the
context is time-dependent, a stationary policy cannot be applied
to this task. To exploit knowledge about the measurement uncer-
tainty, we use the trace of the Kalman filter covariance matrix
as additional context. In our experiment, the average perfor-
mance of the non-stationary policy significantly improves upon
MORE. Moreover, the variance of the average rewards is greatly
reduced, indicating a reliable policy. This demonstrates that in-
deed, replanning can robustly improve the performance of a task
with partial observability.

VII. EXPERIMENT: REAL-ROBOT BALL TRACKING

We also evaluated our replanning policies on a real-world ball
tracking task. A 7-link WAM robot arm is tasked to reach for
flying table-tennis balls with a cup on its end-effector. (Fig. 7).
An experimenter throws the ball in a variety of different ball
trajectories. Balls are tracked by an optical motion-capture sys-
tem which offers limited tracking accuracy. As ball velocity
estimates are extremely inaccurate, the context only consists
of the 3d ball position at the planning step. From this context,
a 7-dimensional goal (joint-)position is planned. For this ex-
periment, we used a variant of our method, where replanning
sub-policies π(θi |ci ,θi−1) = N (θi |Kc + b + θi−1 ,Σ) pro-
vide additive corrections. The reward function is proportional
to the negative squared distance between the ball and cup center
at the closest point with a regularization term that quadratically
punishes joint accelerations. Our experiment shows that our
method can be used to learn reaching motions under these chal-
lenging circumstances. The DMP of the motion was initialized
from a demonstration. In order to reduce the costly real-world
training time, a policy was pre-trained on real recorded throws
in a simulation before continuing with real experiments. As
depicted in Fig. 8, the real experiment achieves similar perfor-
mance as the simulation, which leads us to the conclusion that

Fig. 7. Ball Tracking Task. The robot has to reach a ball (gray) with a cup on
its end-effector (red). The ball is thrown by an experimenter from ca. 3 meters
in front of the robot. The time from the first registration of the incoming ball to
the moment of contact is around 0.5s.

Fig. 8. Ball Tracking Learning Curves. Blue: average reward per episode for
the policy pre-training in simulation. Red: average rewards after transferring
the policy that was learned in the simulation to the real robot. Gray: MORE is
unable to converge to a good policy.

our method can be successfully applied in real-world tasks. In
this difficult setting, our method learned to generate trajectories
that touch the ball in 74% and catch it in 8% of ball trajectories.

VIII. CONCLUSION

Real-world robotic tasks often suffer from partial observ-
ability or perturbations of their environment state, rendering
trajectories that are planned ahead of the motion inadequate. In
order to adapt online to changes in the environment state or its
measurements, we presented a framework for learning replan-
ning policies with very little modification to standard contextual
policy search and discussed under which conditions they can
be applied to different scenarios. We then performed experi-
ments on different tasks, comparing the performance of station-
ary and non-stationary policies with non-replanning policies.
Our experiments demonstrate that replanning policies outper-
form non-replanning policies for tasks with partially observable
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or changing states due to their ability to adapt online. These re-
sults, together with our real experiment, indicate that replanning
offers great potential to be applied to real-world robotic tasks,
as they are often challenging due to partial observability and
perturbations.
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