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Abstract— Existing wheelchair control interfaces, such as sip 

& puff or screen based gaze-controlled cursors, are challenging 

for the severely disabled to navigate safely and independently as 

users continuously need to interact with an interface during 

navigation.  This puts a significant cognitive load on users and 

prevents them from interacting with the environment in other 

forms during navigation. We have combined eyetracking/ gaze-

contingent intention decoding with computer vision context-

aware algorithms and autonomous navigation drawn from self-

driving vehicles to allow paralysed users to drive by eye, simply 

by decoding natural gaze about where the user wants to go: 

A.Eye Drive. Our “Zero UI” driving platform allows users to 

look and interact visually with at an object or destination of 

interest in their visual scene, and the wheelchair autonomously   

takes   the   user   to   the   intended destination, while 

continuously updating the computed path for static and dynamic 

obstacles. This intention decoding technology empowers the end-

user by promising more independence through their own 

agency.   

I. INTRODUCTION 

Existing wheelchair control interfaces developed for 
severely-disabled patients, do not yet provide sufficient 
independence in urban mobility. Sip & puff, screen-based gaze 
controlled cursors or the EEG-based navigation systems 
require the user to interact with an interface constantly, while 
only allowing the user to provide low-level directional 
commands to navigate in urban settings. This creates a need 
for an interface less system capable of higher-level intention 
decoding while reducing cognitive load to enable severely-
disabled to move in the urban continuum independently. 
Decoding natural human behaviour to predict future actions 
for prosthetic, orthotic and assistive technology has been 
shown to operate at benchmark levels or above [1-4].  

Eye-tracking has been widely studied as an interface for 
enabling technologies for the severely-disabled [5,6]. 
Previously proposed systems allowed the user to steer the 
wheelchair using only their eyes, providing continuous 
directional commands through their gaze [7-9]. Some of these 
systems consist of on-screen buttons on a video scene feed, 
with the user gazing at the buttons to navigate [8,10]. We have 
previously proposed a gaze-driven control system based on 
natural gaze behaviour [1,11], where the user’s intention is 
decoded in real-time from natural eye-movements. However, 
to eliminate the need for constant interaction with the 
interface, advanced navigation techniques mediated by inputs 
derived from natural user behaviour is the optimal solution for 
this problem [11]. Taking into account of the 3D endpoint 
decoding advances [4,12-16] here, we take a Human-in-the-AI 
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loop approach by incorporating autonomous driving 
technology with gaze-based intention decoding. By doing so, 
our user driving platform can input the destination commands 
via decoding their natural gaze, while the AI algorithms take 
care of the navigation. This significantly reduces the cognitive 
load and eliminates the need to interact with a screen-based 
user interface (hence, our labelling of Zero UI). 

 

    Figure 1. A.Eye Drive wheelchair with a quadriplegic user. 

II. MATERIAL AND METHODS 

A. System Architecture 

Our system consists of an RGB-D camera (Kinect v2 – 512 
x424 @ 30fps; 0.5-4.5 m range; 70/60° angle of view), eye-
trackers (Tobii EyeX Controller and SMI), and a 2D lidar and 
a homebuilt 3D lidar fitted on an electric wheelchair (Invacare, 
UK) using Bosch-Rexroth bars as shown in Fig. 1. The 
wheelchair control system was replaced with a regenerative 
dual channel motor driver (Dimension Engineering, U.S.A) to 
control the wheelchair’s motors. The driver board was 
connected to the Linux machine via USB A to micro USB B.  

B. Gazeinformatics-based intention decoding 

Differences in gaze fixations between interactions and 
viewing were studied to build an intention decoding engine. 
This AI module decodes the users' high-level intention. During 
the experimental session, each subject performs tasks with and 
without interactive intentions, and the gaze tracking setup 
records the corresponding eye movements. This data was used 
to train a Machine Learning based classifier. Our intention 
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decoding engine is explained in [4], and the experiments are 
shown in [1]. 

C. 3D Gaze-based destination  

To determine the 3D coordinates of the user’s intended 
destination, we combine remote eye-trackers with an RGB-D 
camera. The remote eye-trackers, placed at a distance of 60 cm 
from the user, can track users gaze and provide 2D screen 
coordinates of the gaze on a 60 cm x 34 cm display at a rate of 
60Hz. To convert this 2D information into 3D coordinates, we 
overlay 2D gaze-point of the user on the 3D point cloud map 
of the environment reconstructed by the RGB-D camera. The 
alignment of these two-different field-of-views is carried out 
by two calibration steps. In the first calibration step, a 
calibration plane (60 cm x 34 cm) consisting of 7 calibration 
points is placed 1 cm above the eye-trackers. The calibration 
is carried out using the software provided by the sensor 
manufacturer. During the process, the user fixates on the seven 
calibration points in order and calibration is validated using 
nine points defined on the calibration plane. In the second 
calibration step, the 2D scene of the eye-trackers is overlaid on 
the depth image from the RGB-D camera. Calibration plane 
consisting of equally spaced 12 ping-pong balls glued on the 
calibration plane (120 cm x 60 cm). The calibration plane was 
placed approximately 2m from the RGB-D sensor. The 
subjects were told to fixate on each ball in order, while the 
coordinates of the gaze-point and the ball coordinates in the 
depth image were recorded. Using these points, the projective 
transformation matrix was calculated using the fitgeotrans 
function in MATLAB (MathWorks R2016b). The calibration 
quality was tested using the absolute pixel error between the 
reference coordinates on the depth image and the transformed 
2D gaze coordinates.  To test the accuracy of the 3D gaze-point 
estimation, a grid of equally spaced 18 points, covering a 
workspace of 1m (width) x 1m (height) x 3.5m (depth) were 
predefined. The grid contained two height layers (15 cm and 
75 cm above the ground). These heights were selected as they 
were assumed to represent the most manipulative areas in daily 
life activities (standard dinner table height ~ 76 cm) and 
wheelchair navigation (floor conditions). Five subjects were 
used to test the 3D gaze-point estimation. The calibration 
process was carried out for each subject according to the steps 
as mentioned above. The calibration was repeated until the 
average pixel error during the alignment step was less than 5 
pixels. The subjects were told to fixate on a 2 cm radius filled 
circle drawn on a 60 cm x 30 cm box, which was placed at 
predefined locations in randomised order. The 3D coordinates 
at the gaze point were recorded for 2 seconds while the user 
fixated on the filled circle on the box. A total of 30 testing 
points for each subject (15 locations at each height level) were 
recorded and analysed. Absolute errors in three dimensions, as 
well as the Euclidean distance error, are reported in the results 
section. 

D. Autonomous navigation and obstacle avoidance 
architecture 

The AI architecture (Fig. 2.) was built on a 2D online-
SLAM algorithm to both create the map and perform 
localisation in real-time. The wheelchair localisation was 
improved by using the odometry obtained from the online-
SLAM instead of the wheel odometry. The loop-closure 
technique employed by the deployed mapping and localisation 

algorithm provides a 2D SLAM that is computationally 
inexpensive but efficient [17]. This also allows the wheelchair 
to operate using a single 2D lidar. The nodes entirely native 

for this architecture are cmd_to_wheelchair_drive; 

natural_gaze_intention_decoder; and the 

gaze_monitor. We developed these nodes using C, Matlab, 
and Python respectively for ROS. Configuration files were 
then written for the remaining nodes to integrate them with the 
hardware and system architecture. Navigation_stack was 
utilised for obstacle detection and path planning. The 

costmap_common_params was configured to have a 

maximum obstacle_range of 2.5m (the furthest that 
wheelchair could be from an obstacle in the testing 

environment) and an inflation_radius of 0.7 m to 
incorporate the size of the wheelchair base. 

E. Integration of Autonomous Navigation architecture with 
Gazepoint estimation 

 

    Figure 2. Diagram showing the A.Eye Drive system architecture. The 
elements in red were hosted on a windows machine, and the elements in 
blue were hosted on a Linux machine. Grey elements are ROS topics. 

The autonomous navigation architecture was then 
incorporated with the gaze-based destination commands. The 

natural_gaze_intention_decoder node publishes 

predictor_msgs and object_identifier_msgs, i.e. 
whether the user intends to interact with the object of interest 
within the field of view.  The gaze_monitor node subscribes 
to these messages, and the gaze-based commands are 

published in ROS message (wheelchair_nav/gaze) 
received from Windows client. The 
gaze_to_move_base_goal node subscribes to this message 

and publishes the goal pose as a move_base_msg to the 

move_base node. Once a path to the goal has been computed, 
the required velocity commands are sent to the 

cmd_vel_to_wheelchair_drive node which is the driver 
for the wheel motors. All of these processes were achieved 



  

online. Equations 1 and 2 were used to determine the wheel 
speeds from the wheelchairs’ linear and angular velocities 
represented. This kinematic model was found to be suitable for 
this 6-wheeled wheelchair (2 main, 4 castor wheels).  

𝑉𝑟𝑖𝑔ℎ𝑡 = (
𝜔

4
) + 𝑉𝑥                       (1) 

𝑉𝑙𝑒𝑓𝑡 = 2 . 𝑉𝑥 − 𝑉𝑟𝑖𝑔ℎ𝑡                       (2) 

where Vright is the right wheel velocity, Vleft is the left wheel 
velocity, Vx is the wheelchairs’ linear velocity, and ω is the 
wheelchairs’ rotational velocity. These velocities were 
prevented from assuming high values that might put the user 
at risk; however, an emergency stop was added as a precaution. 

III. RESULTS AND DISCUSSION 

A. 3D Gaze-based Destination Estimation 

 

    Figure 3. Absolute errors in three dimensions. Depth dimension 
contains the highest variation due to missed targets resulting in overshoot. 

 

    Figure 4. The Euclidean error and error variation increase with the 
depth dimension. Depth distances are measured assuming the RGB-D 
camera position as z = 0. 

For validating the alignment of the eye-tracker scene and 
the RGB-D point cloud map, the calibration accuracy was 
measured in units of absolute pixel error between reference 
coordinates on the depth image and the transformed 2D gaze 
screen coordinates. In result of the experimentation with 5 
subjects, the average absolute pixel error was 1.38px ± 0.46px 
and 2.69 px ± 0.49px in x and y dimensions respectively. Fig. 
3. shows the absolute errors obtained in three dimensions from 

the grid experiment performed on five subjects. The overall 
Euclidean error was 25.0 cm ± 20.2 cm. The errors in 3D 
destination estimation were 14.2 cm ± 10.3 cm in x dimension, 
10.5cm ± 2.94 cm in y, and 11.3 cm ± 18.3cm in z dimension. 
As the largest variation is observed in the depth dimension, the 
Euclidean error was investigated across the depth dimension 
and is plotted in Fig. 4. to show the increase in the Euclidean 
error as the target point distance increases. As seen from the 
boxplot, the magnitude and the frequency of outliers increase 
with the depth dimension. This is due to the target object 
occupying a smaller number of pixels in the image, and 
therefore, when missed, results in significant overshoot values. 
This also shows the sensitivity of the alignment procedure to 
the depth dimension. Further work will explore 3D calibration 
procedures for better alignment of sensor field-of-view. 
Overall, the average Euclidean error was within the box 
dimensions (60cm x 30cm) used as the target object, proving 
that the destination estimation needs improvement for more 
accurate destination decoding, however still practical in the 
3.5m (width) x 1m (width) x 1m (height) workspace.  

B. Autonomous Wheelchair Performance Evaluation 

To find the optimal specifications for safe use of the 
wheelchair, we investigated three parameters: planner 
frequency, position tolerance and orientation tolerance. These 
parameters were first evaluated in three different tasks by 
measuring the time it takes the wheelchair to reach the 
destination. For the first task, the wheelchair was instructed to 
travel 4m ahead in the x-direction.  In task 1 (n=5), the 
wheelchair was unobstructed by any obstacles. For task 2 and 
3 (n=5), the wheelchair was made to move 5m ahead in the x-
direction. In task 2, a static obstacle of height 2.5m and width 
0.5m was placed 2.5m ahead of the wheelchair; and in task 3, 
the static obstacle remained in the same position and another 
person, acting as a dynamic obstacle, of height 2m and width 
0.5m was instructed to walk by the wheelchair and stand near 
the static obstacle.  It was found that planner frequency of 5Hz 
[out of 20, 10, 5 Hz], position tolerance of 0.13m (13 cm) [out 
of 100, 50, 25, 13, 6 cm] and orientation tolerance of 0.06 
radians (3.4 degrees) [out of 1, 0.5, 0.25, 0.125, 0.0612, 0.0306 
radians] gave the best performance. As these parameter values 
corresponding to the lowest travel times. Based on these 
results, the parameters for the system architecture were 
optimised, and task 4 (n=6) was performed. In task 4, the goal 
for the autonomous wheelchair was defined as to move from 
A to B, within different dynamic environment scenarios, i.e. 
the number of static and dynamic obstacles and their position 
were changed for each run to simulate different routes but 
within the same room for the same start and end goal 
coordinates.  Task 4 results - Time taken to move from A to B 
varied for different routes. However, the autonomous 
wheelchair was able to detect both static and dynamic 
obstacles with perfect accuracy with using optimised 
parameters. Next, a questionnaire about the comfort level was 
provided to 3 volunteers (Two quadriplegic and one 
paraplegic) who showed interest in evaluating our system 
further to a demonstration.  State of the passenger during 
autonomous navigation was recorded. Based on the 
observations, the torque during turning was reduced; voltage 
output to the wheel motors was adjusted based on the user’s 
weight; a moving average window filter was added to the 



  

cmd_vel to the wheelchair_drive node to smoothen 
wheelchair transmission.  

D. A.Eye Drive Evaluation  

The 3D gaze-based destination defining module was then 
integrated with the wheelchair to test the semi-autonomous 
functionality. The wheelchair was positioned between two 
static obstacles of height 2.5m and approximately 2m ahead of 
the chair. The wheelchair participant’s (subject) intention to 
get to the chair that the second participant occupied (on the far 
left) was decoded. This was done to mimic the potential use-
case when a wheelchair user would like to pull up beside a 
table to engage in an activity at the table, e.g. a luncheon or 
game. The task was carried out (n=3), and it took 29±28s for 
the gaze_monitor to detect the intention and publish it. This 
variance was due to intention detection node running at a much 

higher rate than the rate the gaze_monitor could publish. 
This meant that many intentions were missed and hence the 
system has to be as responsive as the system presented in [1]. 
When an intention has successfully detected the chair was able 
to navigate to the destination as illustrated in Fig. 5. The 
navigation goal set was locked until the wheelchair arrived at 
the destination, ignoring all other intentions during the 
navigation. For this task, the final orientation of the wheelchair 
was always set to its initial orientation. This meant that the 
wheelchair would stop, facing the table, rather than beside it 
as desired. The best average lap time yielded for task 1 was 
(23s ± 1s. For the range of goal distances that were tested, the 

wheelchair typically chose cmd_vel values between 0.28m/s 
and 0.37m/s. At the lower end of this spectrum, 0.28m/s, we 
would expect the lap time for a 4m course to be approximately 
14s. The wheelchair was capable of localising itself efficiently 
for velocities within the range mentioned above. Future work 
should involve improving system architecture to achieve high 
throughput intention decoding.   

Figure 5. Picture showing the layout for gaze incorporated navigation. 
The wheelchair occupant’s intention to get to the chair on the far end (left) 
is decoded. The wheelchair reaches to the chair, which is the destination 
defined by the user while avoiding static obstacles along the way (right). 

IV. CONCLUSION 

Such smart technology shows much promise to give people 

with severe disabilities the best quality of life possible, and the 

opportunity to maximize their human potential as it takes into 

account of the human factors, the importance of natural 

interfaces in assistive robotics [18] and has the ability to be 

mounted on any powered wheelchair [19]. Finally, the 

technology will be evaluated systematically in end-users. 
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