
1 

Dynamic Response of Steel Monolithic Plated Structures 

Subjected to Localised Blast Loads 

By 

Navid Mehreganian 

B. Eng. & Arch., MSc. (Eng. & Arch.), MSc.

A thesis submitted for the partial fulfilment of the requirements for the degree of 

Doctor of Philosophy (PhD) and the Diploma of Imperial College (DIC) to the 

Department of Civil and Environmental Engineering, Imperial College of Science, 

Technology and Medicine, London SW7 2AZ, United Kingdom 

 



2 
 

September 2018 

 

DECLARATION OF ORIGINALITY 

I confirm that this thesis is a result of my own work carried out in the department of Civil and 

Environmental Engineering at Imperial College London. Appropriate references and citations 

wherever I described, quoted from or referred to other works, whether published or unpublished, 

have been acknowledged and cited. The work in this thesis is not the same as any other work 

submitted in any institution for the award of my degree. 

COPYRIGHT DECLARATION 

The copyright of this thesis remains with the author and is made available under a Creative 

Commons Attribution Non-Commercial No Derivatives license. Researchers are free to copy 

distribute or transmit the thesis provided they attribute it, do not use it for commercial purposes 

and do not alter, transform, or build upon it. For any reuse or distributions, researchers must 

make clear to others the license terms of this work. 

 

Navid Mehreganian 

 



3 
 

ABSTRACT 

This thesis investigates the nonlinear dynamic response of the steel monolithic square plated 

structures due to localised blast loads, such as those emanating from close-in charges. Such target 

plates are assumed to be made of novel high strength ARMOX steel material types manufactured 

by SSAB® as well as conventional mild steel.  

A detailed review of earlier works in the literature is presented on the experimental, 

numerical and theoretical methods of analysis to predict the response of beams, circular and 

quadrangular plates subject to blast and impact loads. The large scatter of data from the above 

analyses has been cast in dimensionless forms to correlate between the methods of predicting the 

response. The review concludes that, the choice of material type as well as the intrinsic 

complexity associated with the load type make the response of the structure inherently different 

to those of plated elements made of more conventional grade metals.  

Based on the state-of-the-art Digital Image Correlation experimental testing conducted in the 

Blast Impact and Survivability Research Unit in University of Cape Town, various proposed 

numerical models have been validated. These include advanced techniques to model the fluid 

structure interactions. This led to discerning the parameters that influence the plastic response. 

Empirical relations in dimensionless form have been proposed which pass through most 

scattered data from numerical and experimental results. A prompt observation is that assessing 

the plastic response of the structures to localised blasts necessitates understanding the 

underlying patterns and laws of plastic response. Such understanding is gained by theoretical 

methods with idealisations of the material or the structural response.  

This leads to theoretical studies using the principles of virtual velocities assuming constitutive 

framework of limit analysis, i.e. rigid, perfectly plastic behaviour. While appreciating the 

limitations of current theoretical models, a comprehensive approach is undertaken to explore the 

response of the plates of various boundary conditions, distinguished in terms of their thicknesses, 

i.e. thick, moderately thick and thin plates. Furthermore, the nonlinear elastic response of the 

plates has been examined, leading to a unified theoretical solution of elastic-perfectly plastic 

systems.  

On the basis of the existing work in the literature, a method to mathematically describe the 

parameters that characterise the blast load itself and the structure impacted whereupon with a 

given charge geometry, stand off and material type is presented and validated with numerical 

models. Based on the dimensionless study, single parameters to predict the rupture impulse has 

been determined.  
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Nomenclature 

 

 

  

The following symbols are used throughout this thesis:   

Latin Upper Case Greek Lower case 

𝐴𝑖 − 𝐺𝑖 Loading parameters, various 𝛼𝑏 Boundary condition parameter; [1] 

�̅� Elemental area; [𝐿2] 𝛼 Exponential pulse shape decay constant; [𝑇−1] 

𝐵 Rectangular plate side width; [𝐿] 𝛼𝑒 Localised blast elastic parameter; [1] 

𝐵1′ 
Johnson Cook hardening parameter; 

[𝑀𝐿−1𝑇−2] 
∝ Lower bound Static collapse coefficient; [1] 

𝐶0 Dimensionless elastic load parameter; [1] 𝛽 Upper bound Static collapse coefficient; [1] 

Cp 
ideal gas specific heat capacity at constant 

pressure; [𝐿2𝑇−2𝐾−1] 
𝛽0 Reflected impulse coefficient; [𝐿3] 

Cv 
ideal gas specific heat capacity at constant 

volume; [𝐿2𝑇−2𝐾−1] 
𝛾𝑥𝑦 Transverse shear strain [1] 

𝐷𝑒  Disc charge diameter; [𝐿] 𝛾′ Critical load parameter; [1]  

𝐷𝑛 Johnson’s damage number; [1] �̅� Specific heat capacity ratio; [1]  

𝐷𝑟  Flexural rigidity; [𝑀𝐿2𝑇−2] 𝛿1 Dynamic blast load parameter;  

�̇� Internal Energy dissipation rate;[𝑀𝐿2𝑇−3] 𝛿𝑖𝑗
′  

Kronecker Delta; 

𝐷 Cowper-Symonds coefficient; [𝑇−1] 𝜖 Dimensionless perturbation parameter; [1] 

�̇� External Work rate;  [𝑀𝐿2𝑇−3] 𝜖1 Localised impulsive velocity coefficient; [𝐿] 

𝐻 Plate characteristic thickness; [𝐿] 𝜀𝑖𝑗 Strain tensor; [1] 

𝐼, 𝐼∗ Impulse density [M𝐿−1𝑇−1] ε̇ plate strain rate tensor; [𝑇−1] 

𝐼𝑖 , 𝑖𝑠 Incident impulse [M𝐿𝑇−1] ε plate strain tensor; [1] 

𝐼𝑝, 𝐼 Transmitted impulse to the plate [M𝐿𝑇−1] 𝜀𝑓 strain at tensile fracture; [1] 

𝐼𝑟  Rotatory inertia; 𝑀𝐿2] 𝜀𝑒
.

 Equivalent strain rate; [𝑇−1] 

𝐿 Plate characteristic side length; [𝐿] 𝜂 Dynamic load factor [1] 

𝑀0 
Maximum moment of the plate per unit  

length; [𝑀𝐿𝑇−2] 
𝜂𝑐𝑟𝑖𝑡 Critical dynamic load factor; [1] 

𝑀 
Plastic bending moment per unit length; 

[𝑀𝐿𝑇−2] 
𝜃𝑖
.

 Rotational (angular) velocity at the outer 

boundaries of zone i (𝑖 = 1,2); [𝑇−1] 
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𝑀𝑒 mass of explosive, [𝑀] 𝜃3
.

 Rotational velocity across the inclined plastic 

hinge; [𝑇−1] 

𝑁 
Plastic membrane force per unit length; 

[𝑀𝑇−2] 
�̇�𝑥 Curvature rate in x direction; [𝑇−1] 

𝑄𝑒  specific heat energy [L2T−2] �̇�𝑦 Curvature rate in y direction; [𝑇−1] 

𝑁0 
Maximum plastic membrane force per unit 

length;  [𝑀𝑇−2] 
�̇�𝑥𝑦 Curvature rate in 𝑥𝑦 direction; [𝑇−1] 

Γ Elastic load parameter;  𝜆 Dimensionless kinetic energy; [1] 

𝑄 
Transverse shear force per unit length; 

[𝑀𝑇−2] 
𝜆̅ Dimensionless kinetic energy; [1] 

𝑄0 
Maximum transverse shear force per unit 

length; [𝑀𝑇−2] 
μk Dynamic viscosity of air; [𝑀𝐿−1𝑇−1] 

𝑃0 Ambient pressure; [𝑀𝐿−1𝑇−2] 𝜇 Areal density; (= 𝜌𝐻); [𝑀𝐿−2] 

𝑃𝑟  Reflected overpressure; [𝑀𝐿−1𝑇−2] 𝜈𝑒 Poisson’s ratio [1] 

𝑅 Circular Plate radius [𝐿] 𝜈 Inverse slenderness ratio (𝐿/𝐻) [1] 

ℛ𝑛 Response number; [1] 𝜉(𝑡) Active plastic hinge generalised coordinate; [1] 

𝑆𝐷 , 𝑑 Stand-off distance; [𝐿] 𝜉0 Stationery plastic hinge generalised coordinate; 

[1] 

𝑇𝑖  Duration of the 𝑖𝑡ℎ phase; [𝑇] 𝜌, 𝜌𝑝 
Material (plate) density; [𝑀𝐿−3] 

𝑇𝑓 End of motion time; [𝑇] 𝜌𝑠 Shock density; [𝑀𝐿−3] 

�̅�𝑓 dimensionless final time of motion 𝜌𝑒 Explosive (initial) density; [𝑀𝐿−3] 

𝑈𝑇 Specific energy to tensile fracture; [𝑀𝐿−1𝑇−2] 𝜌0, 𝜌𝑎 Fluid (air) density; [𝑀𝐿−3] 

𝑈(𝑖, 𝑗) Strain energy density; [𝑀𝐿−1𝑇−2] 𝜎0 Static plastic flow stress; [𝑀𝐿−1𝑇−2] 

𝑉1 Impulsive velocity of uniform blast; [𝐿𝑇−1]   

𝑉0 Impulsive velocity of localised blast; [𝐿𝑇−1]   

𝑉𝑝 plate volume; [𝐿3]   

𝑊𝑖̈  
Maximum transverse acceleration at the  𝑖𝑡ℎ 

phase; [𝐿𝑇−2] 
  

𝑊
.

𝑖 
Maximum transverse velocity at 𝑖𝑡ℎ phase; 

[𝐿𝑇−1]   

𝑊f 
Maximum permanent mid-point transverse 

displacement; [𝐿] 
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Latin Lower Case Greek lower case (Ctd.) 

f(z), g(z) Moment parameter function; [𝑀𝐿𝑇−2] 𝜎′𝑦 
Dynamic flow stress; [𝑀𝐿−1𝑇−2] 

𝑎 Exponent (loading parameter); [1] 𝜍 normalised third deviatoric invariant; 

b Loading Exponent; [𝐿−1] 𝑡𝑑, 𝜏 Duration of the pulse; [𝑇] 

𝑑𝑖 
Ordinary Differential Equation constant; 

[𝑀𝐿𝑇−2] 
𝜏∗ 𝜇𝑉1𝐿

2/𝑀0 [𝑇] 

𝑖 Dimensionless impulse; [1] 𝜓𝑠
′  energy absorbing effectiveness factor; [1] 

�̅�𝑖 dimensionless moment normal to 𝑖 [1] 𝜑 Characteristic angle; [1] 

𝑚𝑇𝑁𝑇 TNT equivalent mass; [𝐿] 𝜙𝑐, 𝜙𝑞𝑙 Non-dimensional impulse parameter [1] 

𝑝1(𝑟), 

𝑝(𝑥, 𝑦) 
Spatial part of pressure pulse load; [𝑀𝐿−1𝑇−2] ϕ Airy stress function; [𝑀𝐿𝑇−2] 

𝑝2(𝑡) Temporal part of pressure pulse load; [1] 𝜁 Stress triaxiality; 

𝑝𝑐 Static plastic collapse pressure; [𝑀𝐿−1𝑇−2] 𝑣𝑐 Shock propagation speed; [𝑀𝐿−1𝑇−2] 

𝑝0, 𝑝𝑠 
Maximum plastic collapse overpressure; 

[𝑀𝐿−1𝑇−2] 
𝑣0 Sound speed; [𝑀𝐿−1𝑇−2] 

𝑟𝑒  Loading constant (central) zone radius; [𝐿] 𝜔0 𝑟𝑒/𝐿 ; [1] 

𝑟 characteristic radial distance from centre; [𝐿] 𝜔1 Pulse factor of pattern (A);  [𝑇−1] 

tA Arrival time of the blast pressure; [𝑇] 𝜔 Pulse factor of pattern (B); [𝑇−1] 

𝑤𝑖̇  Transverse velocity at 𝑖𝑡ℎ phase; [𝐿𝑇−1] 𝜔3 Elastic vibration frequency of phase 2 [𝑇−1] 

�̈�𝑖 Transverse acceleration at 𝑖𝑡ℎ phase; [𝐿𝑇−2] 𝜔𝑒̅̅̅̅  Pseudo vibration frequency; [𝑇−1] 

𝑤𝑖  
Generalised transverse displacement at 𝑖𝑡ℎ 

phase; [𝐿] 
  

�̅� Dimensionless transverse displacement; [𝐿]   

�̅�𝑓 
Dimensionless maximum final transverse 

displacement; [L] 
  

𝑧 Characteristic generalised coordinate; [1]   

 

 



20 
 

1 CHAPTER 1 

1.1 PREAMBLE 

The main objective of this chapter is to provide a context for the objectives addressed and 

discussed throughout this thesis. It will outline the organisation of the thesis as well as the aspects 

investigated in each chapter.  

1.2 BACKGROUND 

In today’s world, events such as 9/11, the recent European bombings (2015-2017) and 

Buncefield [1] have caused public awareness of explosive threats to increase dramatically. An 

explosion event, either accidental (Buncefield event) or deliberate (terrorist attacks) can cause 

catastrophic damage to structure and loss of life. Engineering structures are particularly 

vulnerable to extreme shock wave ensued by the blast, as these would induce large deformation 

and potentially rupture through the structural elements.  

In response to the risk of explosions, efforts have been made to improve the response of civil 

infrastructures and transportation vehicles to air-blast loading. It is imperative to understand the 

loading arising from explosive detonations and the ensued damage sustained by the proximal 

structures.  

1.3 BLAST LOAD 

A blast load may occur due to several scenarios, terrorist attacks by means of conventional 

bombs concealed in trucks/vehicles, gas explosions from pressure vessels or Improvised 

Explosive Devices (IED), which can be sourced from proximal (near field) or distal (far field) 

charges. In the case of the former, the blast source, such as IED, is at proximity of the target which 

induces localised elastic and plastic floorboard deformation on, for example, a vehicle hull, 

transferring high axial loads to the occupants. The localised effects of the blast wave generate 

further failure modes in contradistinction to the blasts from distal charges [2]. The mechanical 

shock through the material due to the local effects of blasts is much higher than the global effects 

(5000m/s compared to 300m/s), highlighting the significance of the localised blast loads on 

structures and various other fields of engineering (i.e. aeronautics, forensics, military).  

Close in charges from Anti-Vehicle and Anti-Personnel mines not only damage the 

infrastructures but also the vehicles and personnel. The military Mine Resistant Ambush 

Protected (MRAP) in Rhodesian war (1972-1980) sustained fatality rate of 1.2% compared to 

11.4% from unprotected vehicles [3]. In Croatia war (1991-1995) an estimated 0.4 million AV 
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mines laid [2]. An AV mine, apart from risk of injury or fatalities, can obstruct the movement 

transportation of goods, supplies and people. The mechanical shock and vertically channelled 

impulse would affect the occupants physically and psychologically. Furthermore, MRAP vehicles 

designed to shield the effects of blast are expensive and require maintenance. Thus, they need to 

be manufactured from materials with sufficient robustness, strength and durability.  

Furthermore, in the case of shallow buried exploives, the blast phenomenon combined with 

the impact of the sand would add additional momentum to the target interface. The impact of the 

soild particles depends on the soil type, physical properties such as cohesion, moisture content, 

porosity, as well as the explosive size and shape. The combined influence of impact and localised 

blast loading of landmines is complex and entails soil-structure interaction, soil fragmentation 

and high velocity impacts. Thus, the scope of the thesis only entails the air-blast loads, with 

particulat focus on the localised blast loading and their impacts on the structures.   

1.4 MATERIAL TYPES 

Careful material selection can greatly assist in providing much needed blast protection for 

vulnerable structures. The designers are concerned with the choice of material on two prima facie 

factors: cost and weight. Conventional steel is still one of the most common materials used not 

only in structures but also on armoured vehicles, however, its low cost is offset by limited 

robustness as well as the increased weight. Heavy weight design poses challenges to the MRAP in 

terms of navigation due to high centre of gravity, while the weight of the vehicle inevitably 

imposes pressure on poor ground such as sand or mud one. Although the composites offer 

lightweight at the same robustness, the high cost associated with the manufacture and life-cycle 

of such materials limits their use. 

With the recent advancement in production and tailored metallurgy of high strength armour 

graded steel, the demand for the design of blast and ballistic resistant armour vehicles is ever 

increasing. Modern armour graded steel panels, are a viable potential candidate, due to the 

offered cost-effectiveness, robustness and resilience at reduced thickness [4]. For example, an 

ARMOX 370T plate cost £18.7/kg compared to composites £272/kg [5]. Some military standards, 

such as US specifications [6]–[8] provide design guide for the blast protection of various grades 

of steel, with the basis of conventional design, unchanged since the World War II, on hardness and 

Charpy fracture toughness [9]. The stagnation of the design criteria fails the designer to effectively 

stipulate the appropriateness of these materials in the specifications.  
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1.4.1 Properties of Armour steel 

• Strength 

The relation between the armour steel strength and its penetration resistance is complex and 

not necessarily dependent on its yield strength. A complex relation exists between the yields 

tress, flow stress, strain rate and temperature due to the morphology of the carbide particles in 

the metal matrix. 

Whittington examined the ductile fracture morphology of Rolled Homogenuous Armour 

(RHA) steel at 25 at 1𝑚𝑠−1 to 1000𝑠−1  and showed that the increase of strain rate resulted in 

smaller ductile void formations at low temperatures. Conversely, the increase of temperature on 

tests of quasi static strain rate range resulted in higher void formation and growth. At high rates, 

the fracture surface exhibited larger voids than the low rate fracture surface, but the voids were 

smaller in size and depth [10] 

• Hardness 

Hardness is defined as the resistance of the solid to plastic flow deformation and depends on 

composite interactions of ductility, yield strength and flow stress. Material hardness is a quasi-

static measure of yield pressure for specific indentor geometry, related to the initiation of the 

plastic flow. The flow stress of armour steel materials is impervious to the loading rate and the 

hardness does not mitigate fragmentation penetrations. The flow curve of armour steel is a 

combination of the flow stress and the thermal softening, the flow increase due to strain rate 

hardening is offset by the decrease due to thermal softening [11].  

• Toughness 

The utility of a material for resisting blast and ballistic applications depends on how it 

responds in presence of high three-dimensional local stresses. The fracture toughness of material 

depends also on ductility, which armour steel grades lack, resulting in rapid micro crack 

propagation.  

1.5 AIMS AND OBJECTIVES 

In light of the complexities associated with the localised blast type and the dearth in 

assessment of modern steel panels, this research aims to propose numerical and theoretical 

methods to delineate the response of ductile metallic plates, with the particular focus on armour 

steel and mild steel, to such pressure loads. The various methods of analyses in this thesis 

highlight a unified systematic approach on the method of design of plated system against localised 

blasts, which aids the designer on the choice of plate. Thus, the objectives of this research are set 

out as: 
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• To identify the key subjects of interest for further investigations in the scope of this 

thesis by a study of the literature related to the subject. 

• To compare various numerical methods in terms of accuracy and practicability, to 

predict the response of monolithic steel square plates to range of blast loads from high 

explosives. The numerical models aim to correlate with the experimental models on 

the transient response of the monolithic plates subject to localised blast loads, as well 

as the theoretical models proposed in this thesis. 

• To investigate the mechanism of fluid structure interaction in localised blasts and 

accordingly the parameters affecting such phenomenon and their reliability on 

estimating the blast response of the plates. 

• To carry out rigorous analytical investigations on the performance of monolithic 

plates subjected to generic blast load which is predictive of the blast performance of 

such plates from uniform to localised blasts.  

• To understand the mechanism behind the blast load and to develop a theoretical 

description of the blast load scenario involving the various parameters that 

characterise, with respect to the spatial and temporal sub-functions, of the localised 

blast load 

• To propose a design criterion predictive of the minimum impulse that ensues rupture 

on the monolithic plates, using the proposed analytical and empirical relations, given 

a priori knowledge of load (charge mass, stand-off) and geometry of target.  

• To compare the experimental, numerical and analytical models carried out in the 

research, thus to propose method which unifies these various models.  

1.6 ORGANISATION OF THE THESIS 

Following the introduction, a review of the existing work in the literature is discussed in 

Chapter 2, identifying the key aspects where dearth of research exists. The review structures a 

framework for the problems relevant to the objectives of this thesis, which are addressed in the 

subsequent chapters. 

Chapter 3 examines the methodology of the numerical works as well as the small-scale 

experimental works conducted at BISRU.  

In Chapter 4 the results of numerical and experimental results are presented. The proposed 

numerical models were verified against experimental models; together were cast in 
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dimensionless form to correlate with the available theoretical models in the literature. Empirical 

ansatzes were proposed which circumscribed the large scatter of experimental/numerical data.  

Chapter 5 describes a theoretical analysis for the blast assessment of monolithic, ductile 

metallic plates. The theoretical bounds of parameters and limitations were proposed using the 

constitutive framework of limit analysis. The static plastic collapse, static admissibility and the 

position of incipient plastic hinge were investigated.  

A direct application of the rigid-perfectly plastic analysis in Chapter 5 is presented in Chapter 

6. This chapter, in the first part, extends the limitations of plate response from the sole action of 

bending moments to the combined action of bending moments and membrane forces. Plates of 

various boundary conditions were investigated, the theoretical results, cast in dimensionless 

form, corroborated with the various experimental and numerical results from Chapter 4 as well 

as the results from the literature. The second part of this chapter examines the nonlinear elastic 

behaviour of steel plates in the circumstances the assumptions of rigid-perfectly plastic model 

are violated. The combined results of the two parts are capable of predicting the complex elastic-

plastic behaviour of the plates while the nonlinearities brought about by the influence if geometry 

changes and material yielding were retained in the analysis.   

Chapter 7 extends the theoretical model of chapter 5 to the cases of thick plates where the 

effects of transverse shear is considerably large. It is anticipated that the analytical models 

provide a platform for virtual testing of scenarios involving blast loads of different parameters to 

assess the critical scenarios suitable to be studied further using experimentations.  

In Chapter 8 a generalised method to delineate the characteristics of the blast using the 

dimensional analysis has been examined. The rupture performance of the plates was discussed 

and a model to predict the rupture threshold of the plate, irrespective of the material type, was 

presented. The ductile damage model of armour steel plates is examined as supplementary data 

to the experimental studies on armour steel.  

Finally, Chapter 9 presents a summary and conclusion of the thesis, followed by 

recommendations for future work relevant to the topics of this thesis.  
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2 CHAPTER 2 

Literature review 

This chapter presents a review of the previous works in the literature which are of 

significance to the work of the thesis. The review stresses the aspects of the problems which are 

dealt with in the subsequent chapters to structure a context for the problems in this thesis. It 

should be noted that, it is not in the scope of this thesis to encompass an exhaustive and wide-

ranging review of all the previous work of blast loads on structures, rather a critical and 

comprehensive overview of the previous studies most relevant to this work. 

It bears emphasis that each of the subsequent chapters entail a brief review of the literature 

that is of primary use to that chapter and is disregarded here to avoid repetition. Thus, the main 

objectives of this chapter include: 

• An introduction to the physics of the blast phenomenon and the parameters that affect 

the blast load accordingly. 

• Effect of extreme blast and shock loads to the elementary structural systems, i.e. 

beams and plates. 

• Failure mechanisms of isotropic, ductile materials due to the blast loads. 

• An overview of the high strength steel materials and the preference of these materials 

over conventional steel.  

• Dimensionless analysis of blast loaded parameters and structural response to 

impulsive load. 

2.1 PHYSICS OF BLAST LOADING 

A blast load is typically referred to three categories of explosion, namely as nuclear, physical 

or chemical events as follows [12].  

1. Nuclear explosion: the energy released arises from nuclear interactions, the 

redistribution of protons and neutrons results in formation of different new nuclei, 

during either ‘fission’ or ‘fusion’ processes.  

2. A physical explosion could arise in three ways, (i) catastrophic failure of compressed 

gas or pressure vessels, eruption of volcano or (iii) violent mixing of different 

substances at extreme temperature difference, e.g. hot liquid with cooled fluid, the 

explosion results from rapid conversion of states to vapour the cooled fluid. 
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3. The chemical explosion involves rapid oxidation of the fuel elements (i.e., carbon and 

hydrogen) which are already contained within the explosive compound. Chemical 

explosion can either be deflagration or detonation type, as follows. 

During the deflagration process, the explosive compound consumes oxygen as it propagates 

(e.g. propagation of flame in a gas explosion) with subsonic speed. Due to the rather slower 

chemical reaction with oxygen, deflagration is characterised with much smaller pressure and 

flame propagation velocity than detonation.  

In the event of detonation, (e.g. explosion of high explosives such as TNT), the explosive 

material will decompose violently rapidly, generating a substantial heat with supersonic 

exothermic front through the medium, which is driven by a shock front that propagates through 

the medium (viz. air or water). The presence of air is not necessary as the required oxygen is 

present within the explosive compound. The inertness and stability of the explosive compound 

determines its usefulness, e.g., high explosives such as composition-C4 (PE4) are more useful due 

to higher stability to friction at room temperature, while fulminated mercury is somewhat 

unstable and sensitive to friction. Furthermore, the duration of detonation is generally much 

lower than that of deflagration and the rise time to maximum pressure for detonation is virtually 

zero in contradistinction to the finite rise time for deflagration processes. 

The detonation wavefront depends on many parameters characterised by the Rankine-

Hugoniot relationships [12], [13], viz., the detonation velocity, the air density behind the 

wavefront and the maximum pressure. The potential heat and detonation pressure of high 

explosives may be estimated using Chapman-Jouguet conditions [14]. For example, the 

detonation pressure of TNT and Composition-B are 210𝑘𝑏𝑎𝑟  and 294𝑘𝑏𝑎𝑟 , respectively, the 

detonation temperatures of 3511𝐾 and 3918𝐾, respectively, while the detonation velocities are 

6930 𝑚𝑠−1 and 7920𝑚𝑠−1, respectively [15]–[17]. A most prevalent expression to describe the 

state variables (energy, volume, temperature and pressure) of the detonation process is the 

Jones-Wilkins-Lee (JWL) equation of state (EOS). Further discussion is presented in Chapter 3. 

The propagation of the blast wave depends on the medium the wave advection occurs. In air 

blast, the flow of gaseous products are assumed inviscid thus the viscous forces are not 

considered for explosive modelling [13]. In underwater explosion, high propagation velocity of 

water (due to instantaneous compression) levels off rapidly. In this study, only the air blast 

explosion is considered.  
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Figure 2-1- JWL EOS.  𝑷𝟎  and 𝑷𝒔𝒐  represent the 

atmospheric pressure and the absolute pressure 

 

A schematic of the pressure profile is defined by Friedlander Equation, as in Figure 2-1. The 

main characteristics of the blast are  [18], [19]: 

• The arrival time 𝑡𝐴, determined by the delay time from the beginning of detonation.  

• Following the detonation of the explosive, the explosive products interact with fluid 

(air) particles, the air particles undergo instantaneous rise in the pressure above the 

ambient pressure. The gauge pressure 𝑝𝑠 = 𝑃𝑠𝑜 − 𝑃0 is defined as the peak incident 

overpressure.  

• Positive phase blast duration 𝑡𝑑 , as the blast wave expands, the pressure decays 

exponentially, back to the ambient pressure 𝑃0  

• Beyond 𝑡𝑑, the pressure decays further to a negative pressure. The negative pressure 

is due to momentum conservation of air; the overexpansion of air causes the absolute 

pressure at the tail of blast fall below the atmospheric pressure. This reduction 

generates a reversed flow back towards the centre of detonation.  

The idealised pressure wave is affected by the morphology of the medium through which 

the advection of wave occurs [19]. The negative phase depends on the stand-off, charge 

weight and the explosive topology. The negative phase is more significant for blasts from 

distal charges, as it gives rise to counter intuitive behaviour where the Reversed Snap 

Buckling (RSB) causes final configuration of the structure to be in opposite direction to 

the incident wave [20]. However, the negative phase becomes insignificant with the 

decrease in the proximity of blast which is not examined in this thesis.  

Depending on the proximity of the blast source, the loading can be classified as global (e.g. far-

field explosions) or localised (e.g. buried land mines). While researchers have proposed a few 
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definitions for the sake of classification of loading depending on certain attributes [21], [22], the 

concern has been regarding the structural response rather than the definitions. 

2.2 BLAST LOAD PARAMETERS AND SCALING LAWS 

Whether the type of blast is localised, i.e., buried land mines, or globalised (far field 

explosions), the structure may either deflect some of the blast wave, or large inelastic 

deformation, partial or complete tearing and shear failure will occur. However, the damage of the 

structure would depend on a number of parameters, namely the impulse, the peak pressure load, 

the stand-off distance and the duration of the pressure. If the duration of blast is significantly less 

than the structures natural period, the structure’s damage is directly dependent on the level of 

the impulse. 

The positive phase of the blast pressure can be described with the Friedlander’s expression 

as: 

𝑃(𝑡) = 𝑃0 + 𝑝𝑠 (1 − (
𝑡 − 𝑡𝐴
𝑡𝑑

) 𝑒
−
𝛼(𝑡−𝑡𝐴)

𝑡𝑑 ),    𝑡𝐴 ≤ 𝑡 ≤ 𝑡𝐴 + 𝑡𝑑 (2-1) 

The waveform parameter 𝛼 may be adjusted such that the overpressure time relationship 

provides convenient estimate for the blast impulse. The incident impulse per unit area of the 

positive phase is evaluated as 𝐼𝑖 = ∫ (𝑃(𝑡) − 𝑃0)𝑑𝑡
𝑡𝑑
𝑡𝑎

, or 

𝐼�̂� = 𝑝𝑠 [
𝑡𝑑(𝛼 + 1)(𝛼 − 1 + 𝑒

−𝛼)

𝛼2
] (2-2) 

Which leads to 𝐼�̂� ≅ 0.735𝑝𝑠𝑡𝑑  with 𝛼 = 1. When the pressure hits the target, it is normally 

reflected. The reflected pressure has the same profile, but higher magnitude, than the incident 

pressure. Thus, the total pressure transmitted to the structure is the algebraic sum of the reflected 

pressure and incident pressure. The fluid medium through which the explosive gas propagates 

may be assumed as ideal calorically perfect gas, and using the Rankine-Hugoniot relations, it is 

expressed as 

𝜌𝑠 =
𝜌0(�̅�+ 1)𝑝𝑠 + 2�̅�𝑝0
(�̅�− 1)𝑝𝑠 + 2�̅�𝑝0

 (2-3) 

𝑣𝑠 = 𝑣0√
𝑝𝑠(�̅�+ 1)

2�̅�𝑝0
+ 1 (2-4) 
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where 𝜌𝑠 and 𝜌0 denote the shock density and initial density of propagating gas, respectively, 

while 𝑃0  is the undisturbed gas pressure (ambient pressure). 𝑣𝑠  and 𝑣0  denote the shock 

propagating speed and sound speed, respectively. It is noted that in the fluids 𝑣0 = √𝐾𝑠/𝜌 =

√�̅�𝑝0/𝜌0 (𝐾𝑠 being the isentropic bulk modulus). The term �̅� is the specific gas constant, which is 

1.4 in the case of free air blast, but it varies with the temperature. Hence, Eqn. (2-3) simplifies to 

the expression reported by Rajendran and Lee [13]: 

𝑃𝑟 = 2𝑝𝑠
7𝑃0 + 4𝑝𝑠
7𝑃0 + 𝑝𝑠

  (2-5) 

Where 𝑃𝑟 represents the reflected overpressure pressure. The pressure reflection coefficient 

is given as the ratio of the reflected overpressure to incident overpressure, or 

𝐶𝑅 =
𝑃

𝑝𝑠
=
(3�̅�− 1)𝑝𝑠 + 4�̅�𝑃0
(�̅� − 1)𝑝𝑠 + 2�̅�𝑃0

 (2-6) 

The pressure coefficient is bound between 2 ≤  𝐶𝑅 ≤ (3�̅�− 1)/(�̅�− 1). Clearly, even for small 

incident overpressures, 𝐶𝑅 departs from its acoustic limit (2) and approaches a value of (8) for 

very strong shock waves in air.  

Referring back to Eqn. (2-1), an empirical relation of the peak overpressure reads[13]: 

𝑃𝑠𝑜
𝑃0

=
808 {1 + (

𝑍
4.5
)
2

}

√(1 + (
𝑍

0.048
)
2

)(1 + (
𝑍
0.32

)
2

)(1 + (
𝑍
1.35

)
2

)

 
(2-7) 

Where the scaling distance 𝑍 is given by 

𝑍 =
𝑆𝐷

√𝑚𝑇𝑁𝑇
3  

(2-8) 

This parameter was introduced by Hopkinson and Cranz [23], [24]; it is used as an index to 

be estimate the overpressure and impulse from TNT detonations (or TNT equivalent explosive 

mass, 𝑚𝑇𝑁𝑇). This parameter may be utilised as an index to gauge the blast type, i.e. far field or 

near field. The shock wave parameters according the scaled distance are given in Figure 2-2. In 

crude terms, the blast loads of 𝑍 < 0.4  may be assumed as localised. 
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(a) (b) 
Figure 2-2- Positive Shockwave parameters for a spherical (a) and hemispherical (b) free air TNT 

explosion [23]. 

 

The scaling H.C scaling distance has been widely used by [23]–[26] to correlate the response 

of beams and plates in various load case scenarios. A dimensional study by [22], [27] highlighted 

the ratio of stand off distance to load radius as more theoretically sound scaling factor to gauge 

the loading nature. An extensive series of experimental data by Kingery and Bulmash [28] on TNT 

burst led to the idealisation of blast pressure with ConWep function (Conventional Weapons) in 

the UFC code [23]. Full discussion of the ConWep method is presented in Chapter 3. 

A direct implication of the Eqn. (2-8) is for the blast scaling laws; in principle, two explosives 

of same geometry and same material would give rise to identical blast wave pressure, provided 

the same scaled distance. The blast curves hence developed by Kingery and Bulmash [28], [29] 

(Figure 2-2) enable the designer to find an estimate of the blast parameters which are related to 

the detonation of TNT charge.  

For blast emanating from other high explosives, the concept of TNT equivalent mass factor is 

utilised. While the TNT equivalent mass factor enables the enables the designer to correlate 

between the incident and reflected overpressures and impulses of various explosive materials, 

these factors vary according to the blast type (i.e.) [30].  
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2.2.1 Fluid structure interaction 

As the wavefront is transmitted onto the target, the plate gains instantaneous acceleration 

and departs from the interface of fluid. The pressure continues to decrease as the plate accelerates 

and vanishes at the time when the plate reaches the maximum velocity, so does the transferred 

momentum per unit area of the plate. Using the Buckingham’s Π  theorem, the transmitted 

impulse for exponentially decaying pressure is given by Taylor’s [31] expression 

  

𝐼𝑝

𝐼𝑖
= 2𝛽0

𝛽0
1−𝛽0 (2-9) 

where 𝛽0 is the (non-dimensional) relative time constant of the fluid structure interaction and 

the incident wave, which is also interptreted as the relative ratio of the volume of compressed gas 

to the plate, i.e. 𝛽0 = 𝜌0𝐻𝑓/𝜌𝑝𝐻  where 𝐻𝑓  and 𝐻  are the depth of the compressed fluid and 

thickness of the plate, respectively. 𝐼𝑖 and 𝐼𝑝 represent the incident and the transmitted impulse, 

respectively. The degree of reflection depends on the rigidity of the target and the physics of fluid 

structure interaction. For example, in the circumstances where lim
β→0

𝐼𝑝

𝐼𝑖
= 2, the target is assuemed 

rigid and incident wave is reflected completely of the rigid target plate. Thus, in the heavy plate 

limit the plate may be assumed as rigid body. In other words, as the limiting case of a plate with 

infinite mass is approached, the plate hardly moves and all of the incident pressure is reflected 

off the plate. Consequently, the impulse imparted to the plate reaches its maximum. 

In contrast, in the case of thin plates, the plate equilibrates quickly and accelerates which 

relieves the reflected pressure, thus reducing the impulse. The theoretical work on the FSI effects 

by Taylor was extended by Kambouchev et al. [32], [33] to account for the fluid nonlinear 

compressibility effects. The transmitted impulse was given in terms of a single dimensionless 

parameter  whereby the exact asymtotic limits for very light and very heavy plates were obtained.  

Hutchinson [34] proposed an alternative FSI parameter (defined in terms of invariants of the 

incident wave) on Single Degree of Freedom (SDOF) rigid plate to delineanate the role of rigid 

backing to the adiabatically compressed air and stand off on the energy and momentum transfer 

of blast. The stand off was found to play a significant role to attenuate the momentum transfer to 

the plate.  

 



33 
 

2.3 LOCALISED BLAST LOAD 

Analysing the blast effects requires a proper understanding of the phenomenon, the methods 

of blast modelling and the restrictions involved. In the sequel, there is a summary on different 

blast loads using associated characteristics for blast loading functions. The equations proposed 

by researchers [35]–[38] have been used to lift restrictions on temporal and spatial distributions 

of blast load function as well as providing a realistic yet accurate approximation of localised blast 

load which proves feasible for such types of loading.  

2.3.1 Classification of structural failure modes 

Depending on the load magnitude and profile, the structure responds in different failure 

modes. Early experimental works on uniformly blasted beam by Menkes and Opat [39] illustrated 

in Figure 2-3 led to a classification of the failure modes as large inelastic deformation (Mode I), 

large inelastic deformation with tensile tearing at supports (Mode II) and transverse shear failure 

at supports (Mode III), with Mode I and Mode II being the primary failure modes of for structures 

subject to most blast types [40]. 

This classification was further discussed and extended to mild steel circular and rectangular 

plates by Teeling Smith and Nurick [41] and Nurick and Shave [42], respectively, as presented in 

Table 2-1. Ref. [21], [42]–[45] also reported on a modified classification of failure modes 

associated with the localised blasts, while the permanent profile shape due to such phenomenon 

is generally characterised with a central bulged dome atop the global plate deformation. Mode II 

in locally blasted plates initiates with partial tearing at the central area, prior to tensile tearing in 

the boundaries. Transverse shear failure (mode III) is a phenomenon associated with the thick 

plates and is impertinent to the localised blast loads concentrated on the central portion of the 

plate. 

 

Figure 2-3- Failure mode results of [46] on uniform blast 

load 
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Langdon et al [47] observed that in mode I failure the thinning of the stiffened square plate is 

somewhat symmetrical along either side of the stiffener. The plate profile at either side of single 

stiffener panel shows a ‘double peak’. While introducing a single stiffener reduced deformation at 

similar impulse to the unstiffened plate, the tearing (Mode II*c) of the former plates occurred at 

lower impulse than the latter Figure 2-4. With the increase of impulse, the plate tore away from 

the stiffener, creating two symmetrical petals. Similar results were obtained by Ref. ‘s [46], [48]. 

For the blasts of sufficiently large magnitude, the boundary fixations are inconsequential in the 

permanent deformations in mode I, while they significantly affect the mode II response.  

Rajendran and Lee [13] presented a detailed review of the pressure pulse from air and 

underwater explosions. The study included a description of blast wave detonation as well as 

shock wave propagation, various forms of pressure loads, and the plate wave interaction. 

Methods of calculating response to such shocks were proposed by researchers [49]–[51]. 

 

Table 2-1 Failure modes for plate subjected to localised and uniform blast load 

Failure Mode Description 
Localised 

blast load 

Uniform 

loading 

Mode I Large inelastic deformation ✓ ✓ 

Mode Ia 
Large inelastic response with necking 

around part of the boundary 

- 
✓ 

Mode Ib 
Large inelastic response with necking 

around the boundaries 

✓ ✓ 

Mode Itc 
Large inelastic response with thinning 

in the central area 

✓  

Mode II* 
Large inelastic response with partial 

tearing around part of the boundary  

- 
✓ 

Mode II*c Partial tearing in central area ✓  

Mode II Tensile tearing at boundary ✓ ✓ 

Mode IIc 
Complete tearing in the central area 

with capping 

✓  

Mode III 
Transverse shear failure at the 

boundary  

- 
✓ 

Petalling 
Tearing at the centre with petals of 

material folded back onto the plate 

✓  
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Figure 2-4- Failure mode results of [46] 

Yuen and Nurick investigated the influence of plate thickness on the thinning and tearing 

impulse of impulsive loaded localised blast. The difference between the thinning impulse (mode 

Itc) and the rupture impulse decreased with the increase of the load diameter, as drawn in Figure 

2-6, with the larger differences observed on thick plates (Figure 2-5-Figure 2-6). 

  

Figure 2-5- Experimental results [45]-Tearing 

impulse of 33mm diameter plastic explosive  

Figure 2-6- Experimental results [45]-Tearing 

impulse of 40mm diameter plastic explosive 

 

The failure modes of localised blast initiate with large inelastic response at the central area. 

Thinning of the plate occurs in a narrow band along the circumference of the central bulge (mode 

Itc). With the increase of load magnitude, the localisation of material flow triggered by the tensile 

instability leads to tensile tearing and release of the central dome (mode IIc), a phenomenon 

referred to as capping [52] (Table 2-1). With further increase of the blast, the radial cracks 

continue to propagate at the fracture surface, several petals of material appear which curl back 

when the blast wave perforates through the material.  

Following the classification response modes of plates, Nurick and co-authors [21], [25], [43], 

[46], [50], [51], [53]–[58] reported considerable experimental data on the response of steel plates 

to air-blast loading over the past three decades and developed a range of parameters, which are 

of practical significance in the study of dynamic response of plates subject to localised and global 
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blast loads. Among these were the spatial loading distribution (localised versus uniform), 

explosive mass and shape, boundary conditions, plate characteristic dimensions and stand-off 

effects. A non-dimensional impulse parameter (NDIP), originally introduced by Nurick and Martin 

[59], [60], has been used to collapse the data into a single trend-line which allowed for the 

prediction of permanent displacement.  

 

(a) 

 

(b) 

Figure 2-7- permanent deformation of ARMOX370T (a) and Mild steel (b), in order of increasing 

distance, courtesy of Langdon et al.[61] 𝑴𝒆 represents the charge mass. 

 

Recently, the research into the high strength armour steel has attracted attention as the high 

yield strength, hardness and toughness and consequently reduced structural deformation against 

intensive shock loads make them a potential candidate. Among these are the RHA ARMOX steel 

and High Hardness steel (HHA). While numerous military standards stipulate the hardness and 

Charpy fracture toughness as the design criteria, the limited ductility associated with the high 

strength of these materials may impede their protection capacity due to the brittle failure. In an 

experimental study by Langdon et al [61], only a marginal decrease in the thickness reduction 

was observed on ARMOX 370T steel type, suggesting the brittle tearing failure. The permanent 

deformation results of Ref. [61] is shown in Figure 2-7. Furthermore, the experimental results 

showed the two steel types ruptured at the same impulse, despite the higher strength of 

𝑀𝑒 = 40𝑔 

𝑀𝑒 = 33𝑔 

𝑀𝑒 = 20𝑔 

Increasing stand-

off 
 

Increasing stand- 

off, decrease in 

charge mass 
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ARMOX370Tthan Mild steel (Figure 2-8). Thus, the failure modes of the high strength steels may 

differ from those of conventional structural ductile materials and thus require particular 

attention. 

Due to the high strain rates, the heat generated due to the plastic work is usually contained 

within the deforming material as it has no time to transfer and the process is considered adiabatic. 

The temperature rise due to the adiabatic process leads to local softening while the rest of the 

material strain hardens. provided the rate of thermal softening exceeds the work hardening in 

the surrounding area, the deformation occurs in bands of intense plastic shear , referred to as 

adiabatic shear localisation [11], [62]–[65]. In some cases, the localised temperature rise leads to 

instability within the microstructure of the material as narrow white etching bands of deformed 

martensite appear in carbon steel. These bands are referred to as the transformed adiabatic shear 

bands. In armour steel material, for example, the increase in static yield is accompanied by the 

reduction in penetration resistance over a certain hardness range. Materials with less strain rate 

dependence would encourage the adiabatic shear failure [11], [66]. 

(a) (b) 

Figure 2-8- Rupture of Mild steel (a) and armour steel 370T (b) under same loading configurations [61] 

2.3.2 Numerical analyses 

The boundary conditions significantly affect the onset of shearing and tearing afailure due to 

the variation of in-plane strains. Bonorchis et al. [67]–[69] conducted a numerical and 

experimental studies on the effects of boundary conditions and clamp heights on the localised 

blast response of rigid and deformable plates. They investigated the impulse generated by 8g, 12g 

and 15g PE4 explosive of 40mm diameter, blasted on rigid and deformable rectangular plates of 

120mm ×200mm exposed area, but modified the clamp heights by according to the number of 

clamps involved. An essential observation of their work was that for rigid plates, the increase in 

the clamp height brought about an increase in the transfer of impulse recorded by the ballistic 

pendulum. However, even though the transferred impulse increased due to the presence of the 

clamps, the mid-point deformation was impervious to the clamp height. This indicates that the 

clamps absorb a portion of impulse recorded by the ballistic pendulum and the total impulse 
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absorbed by the plate is reduced due to the presence of the clamps. The impulse recorded for the 

two clamps providing total 32mm clamp height was 18% higher than that with no clamps. The 

results of Bonorchis et al. on clamp type effects are illustrated in Figure 2-9. 

 
Figure 2-9- Threshold of impulse for locally blasted hot rolled steel plates with welded 

boundaries [69] 
 

Advancements in numerical simulations have made it possible to observe the blast wave 

effects and its interactions with structures, using a Multi Material Eulerian approach. This 

approach incorporates the governing physics of FSI and was studied by [1], [25], [57], [70].  

Børvik et al [70] presented numerical and experimental response of 6×2.5×2.5 𝑚3 

unprotected corrugated steel containers due to 4000kg TNT at stand-off 120m. ConWep was used 

to calculate the peak pressure, impulse and the load duration. The pressure time history was also 

idealised with Eulerian Lagrangian methods as comparison to determine the efficacy of each 

numerical model.  Detains of the Eulerian Lagrangian methods are given in the next chapter.  

2.4 NON-DIMENSIONAL PARAMETERS 

Dimensionless analysis provides a useful tool to corroborate between the blast load effects 

and the structural response in order to avoid unnecessary repetition of, experiments or numerical 

simulations. While the symbols for physical quantities have been devised in the past, it was 

Buckingham who devised a theorem-Buckingham Π  theorem, to extract a complete set of 

dimensionless quantities, which interrelation within each set defines a unique physical problem. 

A conventional non-dimensional parameter to describe the damage of metals is of Johnson’s, 

described as  
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Dn =
𝜌𝑝𝑉0

2

𝜎0
 (2-10) 

This parameter has been altered and further modified by many researchers, for example, 

Nurick and Martin extended Johnson’s damage number to incorporate the influence of the target 

geometry and aspect ratio, defined as the NDIP: 

Φ𝑞𝑙 =
𝐼

2𝐻2(4𝐿𝐵𝜌𝑝𝜎0)
1
2

 
(2-11) 

Nurick and Martin [59], [60] then developed a simple empirical prediction of the permanent 

displacement of blast loaded quadrangular and circular plates. The NDIP introduced by Nurick 

and Martin [59] allowed for the impulse imparted to the plate to be scaled by several parameters 

such as the plate dimensions, material properties and explosive dimensions. This parameter has 

been used extensively by the researchers to predict the response of various metallic plate types 

as well as composites [36], [71], while extended to account for the stand-off distance by [21], [72] 

and plate slenderness ratio parameters [36]. 

A similar expression of Johnson’s damage number was proposed by Jones, defined as a 

dimensionless initial kinetic energy, 𝜆, in terms of the flow stress of perfectly plastic material, 𝜎0, 

the uniform impulsive velocity 𝑉1 , material geometry and density 𝜌 . The expression of 𝜆  was 

proposed for mass impact and impulsive loading of either quadrangular or circular plates (Eqns. 

(2-12)and (2-13), respectively). 

𝜆 =
4𝜌𝑝𝑉1

2𝐿𝐵

𝜎0𝐻
2

 (2-12) 

𝜆 =
4𝜌𝑝𝑉1

2𝑅2

𝜎0𝐻
2

 

(2-13) 

 

Zhao [73] modified Johnson’s damage number as : 

ℛ𝑛 = 𝐷𝑛 (
𝐿

𝐻
)
2

 (2-14) 

However, Li and Jones [74] questioned the validity of Zhao’s response number where the 

transverse shear, strain rate and temperature effects become significant.  

The uniform velocity of the blast phenomenon is related to the impulse as 𝐼∗ =
𝐼

ℎ√𝜎0𝜌
=

𝑉1

√𝜎0/𝜌
, 

where  𝐼 and 𝐼∗ are the impulse density and dimensionless impulse [75], respectively. As reported 
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by [75] most blast load scenarios are, in fact, non-impulsive and the validity of such idealisation 

depends on the blast duration being shorter than the structural response time.  

For impulsively localised blast loaded plates, Eqn. (2-12) can be modified empirically as in 

Eqn.(2-15), where A0 is the burn area. This is attributed to the discolouration of the central plate 

area by the explosive particles. The expression of the burn radius 𝑅𝑏, defined by [45], is given in 

Eqn. (2-16), where ℎ𝑒 is the (disc explosive) charge height.  

𝜆1 =
4𝐼2𝐿2

𝜌𝜎0𝐴0
2𝐻4

 (2-15) 

𝑅𝑏
𝑅𝑒
= 0.9ℎ𝑒

0.3 (2-16) 

Jones’ dimensionless kinetic energy [35] can be related to the NDIP originally defined by 

Nurick and Martin. The NDIP  originally reported by Nurick and co-authors [43], [60], defined also 

as damage number 𝜙𝑞 =
1

2
√𝜆1/𝛽, where 𝛽 = 𝐿/𝐵, did not incorporate the influence of geometry 

for quadrangular plates. However, Nurick and martin [59] later modified the NDIP as 𝜙𝑞𝑙 =

(1 + ln (
𝐿𝐵

𝜋𝑅𝑒
2))𝜙𝑞 hence obtained Eqn. (2-17). The two expressions of (2-18) and (2-19) by the 

authors predict the normalised deflections empirically by the NDIP. Thus, the dimensionless 

kinetic energy is obtained 𝜆𝑠 = 4𝛽𝜙𝑞𝑙
2 , by replacing 𝜙𝑞 with 𝜙𝑞𝑙 in the associated expressions.  

∅𝑞𝑙 =

𝐼 (1 + ln(
4𝐿𝐵

𝜋𝑅𝑒
2))

2𝐻2(4𝐿𝐵𝜌𝜎0)
1/2

 
(2-17) 

𝑤𝑓

𝐻
= 0.48∅𝑞𝑙 (2-18) 

𝑤𝑓

𝐻
= 0.47∅𝑞𝑙 + 0.001 

(2-19) 

 

Nurick and Martin’s estimate for the permanent deformation (Eqn.s’ (2-18)(2-19)) are widely 

accepted expressions to estimate the permanent deformation of most fully-clamped, protective 

plated systems against various blast scenarios of distal charges. Eqn. (2-17) is similar to the 

quotient of the kinetic energy to membrane resistance of the target in impulsive loading regime 

asymptotes. The relationship between the normalised deflection and NDIP has been modified by 

[21], [76] and [67] to account for the stand off distance in localised blast scenarios. It should be 

mentioned that, the above expressions have been modified in this thesis, in the context of 
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problem, to obtain a better fit to the large scatter of data from the experimental and numerical 

results of armour and mild steel plates, discussed in Section 4.5. 

2.4.1 Transient response of the structure 

Measuring the transient deformation history of plates (prior to failure) provides valuable 

information that improves our understanding of the mechanisms which influence and control the 

deformation and rupture of plates. This is particularly of practical convenience in high strength 

armour steels where the elastic energy stored during deformation is of relatively high proportion 

of the total deformation energy, compared to mild steel. On the other hand, armour steels have 

limited ductility compared to mild steel plates which dissipate energy in plastic strain. 

Neuberger et al [24], [26] conducted experimental studies on the 0.5m and 1m diameter 

circular steel plate made of Rolled Homogeneous Armour (RHA) subject to air blast and buried 

charge loading from spherical TNT charges (TNT mass was varying from 486g to 8.75kg), at 

varying -off distance (65-200mm). The scaling distance was 𝑍~0.143 and the ConWep method 

was used. The objective was to investigate the scaling aspects of the blast test as well as the 

spring-back phenomenon. The deformation combs such as used by Neuberger [24] provides 

information about the maximum transient displacement of a plate (usually at the mid-point) but 

cannot give details regarding the time to peak of the deformation profile across the plate. There 

is also the possibility of contact measurement techniques influencing the response of the plates, 

a drawback that can be overcome by using non-contact measurement techniques such as high-

speed imaging. 

Fourney et al [77] and Spranghers et al [78] used high speed photography and a 3D digital 

image correlation (DIC) to measure the transient response of plates subjected to low charge mass 

explosive detonations. Small apertures on the lenses were used to ensure sufficient depth of field 

for tracking the plate motion, and challenges of changing light conditions on the specimen as it 

moved were also reported [77]. Aune et al [79] used high speed photography to film the motion 

of a blast loaded plate mounted in a stationary rigid clamp frame. The cameras were placed in the 

same room at the blast event and were unfortunately affected by the blast wave. The correlation 

of images reduced accuracy after the blast wave had impinged on the cameras, limiting the 

duration of the data capture. Aune et al [79] also reported inconsistencies in the trigger system 

and difficulties with the painted speckle pattern peeling from the plates. Zhu [80] investigated the 

plate profile based on numerical and experimental work on transient deformation of aluminium 

alloy and mild steel plate using a one camera system. 

The DIC technique has also been proved a useful tool to capture the strain distribution and 

localisation of plates at different strain rates. Hooper monitored the deformed shape, strain rate 
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and of PVB laminated glass panes subjected to air blasts of scaled distances 𝑍 = 3.65-5.3 [81]. At 

this distance, the strains were localised to the window edge while the central region was relatively 

unstrained. The piezoelectric pressure gauges were used to measure the pressure distribution on 

the panels. Sato et al. [82] captured the distribution and localisation behaviour of strain of various 

steel grades, having yield stresses 165MPa-1256MPa, at quasi-static strain rate (10−3𝑠−1) to 

dynamic strain rates (100𝑠−1). To capture the mechanical properties at different strain rates, the 

authors used one camera and two cameras on their DIC test setup, adjusted with electro-

mechanical tensile test, hydraulic tensile test and Hopkinson bar test machines. The calculated 

ratio of dynamic stress to static stress decreased exponentially with the increase of yield strength. 

Further, inhomogeneous strain distribution was observed at the nominal strain of 0.2. Similar 

have been carried out to measure the effect of strain rate on necking and fracture behaviour [83]–

[86].  

Børvik et al [70] observed the uncoupled Eulerian Lagrangian and fully coupled Eulerian 

Lagrangian gave the same results on the stiffened structure (Figure 2-10). This is because the 

impulse due to the fluid structure interaction is reduced. The structural rigidity increases the 

pressure impulse [87], [88] and thus increases the permanent magnitude of the structural 

response. uncoupled Eulerian Lagrangian approach A significant difference between the transient 

profiles of box containers due to the difference in the numerical techniques when modelling the 

pressure time history, despite the same total impulse. 

 

Figure 2-10- Transient mid-point displacement of the front wall 

of container by [70]   

 

Much of the past work on blast loaded plates has concentrated on relatively ductile steels, 

which exhibit large plastic deformations and then ductile tensile tearing at high charge masses. 

Very few researchers have published work on the transient deformation, localised response and 
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failure of high strength steels, such as the ARMOX armour steels. Among those, Langdon et al [61] 

reported the results of localised blast tests on mild steel, ARMOX 370T, aluminium alloy and fibre 

reinforced polymer composite plates. Permanent mid-point displacement increased linearly with 

increasing impulse for each material type, up to rupture. At higher charge masses, the mild steel 

plates exhibited ductile tensile rupture, while the armour steel plates (which ruptured at the same 

impulse) exhibited a more brittle type of failure. Non-dimensional impulse at rupture was 

observed to increase with increasing SETF (Specific Energy to Tensile Fracture), which was 

obtained by directly integrating the stress-strain curve obtained from uniaxial quasi-static tensile 

tests [61]. 

2.5 THEORETICAL ANALYSIS OF MONOLITHIC PLATES 

The theoretical analysis of monolithic plates has been explored by means of constitutive 

models for many years. A constitutive model defines a set of relations that characterise the 

physical response of a material when subjected to external loading. Most commonly model of this 

kind is the constitutive framework of limit analysis which assumes the material as rigid, perfectly 

plastic.  

2.5.1 Dynamic plastic behaviour of thin plates 

The first study on static collapse of plates was conducted by Hopkins and Prager [89] who 

implemented the limit analysis theorems to determine the load carrying capacity of simply 

supported rigid-perfectly plastic circular plates. The quasi-static model response by Hopkins and 

Prager was extended to the dynamic loads having rectangular pulse pressure[75], [90]. Such a 

response is pertinent to the impulsive regime, where the ratio of the blast duration to the total 

plate response time is pivotal in idealisation of the blast with zero period, i.e. uniform momentum 

impulse. Youngdahl [37] discussed the strong dependence of the dynamic plastic deformation of 

plated structures on the pulse shape. An empirical relationship was proposed to eliminate the 

pulse shape effect which was incorporated in the design and analysis of two-dimensional 

structural members. He proposed a relationship which linked the maximum plastic deformation 

to square of effective impulse multiplied by a function of effective pressure. This relationship was 

widely used for decades prior to being theoretically established by researchers as the upper 

bound for the actual displacement while the response time was found to be the lower bound on 

the actual response time (Li and Jones [91]).  

Cox and Morland [92] obtained theoretical solutions for dynamic plastic response of simply 

supported square plates as well as the response of n-sided polygonal plates subjected to uniform 

dynamic load. Jones with co-authors presented an extensive series of theoretical and 



44 
 

experimental research on various structural elements subject to spatially uniform pressure loads 

of rectangular temporal pulse shape [93], [74], [94]–[97]. In most cases, Jones’ analytical models 

for impulsive loading offered solutions concurrent with experimental works, provided the ratio 

of kinetic energy to maximum strain energy stored elastically remained more than ten [98]. 

Komarov and Nemirovskii [99] further extended the analyses of Jones [35] to the dynamic case 

with travelling plastic hinges to obtain the incipient plastic deformation in each of the two stages 

of motion.  

The previous studies investigated the infinitesimal deformation of plates, where bending 

moment predominate the overall response. In the event of blasts having high magnitude impulses, 

large deformations are expected and for thin shells the membrane forces dominate the structural 

behaviour. Yuan et al [100] proposed an analytical model to calculate the large deformation of 

elastic-perfectly plastic beam systems. They studied the influence of catenary (membrane) forces, 

bending moment and transverse shear forces alone or in joint actions considering three distinct 

failure mode deformations. The effect of membrane action was similarly studied by [35], [101], 

[102] for blast loaded plates and for plates struck by single and repeated masses, the latter being 

a phenomenon called pseudo-shakedown. Chen and Yu [103] investigated the membrane effects 

on beams with inclusion of transient state in the velocity profile. Other researchers[104] 

extended analysis of Komarov and Nemirovskii [99] to include the effect of catenary action on 

circular panels. It was shown, theoretically, that the inclusion of transient phase-in which the 

velocity profile is time dependent- in analysis gave better agreement with experimental results 

than analysis of Jones [35]. Jones [105] later presented a mathematical procedure for the strain 

rate sensitive ductile plate under impact and explosive loading. His equations to predict the strain 

rate behaviour of plates were not only dependent on the material constants D and q (from Cowper 

Symonds equation), but also on the flow stress and density of the plate material.  

Zheng et al [98] discussed the strain energy of a stiffened plate subject to uniform pressure 

load in terms of bending strain energy, elastic-plastic membrane strain energy in plastic zones 

and strain energy of the stiffeners. The plate deformation was represented by a piecewise 

function of cosine shape to represent the global deformation of central zone as well as a linear 

shape used for simplified rigid-plastic model in the surroundings parts. The generalised 

displacements were obtained numerically and used to determine the deflection time history. 

Langdon and Schleyer [106], [107] presented a series of numerical, analytical and 

experimental studies on the connection characterization and linear decay pressure pulse 

response of the corrugated stainless-steel blast walls with welded angle section. They found that 

the yield pressure, i.e. the pressure to cause inelastic strains at the mid-point of corrugation, was 

reduced by increasing the flexibility of the angle length connections, which was influenced by 
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loading direction. Buckling capacity was also influenced by load direction because of non-

symmetry of the profile. Nwankwo et al. [108] extended the theoretical analysis of the former 

authors to the CFRP (carbon fibre reinforced polymer) retrofitted blast walls using the elastic-

perfectly plastic beam spring system with stationery bending hinges. 

2.5.2 Dynamic plastic behaviour of thick plates 

The transverse shear response is an important concept during the early stage response of the 

structural elements [74], [109], [110]. The influence of transverse shear on uniformly impulsively 

loaded beams and circular plates have been examined by Jones and co-authors [111]–[116] who 

have classified the thick circular plates and shells according to the ratio of static plastic shear to 

bending moment (𝜈 = Q0R/2M0), with 𝑅 being the radius of the plate. With the increase in plate 

thickness, the plastic work rate due to bending transcends that of the membrane [117]. Further 

increase in thickness renders the effects of rotatory inertia and shear significant, although the 

effect of the former is not nearly as important as the effect of the latter. Rotatory inertia effects 

would contribute toward the moment for moderately-stocky circular plates (𝐿/𝐻 > 3/2) or 

beams subjected to uniform blasts [111], [112]. However, the theoretical study sought in the case 

of class II (moderate stocky) circular plates-where 𝜈 is in the range of 𝜈 =  1.5 < Q0R/2M0 < 2- 

showed that combined effect of the rotatory inertia and transverse shear effect would only 

improve the accuracy of maximum permanent displacement by only 11% 14% compared to the 

transverse shear effect alone [111]. Li [109] investigated the continuity conditions of shearing 

interface and bending interface of stationery and moving hinge and discussed that the localised 

shear response becomes the dominant mode when the transverse shear conditions are satisfied. 

Li and Huang [118] showed that while the inner plastic region undergoes a small transverse shear 

force, the transverse shear deformation increases rapidly in the outer plastic region. On the other 

hand, the bending moment is large throughout the plate and decreases only rapidly near the 

supports. It follows that the transverse shear forces induce shear sliding at the support at the 

interface of which the deformation profile is discontinuous.  

The previous studies on rectangular plates have focused on temporally rectangular pulse 

loads of a spatially uniform pressure loading profile. These are often accompanied by 

simplifications in the mathematical treatments, which reduce the accuracy of the results. Thus, 

there is a paucity of theoretical analysis on the plates subjected to localised blasts.  

2.6 SUMMARY AND CONCLUDING REMARKS 

 In this chapter, a detailed review has been presented on the performance of beams, 

quadrangular and circular metallic plates. It transpires that, while many researchers have 
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examined the blast and impact behaviour of the monolithic plates, there is a paucity of systematic 

experimental, numerical and theoretical analysis which unifies the methods to describe the effect 

of localised blasts on modern armour steel materials. Thus, the presentation of work in this thesis 

consists of: 

• A methodology for the advanced experimental and numerical studies, as presented in 

chapter 3. The numerical studies employ the fluid structure interaction phenomenon 

to simulate the blast.  

• The results of Numerical methods and validations with experimental studies, 

presented in Chapter 4. 

• Theoretical analysis on nonlinear dynamic response of thin ductile metallic plates 

with various boundary conditions, using the Kirchhoff Love plate theory, this is 

presented in Chapter 5. 

• A rigorous study on the non-linear performance of square membranes subject to such 

blast loads, assuming the panels are made of elastic-perfectly plastic material. This is 

presented in Chapter 6. 

• A theoretical study on the influence of transverse shear on the inelastic response of 

square plates, presented in Chapter 7. 

• Dimensional analysis to describe the blast load and its effects on the structures to aid 

the designer to predict the localised blast load parameters, this is presented in Chapter 

8. 

• Based on the comprehensive theoretical, experimental and numerical models 

employed in the thesis, a unified design procedure is set out, as follows, to delineate 

the localised balst response of ductile, isotropic square panels encompassing wide 

range of blast load scenarios independent of the material type.  

 

i. Assume a blast load scenario generated from cylindrical charge of certain mass 𝑀𝑒 and 

geometry, say 40g PE4 of 50mm diameter. For the blast loads brought about by charges 

of other geometry/explosive type, the approximate charge equivalencies may be used. 

For example, assuming the spherical and cylindrical charges of identical masses to exert 

the same impulse, the radius of the spherical charges may be evaluated as 𝑀𝑒 = 𝜌𝑉𝑝 . 

Regarding the different charge types, the TNT equivalencies may be utilised [30]. Further 

discussion is presented in Section 3.4.3. 
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ii. Estimate the pressure from Figure 8-8 (for localised blasts, (i.e.  Z<0.4)) or from Figure 

2-2 (for more global blast loads). Alternatively, for impulsive blasts, the pressure may be 

estimated directly from the known impulse. 

iii. Determine the blast load parameters 𝑏, 𝑟𝑒 , 𝜏 from Figure 8-15, Figure 8-12 and Figure 8-10 

respectively.  

iv. Using the empirical models, estimate the NDIP, assuming the quotient of the deformation 

to plate length is inconsequential, (e.g. 
𝑊𝑓

2𝐿
⁄ ≤ 0.1).  

v. Estimate the NDIP using Eqn. (4-8) or Figure 4-16.  

vi. Estimate the desired plate thickness. Using Eqn.(4-7)or Eqn. (4-8). 

vii. Calculate the dimensionless initial kinetic energy 𝜆 

viii. Calculate the permanent deflection of the plates  

ix. Calculate the energy effectiveness as a criterion for rupture impulse 

This procedure is set out in Figure 2-11. Further details about the rupture impulse and the 

load parameters are set out in Chapter 8. 
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Figure 2-11- Preliminary Design procedure of membrane/plated structures against blast load. 
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3 CHAPTER 3 

Methodology 

3.1 BACKGROUND 

This chapter explores the methodology of the numerical and experimental studies. It 

investigates the experimental and numerical models to capture the transient deformation and 

transmitted impulse of the plates. These numerical models were investigated to supplement the 

results of [61] on AR370T and mild steel, as well as further experimental setup on higher strength 

martensitic armour graded plates. 

The dissemination of this chapter is as follows. First, the material properties and the 

constitutive models are presented, followed by the experimental studies on square plate steel 

graded materials in Section 3.3. Finally, in Section 3.4, the methodology of the numerical models 

is presented. The content of experimental and numerical methods described herein is published 

in [119] 

3.2 MATERIAL PROPERTIES  

3.2.1 Constitutive models 

Most structural systems are made of ductile steel, or alloys of steel metals with isotropic 

behaviour, high strength and post yielding resilience. These metals undergo elastic-plastic 

behaviour with the associated post hardening effects of the yield strength. Beyond the ultimate 

tensile strength, ductile damage-necking and then tearing of the material will occur. Cowper and 

Symonds [120] proposed a phenomenological constitutive material model to describe the rate 

sensitivity dependence of the flow stress due to dynamic loads. The model by Cowper Symonds 

is prevalently utilised in the theoretical as well as the numerical models in the literature[40], [78], 

[121]–[123]. This constitutive equation defines dynamic plastic stress as a function of static yield 

stress and strain rate as in Eqn. (3-1). 

𝜎′𝑦 = 𝜎0 (1 + (
𝜀̇

𝐷
)

1
𝑞⁄

) (3-1) 

where σ′y and σ0 are the dynamic and static yield stresses, respectively, and ε̇ is the uniaxial 

strain rate. This expression is a highly nonlinear equation as the material constant 𝑞 is usually 

large. This material model scales the initial yield stress by strain rate factor as well as the strain 

factor (as 𝜎0 = 𝑓(𝜀)𝜎𝑦  accounts for the work hardening, with 𝜎𝑦  being the initial static yield 
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stress)[124]. Eqn. (3-1) requires the priori knowledge of strain hardening behaviour through 

uniaxial static tests. The material constants 𝐷 and 𝑞 for mild steel are commonly 40.4 (𝑠−1) and 5 

[26], [35], [40], [43], [76], [78], [105], [125] although higher values of 𝐷 (e.g. 𝐷 = 6500) are 

proposed such that the C.S model predicted curve passes through widely scattered experimental 

data [96]. While Cowper Symonds parameters give satisfactory results in low strain rates, they 

are not independent of temperature. In high strain rates, the flow stresses increase rapidly, and 

the viscous drag controls the dislocation movement. However, high strength steel such as RHA 

and Ultra Hard Armour steel are less dependent on the strain rate, for the former the parameter 

𝐷 = 300 (𝑠−1) is proposed herein [26].  

The Ramberg-Osgood constitutive model [126], [127] is given by 

ε =
σ

E
(1 + 𝛼 (

𝜎

𝜎𝑦
)

𝑛−1

) =
𝜎

E
+ 𝜀0 (

3

2(1 + 𝜈)
)

𝑛+1
2
(
𝜎

𝜎𝑦
)

𝑛

 (3-2) 

Where the parameter 𝛼 is the yield offset. This model does not account for strain rate effects 

but obeys the power law relations between the strain tensor and associated stress tensor.  

Johnson & Cook [128] put forth an alternative model (Eqn. (3-3)) which includes the work 

hardening effect. The Johnson-Cook model is a multiplicative model, where the work hardening 

increases with the increase in strain rates. The model estimates the dynamic flow as a function of 

the strain hardening, the strain rate effects with change of temperature: 

 

𝜎′𝑦 = [𝜎𝑦 + 𝐵1′𝜀
𝑛][1 + 𝐶𝑙𝑛𝜀̇∗][1 − �̂�𝑚] (3-3) 

�̂� = [
𝑇 − 300

𝑇𝑚𝑒𝑙𝑡 − 300
] (3-4) 

where 𝐵1′  and 𝑛  are the hardening constant and exponent, respectively, 𝜀̇∗ = 𝜀̇/𝜀0̇  is the 

dimensionless plastic strain rate and the reference strain rate 𝜀0̇ = 1𝑠
−1, while 𝐶 is the strain rate 

constant. The homologous temperature 𝜃 is given by Eqn. (3-4), where 𝑇 is the temperature in 

Kelvin and 𝑇𝑚𝑒𝑙𝑡 = 1800𝐾  was assumed as the melting temperature. The J.C parameters for 

armour steel are obtained by the method discussed in [129]. While the herein numerical approach 

utilises the J.C material model, the results with C.S model are also investigated in parts for 

comparison. 
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Figure 3-1- Uniaxial strain stress curve of AR370T, courtesy of Ref. [61] 

 

 
Figure 3-2 Quasi-static plot of axial (Axl0 and transverse (Trs) engineering stress 

curves for ARMOX 440T, compared against the true stress (TS) curves  

 

Based on the uniaxial static test results at Imperial College laboratory and the material data 

sheet of ARMOX steel, the percentage elongation to rupture of AR440T is 8% and those of AR 

370T and mild steel are 6% and 40%, respectively [61], [130], [131]. The Young modulus and 

Poisson ratio of all of these panels was taken as 200GPa 𝜐𝑒 = 0.3, respectively. The yield strength 

of the panels is presented in Table 3-1 and a plot of engineering stress vs strain given in Figure 

3-1-Figure 3-2 for AR370T and AR440T, respectively. To obtain the JC parameters for armour 

steel, the quasi-static tensile test data from [61] were adjusted to the line of best fit (Figure 3-3). 

These parameters are shown in Table 3-2. The material properties used for armour 500T were 

taken from [132]. The armour 500T had identical configurations to other panels except that 

H=4.16mm, 𝜎0 = 1470 MPa and 𝑆𝐷 = 38𝑚𝑚 were used. 
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Figure 3-3 Log plastic strain vs log plastic stress curve. Notes: The values 

of 𝑩𝟏′ and 𝒏 are the 10(y intercept) and the slope of the log (plastic stress) 

vs log (plastic strain) plot. Constant 𝑪 is found from the plot of high strain 

rate sensitivity vs dynamic stress plots [129]. All materials were assumed to 

have the melting temp and transition temp of 1800 and 293 K respectively 

 

Table 3-1- Engineering yield and ultimate stress of the panels 

Plate 
Thickness 

(mm) 

𝝈𝟎 

(𝑴𝑷𝒂) 

𝝈𝑼𝑻 

(𝑴𝑷𝒂) 

Hardness  

(HBW) 

ARMOX 

370T 
3.8 1150 1250 

380-430 

ARMOX 

440T 
4.6 1210 1400 

420-480 

Mild 

Steel 
4 330 400 

120 

AR500T 4.16 1470 1750 480-540 
 

 

 

Table 3-2- JC and Cowper Symonds (C.S) material parameters 

Material 

Johnson Cook C.S 

𝜎𝑦 

(MPa) 

𝐵1′ 
(MPa 

C n m D q 

AR370T 1157 

837.92 0.015 0.283 0.897 300 5 

AR440 T 1210 

Mild steel 

MS4 
325 275 0.076 0.36 1 40.4 5 

AR500T 1470 837.92 0.005 0.36 0.897 300 5 
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Figure 3-4 log plot of the ultimate tensile strength of ARMOX440T at 

various strain rates 

 

Regarding the numerical studies, adiabatic heating condition was assumed. The temperature 

change due to such a condition is given as: 

Δ𝑇 = ∫   χ
𝜎𝑒𝑞𝑑𝜀𝑒𝑞

𝜌𝐶𝑝

εeq

0

 (3-5) 

where 𝜀𝑒𝑞 and 𝜎𝑒𝑞  are the equivalent plastic strain and equivalent stress, respectively, 𝜌 the 

material density, 𝐶𝑝  is the specific capacity at constant pressure (defined in Table 3-7). The 

Taylor-Quinney coefficient 𝜒 was taken as 0.9 and represents the fraction of the plastic work 

converted to heat.   

 

  

(a) (b) 

Figure 3-5 Quasi-static strain hardening (8×10-4s-1)-Numerical fit vs experimental data for armour 

370T (a) and armour 440T (b). The temperature effects from JC model have been disregarded 
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(a) 

 
(b) 

Figure 3-6 Influence of elevated temperature on predicted JC model yield 

stress (a) Influence of strain rate snd strain hardening on the dynamic flow 

stress  

 

The predicted true stress –strain curves of the panels were calculated from the engineering 

stress strain curves provided by Ref. [61], [131] . The ultimate true stress of armour 440T is 

compared at different strain rates in Figure 3-4, while a plot of quasi- static strain hardening 

characteristics is presented in Figure 3-5. The specific heat capacity of the steel panels was 

assumed as 452𝑘𝐽/𝑘𝑔𝐾.  In Figure 3-6 the influence of temperature softening and strain rate on 

the material models are illustrated.  
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3.3 DESCRIPTION OF PHYSICAL EXPERIMENTS 

In this work, the experimental studies and methods have been conducted by Langdon et al 

[61], [133] as well as those conducted by L.A. Louca is reported and compared against the 

numerical models. 

Measuring the transient deformation history of plates prior to failure is of practical 

importance as well as intrinsic interest as it adds insight into the deformation modes and 

determination of the maximum displacement. However, placing instrumentation on or in 

proximity to the test plate poses damage to the instrumentation while affecting the plate 

response. Non-contact measurement techniques such as high-speed filming and 3D digital image 

correlation are more convenient to extract richer data and are used in many applications [134].  

Curry et al. [133] recently reported results from tests on 3mm thick Domex 355MC steel plates 

subjected to air-blast loading. Curry et al. [133] also reported an improved technique for 

measuring transient deformation via high speed photography. The cameras and test plates were 

mounted onto a newly designed pendulum system. The camera section of the pendulum was 

covered by a shroud to protect the cameras from the light flash (causing saturation of the CCD) 

and blast wave impingement. Mid-point transient deformation-time histories and deformation 

profiles across the plate mid-lines at various discrete times were both reported. 

3.3.1 Blast test Specimens 

Several panels were tested in a specially built blast facility at the Department of Mechanical 

Engineering at the University of Cape Town (Figure 3-7). The test panels were made from two 

high strength steels with the properties described in Table 3-1. Each test plate was bolted into the 

clamps with 12 evenly spaced bolts. The plates were clamped along the periphery between two 

square clamp frames, leaving a square exposed area of 400 mm by 400 mm and areal density of 

31kg/m2. The AR440T panels incorporate higher mass with average nominal thickness of 4.6 mm 

and areal density of 37kg/m2). As a comparison, mild steel panels with same dimensions were 

also tested.  
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Figure 3-7 Experimental test arrangement with horizontal pendulum. 

Courtesy of [61]. 

 

 

Figure 3-8- Photograph showing the inside of the modified, DIC pendulum, 

set up for filming the rear surface of the plates 

 

The clamp frames were mounted to a pendulum so that the total impulse imparted to the 

system could be calculated from the pendulum swing. M2A3 instantaneous electrical detonators 

were used to generate the air-blast loading, by detonating circular disks of composition C4 (PE4) 

plastic explosive at a predetermined stand-off distance. The PE4 discs were adjusted at the centre 

of the test plates using a polystyrene bridge arrangement, as illustrated in Figure 3-9. Stand-off 

distances of 25 mm 38 mm and 50mm were used, as presented in Table 3-4, which were specified 

by varying the lengths of the bridge legs. The bridge arrangement of polystyrene is more practical 

method to provide the stand-off as it does not affect the blast wave pressure compared to the 

polystyrene buffer in [135] or mild steel tubes [21]. Only the specimen MSP1 and MSP2 

configurations had the charge diameter 𝐷𝑒 = 75mm , whereas the load diameter for the rest of 
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mild steel models as well as all the armour steel models is 50mm, except for ASP7 and ASP8 which 

was 40mm. Thus, the charge mass could be varied only by changing the height of the explosive, 

and ranged from 24 g to 70 g. The general experimental arrangement is shown in Figure 3-7-

Figure 3-8. Further details of the test arrangement are discussed in Ref. [60]. 

 

Figure 3-9- Photograph of the loading arrangement 

 

Table 3-3 Chemical composition of the armour steel panels [131] * intentional alloying element  

Chemical 

composition(%max) 
𝐶∗ 𝑆𝑖∗ 𝑀𝑛∗ 𝑃 𝑆 𝐶𝑟∗ 𝑁𝑖∗ 𝑀𝑜∗ 𝐵∗ 

Panels 

AR370T 0.32 0.4 

1.2 0.010 0.003 1.0 1.8 0.7 0.005 AR440T 0.21 0.5 

AR500T 0.32 0.4 

 

A small number of the test plates (tested at charge masses to ensure that no fracture of the 

plates would occur) were mounted to the modified pendulum system described by Curry and 

Langdon [133] which was used to determine the impulse and house the cameras used for 

transient measurements. The new pendulum provided protection for the cameras from the 

intense light burst and the ensuing blast wave (Figure 3-8). Two IDT vision NR4 S3 high speed 

cameras were mounted to a vibration isolated aluminium rail system to prevent independent 

movement during the testing. The two cameras were oriented to face the rear of the test plate and 

separated by an approximate 30o included angle on a rail system to isolate them from the relative 

vibrations. The synchronised images from the two cameras were triggered with a custom built 

TTL trigger circuit that was activated by the detonation. A full width strip along the mid-line was 

filmed by both cameras at a frame rate of 30 000 Fps with the exposure set at 33 𝜇𝑠, adjusted due 

to the amount of light needed to illuminate the specimen. 
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Each test plate was bolted into the clamp frames with 12 bolts, the frames were chamfered to 

prevent pressure recirculation. The rear surfaces of the panels were cleaned, abraded and then 

painted with a random speckle pattern which was used in the DIC procedure to determine the 

spatial deformation of the plate. Full details of the specimen preparation procedure are found in 

Reference [133]. 

Table 3-4- Steel panels’ configurations and load parameters 

Configurations 
𝑴𝒆 
(g) 

he. 
(mm) 

Configurations 
𝑴𝒆 
(g) 

𝒉𝒆  
(mm) Mat. 

𝑺𝑫 
(mm) 

Model Mat. 
SD 
(mm) 

Mode
l 

Mild 
Steel 

25 

MS-P1 25 3.53 

AMX 
370T 

38 

AS-P5 40 12.72 

MS-P6 40 12.72 AS-P6 50 15.91 

MS-P8 33 10.50 AS-P7 40 19.88 

MS-P10 40 12.72 AS-P8 50 24.85 

AMX 
370T 

25 
AS-P1 40 12.72 

AMX 
440T 

25 
B3 33 10.50 

AS-P2 33 10.50 B6 50 15.91 

50 

AS-P3 40 12.72 

38 

AX24 24 7.3 

AS-P4 70 22.27 B4 33 10.49 

B7 70 10.50 

3.4 METHODOLOGY OF NUMERICAL STUDIES 

3.4.1 Choice of FE mesh 

The complex nature of the localised blast phenomenon renders a precise prediction of the 

fluid structure interaction response and the associated damage modes in FE analyses intrinsically 

difficult. Accurate prediction of the structural response in FE models depends, firstly, on the 

accuracy of the mesh type to trace the solutions for local forces and bending moments along its 

section; and secondly, on the credibility of the input parameters utilised in the continuum 

mechanics equations incorporated in the FE computer programme. Unfortunately, more often 

than not, the coefficients are obtained empirically and vary in the literature. The plethora of 

values necessitate applying the consistency tests and validation of numerical models with 

experiments.  

The numerical simulations were performed in the ABAQUS 6.13® Explicit Finite Element 

commercial software. This hydrocode specially designed to deal with the non-linear dynamic 

problems with varying degrees of complexity such as dynamic response of structures subject to 

blast loads.  

A preliminary numerical analysis was set up to specify the convenient element type. The 

panels in each set of simulations were discretised with five element types, namely S4(R) 

conventional shells, SC8R continuum shells, M3D8R membrane and C3D8R continuum (solid 
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homogeneous) elements, but with the same degree of refinement as 5mm element length (which 

satisfied the convergence). Further discussion on mesh convergence is discussed in Chapter 4. 

S4R elements are general purpose, uniformly reduced integration elements with hourglass 

control to avoid spurious zero energy modes. These elements allow for the finite membrane 

strains and arbitrary large rotations. The continuum shell elements on the other hand, are 8 

noded hexahedral elements for general shell-like structures with continuum topology, adaptable 

to thick and thin shells, which permits for large strains and accuracy for contact pairs 

investigations.  

The C3D8R continuum elements are a class of solid elements with reduced integration also 

known as ‘brick’ elements. These elements require refinement to capture stress components at 

boundary but are not stiff enough in bending unless a sufficient number of them are employed 

through the thickness of the plate. The choice of 5 elements through thickness, in combination 

with enhanced hourglass control, is presumed to give reasonable estimate to capture the local 

bending moments.  

Membrane elements (M3D8R) are 8 node quadrilateral elements with reduced integration 

and hourglass control, which conform to simplified shell theory in which internal bending 

moments are neglected [136]. 

The element size in each model was kept constant at 5mm. Table 3-5 shows the percentage of 

error in maximum deflections against experiment. The MMALE models were carried out on a 

cluster of 16 High Performance CPU’s each having 1600MB memory.  

The membrane elements experienced large out-of-plane deformations compared to all other 

element types. Due to the membrane element’s paucity of bending stiffness perpendicular to its 

plane; the element convergence is fraught with difficulty due to excessive lateral deformations. It 

transpires from Table 3-5 that the conventional and continuum shell elements incur less 

computational cost than the membrane or continuum elements. Thus, the conventional shell 

elements can be used throughout the study. 

The preliminary analysis illustrated in Figure 3-10 and Table 3-5 showed the shell elements 

offered reduced computational time while maintaining the accuracy of the results. These 

elements provided more concurrent estimation of transient deformation history with the 

experiments [27] in terms of first peak and permanent deflection, thus, unless otherwise stated, 

the conventional shells are used throughout this thesis. The increased number of continuum 

(brick) elements through the thickness to capture the local bending moments significantly 

increased the computational time.  
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Figure 3-10- Transient deformation of the panel (d=38mm, De=50mm, Me=33gr)    

 

Table 3-5- permanent and maximum transverse deformation  

of ARMOX Model (𝑴𝒆 = 𝟑𝟑𝒈𝒓, 𝒅 = 𝟑𝟖𝒎𝒎) 
Element type 𝑾𝒇  

(mm) 

𝑾 
(mm) 

% Error CPU Time 
 (min) 𝑾𝒇 𝑾 

C3D8R 18.73 30.98 28.53 12.3 173 

S4(R) 16.10 27.27 10.47 1.83 63 

SC8R 17.64 29.11 20.11 8.67 53 

Experiment 13.5 26.78 NA NA NA 

 

3.4.2 Finite Element mesh models 

The Numerical models are replicas of the experiments described hereabove and also those 

reported by Langdon et al [61]. All models were fit with two upper and lower clamps along the 

periphery of the plate designated with rigid body elements. At the contact interface of each clamp 

and the plate surface a penalty contact with friction coefficient 0.3 was assigned. An additional 

width of 20mm on each side of the plate was included for the contact interface. Due to symmetry, 

only a quarter of the plate was modelled.  

Three types of numerical simulations were performed: (i) a full 3D Uncoupled Eulerian 

Lagrangian method, to register the pressure time history and thus obtain the impulse, (ii) a full 

Coupled Eulerian Lagrangian analysis and (iii) for the sake of comparison, a simple pressure-time 

Lagrangian analysis was performed for MSP8, B3 and ASP2 (same load parameters) having a 

rectangular pulse load, and load shape localised to the burn area as per Eqn. (2-16). The 

magnitude of the load was approximated from the experiment impulse over a presumed 20𝜇𝑠 

time duration.  
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3.4.3 ConWep method  

Empirical blast load ConWep, based on the work of Randers-Pehrson and Bannister [137], 

provides an opportunity to simulate the blast load on a Lagrangian structure. In the Lagrangian 

reference frame, the mesh follows the material movement, which has the advantage of reduced 

computational time, but the mesh is prone to element distortions due to excessive deformations 

and possible solution failure [1], [138]. 

ConWep accounts for a collection of conventional weapons calculations which was developed 

empirically by Kingery and Bulmash[28], [139], from a large scatter of experimental data which 

calls the ConWep function. The total pressure function relies upon the incident pressure, the 

reflected pressure and the angle of incidence (Eqn. (3-6)) 

 

P(t) = Pi(t)[1 + cosα − 2cos
2α ] + Pr(t)cos

2α (3-6) 

where 𝛼 ≥ 0  is the angle of incidence, 𝑃𝑖  and 𝑃𝑟  are the incident pressure the reflected 

pressure from the surface, respectively.  

 

 

Figure 3-11- Air blast wave propagation [140] 
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Figure 3-12- Path of ground blast wave propagation [23] 

 

The ConWep function is already implemented hydrocodes such as LS-DYNA and ABAQUS can 

describe the close to ground or air blast explosions [136], [140]. For example, the computation of 

the blast pressure/impulse in the ABAQUS hydrocode depends merely on the specified equivalent 

TNT mass and stand-off distance. In the case of the ground blast, the initial wave burst is reflected 

from the ground surface which merges with and escalates the blast wave pressure. The 

representation of the air blast propagation and ground surface blasts are given in Figure 3-11-

Figure 3-12, respetively. The interaction of the incident pressure and reflected pressure forms 

the Mach front which is a single wave and depends on the angle of incidence, as illustrated in 

Figure 3-13-Figure 3-14. The critical angle of incidence is between 40o-55o. The height of Mach 

front increases as the wave propagates away from the detonation source. The increase in height 

is due to the formation of the path of triple points (Figure 3-12), which emerges from the 

interaction of the incident, reflected and Mach waves [23]. 

Using the Hopkinson Cranz scaling law (Eqn. (2-8)), The small-scale models can represent the 

various threat scenarios of TNT landmine or IED detonations (Improvised Explosive Device) with 

30cm stand-off distance from the full-scale prototype in Table 3-6. Further details on scaling laws 

is presented in Chapter 8. 

 

Table 3-6- Scaling effects of some configurations. 

Full scale Prototype 

threat 
𝑍(m/kg1/3) 

Small scale 

model 

SD (mm) 𝑚𝑇 (kg) 
SD 

(mm) 
𝑚𝑒 (g) 

300 11.22 0.1336 50 40 

300 21.25 0.1083 38 33 

300 25.82 0.1015 38 40 

300 32.19 0.0943 38 50 
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Figure 3-13- reflected pressure Coefficient versus Angle of incidence [23] 

 

 
Figure 3-14- Reflected Scaled Impulse versus Angle of Incidence [23] 

 

Various TNT mass equivalency values have been used in the literature [30], [141] to account 

relative effectiveness factor of the explosives, however a multiplier of 1.31 was commonly 

employed which assumes the same detonation energy. The stand-off distance is adjusted by 

considering spherical–cylindrical charge equivalency, which gives 𝑟𝑠𝑝ℎ𝑟 =

(
3

4
ℎ𝑒𝑟𝑐𝑦𝑙𝑛𝑑

2 )
1/3

assuming the spherical and disc explosives should have the same mass to exert the 

same impulse. As the stand- off distances decreases and the blast wave types become increasingly 

proximal, the target may be located inside the fireball, leading to the interaction between the 
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expanding fireball and the overpressure. It must therefore be recognised that the ConWep 

approach will be approximate and that it predicts the response based on empirical pressure; 

however, it offers the possibility of simulating the blast load based on spherical and hemispherical 

charges with reasonable computational effort. It is also a useful baseline approach for comparing 

the more sophisticated and computationally more expensive approaches. Thus, the ConWep 

results herein are used as the first estimate to adjust the parameters of Arbitrary Lagrangien 

Eulerian (ALE) models.  

3.4.4 Eulerian methods 

In the circumstances where the empirical approaches fail to conveniently predict the blast 

response of a material, the advanced numerical methods which benefit from continuum 

mechanics algorithms which describe the fluid advection and FSI seems vitally essential. These 

algorithms are embedded in the ALE methods, which account for obtaining solutions for the 

arbitrary motion of mesh points with respect to the reference Eulerian points that are fixed in 

space. In other words, the ALE equations are defined with regards to the material time derivative 

and reference configuration time derivative [142], [143]. The Eulerian methods developed here 

use ALE formulation and fluid structure interaction contact interface, and consist of Coupled and 

Uncoupled Eulerian Lagrangian analyses.  

 

Figure 3-15- Eulerian arrangement to gauge the pressure-

time history 

 

In Uncoupled Eulerian Lagrangian (UEL) models, the multi-materials in the Eulerian medium 

consist only of the explosive and the air. Rigid boundary condition is assigned to the Eulerian 

boundary to monitor the inflow of pressure load (Figure 3-15), while non-reflecting flow-out 

boundary conditions are assigned to the side faces along the open fluid boundaries. The register 

of the pressure time history can be extrapolated and averaged to obtain the mean impulse , as per 

Eqn. (3-7), and applied in a separate Lagrangian analysis.  



65 
 

 

𝐼 = 2𝜋∫ ∫ 𝑟. 𝑃(𝑟, 𝑡)𝑑𝑟𝑑𝑡
𝑅

0

𝜏

0

 (3-7) 

Where ‘I’ is, the impulse imparted to the plate and 𝑃(𝑟, 𝑡) = 𝑝(𝑟)𝑝(𝑡) is the product of load 

shape and pulse shape parameters. Using the numerical method, an estimate to Eqn. (3-7) is given 

by compiling the summation of the product of the average impulse density (impulse per unit area) 

by the area of targeted elements (referred to as the mean impulse) as follows. The target surface 

was subdivided into mesh grid zones of 9 elements with the corresponding average pressure. The 

integral of the pressure load in each zone satisfies the impulse density value. To obtain the 

impulse from impulse density, it was assumed that the pressure load is symmetric over the 

Cartesian directions. Thus, the integral of the impulse density along the diagonals evaluates the 

mean impulse. 

Observations on UEL model with load parameters 𝐷𝑒 = 50𝑚𝑚 and 𝑆𝐷 = 38𝑚𝑚 gauged three 

distinct phases corresponding to the FSI: 

i. Phase “𝑖” the expansion of explosive, from time of detonation to its interaction with 

the structure, denoted 𝑡∗, found as ≈ 15𝜇𝑠  

ii. Phase “𝑖𝑖” explosive plate interaction, which lasted for 36𝜇𝑠. 

iii. Phase “𝑖𝑖𝑖” expansion of the explosion from time of separation from plate to expansion 

of the plate equilibrium. 

The physics of the problem in the Coupled Eulerian Lagrangian is similar in the above phases, 

but on the deformable target surface. Detonation was assumed to occur instantanuously. Upon 

contact with the detonation front, the material point within the unreacted explosive 

instantanuously transfers to gaseous material which is accompanied with sudden release of 

energy from the chemical reaction [67], resulting in advection of the gaseous fluid through the 

Eulerian mesh points. The fluid mesh points can be transferred using first or second order 

advection. By default, ABAQUS programme burn incorporates second order advection to transfer 

the state variables (pressure, velocity, explosive product density). This advection method 

incorporates a process referred to as the flux limiting to ensure the advection is monotonic and 

to reduce the oscillations occuring after the shock wave [19], [144]. At the fluid target interface, 

the FSI algorithms are enforced by the contact pairs between the fluid mesh points and the 

structure, allowing the plate to slide through the Eulerian mesh. The contact at the fluid structure 

interface was assumed frictionless.  

Since the load is axsysimmetric, only a quarter symmetry of the Eulerian cube medium is 

modelled with square plan of 300mm with height of 200mm, to encompass the steel plate with 
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clamps, air medium and the explosive materials, presented in Figure 3-16. The air is modelled 

with the ‘ideal gas’ Equation of State given as  

 

𝑃 = (𝐶𝑝 − 𝐶𝑣)𝜌𝑎𝑇 (3-8) 

where 𝐶𝑝 and 𝐶𝑣 are the specific heat at constant pressure and volume, respectively, 𝜌𝑎 is the 

air density, T is the temperature and P is the pressure. The data of air and explosive is given in 

Table 3-7. The specific internal energy of air is computed by integrating the specific heat constant 

over the temperature, or 𝐸0 = 𝐶𝑣𝑇 . The flow pressure, volume and temperature of adiabatic 

condition, using expression the ideal gas law (Eqn. (3-8)) and the associated conservation of 

energy   [70] are given by: 

 

𝑝

𝑃𝑠𝑜
= (

𝑉𝑠𝑜
𝑉
)
�̅�

 (3-9) 

𝑇

𝑇𝑠𝑜
= (

𝑉𝑠𝑜
𝑉
)
�̅�−1

 (3-10) 

𝑉

𝑉𝑠0
= (

𝑃𝑠𝑜
𝑝
)

1
�̅�

 
(3-11) 

Where �̅� = 𝐶𝑝/𝐶𝑣  , 𝑉 and 𝑉𝑠𝑜 are the flow volume and the initial volume of quiescent medium 

(air), respectively. 𝑝 and 𝑃0 denote the flow pressure and initial pressure, respectively and 𝑇 and 

𝑇𝑠𝑜 denote the temperatures accordingly.  

 

Table 3-7- Explosive and air parameters for Eulerian models 

Material 
𝝆 

(𝒌𝒈.𝒎−𝟑) 

Det. Wave 

speed 𝝊 (𝐦/𝐬)  
A B 𝑹𝟏 𝑹𝟐 ω 𝑬𝒎 

Pre-det. 

bulk 

modulus 

PE-4 1601 8123 
6.0977 

×1011 

1.295 

×1010 
4.5 1.4 0.25 6.057×106 0 

Air 

𝝆 

(𝒌𝒈.𝒎−𝟑) 

𝑪𝒑 

(𝒌𝑱/𝒌𝒈𝑲) 

𝑪𝒗  

(𝒌𝑱/𝒌𝒈𝑲) 
P (Pa) E0 (𝒌𝑱/𝒌𝒈) 

𝝁𝟎  
(Dynamic viscosity, (𝝁𝑷𝒂. 𝒔)) 

1.293 1.005 0.7176 101325 2.05×105 18.27 

 



67 
 

 
Figure 3-16 CEL model configuration 

 

For the air blast explosions, the disc explosive is modelled using the Jones-Wilkins Lee 

Equation of State  

𝑃 = 𝐴(1 −
𝜔𝜌

𝑅1𝜌0
)𝑒

−𝑅1
𝜌0
𝜌  + 𝐵 (1 −

𝜔𝜌

𝑅2𝜌0
) 𝑒

−𝑅2
𝜌0
𝜌 +

𝜔𝜌2

𝜌0
𝐸𝑚0 (3-12) 

where 𝜌 is the explosive product density, 𝜌0 density at the beginning of process, 𝐴, 𝐵, 𝑅1, 𝑅2, 

and 𝜔  are the material constants [67]. The expansion of the explosive is dependent on its 

geometry. A disc explosive expands primarily in vertical direction rather the horizontal direction. 

The shape of explosive is a significant factor in the type of wave propagation and deformation 

response. Nurick et al [145] showed that the Inverted Truncated Cone explosive resulted in 

higher impulse, but lower deformation than, the cylindrical explosive as the impulse was spread 

over a larger portion of the plate area. The increase in the charge mass of ITC explosive brought 

about the saturation impulse where no significant increase in deformation was observed at the 

increase of impulse.  

 

  

Axes of symmetry 
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4 CHAPTER 4 

Experimental and Numerical Results 

4.1 BACKGROUND 

Following the methodology of studies, the numerical and experimental results are 

investigated and compared in this chapter. Following this introduction, a mesh sensitivity 

analysis is carried out and the transient deformation of the converged numerical models were 

validated against the experimental DIC techniques in Section 4.3. The pressure distribution and 

impulse, plate profile and strain localisations were investigated in Section 0. The results were cast 

in dimensionless form to investigate the correlations between the results and the current 

empirical and theoretical models from the literature. In Section 4.5, empirical models of Nurick 

and Martin [60] were extended which pass through the large scatter of data for armour steel 

panels. The major part of the work in this chapter was published in International Journal of 

Impact Engineering [119].  

4.2 RESULTS 

4.2.1 Mesh sensitivity and strain localisation 
 

Initial treatment of the numerical methods entails a mesh convergence parametric study. The 

convergence deems necessary for both pure Lagrangian and Arbitrary Lagrangian Eulerian 

methods. The models were set up with three levels of mesh discretisation, from coarse (10×10) 

to fine (40×40) element meshes of S4(R) shell elements, giving the element thickness ratio in 

decreasing order of 5mm-1.25mm, respectively. The most suitable mesh was then validated 

against the experimental models.  

Accordingly, in view of the Coupled Eulerian Lagrangian models, the convergence of the state 

variables, such as velocity field and pressure (incident and reflected) as well as the force fields 

depends upon both the element size of the Eulerian medium as well as the Lagrangian plate 

whereupon the blast was imparted. The Eulerian medium was discretized with EC3D8R Eulerian 

brick elements, varying from 1.25mm to 10mm as depicted in Table 4-1. Thus, the fraction of the 

medium which accounts for the explosive material encompasses approximately 40 elements, in 

accordance with minimum explosive element numbers discussed by [67], [146]. Although such 

refinement would lead to expensive computations, it is found as the reasonable discretisation 

without inducing computational errors in analysis as the coarser mesh would not satisfy the 

convergence. Hexahedral elements of the cubic type Eulerian medium are advantageous over the 

spherical type medium to overcome the material leakage problems insomuch as FSI was 
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concerned [146], [147], a problem also most commonly associated with C3D8R brick elements 

for the plate. It occurs when the wave pressure associated with in the material mesh point of 

Eulerian elements pass through the Lagrangian mesh points (without rupture). 

Table 4-1 Element configuration model B4 and AX24 

 Model config.  
(AX24 and B4) 

no. of 
elements 

Element 
length (mm) 

Steel plates 

100 20 

400 10 

1600 5 

Eulerian Domain 

49392 5-10 

111925 2.5-10 

369820 1.25-10 

 

Table 4-2 Mesh refinement & �̅�𝒑𝒍of Model B4-AX24 

Model 
config. 

Element length/ 

thickness 

W 
(mm) 

𝜀�̅�𝑙 

B4 

4.33 18.23 1.71 

2.16 25.7 5.42 

1.08 28.2 7.90 

AX24 

4.33 22.36 2.70 

2.16 24.22 5.40 

1.08 24.4 6.50 

 

The general response of structure is characterised with initial elastic stiffening, followed by 

appearance of the plastic flow stress once the yield limit is reached. The plastic flow response 

occurs sporadically in certain regions while the rest of the structure responds elastically. After a 

certain time interval the structure behaves as elastic rebound following the residual stresses 

[148].  

Table 4-2 presents the influence of element refinement on mid-point transverse deflection 

and the equivalent plastic strains 𝜀�̅�𝑙  captured at time 0.3ms (occurring when principal stresses 

were maximum). At the onset of loading phase, the elastic strains occurring throughout the 

structure are instantaneously ensued by plastic strains localisation at the boundaries as well as 

the plate mid-point. As predicted, the highest plastic strains associated with the CEL models was 

attributed to the localised elements at the midspan of peripheral clamped boundaries, which 

propagated along the support edges while the central plastic zone spread outward. The central 

node plastic strain and strain rate tensors underwent an abrupt rise to the highest principal 

plastic strain (𝜀11) occurring at 0.08ms, at which the strain rate vanished. Boundary elements, 
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however, underwent a more gradual increase in principal strain (𝜀11) as the equivalent plastic 

strain (𝜀�̅�𝑙)  approached the plastic strain in the centre, as shown in Figure 4-2. 

As shown in Figure 4-1, very coarse Lagrangian mesh (10×10 elements) resulted in simulation 

errors, which is postulated to be due to excessive relative distortion of the localised elements to 

their adjacent elements. The convergence was satisfied with the refinement of element length to 

thickness ratio of ~1. It is noted that the mesh refinement led to an increase in maximum central 

deflection, plastic strain and stresses, however, the local stresses at boundaries do not converge. 

In general, according to [149] the stresses and strains should be convergent if: 

|𝜎𝑓 − 𝜎𝑚| < |𝜎𝑚 − 𝜎𝑐| (4-1) 

with the subscripts denoting the mesh level, viz. 𝜎𝑐 the stress of the coarse mesh, 𝜎𝑚 and 𝜎𝑓 

those of the medium and fines meshes, respectively. Yuan and Tan [75] reported that in the 

convergence study of fully clamped plates, the plastic strain as well as key stresses at the plate 

boundary (𝜀�̅�𝑙  and σyy) do not converge with mesh refinement. Unrealistic strain localisations at 

the boundaries cannot be deterministic for the ductile fracture modes of more uniform blasts, 

(Mode II*, in Table 2-1) but have no effect on Mode I (large inelastic deformation) response or 

higher modes with respect to the localised blast load (such as capping of the plate centre) studied 

here.  

 

Figure 4-1- Mesh refinements of Mild steel with 25g PE4 (Model MSP1) 

 

The resistance of the beam to dynamic loading was due to inertia, elastic bending stiffness and 

plastic hinge formation at the midspan.  

Finding the plastic deformation can be difficult as they are interspread with elastic 

deformations. The regions where plastic flow occurs may appear intermittently.  
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(a) (b) 

Figure 4-2- (a) Equivalent plastic strain @1.167ms (b) Final deformation @3ms. The plastic strain develops 

inward from the localised boundaries along the plastic hinge lines.  

 

4.3 VALIDATION OF NUMERICAL RESULTS 

4.3.1 Validation of numerical models 

 

In this section, the transient deformations of the numerical models are validated against the 

practical values obtained through state of the art DIC tests presented in Figure 4-3 - Figure 4-4. 

The candidate panels were AR-440T grade steel (designated B4 and AX24) CEL models. The 

transient response of two further AR-500T panels as well as a mild steel panel (denoted MS24 

hereinafter) was also investigated, as illustrated in Figure 4-5 and Figure 4-6. The load 

parameters for MS24 comprised of 24g charge mass, 50mm diameter and 𝑆𝐷 = 38𝑚𝑚. The AR- 

500T panels were subject to 24g and 33g charge masses and identical configurations to other AR-

440T panels with the exception of lower thickness and higher yield stress, as discussed in Section 

3.2.1. Of all the panels investigated here, only the AR370T and Mild steel with 25mm stand-off, 

40g charge and 50mm charge diameter exhibited partial tearing. A further study on the rupture 

of the armour panels is presented in Chapter 8.  

During the DIC tests, the frame rate of the camera was restricted to 30,000fps. This limitation 

induced motion blur as the plate velocity was high in the initial frames, between 3.2ms-4.0ms 

shown in Figure 4-3. The motion blur resulted in the detail of the central portion of the plate being 

lost as the speckle pattern could not be resolved.  
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Figure 4-3- Time History plot of midpoint displacement, Experiment (from DIC) 

vs CEL and UEL models, for ARMOX B4.  

 

 

Figure 4-4 Time history plots of midpoint displacement, Experiments (from 

DIC) compared with the CEL and UEL simulations for AX24, based on 

Cowper Symonds and JC models.  
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Figure 4-5 Time history plots of midpoint displacement, Experiments (from 

DIC) compared with the CEL.  

 

 
Figure 4-6 Time history plots of midpoint displacement, DIC compared 

with the ARMOX 500T CEL simulations on 33g and 24g PE4 @ 38mm 

stand-off  

 

4.4 COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 

4.4.1 Pressure and impulse  

Table 3-4 summarises the displacement and impulse of Numerical vs experimental models. 

The total impulses calculated experimentally from the pendulum swing is concurrent with the 

mean impulse from UEL simulations, with error of less than 10%. In Figure 4-7 a comparison of 

the effect of stand-off on total impulsive density (impulse per unit area) imparted on AR370T 

models is given. It should be recognised that, measurement of pressure time history from CEL 

model is fought with difficulty due to the motion of the target plate.  
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Figure 4-7- Impulse density of AR-370T steel, ASP1 (brown), 

ASP3(yellow) and ASP5(grey)  

 

Following Bonorchis & Nurick [67], a comparison of the pressure time histories from a UEL 

model with no clamps and one clamp boundary conditions (as is the case of the experimental test) 

is sought to investigate the influence of boundary conditions on the total impulse transmitted to 

the plate. The loading arrangements in this comparative study consisted of 40g PE4 explosive, 

had 50mm diameter and positioned at 50mm stand-off from the target. The schematic of the 

model is drawn in Figure 4-8. The UEL model with one clamped was identical to no-clamp case 

except with specifying rigid chamfers at the edge of the plate. The schematic of pressure 

distribution across the target plate is illustrated in Figure 4-9. 

 
Figure 4-8- Schematic of the UEL model with clamped boundaries 

 

Clearly, as observed in Figure 4-10, the pressures recorded at gauge points of the two models 

are coincident, suggesting the boundaries have infinitesimal contribution in absorbing the 

impulse. This is because in the current work, geometric characterisation gave the quotient of the 

200mm plate half-length to the charge radius (20-37.5mm) was large (5.3-10). Even accounting 
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for the larger stand offs (50 mm) used herein, this is considered conservative in preventing the 

pressure recirculation along the clamp edge observed by Bonorchis and Nurick [67] at closer 

boundary distances. Such a design quotient was 3:1 in the authors work.  

Table 4-3- Steel panels’ configurations and load parameters- 𝑰𝒔𝒊𝒎 is the mean impulse from Uncoupled 

Eulerian analysis, compared against the experimental impulse on Mild steel and AR-370T by [61]. 

Configurations 
𝑰𝒆𝒙𝒑𝒕. 

(N.s) 

𝑰𝒔𝒊𝒎.  

(N.s) 

Configurations 
𝑰𝒆𝒙𝒑𝒕. 

(N.s) 

𝑰𝒔𝒊𝒎. 

(N.s) Mat. 𝑺𝑫 (mm) Model Mat. 
SD 

(mm) 
Model 

Mild Steel 25 

MS-P1 56.4 51.0 

AR- 370T 38 

AS-P5 80.5 78.1 

MS-P6 82.9 82.4 AS-P6 100.1 98.3 

MS-P8 68.2 65.0 AS-P7 82.2 67.1 

MS-P10 80.7 81 AS-P8 91 85.5 

AR- 370T 

25 
AS-P1 80.0 80.1 

AR- 440T 

25 
B3 57.3 57.4 

AS-P2 66.1 62.2 B6 94.8 86.0 

50 

AS-P3 82.2 77.3 

38 

AX24 43.75 43.4 

AS-P4 143.2 135.6 B4 57.8 55.0 

      B7 129.1 108.2 

 

   

(a) 10𝜇𝑠 
(b) 20𝜇𝑠 (c) 30𝜇𝑠 

   

(d) 40𝜇𝑠 (e) 60𝜇𝑠 (f) 80𝜇𝑠 

Figure 4-9- Distribution of the pressure load at various time points, in the front face of the UEL model 

with one clamp  

 

Furthermore, the pressure recirculation in the clamps lasts only for a brief time, the majority 

of the load would be dissipated in the plate before the pressure has built up in the clamps. 

Accordingly, the total calculated impulse from the one clamp model was a mere average of 1.6% 

higher than the no clamp model. Thus, the UEL models herein predict the transmitted impulse 
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with reasonable degree of accuracy and compare favourably with the total impulse measured by 

the ballistic pendulum. As the charge radius to plate length increases to one third, (as in the case 

of the model in Ref. [67])  the pressure recirculation duration at the boundaries increase, leading 

to an increase in the impulse. 

When the pressure time history is implemented on the structure in a separate simulation 

(evaluated based on FSI on rigid target), the results overpredict the actual response compared to 

the coupled method. In fully coupled model, ceteris paribus, the structural flexibility alone takes 

part to diminsih the impulse, resulting in the magnitude of the deflection to decrease [70] (Eqn. 

(2-9)). The ability to acquire instantaneous velocity relieves the thin plate from the pressure 

acting at the fluid structure contact interface, leading to a reduction in the transmitted impulse. 

However, as the plate thickness increases, the structure stiffness increases and the impulse on 

heavy plate limit would be asymptotic to that of the rigid target, as discussed by Taylor [31] and 

Kambouchev and Radovitzky [32]. The latter authors extended the work of Taylor [31] on 

uniform incident waves and expressed the reduction in the transmitted impulse in terms of single 

dimensionless FSI parameter on compressible fluids and various plate thicknesses. The authors 

showed that the transmitted impulse ratio depended on the plate mass but is unaffected by the 

shock intensity.  

 

Figure 4-10-pressure time histories of 1 clamp compared with no clamp boundary conditions 
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4.4.2 Deflections and correlation of parameters 

Table 4-4 shows the results of the maximum and residual transverse deflections from the 

numerical and experimental models. It should be mentioned that, while the accuracy of the fully 

coupled Eulerian analysis is computationally expensive, the CEL analyses registers the outcome 

with reasonable degree of accuracy, with the similar time history plot of the transverse 

deflections. 

Table 4-4- Maximum and final deflection of the Steel plates -values in mm. 
 

Material. Model 
𝑾𝒇 

CEL 

𝑾𝒇 

Expt. 

Difference 
from Expt. 

(%) 
Material. Model 

𝑾𝒇 

CEL 

𝑾𝒇 

Expt. 

Difference 
from Expt.  

(%) 

AR-370T 

ASP1 30.37 29.50 2.95 

Mild 
Steel 

MS-P1 32.25 30.20 6.79 

ASP2 28.53 21.90 30.27 MS-P6 51.03 53.70 4.97 

ASP3 18.23 14.40 26.60 MS-P8 47.20 42.00 12.38 

ASP4 30.00 25.60 17.19 MS-P10 55.50 41.60 33.41 

ASP5 22.79 21.30 7.00 

AR-440T 

B3 21.78 17.20 26.63 

ASP6 23.42 27.10 13.58 B4 16.10 14.57 10.50 

ASP7 13.60 17.60 22.73 B6 16.35 22.10 26.02 

ASP8 20.00 18.60 7.53 B7 24.50 22.80 7.46 

 
 

As observed in the Figure 4-3- Figure 4-6, the predicted vibration by the numerical models 

lags the actual vibration observed from the experiments. The difference of the occurrence of the 

first minima in Figure 4-3, 𝑢1 = 1.96𝑚𝑚  close to the next peak difference  𝑢2 = 2.3𝑚𝑚 , and 

lagging time is maintained throughout, i.e. 𝑡1 ≅ 𝑡2 . It should be recognised that, the actual 

prediction of the response is intrinsically difficult [150] as the plethora of parameters, including 

the material rate sensitivity or adiabatic shear, could affect the transient deformation of the plate 

as follows. Due to the proximity of the charge, the deformations are localised in narrow shear 

zones, the response in the central region is governed by the plastic flow in the central region of 

the plate. The adiabatic heat generated due to the high strain rates gives rise to elevated 

temperature in the localised region, while the surrounding region strain hardens. This leads 

adiabatic shear localisation when the thermal softening overcomes the strain hardening effects. 

[62] 

For the design purposes, estimating the maximum transverse displacement is usually deemed 

more important than captured the exact nature of the elastic vibrations which follow. The 

maximum transient displacement may even be preferred over the permanent deformations, since 

it may transition the structure to higher failure modes (such as partial tensile tearing in the 
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centre). Finally, while the relative motion of the frames could give rise to the difference in post 

peak behaviour, it is not hypothesised as the reason of the counterintuitive post peak behaviour.  

As many parameters influence the localised response of the panel - the prediction of transient 

permanent deformation is rendered intrinsically complex, and to date most experimental and 

numerical studies on the transient deformations such as that of Ref. [79] were performed on 

structures subject to uniform blasts. 

It is also of interest to study the influence of structural flexibility on the magnitude of the 

pressure load in the UEL and the fully coupled analysis (CEL). A model with rigid target surfaces 

was implemented and the pressure data at the gauge points on the target interface was captured. 

The predicted pressure-time histories were averaged and implemented in a second stage model 

with Lagrangian elements. This was an uncoupled model (UEL). The trajectory of transient 

deformation for the AX24 and MS24 test plates modelled this way are shown in Figure 4-3 and 

Figure 4-4. The magnitude of the deformation showed that, using the UEL simulations, averaging 

the pressure registered on the rigid target surface leads to an increase in the magnitude of 

maximum deformation. For the various models investigated, the plate maximum deflection 

obtained from fully coupled analysis was found to be lower than the uncoupled method (Table 

4-5), and closer to the experimental results, with maximum percentage error of 19.7% (UEL) 

compared to 8.8% (CEL) for the AX24 test. The lower displacement predictions of the CEL occurs 

as the impulse is diminished by the structural flexibility of the fully coupled model. In other words, 

for the flexible structure the pressure load obtained from UEL method is an overestimate of the 

actual pressure load applied to the plate.  

Table 4-5- Maximum mid-point deflection (mm) for Armour and Mild steel 

Configuration AX24 B4 MS24 

CEL 19.11 27.20 37.04 

UEL 25.91 30.56 33.88 

Experiment 20.80 26.78 37.19 

 

The maximum deflection profile of the AR440 and Mild Steel panels were also compared with 

those obtained from the DIC tests. The profile shapes were predicted from CEL models and shown 

in Figure 4-11 and Figure 4-12. In Figure 4-12a, the transient deformation at maximum peaks 

1.08ms and 1.33ms is also compared. It is interesting to note that the profile shape is similar to 

the experiment, with more bulging near the boundaries. Further, assuming the same detonation 

time, the deflection time histories in Eulerian Lagrangian studies are relatively coincident with 



79 
 

the DIC data in terms of the peaks and permanent deflection. Despite the affinity, some disparities 

in the post peak behaviour was observed, with higher spring-back of DIC models (Figure 4-5).  

 

Figure 4-11 –Maximum transient deflection profiles –CEL (B4, 

ASP1, ASP5 and B3) vs experiment(B4) 

 

(a) 

 

(b) 

 

Figure 4-12- maximum transient deflection profile of (a) AX500T,33g and AX24 (b) 

AX500T,24g-CEL vs Experiments  
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4.5 CORRELATION BETWEEN PARAMETERS VIA EMPIRICAL STUDIES 

Non-dimensional analysis was performed to investigate the difference between the 

theoretical models, the available empirical models in the literature, and three simulations which 

ascribe the rigid plastic model subject to the locally uniform pulse.  

Experimental and numerical investigations on the effect of load parameters have been 

calibrated through non-dimensional analysis in the literature. Fundamental theoretical work by 

Jones [35] has evaluated the plate response to uniform or impulsive loading. The dimensionless 

kinetic energy, defined by Jones, predicts the large inelastic deformation of the plate loaded 

impulsively by uniform velocity V0 as in Eqn. (2-12). The normalised deflection is described by a 

function of dimensionless kinetic energy 𝜆 for quadrangular plates (Eqn.(4-2)). 

𝑤𝑓

𝐻
=
(1 +

2𝜆
3
)
0.5

− 1

2
 

(4-2) 

The results from various models were cast in dimensionless form and presented in Figure 

4-13. For the sake of comparison, the results of (ASP3, MSP8 and B3) pure Lagrangian analysis 

were also drawn in this figure (denoted as Localised rectangular pulse). The models had identical 

load configurations and geometry, but different steel grades. The blast pressure was estimated 

using Figure 2-2 (a) having a rectangular pulse 20𝜇𝑠 duration.  

 

 
Figure 4-13- Comparison of numerical, experimental and empirical results proposed in the literature in 

dimensionless form. 
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The numerical models are compared against Jones’ [35] theoretical prediction, which yields a 

similar prediction to the pure Lagrangian models. However, Jones’ theoretical predictions 

overestimate the plate response in the localised blast load for the other models as well as the 

experiments. Hence, in the idealisation of the blast load, the spatial and temporal variation of the 

load play a significant role and Jones’ idealisation of rigid, perfectly plastic plate of uniform load 

shape which acts impulsively on the plate is similar to the Lagrangian models. The actual 

distribution of the load is influenced by the load regime (impulsive/dynamic), may be treated as 

dynamic rather than purely impulsive [70] in some cases, the load distribution due to the 

proximity of the charge and its time variation . For example, consider the load parameters 𝑚𝑒 =

33𝑔𝑟, 𝑆𝐷 = 38𝑚𝑚 and 𝐷𝑒 = 50𝑚𝑚, which has the exponential positive pulse duration 𝜏 = 30𝜇𝑠, 

yields the region affected by the blast-taken as the position of the plate inflexion point in the plate 

profile- 60mm away from the midpoint. Evaluating the natural frequency (𝜔)of the plate by a 

modal analysis, the abscissa of pressure impulse diagrams by Baker [151], was calculated as 𝜔𝜏 =

0.5, sufficiently high so as to treat the load with the similar or higher stand-offs as dynamic. 

Similar results would ensue with decreasing the charge mass. However, when the stand-off 

distance decreased to 25mm, the pressure load magnitude increases, causing larger transverse 

deformation. Consequently, the position of the inflexion point would increase to 80mm, 

suggesting rather impulsive load type with 𝜔𝜏 = 0.26. A transition from the idealised, partially 

impulsively loaded panels to the actual load shape, which is exponentially varying across the 

panel, leads to a significant difference between the simple models and the CEL approach.  

It should also be recognised that; the material mesh elements can be idealised as rigid when 

the ratio of kinetic energy to the maximum strain energy stored elastically is sufficiently high to 

virtually ignore the influence of material elasticity. This condition may be applied to mild steel 

material model, for which the idealisation of pulse shape as per Eqn. (4-2) will not render much 

disparity in terms of accuracy. However, the armour steel grades underwent considerable elastic 

rebounds during the experiments, thus the material elasticity of such steel panels shall be 

retained in the theoretical analyses. 

It transpires that the results are bounded between the Jones’ model and the empirical trends 

found from experiments of Ref. [21], [59]. Eqn. (2-19) was employed by Langdon et al [61] to 

investigate the relationship between the impulse and the permanent deflection for armour steel. 

However, the effect of stand-off distance was ignored. The relationship of the normalised impulse 

was later altered by Jacob et al [21], to make the comparison of blast-loaded panels of different 

geometries and characteristic stresses, while taking the proximity of the charge into account. The 

authors introduced a scaling coefficient to parameterise the stand-off distance, which is 

accounted for in the cases where 𝑆𝐷 ≥ 𝑅𝑒 as per Eqn. (4-3), (4-4). 
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𝛾′𝑠 =

(1 + ln (
4𝐿𝐵

𝜋𝑅𝑒
2))

(1 + ln (
𝑆𝐷
𝑅𝑒
))

 (4-3) 

∅𝑠𝑞′ =
𝐼𝛾′𝑠

2𝐻2√(4𝐿𝐵𝜌𝜎0)
 (4-4) 

 

Through the curve fitting analysis, the final-normalised-displacement of the plate can be 

circumscribed to the curve of the Eqn. (4-6) with the ±1 leader. As illustrated in  Figure 4-14, the 

impulse correction parameter decreases monotonically smoothly at higher stand-off and charge 

radius parameters (i.e. when load characteristics approaches those of distal charges), while the  

variation of impulse correction parameter with charge diameter is abrupt given the 
𝑆𝐷

𝑅𝑒
~1 and 

𝑅𝑒 ≪ 𝐿. The empirical expression in (4-6) is graphed in Figure 4-15.  

 

Figure 4-14- influence of charge radius (𝑹𝒆) and stand-off on 

impulse correction parameter 

 

Fallah et al [36] reported that a fit to the experiments was achieved by using the slenderness 

ratio, defined in Eqn. (4-5), into empirical Eqn. (4-4) to yield Eqn. (4-7), while the influence of 

slenderness ratio is graphed in : 

𝛾𝑠𝑙 = (
𝐻

2𝐵
)
𝑚

 (4-5) 
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𝑊𝑓

𝐻
= 0.52∅𝑠𝑞′ + 1.1 (4-6) 

∅𝑠𝑙 = ∅𝑠𝑞′𝛾𝑠𝑙 = 
𝐼𝛾′𝑠𝛾𝑠𝑙

2𝐻2√(4𝐿𝐵𝜌𝜎0)
  (4-7) 

∅𝑠𝑙′=  
𝐼𝛾′𝑠

8𝐵2√(2𝐿𝜇𝜎0)
 (4-8) 

 

 

 
Figure 4-15- Damage number ∅𝐬𝐪′vs the normalised displacement 

 
 

 
Figure 4-16- Correlations of permanent deflection/width ratio with the damage 

parameter ∅𝒔𝒍 
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Figure 4-17- Influence of slenderness ratio and stand-off on impulse 

correction parameter 𝜸′𝒔𝜸𝒔𝒍, with 𝑫𝒆/𝑳 = 𝟏/𝟖. 

 

The normalised displacement is related to the equation of best fit, the parameter ‘m’ from Eqn. 

(4-5) accounts for the material type, which was found to be 1.6 for Dyneema® HB26 panels and 

armour steel panels [36]. Assuming 𝑚 = 1.5, Eqn. (4-7) can further be simplified to Eqn. (4-8) 

without loss of accuracy in the regression line, as illustrated in the Figure 4-16, while the influence 

of the slenderness ratio of the impulse correction parameter is plotted in Figure 4-17. 

It is also noted that, the experimental models by [61] (outlined in Table 3-4) exhibited the 

mode I failure and did not rupture. Previous experimental research, according to [61], showed 

that the blast generated by laod parameters 𝑆𝐷 = 25𝑚𝑚 , 𝑀𝑒 = 40𝑔  and 𝐷𝑒 = 50  perforated 

through both mild steel and AR 370T steel plates. Thus, contrary to the conventional design, the 

material strength and hardness are not conducive to predict the material resilience to localised 

blasts. This leads to the feasibility of establishing the rupture impulse that was not solely based 

on the strength of the steel. The non-dimensional analysis performed herein shows that these 

models attain the highest dimensionless impulses, ∅𝑠𝑞′ = 12.22  and 22.42, for armour steel 370T 

and mild steel, respectively. Clearly, even though the model ASP4 undergoes highest impulse 

(143N.s), it does not rupture as the higher stand-off/charge diameter ratio contributes toward 

reduction of the normalised impulse [22]. Therefore, These NDIP ∅𝑠𝑞′  can be used for the 

preliminary design applications, to obtain the panel geometry (such as the desired thickness), 

based on simple algebraic manupulations from the Eqn. (4-8). Such a design procedure is 

conditional to ignoring the strain rate sensitivity of the material. Further details of the use of NDIP 

for preliminary design applications is presented by reference [36].  



85 
 

However, while the rupture impulse is partially influenced by the material ductility, other 

failure mechanisms such as specific energy to tensile failure (SETF)-which is a measure of both 

strength and ductility of the material-contribute to the rupture behaviour [61]. Since the SETF is 

known a priori (it is obtained from the quasi static tensile test), it is a useful indicator of rupture 

behaviour of different material types.  

The design procedure can be carried out in the following manner: given the load parameters 

(charge type and mass, stand off, charge geometry), and the target geometry, the average impulse 

that a blast threat can generate is calculated using Eqn. (3-6) and/or measured empirically (by 

ConWep method or Dimensional analysis). Then, the non-dimensional analysis would be 

performed to predict whether the steel panel (Armox steel or Mild steel) response exceed the 

value of rupture impulse and to pinpoint the final deformation of the panel. Clearly, the complex 

nature of the loading and the materials strain rate sensitivity make it difficult to generalise the 

empirical values for all Armour steel and mild steel panels, but these values can be used as ‘safe’ 

design parameters together with consideration of SETF. Further information on the predicting 

the rupture of the ductile metallic panels is presented in Chapter 8.  

4.5.1 Distribution of blast Load 

The localised blast load has a spatial (load shape) and temporal (pulse shape) variation. In 

most works of the literature [46], [67], [152] the load shape is assumed to be constant over the 

central region and decay exponentially in a radial direction outside this zone, as illustrated in Eqn. 

(4-9).  

In Figure 4-18 the spatial variation of registered pressure from the Eulerian analysis across 

the plate breadth was validated using the linear regression analysis. In most cases the percentage 

error of 5% was noticed, which indicates a good fit of the data points with exponential pressure 

equation with coefficient of confidence R2 >90% , as presented in Table 4-6. The temporal 

variation is influenced by the pulse shape. According to [37], [152], the final deformation of a non-

impulsive loaded plate is strongly dependent on the pulse shape; however, using the correlation 

parameters of Reference [37]-effective pressure, mean time and effective impulse- the pulse 

shape efects can be eliminated. A comparison of pressure time history for mild steel and armour 

steel Eulerian models is made in Figure 4-19 at 23mm away from the plate centre. In Figure 4-19-

a the effect of charge mass is evident, however by comparison of deflections in Table 4-5 and 

pressure in Figure 4-19-b it can be deduced that the model B4 has dissipated more energy  than 

MS24 in spite of the same pressure (impulse). 

{
 𝑝(𝑟) =  𝑝0                                0 ≤ 𝑟 ≤ 𝑟𝑒

𝑝(𝑟) =  𝑎𝑝0𝑒
−𝑏𝑟                     𝑟𝑒  ≤ 𝑟 ≤ 𝑅

 (4-9) 
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Table 4-6- load parameters of explosive 

Config. 

Explosive parameters 

𝑎𝑝0𝑒
−𝑏𝑟  

R2  

𝑎𝑝0 

(GPa) 

Decay 

constant, b 

ASP1 3.11 104.13 97.30% 

ASP7 2.14 101.25 90.04% 

B4 2.85 96 91.95% 

ASP4 3.054 69.04 95.69% 

 

 

 

Figure 4-18– Curve fitting of the pressure load based on regression 

 

 

 

(a) 

 

(b) 

Figure 4-19- Pressure time history of steel plates (a) ARMOX 370T- (b) B4 vs MS24 
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4.6 CONCLUDING REMARKS 

This chapter investigated the experimental and numerical results on the response of steel 

panels to localised air-blast loading. The experimental data consisted of supplementary data set 

presented in reference [1] as well as additional blast test data on armour AR440T and AR500T 

used to validate the various numerical techniques. The numerical methods consisted of the 

coupled and uncoupled Eulerian Lagrangian techniques. A dimensionless analysis and the 

theoretical models by [35] were used to evaluate the results.  

As expected, the ARMOX steel panels exhibited lower maximum and residual plastic 

deformations due to the higher ability of energy dissipation from the blast, which subsequently 

increase as the material yield strength increases (AR 500T compared to AR370T or mild steel). 

The calculated impulse based on FSI models had close correlations with the experimental 

values. A regression analysis was performed to estimate the parameters of Eqn. (4-9) from the 

recorded pressure at the gauge points. Both Arbitrary Lagrangian Eulerian methods, viz., UEL and 

CEL, predicted more accurate response of the steel plates, although the coupled method exhibited 

a closer correlation with the actual behaviour of the plates. For the coupled model, the FSI governs 

the performance of the plate, The FSI phenomenon is influenced by the plate mass and stiffness. 

Increase in the thickness would affect both the mass and the stiffness of the plates, although the 

latter increases more rapidly. For example, an increase of the plate thickness from 3.81mm to 

4.61mm increases the ratio of the transmitted impulse to total impulse on rigid target by average 

of 3%. Since the plates considered here are relatively thin ( 0.95% < 𝐻/2𝐿 < 1.1%) , the 

transmitted impulse would be reduced due to the FSI effects, which justifies the lower 

deformation in CEL analysis compared to the UEL analysis. In the UEL analysis, the plate stiffness 

approaches infinity, all the incident pressure is reflected off the surface and full impulse is 

imparted to the plate  

Contrary to the results of Bonorchis and Nurick (2009), the influence of clamped boundaries 

on the impulse was found insignificant due to the proximity of the charge. The majority of the load 

dissipates before the overpressure reaches the clamps. Similar to the results of Jacob et al [21], 

the effect of stand-off was significant as the specimen AR370T and B4 with (more) distal charges 

did not rupture despite the higher impulse. Thus, the NDIP was modified to incorporate the effect 

of stand-off, plate geometry and slenderness ratio, however, this parameter was dependent on 

the material. The speculation of rupture impulse threshold should be treated with the caveat that 

parameters such as hardness, ductility and strength alone would not ascertain the ‘safe’ design 

method, while SETF and NDIP should also be taken into account. Further details on prediction of 

rupture threshold is presented in Chapter 8.  
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The CEL models results closely correlated with those of the experiments regarding both 

maximum and final plate deflection. The theoretical model by Jones [35] considerably 

overestimates the armour steel plate midpoint deflection. The pulse shape, load shape and 

distribution, material elasticity and visco-plasticity (strain rate sensitivity) are the inherently 

deterministic factors that affect the response of the armour steel panels to localised blasts, 

however to date these parameters have not been examined by their own merits. Hence, using 

simplified models (such as based on idealisation of uniform distributed load) to predict of the 

localised deformation of ductile metallic plates would yield inaccurate results. 

As a final remark, it has already been established that for blast loads of 
𝑅𝑒

𝐿⁄ ≥ 0.3, the total 

measured impulse cannot be applied as a centrally localised impulsive pressure load, due to the 

contribution of clamps in reducing the impulse. A similar argument applies due to the influence 

of FSI for the range of the localised blast loads investigated here. However, total impulse 

measurement from the CEL model is not straightforward while the impulse reduction factor  in 

Eqn. (2-9) is valid for uniform blasts.   
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5 CHAPTER 5 

Theoretical Results of Simply-Supported Rigid-Plastic Square Plates  

 

5.1 BACKGROUND 

Most structural systems are fabricated with plate or beam elements which are made of steel 

alloys or other ductile metals with enhanced energy absorption as well as high post-yield load 

carrying capacity. Since these elements generally undergo large plastic deformations due to 

intense shock loads, prediction of their plastic response is essential for the engineer to 

incorporate in the design. In such cases, the theoretical predictions are conducive to cost-

effective, the rapid assessment of the protective systems without the necessity of conducting 

expensive experiments. The work of this chapter is in press for the Journal of Engineering 

Mechanics [153].  

5.2 BLAST LOADING ON STRUCTURES 

In the sequel, there is a summary on different blast loads using associated characteristics for 

blast loading functions. The equations proposed by researchers [35],[36]–[38] have been used to 

lift the restrictions on temporal and spatial distributions of pulse loads as well as providing a 

realistic yet accurate approximation of localised blast load which proves feasible for such types 

of loading.  

Methods of calculating response to shock loads have been proposed by Ref. [49]–[51]. Cox and 

Morland [92] obtained theoretical solutions for dynamic plastic response of simply supported 

square plates as well as the response of n-sided polygonal plates subjected to uniform dynamic 

load. Jones with co-authors presented an extensive series of theoretical and experimental 

research on various structural elements subject to spatially uniform pressure loads of rectangular 

temporal pulse shape [93], [74], [94]–[97]. In most cases, Jones’ analytical models for impulsive 

loading provided solutions in good agreement with experimental works, when the ratio of kinetic 

energy to maximum strain energy stored elastically was more than ten [98]. Komarov and 

Nemirovskii [99] extended further the analyses of Jones [35] to the dynamic case with travelling 

plastic hinges to obtain the incipient plastic deformation in each of the two stages of motion. 
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5.3 AIM OF THE CURRENT WORK 

In fact, as discussed previously, many theoretical analyses have been carried out that 

addressed the plastic response of the quadrangular or circular plates to impact or pulse pressure 

loads. In the theoretical calculations, the structure is often idealised to behave either as an elastic-

perfectly plastic or a rigid-perfectly plastic medium. The latter model- in which the elastic effects 

are ignored for simplicity (and without great loss of accuracy) - is appropriate for the assessment 

of dynamic response of blast-loaded structures, provided the loading is treated as a short duration 

pulse and the ratio of kinetic energy to elastic strain energy is considerably high [98]. 

However, in the previous analytical investigations [35], [93], [118], [154], [155], certain 

limitations have been implemented, i.e., the loading has been characterised as a uniformly 

distributed pressure with rectangular temporal pulse shape, which renders the results suitable 

for response to global blast loads. Nevertheless, the proximal charges of short stand-off distance 

will induce blasts with localised responses, leading to much higher local deformation and strains 

as well as the possibility of triggering potential tearing mechanisms, a fact which necessitates the 

investigation of alternative loading functions.  

In the following chapters, the analytical solutions of the response of quadrangular plates 

undergoing plastic deformations due to a generic localised blast is presented. The purpose of the 

current study is to extend, within the framework of limit analysis, the theoretical studies 

mentioned in section 1 to cases including localised blast loads through implementation of a 

modified loading function[36], [38], [152]. While the theoretical studies from the literature have 

focused on the general solutions for dynamic plastic deformation of plates subject to uniform 

impulsive loads, it can be shown that the general solutions can be obtained for square plates 

subject to any form of blast loading, i.e. localised or global.  

Since the localised blasts affect only a small area of the structure severely, it is expected that 

boundary conditions are not significant and full plate action may not be required [152]. Thus, 

while the herein approach assumes the plates to be simply-supported along its periphery, as 

discussed later, the procedure is extensible to the clamped plates. Certain other assumptions and 

the fundamental equilibrium equations are discussed hereunder.   

5.4 ASSUMPTIONS 

For the simplicity of the analyses to be conducted, the following assumptions are made 

throughout the study: 

In view of the Kirchhoff-Love plate theory, the quadrangular plate studied herein is assumed 

to be sufficiently ‘thin’ such that the effects of transverse shear and rotatory inertia can be 

neglected but not thin to the extent that in-plane actions can have a considerable effect on the 
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plate response. Consequently, it is assumed that bending action is predominant and its effect 

transcends those of the membrane, transverse shear or rotatory inertia. The influence of 

transverse shear, rotatory inertia and in-plane actions shall be discussed in the following 

chapters. 

Furthermore, the blast pressure load is assumed to be exerted on the structural elements 

laterally, such that the plate material particles follow straight trajectories normal to the un-

deformed plate mid-surface. Consequently, it is assumed that in-plane displacement components 

vanish from equilibrium equations [51]. Moreover, the plate maintains its uniform thickness 

throughout the motion and through-thickness dilatational waves are not considered.  

Finally, the effects of visco-plasticity are not considered here as in the case of high strength 

armour steel the response is independent of the strain rate.  

5.5 MATERIAL PROPERTIES AND LOADING 

Unless otherwise stated, in the sequel of theoretical analyses, the plate is assumed to be 

initially flat, monolithic metallic square plate with side length of 2L and thickness of H, with 

simply supported boundary conditions along its contours. The plate is subjected to a 

representative axi-symmetric localised blast load [152], [156]. Due to geometrical symmetry, only 

one quarter of the plate is considered in the analyses.  

In most works of literature [22], [38], [46], [67], characterises a generic blast load, which is 

multiplicative of spatial (load shape) and temporal variations (pulse shape), i.e. 𝑃(𝑥, 𝑦, 𝑡) =

𝑝1(𝑥, 𝑦)𝑝2(𝑡). The spatial variation of the load, as shown by [38] and Figure 5-2, maintains a 

uniform pressure within the radius 𝑟𝑒  before decaying exponentially in radial characteristic 

dimension 𝑟, given in Eqn. (5-1). Thus, the load is axisymmetric and reduces the domain of study 

to only one quarter of the plate. The pulse shape of the blast varies due to the type of explosion. 

For example, gas deflagration or high explosive detonation would give rise to viz. sinusoidal, 

triangular, exponential, linear or rectangular pulse functions.  While the pulse shape can have 

significant effect on the overall response of the non-impulsive structure, its effect can be 

eliminated by utilising the Youngdahl’s correlation parameters[37], [91], [152], [157], which 

efficacy is confirmed for monotonically decaying pulses by [100]. For impulsive blasts, the pulse 

shape has no intrinsic effect on the system. For the study of non-impulsive blasts, a rectangular 

pulse shape is assumed here, as presented in Figure 5-1. The influence of alternative pulse shapes 

will be discussed in chapter 5. 

𝑝1(𝑟) = {
𝑝0              0 ≤ 𝑟 ≤ 𝑟𝑒

𝑝0𝑎𝑒
−𝑏𝑟      𝑟𝑒 ≤ 𝑟 ≤ 𝑅    

 (5-1) 
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𝑝2(𝑡) = {
1               0 ≤ 𝑡 ≤ 𝜏              

0              𝑡 ≥ 𝜏                       
   (5-2) 

 

In Eqn. (5-1), 𝑟 = √𝑥2 + 𝑦2 , the loading constant ‘𝑎’ depends on the loading central diameter, 

viz.  𝑎 = 𝑒𝑏𝑟𝑒  while the loading exponent ‘𝑏’ can be found through monitoring the pressure time 

history numerically or experimentally. Thus, the load is axisymmetric and reduces the domain of 

study to only one quarter of the plate. 

  

Figure 5-1. Temporally rectangular pulse shape Figure 5-2. Spatially exponential distribution 

of load 

5.6 GOVERNING EQUATIONS  

When impacted by a centrally localised blast, the mechanism of deformation of a 

quadrangular plate (or beam as special case) is the creation of one central or two symmetric 

plastic hinges. Provided the elastic energy stored in the plated structure (and beam as a special 

case) is small compared to the kinetic energy imparted to the structure, and ratio of the duration 

of the blast to the natural period of the structure maintains small values, the elastic wave 

propagation and the elastic-plastic distribution of the stresses through thickness of the cross 

section may be neglected. In such cases, the rigid-perfectly plastic behaviour may be assumed and 

the plastic hinges may be considered as plastic joints. [35], [89], [158], [159].  

The above assumption is the cornerstone of the constitutive framework of limit analysis. The 

number of plastic hinges and the permanent deformation depend on the distribution and 

magnitude of the pulse load. Clearly, for a uniform distribution of pressure, only the amplitude of 

the pulse can influence the nature of the response, while for a localised blast the deformation of 

the beam also depends on the load shape. 

For a rectangular plate with infinitesimal displacements, i.e. when the influence of membrane 

action is ignored, the rate of plastic energy dissipation is found from Eqn. (5-3).  
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�̇� = ∬𝑀𝑥�̇�𝑥 +𝑀𝑦�̇�𝑦 + 2𝑀𝑥𝑦�̇�𝑥𝑦𝑑𝑥𝑑𝑦 (5-3) 

𝑘
.

𝑥 = −
𝜕2𝑤

.
 

𝜕𝑥2
  , 𝑘

.

𝑦 = −
𝜕2𝑤

.

𝜕𝑦2
 , 𝑘
.

𝑥𝑦 = −
𝜕2𝑤

.

𝜕𝑦𝜕𝑥
 (5-4) 

where �̇�𝑥 , and �̇�𝑦 , are the rates of change of curvature in the associated generalised 

coordinates, while �̇�𝑥𝑦  represents rate of warping of the plate which are perpendicular to the 

corresponding portion of the yield surface, according to the normality requirements of plasticity 

[35]. 𝑀𝑥, and  𝑀𝑦 are bending moments per unit length in the respective generalised coordinates, 

denoted also as generalised stresses as they are obtained from stress tensors. and 𝑀𝑥𝑦  is the 

twisting moment per unit length. The shear forces per unit length in 𝑥  and 𝑦of the Cartesian 

coordinate system are denoted as 𝑄𝑥  and 𝑄𝑦 . In what follows we shall, as is customary, 

differentiation with respect to time is denoted by placing a dot above a letter. The rate of external 

work on a finite plate area 𝐴 is:  

�̇� = ∫(𝑝(𝑥, 𝑦, 𝑡) − 𝜇�̈�)�̇�𝑑�̅� (5-5) 

For a rectangular plate element undergoing infinitesimal displacement normal to the plane 

mid-surface, when subject to lateral loads, the governing equations of motion are given by Eqns. 

(5-6)-(5-4): 

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
=  𝜇�̈� − 𝑝(𝑥, 𝑦, 𝑡) (5-6) 

𝜕𝑀𝑥
𝜕𝑥

+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 =  0 (5-7) 

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦 =  0 (5-8) 

5.7 YIELD SURFACEA AND FLOW RULE  

The principle bending moments according to [160] are given by Eqns. (5-9)-(5-10). Provided 

the principle moments are arranged in this fashion, it can be assumed that the Johansen yield 

criterion in two-dimensional moment space governs the plastic flow. According to the normality 

requirement of the Drucker’s stability postulate, the convexity of the yield surface applied and the 

state of the strains and the normal to (each) yield surface at each point along the yield path are 

co-directional. The associated yield surface is shown in the Figure 5-3, together with Tresca 
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criterion. The requirement satisfying the yield condition is given as Max {|𝑀1|, |𝑀2|} ≤ 𝑀0, where 

𝑀0 i.e. the maximum plastic moment per unit length is found by Eqn. (5-11).  

 

Figure 5-3. the Johansen yield surface (ABCD) vs 

Tresca (EAFGCH) 

 

 

 

 
(a) (b) 

Figure 5-4. - (a) The top view of a simply-supported square plate (coordinates 𝒙, 𝒚, 𝒓 and dimensionless 

parameter 𝒛  are shown), (b) the plate with side lengths 2L whose diagonals are in the Cartesian 

Coordinate axes 

 

M1 = (𝑀𝑥 +𝑀𝑦) 2⁄ −
1

2
[(𝑀𝑥 −𝑀𝑦)

2 + 4𝑀𝑥𝑦
2 ]

1
2 (5-9) 

M2 = (𝑀𝑥 +𝑀𝑦) 2⁄ +
1

2
[(𝑀𝑥 −𝑀𝑦)

2 + 4𝑀𝑥𝑦
2 ]

1
2 (5-10) 
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𝑀0 =
𝜎0𝐻

2

4
 (5-11) 

Considering the isotropic hardening for the yield function above, the position and shape of the 

yield surface remains fixed, while its size may vary to include the hardening effects. To address 

the hardening, yield stress 𝜎0 in (5-11) is replaced with the average of stress 𝜎𝑎𝑣 = (𝜎0 + 𝜎𝑈𝑇)/2.   

 

Figure 5-5. The assumed velocity profile 

 

Cox & Morland [92] investigated a particular theoretical solution to dynamic plastic 

deformation of square plates subject to uniformly distributed rectangular pressure pulse. It was 

found convenient to introduce an auxiliary dimensionless coordinate 𝑧 , given by 𝑧 = (𝑥1 +

𝑦1)/√2𝐿 along the central axis.  

However, it is pragmatic to introduce an auxiliary dimensionless coordinate 𝑧 as illustrated in 

Figure 5-4 (b), for the plate whose plastic hinge lines lie on the diagonals of the square and 

construct the collapse mechanism. The Cartesian coordinates to the polar coordinate 𝑟  (or z 

herein) whereby the blast load is defined (Eqn. (5-2)), the coordinates of 𝑟  and 𝑧  lie on the 

equipotential surface for the range 0 < 𝑧 < 1, as it may be assumed that the maximum loading 

range is on the inscribing circle to the plate, giving 𝑝(𝑥, 𝑦, 𝑡) = 𝑝(𝑧, 𝑡). 

Thus, it is straightforward to show that the theoretical solutions emerging from the dynamic 

equilibrium analysis along the plastic hinge line in Figure 5-4 (a)- given in Eqn. (5-12)-conform 

to the theoretical solutions characterised with the generalised auxiliary coordinate 𝑧 in Figure 

5-4 (b).  

𝑟 = 𝑧𝐿 = √𝑥2 + 𝑦2,  0 < 𝑟 < 𝐿 (5-12) 

From the isotropy of stress-moment at the plate centre, the boundary conditions yield 𝑀𝑥 =

𝑀𝑦 = 𝑀0 and 𝑀𝑥𝑦 = 0,while 𝑀𝑦 = 𝑀0 when (𝑦 = 0 and 0 ≤ 𝑥 ≤ √2𝐿 ) and 𝑀𝑥 = 𝑀0 when (𝑥 =
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0 and 0 ≤ 𝑦 ≤ √2𝐿). Rearranging the Eqns. (5-6)-(5-8) and eliminating the shear force reactions 

leads to: 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
=    𝜇�̈� − 𝑝(𝑥, 𝑦, 𝑡) (5-13) 

For brevity in analyses in the sequel, the solution to this Ordinary Differential Equation 

(O.D.E) is obtained by defining the generalised stresses (bending moments) and loads in terms of 

parameter 𝑧, as follows.  

5.8 STATIC COLLAPSE PRESSURE 

5.9 LOWER BOUND CALCULATIONS 

For the problem discussed earlier, the lower bound calculations can be conducted by noting 

that the distribution of bending moment must satisfy the static equilibrium (𝜇�̈� = 0) of the 

generalised stresses and must nowhere violate the yield criterion. Using the boundary conditions, 

equation of motion (Eqn. (5-13)), and considering the principle moments in Eqns. (5-9) and 

(5-10), in a similar procedure to the work of Cox and Morland [92], it is assumed that the 

generalised stresses are attributed to a moment distribution function 𝑓(𝑧)  as represented in 

Eqns. (5-14)-(5-16): 

𝑀𝑥 = 𝑀0 + 𝑥
2𝑓(𝑧) (5-14) 

𝑀𝑦 = 𝑀0 + 𝑦
2𝑓(𝑧) (5-15) 

𝑀𝑥𝑦 = 𝑥𝑦𝑓(𝑧) (5-16) 

These equations must satisfy the yield condition of Figure 5-3, Eqns. (5-9)-(5-10); viz., for any 

coordinates 0 ≤ 𝑥 ≤ √2𝐿 and  0 ≤ 𝑦 ≤ √2𝐿: 

M1 = 𝑀0 (5-17a) 

−𝑀0 ≤ M2 ≤ 𝑀0 (5-17b) 

which determines the plastic flow in the regime AD of the yield criterion. While Eqn. (5-17a) 

may be obtained by elementary calculations of Eqn. (5-9), the admissibility of Eqn. (5-17b) will 

be verified in section 5.12.3. Combining Eqns. (5-14) - (5-16) with Eqn. (5-13) and incorporating 

Eqn. (5-12) yields: 
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6𝑓 + 6𝑧
𝜕𝑓

𝜕𝑧
+ 𝑧2

𝜕2𝑓

𝜕𝑧2
= −𝑝0,  0 ≤ 𝑧 ≤ 𝑟𝑒/𝐿 (5-18) 

6𝑓 + 6𝑧
𝜕𝑓

𝜕𝑧
+ 𝑧2

 𝜕2𝑓

𝜕𝑧2
= −𝑎𝑝0𝑒

−𝑏𝐿z 𝑟𝑒/L ≤ 𝑧 ≤ 1 (5-19) 

which are valid for all coordinates across the plate provided the moments are arranged as per 

Eqns. (5-14)-(5-16). Therefore, on integration, the piecewise general solution to differential Eqn. 

(5-18) is: 

𝑓(𝑧) =

{
 
 

 
 −

𝑝0
6
+
𝐴1
𝑧2
+
𝐵1
𝑧3
                        0 ≤ 𝑧 ≤ 𝑟𝑒/𝐿

−𝑎𝑝0𝑒
−𝑏𝐿𝑧(𝑏𝐿𝑧 + 2)

(𝑏𝐿𝑧)3
+
𝐶1
𝑧2
+
𝐶2
𝑧3
    𝑟𝑒/L ≤ 𝑧𝐿 ≤ L

 

(5-20a) 

(5-20b) 

The boundary conditions satisfying the bending moment distributions are given by 𝑀𝑥 =

𝑀𝑦 = 𝑀0,  𝑀𝑥𝑦 = 𝑄𝑥 = 𝑄𝑦 = 0 at 𝑥 = 𝑦 = 0, suggesting that the plastic flow in the centre of the 

plate is governed by corner A of Johansen yield criteria. The arbitrary constants 𝐴1 − 𝐶2  are 

obtained by imposing the boundary conditions, as well as the kinematic continuity of moment 

and shear at  𝑧 = 𝑟𝑒/𝐿, as follows.  

{
 
 
 

 
 
 

𝐴1 = 𝐵1 = 0

𝐶1 =
−𝑝0((𝑏𝑟𝑒)

2 + 2𝑏𝑟𝑒 + 2)

2(𝐿𝑏)2
 

𝐶2 =
𝑝0((𝑏𝑟𝑒)

3 + 3(𝑏𝑟𝑒)
2 + 6𝑏𝑟𝑒 + 6)

3(𝐿𝑏)3

 

(5-21a) 

(5-21b) 

(5-21c) 

The bending moment in an arbitrary section defined by normal 𝑛 to the circle passing through 

the section is given by the projection of the bending moments along this normal, given as 

transformation Eqn.(5-22), according to [160], [161]. 

𝑀𝑛 = 𝑀𝑥sin
2𝜙 +𝑀𝑦 cos

2𝜙 + 2𝑀𝑥𝑦 sin𝜙 cos𝜙 (5-22) 

It transpires that, at simply supported plate boundary ( 𝑧 = 1 ), 𝑀𝑛 = 0  and  𝜙 = 45𝑜 . 

Substituting Eqns. (5-21a)-(5-21c) into Eqns. (5-20a)-(5-20b), together with substituting Eqns.  

(5-14) – (5-16) into Eqn. (5-22), yields the lower bound for static collapse pressure as 

𝑝0 = 𝑝𝑐 =
M0

∝ 𝐿2
 (5-23) 

where 
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∝= (
3𝐿𝑟𝑒

2 − 2𝑟𝑒
3

6𝐿3
) +

(𝑎𝑒−𝐿𝑏(𝐿𝑏 + 2) + 𝑏2𝑟𝑒(𝐿 − 𝑟𝑒) + 𝑏𝐿 − 2𝑏𝑟𝑒 − 2) 

𝐿3𝑏3
 (5-24) 

 

 

Figure 5-6. Load coefficient 𝜷 across the panel- 

 

 

Figure 5-7. Distribution of static plastic bending moment across 

the panel for 𝒓𝒆=25mm, L=200mm 

 

5.10 UPPER BOUND CALCULATIONS  

The upper bound to the static collapse load of the square plate can be calculated by employing 

the principle of virtual velocities. In this manner, equating the rate of external work to the rate of 

internal energy dissipation through plastic work, i.e. �̇� = �̇� , Eqns. (5-3)-(5-5)  require a 

kinematically admissible velocity field. It is assumed that the velocity profile is of a conical shape, 



99 
 

shown in Figure 5-5 which is the same as the transverse deflection profile throughout the entire 

static phase.  

�̇� = �̇�(1 − 𝑧) (5-25) 

While it is physically reasonable to assume the conical shape in Figure 5-5 for the velocity 

profile, it is also mathematically evident that for the case of 𝑏 → 0 (the case of uniform load) and 

𝑏 → ∞ (i.e., the case of point load) the velocity shape function is of the form described in (5-25) 

and thus there is no reason as to why an alternative profile exists in the range of 0 < 𝑏 < ∞, i.e., 

the case studied hereunder. Thus, it is reasonable, as a first attempt, to assume the velocity field 

as this profile. With this assumption, the external work rate will furnish to the expression in 

(5-26). 

�̇� = 2𝐿2�̇�0 (∫ 𝑝𝑢(1 − 𝑧)𝑧𝑑𝑧

𝑟𝑒
𝐿⁄

0

+∫ 𝑝𝑢(1 − 𝑧)𝑧𝑎𝑒
−𝑏𝐿𝑧𝑑𝑧

1

𝑟𝑒
𝐿⁄

) (5-26) 

Evaluating the integrals and using the principle of virtual velocities gives the upper bound 

plastic collapse load in Eqn. (5-26) as: 

𝑝𝑢 =
𝑀0
𝛽𝐿2

 (5-27) 

where  

𝛽 =
𝑎𝑒−𝑏𝐿(𝐿𝑏 + 2) + 𝑏2𝑟𝑒(𝐿 − 𝑟𝑒) + 𝑏𝐿 − 2𝑏𝑟𝑒 − 2

(𝐿𝑏)3
+
3𝐿𝑟𝑒

2 − 2𝑟𝑒
3

6𝐿3
 (5-28) 

It is evident from Eqns.  (5-28) and (5-24) that, 𝛽 = 𝛼, hence the upper bound and lower 

bound are identical, i.e. 𝑝𝑐 = 𝑝𝑢 = 𝑀0/𝛽𝐿
2 

 gives the exact plastic collapse pressure. For the value 

of 𝑏 = 0, 𝑟𝑒 = 𝐿 the Eqn. (5-23) simplifies to 𝑝𝑐 = 6M0/𝐿
2  which corresponds to collapse load in 

the case of uniform pressure load. The variation of load parameter 𝛽 as a function of centre region 

radius and parameter 𝑏 is shown in Figure 5-6. It is also evident from Figure 5-7 that principle 

moment distribution (ratio of 𝑀2/𝑀0) is heavily dependent on the loading parameter 𝑏.  

5.11 DYNAMIC ANALYSES  

The dynamic analyses in this section are conducted by including the inertia term in 

equilibrium Eqns. (5-4)-(5-6). The kinematic relations in dynamic analyses are distinguished by 

two distinctive cases, as follows: 

• Case I: where  1 ≤ 𝜂 ≤ 𝜂𝑐𝑟𝑖𝑡 
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• Case II: where 𝜂 ≥ 𝜂𝑐𝑟𝑖𝑡  , in which  𝜂 is the dynamic load amplification factor defined 

as 𝜂 =
𝑝0

𝑝𝑐
 and 𝜂𝑐𝑟𝑖𝑡 is defined in equation (5-40).  

It is pragmatic to introduce the following parameters 

�̅�
..
= 𝑀0/𝜇𝐿

2  ,  �̅� = 𝜂𝜏,     �̅� = 𝑀2/𝑀0  (5-29) 

5.12 CASE I- 𝟏 ≤ 𝜼 ≤ 𝜼𝒄𝒓𝒊𝒕 

During this case, it is assumed that the velocity profile is the same as the static case discussed 

in the previous section0. However, the loading involves the temporal part of pulse shape as per 

Eqn. (5-2). It is pragmatic to investigate the structural response in two distinctive phases, i.e.,  0 ≤

t ≤ 𝜏 and 𝜏 ≤ 𝑡 ≤ 𝑇𝑓 , where 𝜏 is the duration of pulse load. 

5.12.1 First phase of motion 𝟎 ≤ 𝒕 ≤ 𝝉 

During the first phase of motion, we maintain the temporal part to be of rectangular form 

(Eqn. (5-2)) while the spatial part follows Eqn. (5-1). The plastic flow of hinge lines lies on the 

regime AB of the Johansen yield criterion. The O.D.E ’s in this phase are: 

6𝑔1 + 6𝑧
𝜕𝑔1
𝜕𝑧

+ 𝑧2
 𝜕2𝑔1
𝜕𝑧2

= 𝜇�̈� − 𝑝0 0 ≤ 𝑧 ≤ 𝑟𝑒/𝐿 (5-30a) 

6𝑔2 + 6𝑧
𝜕𝑔2
𝜕𝑢

+ 𝑧2
𝜕2𝑔2
𝜕𝑢2

= 𝜇�̈� − 𝑎𝑝0𝑒
−𝑏𝐿z 𝑟𝑒/𝐿 ≤ 𝑧 ≤ 1 (5-30b) 

which have the same form as before except the function 𝑓(𝑧) from Eqns. (5-18) -(5-19) is 

substituted by  𝑔(𝑧). The general solutions to differential Eqns. (5-30a) and (5-30b) are: 

𝑔1(𝑧) =

{
 
 

 
 𝜇�̈� −   𝑝0

6
−
𝜇�̈�𝑧

12
+
𝐴1
𝑧2
+
𝐵1
𝑧3

−𝑎𝑝0𝑒
−𝑏𝐿𝑧(𝑏𝐿𝑧 + 2)

(𝑏𝐿𝑧)3
+
𝜇�̈�

6
−
𝜇�̈�𝑧

12
+
𝐷1
𝑧2
+
𝐸1
𝑧3

 

0 ≤ 𝑧 ≤ 𝑟𝑒/𝐿 (5-31a) 

𝑟𝑒/L ≤ 𝑧 ≤ 1 (5-31b) 

By employing the continuity of generalised stresses and shear forces at 𝑧 = 0 and 𝑧 = 𝑟𝑒/𝐿, 

the integration constants are determined as follows: 

{
 
 
 

 
 
 

𝐴1 = 𝐵1 = 0

𝐷1 =
𝜇�̈�𝑟𝑒

3(2𝐿 − √2)

24𝐿4
+
−𝑝0((𝑏𝑟𝑒)

2 + 2𝑏𝑟𝑒 + 2)

2(𝐿𝑏)2
 

𝐸1 =
𝑝0((𝑏𝑟𝑒)

3 + 3(𝑏𝑟𝑒)
2 + 6𝑏𝑟𝑒 + 6)

3𝐿3𝑏3
−
𝜇�̈�𝑟𝑒

4(2𝐿 − √2)

24𝐿5

 

(5-32a) 

(5-32b) 

(5-32c) 
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By substituting Eqns. (5-32a)-(5-32a) in Eqns. (5-31a-b)and, considering Eqns. (5-22), (5-23), 

(5-28) and invoking the boundary condition at the plate contours, i.e. �̅� = 0, an expression for 

maximum transverse inertia is found as: 

�̈�1 = 12�̅�
..
(𝜂 − 1) (5-33) 

Two-time integration of Eqn. (5-33) then yields the displacement field as in Eqn. (5-34), when 

appreciating zero integration constants due to initial boundary conditions, i.e. �̇�1(0) = 𝑊1(0) =

0  

𝑊1(𝑡) = (6�̅�
..
(𝜂 − 1)𝑡2) 

(5-34) 

5.12.2 Second phase of motion 𝝉 ≤ 𝒕 ≤ 𝑻 

In the second phase of motion, the loading is complete and all motion is due to intrinsic inertia 

effects, the Eqns. (5-33)- (5-34) remain valid, except that the loading is lifted. Hence, Eqn. (5-33) 

is applicable although it becomes: 

�̈�2 = −12�̅�
..
 (5-35) 

Time integration of Eqn. (5-35), together with employing the continuity of the velocity and 

displacement fields at 𝑡 = 𝜏 , gives the velocity and displacement in this phase, as in Eqns. (5-36) 

and (5-37). 

𝜇�̇�2 = −12 �̅�
..
(𝑡 − �̅�) (5-36) 

𝑊2 = −6�̅�
..
 (𝑡2 − 2�̅�𝑡 + 𝜂𝜏2) (5-37) 

The second phase ceases at 𝑡 =  𝑇𝑓 = �̅�, which is when the transverse velocity �̇�2 vanishes. 

Hence, Eqn. (5-37) gives 

𝑤𝑓 =
6�̅�
..
�̅�2(𝜂 − 1)(1 − 𝑧)

𝜂
 (5-38) 

which is the displacement function at any point of the plate. It can be seen that, with 𝑟𝑒 = 𝐿, 

this equation reduces to 𝑤𝑓 = 6 𝑀0𝜏
2𝜂(𝜂 − 1)(1 − 𝑧)/𝜇𝐿2 , which is the case of uniform pressure 

load.  
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5.12.3 Static and kinematic admissibility  

It is essential to verify whether the mathematical treatment in 5.12 are statistically 

admissible, i.e. the Eqn. (5-17a) and inequality (5-17b) are not violated. Whilst Eqns. (5-14)-

(5-16) satisfy  M1 = M0, it is necessary to demonstrate that the shear forces at the centre vanish 

(i.e. 𝑄𝑥|𝑧=0 = 0  and (𝜕2 𝑀𝑥)/(𝜕𝑥
2) > 0 (or (𝜕2 𝑀𝑦)/(𝜕𝑥

2) > 0). While the former condition is 

clearly satisfied from Eqn. (5-31a), the latter condition, requires: 

𝜕2𝑀𝑥
𝜕𝑥2

=

((6 (2𝐿4𝑧3 − 𝐿4𝑧4 −
5
2 𝑧

2𝐿2𝑥2 + 1/2𝑥4)) (𝜂 − 1)𝑀0 − 𝑝0𝐿
6𝑧3)

3𝐿6𝑧3
> 0  

(5-39) 

which is obtained with the aid of variational parameters. Elementary calculation gives: 

𝜂 ≤ |
12𝛽

12𝛽 − 1
| = 𝜂𝑐𝑟𝑖𝑡 (5-40) 

A similar procedure to establish the static admissibility of the velocity profile is achieved by 

satisfying Eqn. (5-17b), i.e. it is required to show that   −M0 ≤ M2  = (M𝑥 +M𝑦)/2 + 1/

2[(M𝑥 −M𝑦)
2
+ 4M𝑥𝑦

2]1/2 ≤ M0. This inequality simplifies to the following: 

−2M0 ≤ (x
2 + y2)g(z) ≤ 0 (5-41) 

The right-hand side of the inequality-at the plate centre- requires that   (𝜇�̈� −   𝑝1)/6 −

𝜇�̈�𝑧/12 ≤ 0, which, when using Eqns. (5-33), (5-23), will lead to an identical expression to Eqn. 

(5-40).  

In the case of  𝑟𝑒 = 𝐿  and   𝛽 =
1

6
 ; the right-hand side of the inequality simplifies to the 

condition for the case of uniformly distributed load, i.e. 𝜂 ≤ 2. 

In the second phase of motion, the Eqn. (5-17b) (or (5-39)) must still be satisfied, but with 

setting  𝜂 = 0, which yields: 

 

−2𝑀0 ≤
−2 𝑀0(𝑥

2 + 𝑦2)

𝐿2
≤ 0 (5-42) 
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Figure 5-8. The velocity profile for the initial phase 

𝒕 = 𝝉 

Figure 5-9. The velocity profile at 𝝉 ≤ 𝒕 ≤ 𝑻𝟏 

By considering the fact that (𝑥2 + 𝑦2)/𝐿2 is universally positive (Eqn. (5-12)), Eqn. (5-42) is 

valid for all values of 𝜔0 = 𝑟𝑒/𝐿 and 𝐿 at plate centre. A plot of bending moment distribution for 

various values of 𝜂 is shown in Figure 5-10. In this case, the loading parameter 𝑏 = 50 and 𝜔0 =

0.125, which are found by regression analyses on numerical results of registered pressure time 

history for an Armour steel model B4 found in Ref. [61]. 

 

Figure 5-10. Principle bending Moment distribution with re=25mm and 

L=200mm for 𝟎 ≤ 𝒕 ≤ 𝝉 

 

5.13 CASE II: 𝜼 ≥ 𝜼𝒄𝒓𝒊𝒕 

5.13.1 First phase of motion 

For the blast loads with high magnitudes, 𝜂 > 𝜂𝑐𝑟𝑖𝑡  then   𝑝1 >> 𝑝𝑐  so the right-hand side of 

Eqn. (5-41) is no longer valid, since a yield violation occurs near the plate centre. This requires 

the velocity field profile to be modified. It is therefore assumed that the velocity profile is 

governed by three distinguishable phases, as the incipient plastic hinge forms in the central part 

of the plate (Figure 5-8). It is also assumed that in this phase, the plastic flow in the plate centre 

is characterised by corner A of the yield condition in Figure 5-3, which governs the central part of 
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the plate for 0 ≤ 𝑧 ≤ 𝜉0, whereas the remaining part of the plate 𝜉0 ≤ 𝑧 ≤ 1 is governed by the 

regime AB. Thus, the velocity profile will be of the form: 

�̇� = �̇�2 for 0 ≤ 𝑧 ≤ 𝜉0 (5-43) 

�̇� = �̇�2

(1 − 𝑧)

(1 − 𝜉0)
 for 𝜉0 ≤ 𝑧 ≤ 1 (5-44) 

where 𝜉0 is time independent. It is also assumed that 𝑟𝑒/𝐿 ≤  𝜉0. Thus, the moment function 

𝑔1(𝑧) is replaced by 𝑔2(𝑧) in the following form: 

 

𝑔2(𝑧) =

{
 
 
 
 

 
 
 
 

𝜇�̈� −   𝑝0
6

+
𝐴3
𝑧2
+
𝐵3
𝑧3

−𝑎𝑝0𝑒
−𝑏𝐿𝑧(𝑏𝐿𝑧 + 2)

(𝑏𝐿𝑧)3
+
𝜇�̈�

6
+
𝐷3
𝑧2
+
𝐸3
𝑧3

−𝑎𝑝0𝑒
−𝑏𝐿𝑧(𝑏𝐿𝑧 + 2)

(𝑏𝐿𝑧)3
+

𝜇�̈�

6(1 − 𝜉0)
−

𝜇𝑊𝑧̈

12(1 − 𝜉0)
+
𝐹3
𝑧2
+
𝐺3
𝑧3

 

0 ≤ 𝑧𝐿 ≤ 𝑟𝑒  (5-45a) 

𝑟𝑒  ≤ 𝑧𝐿 ≤  𝜉0𝐿  (5-46b) 

𝜉0L ≤ 𝑧𝐿 ≤  𝐿  (5-47c) 

 

{
 
 
 

 
 
 

𝐴3 = 𝐵3 = 0

𝐷3 =
−𝑝0((𝑏𝑟𝑒)

2 + 2𝑏𝑟𝑒 + 2)

2(𝐿𝑏)2

𝐸3 =
𝑝0((𝑏𝑟𝑒)

3 + 3(𝑏𝑟𝑒)
2 + 6𝑏𝑟𝑒 + 6)

3𝐿3𝑏3

 (5-48) 

The integration constants in Eqn. (5-45a)-(5-47c) are obtained by applying continuity 

conditions of 𝑄𝑥 = 0, 𝑀𝑥 = 𝑀𝑦 = 𝑀0  at 𝑧 = 0 and at 𝑧 = 𝑟𝑒/𝐿 . It follows that at 0 ≤ 𝑧 ≤ 𝑟𝑒/𝐿 , 

  𝜇�̈�2 = 𝑝1. Using the Kinematic conditions of 𝑊2 = �̇�2 = 0 at 𝑡 = 0, the maximum displacement 

will become: 

𝑤2 =
𝑝0𝑡

2

2𝜇
 (5-49) 

The arbitrary function of the outer region, i.e. 𝜉 ≤ 𝑧 ≤ 1 is similar to Eqn. (5-31b), but with 

replacing the inertia term with �̈�/(1 − 𝜉0), while the constant of integration, in (5-32b-c) have 

now changed to 𝐹3 and  𝐺3, respectively and given in (5-50). As the bending moment in the central 

zone  0 ≤ 𝑧 ≤ ξ0 is assumes its maximum value, it is appreciated that 𝑄𝑥 = 𝑄0 throughout this 
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zone. This yields the integration constants as in Eqn. It is noteworthy that the continuity 

conditions of 𝑔2(𝑧) and 𝑄𝑥 at 𝑧 = 𝜉0 also applies. 

{
  
 

  
 

𝐹3 =

𝑝0 (3𝑎(−1 + 𝜉0)(𝐿𝑏𝜉0 + 1)𝑒
−𝐿𝑏𝜉0 + 𝐿2𝑏2𝜉0

2 (𝜉0 −
3
2))

3𝐿2𝑏2(1 − 𝜉0)

𝐺3 =

𝑝0 (4𝑎(−1 + 𝜉0)[ (𝐿𝑏𝜉0)
2 + 2𝐿𝑏𝜉0 + 2]𝑒

−𝐿𝑏𝜉0 + (𝐿𝑏𝜉0)
3 (𝜉0 −

4
3
))

4𝐿3𝑏3(−1 + 𝜉0)

 (5-50) 

 

 

Figure 5-11. Distribution bending moment with various values of 𝝃𝟎. The 

loading conditions are 𝝎𝟎 = 𝟎. 𝟕 and  

𝒃 = 𝟓𝟎. 𝟓𝒎−𝟏, on a plate with side-length of 𝑳 = 𝟎. 𝟐𝒎 

 

The expression of arbitrary function 𝑔2(𝑧) should satisfy the boundary conditions at the plate 

contours, i.e. �̅� = 0 t 𝑧 = 1, which yields an expression of the incipient plastic hinge and the 

loading amplification factor as 

𝜂 =
12𝐿3𝑏3𝛽

γ′
 (5-51) 

where 𝜂 = 𝑝0/𝑝𝑐  , while the parameter γ′ is: 

γ′ = 12𝑎[𝑏2𝐿2(1 − 𝜉0)𝜉0 + (1 − 2𝜉0)𝑏𝐿 − 2]𝑒
−𝐿𝑏𝜉0 + 12𝑎(𝐿𝑏 + 2)𝑒−𝐿𝑏

− 3(1 − 𝜉0)
2(𝜉0 + 1/3)𝐿

3𝑏3  
(5-52) 

The distribution of bending moment with various values of 𝜉0 is presented in Figure 5-11. The 

expression of 𝜉0 in Eqn. (5-52) is highly nonlinear which can be solved with the aid of numerical 

methods. However, for impulsive loading, or  𝜂 → ∞. thus 𝛾 → 0 which occurs when the plastic 

hinges form at the supports, i.e. 𝜉0 → 1.  
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5.13.2 Second phase of motion  𝝉 ≤ 𝒕 ≤ 𝑻𝟏 

In this phase, the loading is absent while the motion continues due to reserved velocity from 

the first phase. Concerning this, 𝜉0 from Eqn. (5-44) is substituted by an active plastic hinge  𝜉, 

which moves inwards as demonstrated in Figure 5-9. The equilibrium of 𝑝1 = 0 at the central 

zone predicts 𝜇�̈�2 = 0. Therefore, by implementing the continuity of the velocity field at 𝑡 =  𝜏, 

the response as given in Eqn. (5-53), (5-54).  

�̇�2 = 𝑝0𝜏/𝜇 (5-53) 

𝑊2 =
𝑝0𝜏𝑡

𝜇
−
𝑝0𝜏

2

2𝜇
 (5-54) 

Thus, the motion is characterised by constant velocity throughout this phase, while the size of 

the central plastic zone diminishes monotonically. For the second region, the differential Eqns. 

(5-30a) and (5-30b) would furnish to 

𝑧2
𝜕2𝑔2
𝜕𝑧2

+ 6𝑧
𝜕𝑔2
𝜕𝑧

+ 6𝑔2 = 𝜇�̈�2 = 𝜇�̈�2 (
1 − 𝑧

1 − 𝜉
) + 𝜇�̇�2�̇� (

1 − 𝑧

(1 − 𝜉)2
) (5-55) 

with the succeeding general solution as: 

𝑔2 = 
𝜇�̈�2(2 − 𝑧)

12(1 − 𝜉)
+
𝜇�̇�2�̇�(2 − 𝑧)

12(1 − 𝜉)2
+
𝐷4
𝑧2
+
𝐸4
𝑧3

 (5-56) 

The integration constants are obtained by conditions of 𝑄𝑥 = 0 and 𝑀𝑥 = 𝑀𝑦 = 𝑀0 at 0 ≤

𝑧 ≤ 𝜉, the continuity of 𝑄𝑥 and 𝑀𝑥 at 𝑧 = 𝜉 gives:  

{
 
 

 
 𝐷4 =  

𝑝0𝜏�̇�𝜉
2(2𝜉 − 3)

6(𝜉 − 1)2

𝐸4 =
−𝑝0𝜏�̇�𝜉

3(3𝜉 − 4)

12(𝜉 − 1)2

 (5-57) 

An expression in terms of the travelling hinge 𝜉 is found by employing the simply supported 

boundary condition (Eqn. (5-22)) at corners of the plate: 

(3𝜉2 − 2𝜉 − 1)�̇� =
12𝛽

�̅�
 (5-58) 

An expression for the travelling hinge displacement is attained through time integration of �̇�, 

eliminating 𝜉0, and appreciating that the that the plastic hinge remains stationery within 0 ≤ 𝑡 ≤

𝜏. Thus, the kinematic continuity of 𝜉 at 𝑡 = 𝜏 gives 
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𝜉3 − 𝜉2 − 𝜉 − 1 =
12𝛽𝑡

�̅�
+ ξ̅ (5-59) 

where  

𝜉̅ = 𝜉0
3 − 𝜉0

2 − 𝜉0 − 1 −
12𝛽

𝜂
 (5-60) 

Subsequently, the second phase terminates when 𝜉 = 0 , occurring at time 𝑇1: 

 
 

Figure 5-12- Time variation of the plastic bending hinge and its velocity in various load ratio(a) and (b), 

vs various overloading factor (c), (d) 

 

𝑇1 =
(12𝛽 − 1)�̅�

12𝛽
 (5-61) 

Substituting Eqn. (5-61) into Eqn. (5-54) gives: 

𝑊2 = −
�̅�
..
𝜂𝜏2(𝜂𝜉̅ + 6𝛽 + 𝜂)

12𝛽2
 (5-62) 

The variation of the plastic hinge and its time derivative is plotted in Figure 5-12. 

t t 
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5.13.3 Final phase of motion 𝑻𝟏 ≤ 𝒕 ≤ 𝑻𝒇 

The final phase of the plate motion will essentially develop since the kinetic energy from the 

previous phase has to be somehow dissipated. The transverse velocity profile is the same as 

Figure 5-5 as the plastic hinge closes (𝜉 = 0  ). The incipient deformation is identical to the 

circumstance of infinitesimal blast loads, viz., the condition of inequality (5-40). The solution to 

velocity and displacement fields at this phase is achieved by time integration of (5-35) and 

equating it with Eqns. (5-36), (5-53), (5-54), (5-61) at 𝑡 = 𝑇1. Thus, the transverse displacement 

at this phase furnishes to 

𝑊3 = −
𝑝0 [�̅�

2(𝜉̅ + 1)
2
+ 24𝛽�̅� (𝑡𝜉̅ +

1
2
𝜏) + 144𝛽2𝑡2]

24𝜂𝛽𝜇
 (5-63) 

Recalling the parameter 𝜉̅ = 𝜉0
3 − 𝜉0

2 − 𝜉0 − 1− 12𝛽/𝜂 . Motion ceases when   �̇�3 = 0 , which 

occurs at time 𝑇𝑓 (Eqn. (5-64)). 

𝑇𝑓 = −
𝜉̅�̅�

12𝛽
 (5-64) 

Substituting (5-64)in (5-63)gives: 

𝑊𝑓 = −
�̅�
..
 𝜂𝜏2 [(𝜉̅ +

1
2) 𝜂 + 6𝛽 ]

12𝛽2
 (5-65) 

5.13.4 Static and Kinematic Admissibility   

It is evident that the continuity requirements of generalised stresses i.e. 𝑄𝑥 = 𝑄𝑦 = 0 ,𝑀𝑥 =

𝑀𝑦 = 𝑀0  are satisfied at   𝑧 = 0 , 𝑧 = 𝜉0  and  𝑧 = 𝜉  throughout all three phases of motion. 

Furthermore, the Eqn. (5-17a) are satisfied throughout the entire motion, irrespective of the 

phase of motion. It can also be observed that the inequality (5-17b) is satisfied for 0 ≤ 𝑧 ≤  𝜉 for 

first and second phases of motion.  

5.14 IMPULSIVE LOADING 

A blast load of rectangular pulse shape with very short duration (𝜏 → 0) and very high 

amplitude (𝜂 → ∞   or  𝑝1 ≫ 𝑝𝑐) is known as impulsive loading. In the case of impulsive loading, 

the total change in momentum equals the total impulse imparted upon the system, hence the 

conservation of momentum implies that: 
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∫ 8𝐿2𝜏𝑝0𝑧𝑑𝑧 + ∫ 8𝐿2𝜏𝑝0𝑎𝑒
−𝑏𝐿𝑧𝑧𝑑𝑧 = ∫ 8𝐿2𝜇𝑉0𝑧𝑑𝑧

1

0

1

𝑟𝑒
𝐿

𝑟𝑒
𝐿

0

 (5-66) 

The solution to the Eqn. (5-66) yields:  

𝑉0 = 
𝜖1𝜏𝑝0 

𝐿2𝜇
 (5-67) 

where  𝜖1 =
−𝑟𝑒

2𝑏2+2𝑎𝑒−𝐿𝑏(𝑏𝐿+1)−2𝑟𝑒𝑏−2

𝑏2
. Defining the dimensionless kinetic energy as 𝜆 =

𝜇𝑉0
2𝐿2

𝑀0𝐻
(
𝐿4

 𝜖1
2) and rearrangement of variables, the Eqn. (5-65), can be recast in the dimensionless 

form as: 

𝑊𝑓

𝐻
= −

𝜆

12𝜂
[(𝜉̅ +

1

2
) 𝜂 + 6𝛽] (5-68) 

 

 

Figure 5-13. Plot of dimensionless kinetic energy for various 

values of η 

For the case of 𝑟𝑒 = 𝐿 and 𝜂 → ∞, 𝑟𝑒 → 𝐿, 𝛽 =
1

6
 and 𝑊𝑓/𝐻 ≅ 𝜆/8 , which conforms to results 

for the case of uniform pressure load. A plot of normalised deflection vs. the dimensionless kinetic 

energy is presented in Figure 5-13 for the case of 𝜔0 = 0.7, 𝑏 = 50 for various values of load ratio. 

It can be observed that with increase of 𝜂 the plot is only marginally different from impulsive load, 

i.e. 𝜂 → ∞.  



110 
 

5.15 FULLY CLAMPED SQUARE PLATE  

Whilst in practical applications, the protective plate elements are designated with fully-

clamped conditions, the foregoing analysis for the simply supported plates can plainly be 

extended to the case of fully-clamped plate: the edge conditions of the moment, denoted by �̅� =

−1 , yields the static plastic collapse as 𝑝𝑐 = 2𝑀0/𝛽𝐿
2 ; thus, the foregoing results may be 

furnished for the fully-clamped plates by merely changing 𝑀0  to 2𝑀0  in the parameter �̅�
..

 and 

associated expressions accordingly.  

However, it should be noted that, in contradiction to the global blasts, the boundary effects 

are not significant for the localised blast because such a blast impacts a small area of the plated 

structure [162]. Furthermore, in the case of global (uniform) loading, the difference between the 

clamped boundary and simply supported become only significant beyond mode I behaviour 

(large inelastic deformation) [163]. 

5.16 NUMERICAL ANALYSES 

5.16.1 Limitations of the study 

The analysis performed in section 5.11 was predicated on the assumptions of Kirchhoff –Love 

plate theory, which ignores the effects of transverse shear and rotatory inertia. Taking this 

limitation into account, it may be safely assumed that for the range of 1.2% <
𝐻

𝐿
<  3.5% and 

under infinitesimal loading conditions, the bending action dominates the structural behaviour, 

such that the build-up of membrane action associated with the plastic collapse can be 

disregarded. Furthermore, because the localised blast impacts a small area of the plated structure, 

the boundary effects are insignificant in contradiction to the global blast loading [162]. The 

numerical tests on some panels with aforementioned parameters but with clamped boundary 

conditions confirmed this statement. In the case of global (uniform) loading, the difference 

between the clamped boundary and simply supported become only significant beyond mode I 

behaviour (large inelastic deformation) [163]. 

5.16.2 Finite element modelling 

Whilst considering the limitations of this study, the analytical solutions are validated against 

numerical simulations in this section. The simulations are performed in Finite Element (FE) 

hydrocode ABAQUS 6.13/Explicit®, a commercially available software capable of simulating the 

dynamic response for blast loading scenarios through analyses of various degrees of complexity. 

A full 3D FE model was set up in ABAQUS 6.13 for rectangular plate of length 2𝐿, with simply 

supported boundary conditions and the geometric and material properties as in Table 5-1.Due to 

symmetry, only a quarter of the plate was designed. 
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Table 5-1- Plate geometric, material and loading parameters 

Geometric and material 

properties 

Loading 

 𝐻 (𝑚𝑚) 2.6 𝑏(𝑚−1) 50 

𝐿(𝑚𝑚) 200 𝜏(𝜇𝑠) 50 

𝜎0(𝑀𝑃𝑎) 330 𝜂 5 

𝜇 (
𝑘𝑔

𝑚2
) 20.4   

 

The plate was discretised with S4(R) shell elements of double curvature with hourglass 

control and pinned along the periphery. The fine mesh was chosen with a total of 2500 elements, 

giving the element length to thickness ratio of ~1.25, to ensure that the convergence is satisfied. 

Due to symmetry, only a quarter of the plate is modelled. For each case of 𝜔0 = 𝑟𝑒/𝐿, a pressure 

matrix corresponding to Cartesian coordinates was constructed by utilising Eqns. (5-2), and 

(5-12). This pressure matrix was mapped directly onto the panel.  

The selected loading parameters were assumed constant as 𝑏 = 50 and 𝜏 = 50𝜇𝑠 Following a 

general static analysis, the values of dynamic collapse load 𝑝1 was calculated to acquire constant 

dynamic load ratio 𝜂 = 5 for a various range of loading radii, as illustrated in the Figure 5-14. 

 

Figure 5-14. Pressure load with various values of 𝝎𝟎 

 

𝜼 =
𝒑𝟏

𝒑𝒄 
⁄  
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(a) (b) 

Figure 5-15. Schematic of displacement (a) and stress distribution (b) for load ratio 𝜼 = 𝟓 at 𝒕 = 𝟓 × 𝟏𝟎−𝟒 

 

5.17 FINITE ELEMENT RESULTS AND VALIDATIONS 

For the case of 𝜔0=0.7, a contour plot of transverse displacement and stress distributions is 

shown in Figure 5-15. To determine the permanent plastic deformation analytically, the position 

of the stationery plastic hinge is obtained numerically for various loading radii and plotted in 

Figure 5-16. It is interesting to note that for most loading radii, the length of 𝜉0 (which should 

satisfy 𝜂𝛾 − 12𝛽3𝐿3𝑏3 = 0 from Eqn. (5-51)) is predicted at 0.89th of the plate length. For close-

in blasts with small loading radii/plate length ratio, the length of the stationery plastic hinge 

decreases accordingly. It turns out that in the case of 𝜔0 = 0.1, for example, a solution of 𝜉0 in 

Eqn. (5-51) exists at the plate centre, in addition to the hinges formed near the supports. 

Numerical observations on the position of first maximum equivalent plastic strain ( 𝜀�̅� ) 

corroborate with this statement.  
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Figure 5-16. Numerical plot of Eqn. (5-51) with 𝒑𝟏 =
𝟐𝟎𝑴𝑷𝒂, 𝒃 = 𝟏𝟎𝟎 and various load radii.  

Further, it is observed from Figure 5-17 that for the range of 𝐻/𝐿 = 1.3%  and for low 

magnitude of dynamic loads, the numerical results for displacement compare favourably with the 

analytical results. 

The theoretical solution for the impulsive loading from Eqn. (5-68) is also validated in Figure 

5-18 against the experimental results on ARMOX steel and mild steel MS4 specimens obtained 

from [61], [76], [119] (square plates of test series I), accordingly. The empirical fit to the 

experimental data by [76] is also plotted for comparison. The duration time was chosen as 15𝜇𝑠,to 

ensure that the ratio of loading time to natural period of structure is maintained low and in 

impulsive range. The chosen loading radius 𝑟𝑒 = 25𝑚𝑚  was kept consistent with the charge 

radius, whilst ‘𝑏’ was evaluated by curve fitting methods on the pressure loads of the gauge points 

from the numerical results. It is also important to note the deviation of data from the predicted 

curve when the dimensionless kinetic energy increases (𝜆 > 200), the limit beyond which the 

membrane action significantly affects the transverse deflections. While the empirical fit of Ref. 

[76], which utilises the Eqn. (2-17), accounts for this action, the simplified theoretical model 

would provide a good estimate to the permanent deformations at low range of dimensionless 

impulse (i.e. 𝜆 = 𝜙𝑞𝑙
2 ≤ 200). This highlights the significance of developing a theoretical model 

whereby the membrane resistance is retained in the analysis.  
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Figure 5-17. Prediction of displacement from analytical and 

numerical studies (𝜼 = 𝟓) 

It should be noted that, for the case of ARMOX steel, the material is capable of higher energy 

absorption, while the deformation is not significantly affected by strain rate sensitivity. However, 

the response can be affected by the material elasticity which can pose a difficulty when 

implementing limit analysis. Regardless of this limitation, the application of modified load 

function considerably enhances the prediction of plate response as opposed to the previous 

models introduced by researchers [35], and [99] valid for uniform pressure. 

 

 
Figure 5-18. Comparison of experimental results and theoretical model of Eqn. 

(5-68) for an impulsively loaded plate. 
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5.18 SUMMARY AND CONCLUSIONS   

This chapter dealt with a theoretical model to predict the transverse dynamic plastic 

displacement field of a generic simply supported, monolithic square plate subjected to localised 

blast loading. A piecewise continuous load function formerly studied by [38], [22], [152], was 

incorporated into the analyses, which is universal and adaptable for various loading scenarios 

from localised blasts to more distant loading. 

The plate was assumed thin, to enable making use of Kirchhoff-Love theory as opposed to 

Mindlin-Reissner plate theory. As such, transverse shear and rotatory inertia effects can be 

ignored without loss of accuracy. The plate was, however, assumed thick enough not to be 

considered a membrane. The analyses were performed by means of limit analysis and the 

incipient velocity profile was governed by the travelling plastic hinge in the three stages of 

analysis for high amplitude loads (i.e. 𝑝0 ≫ 𝑝𝑐  or 𝜂 > 𝜂𝑐𝑟𝑖𝑡).  

Close agreement was found when correlating the results of the theoretical model with the 

corresponding FE model for different load distributions. The transverse deflection-impulsive load 

relation was validated for different cases of load distributions. It was concluded that the analytical 

model yields satisfactory results for low impulse where bending effect is dominant, while for 

larger impulses on the thin plates, the membrane effects become significant. Thus, it is essential 

to investigate the influence of such blasts with consideration of the transverse shear and 

membrane forces.  

Further, the theoretical solutions for impulsive load give better estimate than the previous 

rigid-plastic model by [35],[99] when validated against the experimental data for close-proximity 

and low impulse blast loads (i.e., 𝜆 < 200). The herein theoretical study is applicable to rapid 

assessment of the blast loaded plates where visco-plasticity of the material may be ignored (with 

little or no strain rate sensitivity), such as aluminium alloys and high strength armour steel. 

Structures made of armour steel undergo less deflection with higher energy absorption capacity 

when compared to their Mild steel counterparts. 

As a final remark, while the aforementioned theoretical results are strongly sensitive to pulse 

shape, this effect can be virtually eliminated by using the Youngdahl’s effective parameters, 

namely, the effective impulse and effective pressure. The interaction of these parameters with the 

load parameters 𝛽 and 𝜂 is illustrated in Figure 5-19. A detailed study on pulse dependence of the 

theoretical results is presented in Chapter 7.  
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Figure 5-19. Interaction surface of load parameters on pulse independent displacement, 𝑰𝒆 and 𝒑𝒆 are the 

Youngdahl’s effective impulse and pressure, respecively  
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6 CHAPTER  6 

 

Dynamic response of square membranes 

Major Portion of this work is published in International Journal of Mechanical Sciences.  

6.1 BACKGROUND 

Much of the earlier theoretical studies in the literature have been restricted to the classical 

theory of plates with infinitesimal deformations. Often, the pressure wave-either from 

deflagration or detonation process- on thin shells leads to large displacements brought about by 

finite displacements (geometry changes) which violates the assumptions of the small deflection 

theory. If a thin shell undergoes marked increase of transverse deformation beyond its thickness, 

it would exhibit finite displacements due to the evolution of membrane (catenary) forces. Such 

forces so emerged will resist out-of-plane deformation and decrease its maximum at the cost of 

accumulated in-plane tensile stresses. In fact, the experimental studies have revealed that the 

membrane forces dominate the overall performance of plated structures exhibiting large 

deformation [93], [101], [154], [164]  

Zheng et al [98] investigated the elastic-plastic performance of stiffened square plates made 

of Q235 low carbon steel under confined blast. The confined blast was approximated with 

uniform distribution, leading to global deformation of the plate, while the deformation profile was 

unaffected by the stiffeners and no local buckling at the interface of stiffener and the plate was 

observed. Toolabi et al presented a mixed finite element formulation to enrich the shear strain 

and deformations of Mindlin Reissner plate [165]. 

While a small body of literature on theoretical works exists that has catered for this 

phenomenon [35], [103], [104], [166], these works considered only uniform pressure loads. It 

turns out from the results of Section 4.4.2-Section 4.5 (Figure 4-13-Figure 4-16), the predictive 

response of ductile metallic plates due to localised blasts cannot be delineated with available 

theoretical models, while the empirical models were also proposed on ad hoc basis and vary due 

to influence of the material type, load parameters and structural geometry. Thus, there is a 

paucity of information due to rarity of systematic theoretical analysis on the permanent response 

of plates emanating from localised blasts. Furthermore, in certain loading circumstances where 
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the quotient of total dissipated energy to the energy absorbed elastically within the plate is 

insignificant, the actual elastic-plastic performance should not be disregarded.  

However, finding the plastic deformations in elastic-plastic systems are fought with difficulty 

as they are inter-spread with the elastic ones, as the plastic region may disappear and re-appear. 

One vein to achieve this with mathematical brevity and without loss of accuracy is to assume the 

structural response as either wholly plastic or wholly elastic.  

The objective of this chapter is to explore, within accurate and realistic bounds, the theoretical 

models predictive of the permanent response of the plate. Using this rationale, this chapter 

derives and investigates the primary features of a theoretical solution for blast loaded thin square 

plates. Membrane forces are introduced as a part of the solution and emerge as deformations 

become finite.  

This work is thus set out in two parts. In the first part, using the principles thin shell theory 

on a rigid-perfectly plastic system, the previously examined solutions in Chapter 5 were extended 

to consider the influence large deflection plasticity theory of plates. This is achieved using the 

constitutive framework of limit analysis. The same problem is assessed, in the second part, but 

on wholly elastic plate, i.e. the influence of finite displacement was retained in the analysis of 

elastic membranes. This work has been published in International Journal of Mechanical Sciences 

[167]. 

The first part of this work is, as such, an extension of previous studies [35], [104], [168] which 

dealt with applying the bound theorems of plasticity to derive explicit closed form theoretical 

solutions which catered for the problem of dynamic response in locally blasted rectangular and 

circular plates.  

I. PART I, DYNAMIC PLASTIC PERFORMANCE OF THIN SHELLS SUBJECT TO 

LOCALISED BLAST 

The dissemination of this part is as follows. Following this introduction, the general assumptions 

made throughout the study have been presented. This is followed by a discussion of the governing 

equations Section 6.4 and possible deformation patterns in Section 6.5. In Section 6.6, the 

dynamic plastic performance of plates was rigorously analysed, encompassing the combined or 

mere influence of membrane and bending actions on each pattern in Sections 6.7-6.8. For high 

magnitude pressure loads, the results were cast in terms of impulsive velocity in Section 6.9, 

where the influence of boundary conditions and strain rate sensitivity were briefly studied. The 

theoretical results were validated against available experimental and numerical results in Section 

6.12-6.14.  
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6.2 ASSUMPTIONS 

The plates examined in hereunder are assumed to be ‘membranes’, implying that they are thin 

enough to render the contribution of transverse shear strains and rotatory inertia negligible. 

These effects are thus disregarded, although in-plane action plays a significant role in the overall 

response and has been included. In fact, it has been shown that the effect of transverse shear is 

not significant for locally blasted panels with slenderness ratio 𝜈 ≥ 5 [162]. The effect of rotatory 

inertia is even less significant [162].  

The influence of finite displacements must be retained in the study to achieve reliable results 

for dynamic response of the membranes [100], [104], [105], [169]. Subsequently, the overall 

response of the structure is characterised by the deformed shape, rather than the base 

configuration. A direct consequence of this essential condition is that the membranal forces (𝑁) 

to be included in the dynamic energy equilibrium equations. Hence, the overall response consists 

of the combined effects of bending and membrane phenomena.  

The influence of visco-plasticity (strain rate sensitivity) has been investigated in the context 

of the problem; however, most armour graded materials, such as (RHA) and class 4 High Hardness 

armours (HHA) of interest are impervious to such phenomenological effect. The sensitivity of 

flow stress to strain rate would decrease the overall deformation, due to the increase of the 

material strength, but in some cases reduces the rupture strain [96]. For a detailed modal 

procedure to determine the dynamic response of visco-plastic plates subject to blasts and 

impacts, the reader is referred to Jones’ [105]. 

6.2.1 Geometry and load characteristics 

The approach developed hereunder assumes the same geometry, prescribed loading and 

boundary conditions for the plates as those discussed in Section 5.5. Remark that for the uniform 

or point loads, only the load magnitude contributes to the length of the plastic hinge lines, while 

in generic blasts the length depends on both the magnitude and distribution. 

The maximum plastic moment and the maximum membrane force per unit length are denoted 

by 𝑀0 and 𝑁0, respectively. It is assumed that the planar cross sections of the plate remain plane 

and normal to its neutral plane throughout deformation (Kirchhoff-Love plate’s kinematic 

assumption).  
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6.3 YIELD CONDITION AND FLOW RULE 

By referring to the analysis of simply supported beams discussed in [35], using the Tresca 

yield condition, it may be assumed that for the simply supported plates, the plastic yield is 

governed by the constitutive equations as follows:  

𝑁

𝑁0
=
2𝑤

𝐻
, |𝑀/𝑀0| = (1 − (

𝑁

𝑁0
)
2

) ,   if  
𝑤

𝐻
<
1

2
 (6-1) 

𝑁

𝑁0
= 1,    

𝑀

𝑀0
= 0,   if  

𝑤

𝐻
≥ 
1

2
 (6-2) 

For prismatic sections: 

𝑁0 = 𝜎0𝐻,       𝑀0 =
σ0𝐻

2

4
  (6-3) 

Eqn. (6-1) represents two parabolas plotted in Figure 6-1. The state of stress and the normal 

to the yield surface are co-directional along the yield path of each parabola. From Eqns. (6-1)-

(6-3), evidently, 𝑀 = 𝑀0 and 𝑁 = 0 when 𝑤 = 0 at the onset of motion. Thus, the plastic flow for 

a perfectly rectangular plate initiates at corner A of the yield curve, following the trajectory AB of 

the upper right quadrant as the transverse displacement increases.  

For simplicity in the mathematical procedures, the yield curve is bound between the two 

square yield surfaces (broken lines in Figure 6-1) which circumscribe and inscribe the exact yield 

condition. The exact mathematical solution is bound between the two yield surfaces. Therefore, 

the normality requirement dictates that:  

𝑀 = 𝑀0 and 𝑁 = 𝑁0 (6-4) 
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Figure 6-1. Exact yield curve of the plate, vs. the circumscribing 

and inscribing yield curves (broken lines)  

The assumed isotropic hardening in the constitutive formulation is accounted for by replacing 

the yield stress with the average of the material initial yield and ultimate tensile stresses. It may 

be possible to have a kinematic hardening formulation or a combination of isotropic and 

kinematic hardening to incorporate the Bauschinger effects. However, in the context of rigid-

perfectly plastic constitutive formulation there is no difference between the two and the simple 

idealisation adopted here serves the purpose.  

6.4 GOVERNING EQUATIONS 

6.4.1 Principle of virtual velocities 

Consider an arbitrarily shaped surface element bound by an oriented closed path in Cartesian 

Coordinate system. Using Green’s theorem, the equation of motion in its force vector field is 

converted into functional of energy conservation, wherein the total internal energy rate 𝒟
.

 

dissipated at the continuous velocity fields, at the plastic hinges and within the plastic zones, is 

equilibrated with the external work rate 𝐸
.
. For an arbitrarily shaped plate (and beams as special 

case) when the shear stain and rotatory inertia effects are ignored [35], [94], [168], it reads: 

∫(𝑝(𝑥, 𝑦, 𝑡) − 𝜇𝑤
..
)

𝐴

𝑤
.
𝑑�̅�

= ∫(𝑀 + 𝑁𝑤)𝜅
.
 𝑑�̅�

𝐴

+ ∑ ∫(𝑀 +𝑁𝑤)𝜃
.

𝑚𝑑𝐶𝑚
𝐴

+∑𝑄(𝑤
.
)𝑢𝑑𝐶𝑢

𝑣

𝑢=1

𝑛

𝑚=1

  

(6-5) 
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the over dot notation denotes differentiation with respect to time. In Eqn. (6-5), �̅� denotes the 

elemental area, 𝜇 is the mass per unit surface area and 𝑝(𝑥, 𝑦, 𝑡) is the pressure field function. The 

expressions on the left-hand side represent the external work rate, the first term being work due 

to pressure field and the second term due to Lagrange-D’Alembert principle’s inertia force, while 

the first term on the right-hand side is the strain energy dissipated in a continuous deformation 

field, the second term is the energy dissipated at 𝑚 discrete plastic hinges of length 𝐶𝑚 , each 

having an angular velocity of 𝜃
.

𝑚 = (𝜕𝑤
.
/ 𝑑𝑥𝑖)𝑚, where 𝑥𝑖 is the characteristic general coordinate 

in direction of the hinge line. The last term on the right-hand side is the energy dissipated in 𝜈 

transverse shear hinges, each of length 𝐶𝑢 and having a velocity discontinuity of 𝑤
.

𝑢. In this work, 

the final term may be ignored in the analyses since the transverse shears would not intrinsically 

affect the response of membranes [118], [162].  

6.5 DEFORMATION PATTERNS 

The dynamic response in terms of generalised deformations in a rigid, perfectly plastic 

structure is represented by evolution of plastic bending or shearing hinges. These hinges-either 

moving or stationery- are essentially discontinuity interfaces due to rotation (the bending hinge) 

or transverse shear strains (shearing hinge) leading to deformation localisations. At this weak 

discontinuity interfaces, the kinematic continuity of motion and the conservation of momentum 

must be fulfilled. In thin membranes, the thickness is of a small order of magnitude compared to 

the characteristic in-plane lengths, the transverse shear forces may be assumed inconsequential 

as opposed to significant membrane forces. Thus, the deformation localisation is characterised 

by bending hinges only. 

The herein constitutive laws examine the plastic flow corresponding to circumstances as (i) 

an interactive yield surface due to combined bending and membrane action, and (ii) a yield curve 

where membrane forces are sufficiently large to solely govern the overall behaviour of the plate.  

Considering first a rectangular plate of length 2𝐿 and width 2𝐵,  the current approach entails 

two possible velocity profiles (A) and (B) as illustrated in Figure 6-2. Pattern (A) conforms to the 

stationery bending hinges while the length of bending hinge in pattern (B) is time dependent. 

Using the classical theory of plates, that a critical value of the load was found in Eqn. (5-40) 

beyond which the static admissibility associated with stationery hinges (pattern (A)) is violated.  

Clearly, due to the severity of blast load, in the plates undergoing finite displacements, a 

transient phase in deformation profile would be induced [103], [104]. It may be assumed that the 
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same static admissibility condition dictates the structures undergoing large deflections. Thus, it 

may be assumed that each pattern corresponds to a special velocity profile as follows: 

i. Profile (1): Small deflection theory, giving rise to Pattern (A) with a stationery plastic 

hinge (Figure 6-3). The deformations are large enough to induce membrane forces. 

However, the response due to the build-up of membrane forces remains within the 

bounds of the critical overloading factor.  

ii. Profile (2): the circumstances where the deformation is characterised by an incipient 

pattern (B) with the velocity profile illustrated in Figure 6-4, which progresses into 

that of Figure 6-5 and ultimately assumes the final form of pattern (A). Such a 

phenomenon that the hinge travels under a steady dynamic loading reflects the effect 

of large deflection theory [104]. 

  
(A) (B) 

Figure 6-2. Velocity profile patterns of the plate due to (A) infinitesimal transverse deflections, (B) large 

transverse deflections 

 

  

Figure 6-3. Velocity profile pattern (A), (section M-M 

of Figure 6-2)  

Figure 6-4. Velocity profile of pattern (B) 

during the first phase of motion (section M-M 

of Figure 6-2) 
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Figure 6-5. Pattern (B) velocity profile during the second phase of motion 

 

Associated with Pattern (B) velocity profile, three distinct phases are sketched, namely phase 

(i) onset of loading, phase (ii) occurrence of a transient phase with travelling plastic hinge lines 

which move inward towards the plate centre with incipient deformation and phase (iii) the final 

phase of deformation. In the first phase, the transverse velocity profile may be written in the form: 

𝑤
.
=
𝑊
.
(𝐿 − 𝑥)

𝐿 − 𝜉0𝐿
    𝑥 > 𝜉0𝐿 (6-6) 

In zone 1 and 

𝑤
.
=
𝑊
.
(𝐵 − 𝑦)

𝛿𝐵
 (6-7)  

In zone 2. The velocity profiles in each zone are and kinematically admissible. The velocity 

profile of pattern (A) is recovered from Eqn.s’ (6-6)-(6-7) by choosing 𝛿𝐵 = 𝐵 and eliminating 𝜉0. 

The rotational velocities in each zone simplify to Eqn.s’ (6-8a-c), when the shearing angle at the 

point along the centre line of the plate is ignored, i.e.:  

𝜃
.

1 = −
𝜕𝑤
.

𝜕𝑥
 , 𝜃
.

2 = −
𝜕𝑤
.

𝜕𝑦
 and 𝜃

.

3 = 𝜃
.

1 cos(𝜙) + 𝜃
.

2 sin(𝜙) (6-8a-c) 

where 𝜃
.

3 is the rotational velocity along the plastic hinge at the intersection of zone 1 and 

zone 2, as plotted in Figure 6-6. If the plate is square, 𝜙 = 𝜋/4 as in Figure 6-2, then both of its 

diagonals construct the plastic hinge lines. The dimensionless number defining the size of the 

rigid zone is given by 𝜉0, while 𝛿𝐵 = 𝐿(1 − 𝜉0) and 𝐵 = 𝐿 in such plates. Thus, the velocity profile 

of pattern (B) would take a conical shape and recast into 
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𝑤
.
=
𝑊
.
(1 − 𝑧)

(1 − 𝜉0)
 (6-9) 

which satisfies the Dirichlet boundary conditions. The parameter z in Eqn. (6-9) represents 

the auxiliary coordinate of the square plate whose diagonals lie on the Cartesian Coordinate axes 

as presented in Figure (5-4) (b). Given the deformation field in a rigid plated system along the 

equipotential surfaces has the same magnitude (e.g. the path EFGH in Figure (5-4) (a)), it may be 

assumed that the theoretical treatment with load defined by polar coordinate (r) is identical to 

the plate in , whose diagonals construct the plastic hinge lines.  

 

Figure 6-6. Profile of the plate at intersection of zone 1 and 2. 

(a) top view, (b) front section (c) profile at section SJ  

 

Substituting Eqn.s’ (6-4), and (6-6)-(6-9) into Eqn. (6-5), the internal energy rate of pattern 

(B) was derived as:  

𝒟
.
=
(2 𝐻 + 4 𝑊(1 − 𝜉0))𝑊

.
𝑀0

𝐻(1 − 𝜉0)
 (6-10) 
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6.6 DYNAMIC PLASTIC BEHAVIOUR OF CASE 1 THIN PLATES: PATTERN (A)-  

6.6.1 Phase 1 of motion (𝒕 ≤ 𝝉) 

The dynamic velocity field represented a roof shape profile identical to that due to the static 

velocity field which is illustrated in Figure 6-3. However, the velocity profile is now time 

dependent, which separates the motion into two distinct phases, i.e. phase (i) initial deformations 

at the onset of loading, and phase (ii) final phase associated with the residual deformations to 

dissipate the reserved kinetic energy. 

With reference to the circumscribing yield curve, the plastic flow is assumed to initiate at 

corner 𝐸 of the circumscribing yield surface of Figure 6-1. The internal energy dissipation rate is 

distinguished from Eqn. (6-10) given 𝜉0 = 0, while the external energy rate reads as: 

𝐸
.
= 𝐿2 [∫ (𝑝0 − 𝜇𝑊

..
(1 − 𝑧))𝑊

.
(1 − 𝑧)𝑧𝑑𝑧

𝑟𝑒
𝐿

0

 

+ ∫ (𝑝0𝑎𝑒
−𝑏𝐿𝑧 − 𝜇𝑊

..
(1 − 𝑧))𝑊

.
(1 − 𝑧)𝑧𝑑𝑧

1

𝑟𝑒
𝐿

] 

(6-11) 

By evaluating Eqn. (6-11) and performing the integrations on the dynamic energy equilibrium 

equation, Eqn. (6-1) may be recast in terms of an ODE as: 

𝐴1𝑊
..
+ 𝐵1𝑊+ 𝑑1  = 0 (6-12) 

𝐴1 =
−1

6
𝜇𝐿2 (6-13) 

𝐵1 =
−4𝑀0
𝐻

 (6-14) 

𝑑1 = 2𝑀0(𝜂 − 1) (6-15) 

where 𝜂 = 𝑝0/𝑝𝑐  is the load amplification factor, provided the static plastic collapse is given 

by 𝑝𝑐 = 𝑀0/𝛽𝐿
2. The solution of the Eqn. (6-12) is expressed as: 

𝑊1(𝑡) =
1

2
𝐻(𝜂 − 1)(1 − cos(𝜔1𝑡)) (6-16) 

where the subscript denotes the phase of response and 𝜔1 = {
24𝑀0

𝜇𝐿2𝐻
}
0.5

 hereinafter referred to 

as the pulse factor. Clearly, 𝜔1
2 = 𝐵1/𝐴1. The form of Eqn. (6-16) may be obtained by ensuring the 



127 
 

initial kinematic conditions, viz. 𝑊1(0) = 0 and 𝑊
.

1(0) = 0 are satisfied at the onset of loading to 

obtain the ODE constants.  

6.6.2 Final phase of motion (𝒕 ≥ 𝝉) 

A transition from phase 1 to phase 2 occurs as the magnitude of the blast annihilates at the 

target interface. The motion is characterised merely by the inertia effects; however, the 

expressions (6-12) -(6-15) still govern the response during the second phase of motion. Thus, by 

evaluating the ODE parameters in Eqn. (6-12), the transverse displacement field and its time 

derivatives are derived as: 

�̈�2   

𝐻
=
𝜔1
2

2
 {(η − 1)cos(𝜔1𝑡) − η cos(𝜔1(𝑡 − 𝜏)) }  (6-17) 

𝑊
.

2

𝐻
=
𝜔1
2
{𝑠𝑖𝑛(𝜔1𝑡)(𝜂 − 1) − 𝜂𝑠𝑖𝑛(𝜔1(𝑡 − 𝜏))} (6-18) 

𝑊2

𝐻
=
−1

2
{(η − 1)cos(𝜔1𝑡)  − η cos(𝜔1(𝑡 − 𝜏)) + 1 }  (6-19) 

The ODE solution constants are obtained by imposing the continuity conditions i.e. by 

enforcing the same kinematic admissibility of the transverse deformation field and its time 

derivatives at 𝑡 = 𝜏. This phase terminates when the plate has lost all its momentum at time 𝑇2, 

as shown in (6-20), evaluated from 𝑊
.

2 = 0. As the analyses are conducted within the framework 

of rigid-plasticity rather than elasto-plasticity, no residual vibration occurs, and maximum and 

permanent deflection fields are identical. 

𝑇2 =
1

𝜔1
arctan (

𝜂 sin𝜔1𝜏

1 + 𝜂(cos(𝜔1𝜏) − 1)
)  (6-20) 

Substituting Eqn. (6-20) in Eqn. (6-19) yields the permanent transverse deformation as: 

𝑊𝑓

𝐻
=
1

2
(√4(𝜂2 − 𝜂) sin2

𝜔1𝜏

2
+ 1 − 1)  (6-21) 
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Figure 6-7. Variation of the normalised permanent (maximum) deflections with 𝝎𝟏 

Provided the plate has a prismatic section, it turns out that 𝜔1 = √
6𝜎0

𝜌𝐿2
  depends only on the 

material properties 𝜎0 and 𝜌 and side length 𝐿 , thus its practical limits may be established. For 

example, given a monolithic ductile plate of 𝜌 = 7850 𝐾𝑔/𝑚3, 𝜎0 varying between 300𝑀𝑃𝑎 for 

mild steel to 1210𝑀𝑃𝑎 for RHA steel, and the characteristic in-plane dimensions of prototype 

structures typically in the range of minimum 𝐿 = 0.2𝑚 to the maximum of 𝐿 = 2𝑚, the magnitude 

of 𝜔1 is typically restrained as 2185 𝑟𝑎𝑑. 𝑠−1 ≤ 𝜔1 ≤ 5000 𝑟𝑎𝑑. 𝑠
−1 for the structural elements 

of minimum characteristic lengths, while 𝜔1  assumes the range of 218 𝑟𝑎𝑑. 𝑠−1 ≤ 𝜔1 ≤

480 𝑟𝑎𝑑. 𝑠−1 associated with the large armour plate lengths. The pulse duration typically varies 

between 20𝜇𝑠  for localised blasts to 200𝜇𝑠  for distal blast loads. Hence, the range of 𝜔𝜏  is 

restrained to values between 0.005 and 5. The influence of this parameter against the permanent 

deformation is plotted in Figure 6-7. 

6.7 DYNAMIC PLASTIC BEHAVIOUR OF CASE 1 THIN PLATES: PATTERN (B)  

6.7.1 First phase of motion (𝒕 ≤ 𝝉) 

A progressively severe blast in some cases would force the structural system to undergo a 

transition state in the deformation history to ensure the rate of strain energy dissipated in the 

plate at every instant of time equates the rate of external work done. The velocity profile in such 

circumstances needs to be modified into that assumed in pattern (B). This profile, during the first 

phase, is characterised by formation of a central incipient plastic hinge of length (𝜉0) because of 

large deflections. As the blast pressure is distributed throughout the structure, this plastic hinge 
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travels toward the centre. It is further assumed that 𝜉0 > 𝑟𝑒/𝐿. With reference to the velocity 

profile in Eqn.s’ (6-9) and (6-6), the total external energy rate is compiled as: 

𝐸
.

= 2𝐿2 [∫ (𝑝0 − 𝜇𝑊
..

)𝑊
.

𝑧𝑑𝑧
𝜔0

0

 + ∫ (𝑝0𝑎𝑒
−𝑏𝐿𝑧 − 𝜇𝑊

..

)𝑊
.

𝑧𝑑𝑧
𝜉0

𝜔0

+∫ (𝑝0𝑎𝑒
−𝑏𝐿𝑧 −

𝜇𝑊
..

(1 − 𝑧)

1 − 𝜉0
)
𝑊
.

(1 − 𝑧)𝑧

1 − 𝜉0
𝑑𝑧

1

𝜔0

] 

(6-22) 

where 𝜔0 = 𝑟𝑒/𝐿 . Evaluating the integral and performing the analysis on the energy 

equilibrium, the expressions of the deformation fields boil down to an ODE as: 

𝐴2𝑊
..

+ 𝐵2𝑊 + 𝑑2 = 0 (6-23) 

where the parameters of this expression are obtained as: 

𝐴2 =
−1

6
𝜇𝐿2(3𝜉0

2 + 2𝜉0 + 1) (6-24) 

𝐵2 =
4𝑀0(𝜉0 + 1)

𝐻(𝜉0 − 1)
  (6-25) 

𝑑2 =
2𝑀0𝜂( (𝐿𝑏𝜉0 + 2)𝑒

−𝑏(𝐿𝜉0−𝑟𝑒) − ( 𝐿𝑏 + 2) e−𝑏(𝐿−𝑟𝑒) + 𝐿𝑏[(𝑏2𝑟𝑒
2 + 2 𝑏𝑟𝑒 + 2)(𝜉0 − 1)/2])

 𝛽(𝜉0 − 1)𝐿
3𝑏3

+
2𝑀0

𝜉0 − 1
 

(6-26) 

Eqn. (6-23) is a non-homogeneous, second order ODE with constant coefficients, which has a 

solution of the form: 

𝑊1 =
𝑑2
𝐵2
{cos(𝜔𝑡) − 1}  (6-27) 

𝜔 = √
𝐵2
𝐴2

 (6-28) 

And the form of Eqn. (6-27) is obtained by satisfying the initial conditions 𝑊(0) = 𝑊
.
(0) = 0. 
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(a) (b) 

Figure 6-8. The manifold of Velocity field during the first phase (a), Kinetic energy states at the end of 

phase 1 due to various load magnitude, where 𝑳 = 𝟏𝟓𝟎𝒎𝒎,𝑯 = 𝟒𝒎𝒎,𝝆 = 𝟕𝟖𝟓𝟎, 𝝈𝟎 = 𝟏𝟏𝟎𝟎𝑴𝑷𝒂, 𝝃𝟎 =
𝟎. 𝟖𝟗 (b) 

The dependence of the initial velocity (and thus initial kinetic energy) on the load magnitude 

and radius is presented in Figure 6-8. The kinetic energy is mostly absorbed through the portion 

of the target that is affected by the blast load. The ordinate in Figure 6-8 (b) represents the kinetic 

energy density, or the kinetic energy per unit area of the central blast zone. For the central zone 

radii of the load beyond half the target length, the variation of this energy is smooth, while the 

blast emanating from the charge diameter to total target length of 0.25 is more plausible to cause 

tensile tearing, capping, and perforation through the plate. Furthermore, assuming a linear 

relationship between the central blast radius 𝑟𝑒 and the geometry of the explosive as is done by 

researchers [22], [27], and with a priori knowledge of the blast pressure associated with certain 

mass of explosive disc, the more catastrophic threat scenarios are associated with explosives of 

lower radii and higher charge height than those of higher charge diameters and less height. 

Clearly, as illustrated in the Figure 6-9 and Figure 6-10, pulse factor is also influenced by 

loading distribution. For proximal blasts, the pressure is concentrated at the localised region of 

the target centre (𝜔0 ≪ 1)  and decays instantly as it stretches over the target. The decay 

exponent of typical localised blasts varying between 50 ≤ 𝑏 ≤ 120 [22], [27]. The increase in the 

load decay exponent (𝑏) would result in a reduction of the pulse factor, but increased central 

deformation. In contrast, uniform pressure loads assume larger values of the pulse factor as 𝑟𝑒 

increases while 𝑏 decreases. Critical influence of the pulse factor on the load emerges when the 

length of the incipient plastic hinge appears at 0.9th of the characteristic plate length. Thus, it is 

necessary to accurately determine the position of the incipient plastic hinge in the plated systems 

undergoing the transition state.  
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Figure 6-9.Variation of the normalized pulse factor 

with incipient plastic hinge due to load radius  

Figure 6-10- -Variation of the normalized pulse 

factor with incipient plastic hinge due to load decay 

exponent 

However, the incipient plastic hinge emerges at the early phase response before the 

membrane state is reached [35]. By eliminating the membrane terms in Eqn. (6-5) and 

performing some straightforward calculations, the form of Eqn. (6-23) boils down to a function 

of the overload factor and incipient plastic hinge as: 

𝑓(𝜂, γ′) = 𝜂γ′ − 12𝐿3𝑏3𝛽 = 0 (6-29) 

Which is similar to and defined by Eqn. (5-51)-(5-52). 

The exact solution of Eqn. (6-29) is complex due to the presence of the highly nonlinear terms 

and can be evaluated by numerical approaches. In the case of the static collapse, i.e. 𝜂 = 1, no real 

root of this equation is found, confirming that the deformation to assume is as pattern (A). This is 

evident as in the case of static loads pattern (A) yields a lower upper bound for static plastic 

collapse, thus the central plastic zone will not form in the system.  

The influence of overloading factor for a range of loading parameters is presented in Figure 

6-11. Clearly, the length of the central zone increases with the radius of the load. In the uniform 

load scenario, 𝜉0 = 1, the incipient plastic bending hinge occurs directly at the edges.  
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Figure 6-11. Evaluating the length of central plastic bending hinge length 

6.7.2 Second phase of motion 𝝉 ≤ 𝒕 ≤ 𝑻𝟏 

The mathematical procedure was carried out in an analogous manner to that of pattern (A). 

Since no shearing forces at hinge lines of the central zone occurs (i.e. 𝑄𝑖 =
𝜕𝑀𝑖

𝜕𝑖
= 0 because 𝑀 =

𝑀0, with 𝑖 being the characteristic coordinate) and the membrane forces remain in plane parallel 

to the initial mid-plane of the plate [104], it follows that: 

𝜇𝑊
..

2 = 0 (6-30) 

Thus, the potential energy in the system eliminates, at the instant of sudden load removal, but 

some kinetic energy is reserved within the system, with an associated constant transverse 

velocity field that drives the motion to continue. The plastic hinge is, now, an active time 

dependent one traveling inward. The occurrence of this bending hinge is attributed with 

reduction in the dissipated energy. Provided 𝜉 ≥ 𝑟𝑒/𝐿, the external energy rate consists of the 

convective derivative components of transverse velocity field, given by the expression 

𝐸
.

= 2𝐿2 [∫ (𝑝0 − 𝜇𝑊
..

2)𝑊
.

2𝑧𝑑𝑧
𝜔0

0

+∫ (𝑝0𝑎𝑒
−𝑏𝐿𝑧 − 𝜇𝑊

..

2)𝑊
.

2𝑧𝑑𝑧
𝜉

𝜔0

+∫ (𝑝0𝑎𝑒
−𝑏𝐿𝑧 −

𝜇𝑊
..

2(1 − 𝑧)

1 − 𝜉
−
𝜇𝑊

.

2𝜉
.

(1 − 𝑧)

(1 − 𝜉)2
)𝑊

.

2𝑧 (
1 − 𝑧

1 − 𝜉
) 𝑑𝑧

1

𝜉

 ] 

(6-31) 
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Figure 6-12. Determination of duration of the second phase of motion for various values of 𝒓𝒆 , b=100 and 

𝜼 = 𝟏𝟎, 𝝈𝟎 = 𝟏𝟐𝟏𝟎𝑴𝑷𝒂, 𝑯 = 𝟒𝒎𝒎 and 𝑳 = 𝟎. 𝟐 

where 𝜔0 = 𝑟𝑒/𝐿 and the terms of transverse inertia may be eliminated to yield 𝐸
.
=

−
1

2
𝑊
.

2
2 (𝜉 +

1

3
) 𝜉
.

𝐿2𝜇 . The size of the central zone decreases monotonically while moving 

transversely and ultimately vanishes at time 𝑇1. A time integration of the Eqn. (6-30) furnishes 

the maximum plastic transverse deformations into Eqns. (6-32), (6-33). The constants of 

integration are obtained by ensuring the kinematic conditions of displacement and velocity fields 

at the instant of load completion, while the constants 𝐴2 and 𝑑2 are defined previously in Eqns. 

(6-24)-(6-26). 

𝜇𝑊
.

2 =
−𝑑2 sin(𝜔𝜏)

𝜔𝐴2
 (6-32) 

𝜇𝑊2 =
𝑑2
𝜔2𝐴2

[𝜔 sin(𝜔𝜏) (𝜏 − 𝑡) + cos(𝜔𝜏) − 1] (6-33) 

Eqns. (6-30)-(6-33) should satisfy the constitutive equation of motion and the energy 

equilibrium outlined in Section 6.4.1. With reference to Eqn. s’ (6-31) and (6-10) and by using 

Eqns. (6-32), and (6-33), Eqn. (6-30) is recast an ODE as: 
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𝑓(𝑡, 𝜉, 𝜉
.

) =
1

6
(
𝜇𝐿2𝑑2
𝐴2𝜔

) (3𝜉 + 1)(𝜉 − 1)𝜉
.

+ 2𝑀0

−
4𝑀0𝑑2(𝜉 + 1)(𝜔 sin(𝜔𝜏) (𝑡 − 𝜏) − cos(𝜔𝜏) + 1)

𝐴2𝜔
2𝐻

= 0 

(6-34) 

 

 

Figure 6-13. Determination of duration of the second phase 𝑻𝟐 of motion for various values of load 

dynamic amplification factor, 𝝈𝟎 = 𝟏𝟐𝟏𝟎, H=4mm b=100 𝝎𝟎  = 𝟎. 𝟏𝟐 

This equation is solved numerically by 5th order Runge-Kutta method embedded in MATLAB®, 

whereby the length of the active plastic hinge at any time is determined. The solutions to the ODE 

for various values of 𝜉0 are compared in Figure 6-12-Figure 6-13, where a load duration of 𝜏 =

30𝜇𝑠 for various load amplification factors was assumed. Indeed, the transient phase maintains 

for a time duration of 𝑇2  until the plastic hinge length in ODE of Eqn. (6-34) vanishes. In the 

circumstances where no real solution of this ODE is found, commonly occurring when 𝜔0 ≪ 1 

and 𝜉0 ≪ 1, the response may be governed by pattern (A) of motion. 

While it may not be straightforward to investigate the static admissibility of pattern (B), it is 

evident that Eqn.s’ (6-27), (6-30)-(6-33) are kinematically admissible. The theoretical solution is 
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exact when the generalised stress field is statically admissible and the associated velocity field is 

kinematically admissible.  

6.7.3 Third Phase of Motion 𝑻𝟐 < 𝒕 < 𝑻𝟑 

Phase 2 terminates as the in-plane motion of the plastic hinge line ceases at time 𝑇2. Now, due 

to the reserved kinetic energy remaining from the previous deformation, the inertia is induced 

which marks a transition to phase 3, until all the residual kinetic energy is dissipated before the 

plate comes at rest. Thus, the plate profile develops from pattern (B) to that of the pattern (A) 

with inertia term characterised by Eqn. (6-17). The succeeding expressions of the transverse 

velocity and transverse deformation are recovered from successive time integrations of Eqn. 

(6-17). The integration constants in these expressions are found by ensuring the kinematic 

continuity conditions at 𝑡 = 𝑇2. The final form of the deformation fields may be written as of Eqns. 

(6-35) and (6-36). 

𝑊3

.

𝐻
=
ω1
2
{η[sin(𝜔1(𝑇2 − 𝜏)) − sin(𝜔1(𝑡 − 𝜏))] + (η − 1)(sin(ω1t) − sin(𝜔1𝑇2))}

−
d2 sin(ωτ)

A2ωH
 

(6-35) 

𝑊3

𝐻
=
1

2
𝜔1(𝑇2 − 𝑡){(𝜂 −  1)𝑠𝑖𝑛(𝑇2𝜔1) −  𝜂𝑠𝑖𝑛(𝜔1(𝑇2  − 𝜏))}  

+
𝜂

2
{𝑐𝑜𝑠(𝜔1(𝑡 − 𝜏 )) −  𝑐𝑜𝑠(𝜔1(𝑇2  − 𝜏))}

+ (𝜂 −  1)[𝑐𝑜𝑠(𝑇2𝜔1) − 𝑐𝑜𝑠(𝜔1𝑡)] +
𝑑1 sin(𝜔𝜏)

𝐴1𝜔𝐻
(𝑇2 − 𝑡)

−
𝑑1{𝜔 sin(𝜔𝜏) (𝑇2 − 𝜏) +  1 − 𝑐𝑜𝑠(𝜔𝜏)}

𝐴1𝜔
2

 

(6-36) 

When 𝑊
.

3 = 0 the plate rests. Defining Γ in Eqn. (6-37), an expression of the final time of the 

deformation is delineated as per Eqn. (6-38). 

Γ2  =
1

2
𝐻𝜔1 sin(𝑇2𝜔1) (𝜂 − 1) −

1

2
𝐻𝜂𝜔1 sin(𝜔1(𝑇2 − 𝜏)) +

𝑑2 sin(𝜔𝜏)

𝐴2𝜔
 (6-37) 

𝑇𝑓  =  −
𝑖

𝜔
ln (

2𝑖Γ2𝑒
1
2𝑖𝜔𝜏 ∓  𝑒

1
2𝑖𝜔𝜏√(−𝐻2𝜔2𝜂(𝜂−1)(𝑒2𝑖𝜔𝜏+1)+((2𝜂2−2𝜂+1)𝐻2𝜔2−Γ2

2)𝑒𝑖𝜔𝜏)

𝜔𝐻((𝜂−1)𝑒𝑖𝜔𝜏−𝜂)
)  (6-38) 

Under the impulsive loading conditions, the expression of the full form permanent 

deformation in Eqn. (6-36) may be further reduced by assuming the deformation time of phase 1 

and 2 are infinitesimal such that sin𝜔𝜏 ≅ 𝜔𝜏 , 1 − cos𝜔𝜏 ≅ 𝜔2𝜏2/2 , sin𝜔𝑇2 ≅ 𝜔𝑇2  and 1 −

cos𝜔𝑇2 ≅ 𝜔
2𝑇2

2/2 . These assumptions are pertinent to the most cases of localised blasts 

generated by high explosives, where the loading duration is infinitesimal (𝜏 ≤ 50𝜇𝑠) compared 
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to the natural period of the structure. Due to the low range of the stand-off, the reflected localised 

blast pressure induced by the wave front would be dissipated in a more diminutive timeframe 

than in distal blasts. The Full form of the Eqn. (6-36) may be used for higher accuracy or the longer 

loading duration is required, in which case the response of the plate can be idealised as quasi-

static/dynamic load. In Figure 6-14 the dependence of the permanent deformation on the pulse 

factor 𝜔 is plotted. 

 

Figure 6-14. Variation of the normalised permanent 

deflections with 𝝎, where 𝑳 = 𝟏𝟓𝟎𝒎𝒎,𝑯 = 𝟒𝒎𝒎,𝝆 =
𝟕𝟖𝟓𝟎, 𝝈𝟎 = 𝟏𝟏𝟎𝟎𝑴𝑷𝒂, 

It is recognised that obtaining an explicit form of the permanent deformation is fraught with 

difficulty, due to the interdependence of the load parameters, duration of each phase and the 

plastic hinge lengths, while the increased number of variables brings about complications in the 

exact theoretical solution, particularly when the visco-plasticity and hardening effects are 

involved. However, a reduced closed form solution of the permanent deformation may be 

obtained by neglecting the bending moment contribution in the overall response of the plate as 

follows.  

6.8 SIMPLIFICATION INTO A MEMBRANE 

High intensity shock loads give rise to large plastic deformations, to the extent that the 

influence of finite displacements due to such loads governs the overall response of the structure. 

In such circumstances, the contribution of the membrane forces alone associated with the finite 

displacements transcends those of the bending moments and transverse shear effects especially 

for thick plates. This leads to further simplification of the energy equilibrium expressions as the 
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plastic energy due to bending moment may be essentially neglected; the membrane forces solely 

govern the response throughout the motion. Thus, the Eqn. (6-5) boils down to 

∫(𝑝(𝑥, 𝑦, 𝑡) − 𝜇𝑤
..
)

𝐴

𝑤
.
𝑑�̅� = ∫𝑁𝑤𝜅

.
 𝑑�̅�

𝐴

+ ∑ ∫(𝑁𝑤)𝜃
.

𝑚𝑑𝐶𝑚
𝐴

𝑛

𝑚=1

  (6-39) 

the mathematical approach introduced herein is identical to that outlined in Section 6.6, while 

the terms of 𝑀0  from the internal energy rate vanish. With this simplification in mind, the 

mathematical treatment is carried out for both patterns of the velocity profile hereunder.  

6.8.1 Pattern (A) of motion 

In the first phase of motion, Eqn. (6-5) furnishes to 

𝑊
..

1 + 𝜔1
2𝑊1 + 𝑑3/A1  = 0 (6-40) 

where 𝑑3 = 2𝑀0𝜂 ; 𝐴1 , 𝜔1  defined in Section 6.6.1. The ODE of Eqn. (6-40) has a general 

solution as 𝑊1 = 𝐶1 sin(𝜔1𝑡) + 𝐶2 cos(𝜔1𝑡) −
𝑑3

𝜔1
2𝐴1

, the constants thereof are determined by 

ensuring the kinematic conditions at t=0, giving: 

𝑊1

𝐻
=
𝜂

2
(1 − cos(𝜔1 𝑡)) (6-41) 

Thus, the expression of the simplified membrane model is similar, but reduced form of, the 

solution pertaining to the combined bending and membrane, in terms of the ODE constant 𝑑3. 

This phase continues for a duration of 𝑡 = 𝜏 when the loading is complete. 

In the same spirit to the previous analyses, the dynamic equilibrium equation of the phase 2 

leads to: 

𝑊
..

+ 𝜔1
2𝑊 = 0 (6-42) 

which has a closed-form solution as 𝑊 = 𝐶3 sin(𝜔1𝑡) + 𝐶4 cos(𝜔1𝑡). Comparing the solution 

in this phase with the previous phase, while ensuring the kinematic admissibility at 𝑡 = 𝜏 yields: 

�̈�2 = 
𝜂𝐻𝜔1

2

2
[𝑐𝑜𝑠(𝜔1𝑡) − 𝑐𝑜𝑠(𝜔1(𝑡 − 𝜏))] (6-43) 

𝑊
.

2 =
𝜂𝐻𝜔1
2

(𝑠𝑖𝑛(𝜔1𝑡) − 𝑠𝑖𝑛(𝜔1(𝑡 − 𝜏))) (6-44) 

𝑊2 =
𝜂𝐻

2
(𝑐𝑜𝑠(𝜔1(𝑡 − 𝜏)) − 𝑐𝑜𝑠(𝜔1𝑡)) (6-45) 
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This phase terminates at 𝑇𝑓 =
𝜋+𝜔1𝜏

2𝜔1
, while the permanent deformation boils down to:  

𝑊𝑓

𝐻
= 𝜂 sin

𝜔1𝜏

2
 (6-46) 

 

 

Figure 6-15. The difference between the results of 

membrane-only and combined bending and membrane 

analyses 

The difference between the two analyses (combined bending and membrane and membrane 

only) decreases exponentially, giving a smooth variation for high impulse magnitudes. The 

expression (6-46) yields about only 8% higher overestimation than its counterpart (Figure 6-15).  

6.8.2 Pattern (B) of deformation 

By compiling the energy equilibrium equation for pattern (B), in the first phase of motion, the 

foregoing results in Section 6.6.1, i.e., the expressions (6-23)-(6-26) still hold, while the 

succeeding term 2𝑀0/(1 − 𝜉0)  in Eqn. (6-26) vanishes, viz.: 

𝑑4 =
2𝑀0𝜂( (𝐿𝑏𝜉0 + 2)𝑒

−𝑏(𝐿𝜉0−𝑟𝑒) − ( 𝐿𝑏 + 2) e−𝑏(𝐿−𝑟𝑒) + 𝐿𝑏[(𝑏2𝑟𝑒
2 + 2 𝑏𝑟𝑒 + 2)(𝜉0 − 1)/2])

 𝛽(𝜉0 − 1)𝐿
3𝑏3

 (6-47) 

The deformation at the first phase of motion is: 

𝑊1 =
𝑑4
𝐵2
{cos(𝜔𝑡) − 1}  (6-48) 

where 𝐵2  is defined in Eqn. (6-25). Thus, it is straightforward to show that the foregoing 

analyses in Sections 6.7.1-6.7.2 persists throughout the first and second phases of motion, the 
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expressions for the displacement field and its time derivative may be merely obtained by 

replacing 𝑑2 with 𝑑4.  

However, the ODE function describing the length of central plastic hinge line now boils down 

to an explicitly integrable function: 

𝑓(𝑡, 𝜉, 𝜉
.

): 
1

6
𝜇𝜔𝐻𝐿2(3𝜉 + 1)(𝜉 − 1)𝜉

.

− 4𝑀0(𝜉 + 1)(𝜔 sin(𝜔𝜏) (𝑡 − 1) + 1 − cos(𝜔𝜏)) = 0 (6-49) 

Using the separation of variables, through a subsequent time integration of Eqn. (6-49) the 

exact solution for the position of the plastic hinge is found as 

𝐹(𝑡, 𝜉): 48𝑀0 (𝜔𝑠𝑖𝑛(𝜔𝜏) ((
1

2
) 𝑡2 − 𝑡) + 𝑡 − 𝑐𝑜𝑠(𝜔𝜏)𝑡)

− [12𝜇𝜔𝐿2𝐻{8𝑙𝑛(𝜉 + 1) − 10𝜉 + 3𝜉2} + 𝐶5] = 0 

(6-50) 

𝐶5 = (24𝜏𝜔(𝜏 − 2)𝑠𝑖𝑛(𝜔𝜏) − 48𝜏𝑐𝑜𝑠(𝜔𝜏) + 48𝜏)𝑀0  

+ (−8𝜇𝜔𝐻𝐿2𝑙𝑛(𝜉0 + 1) − 𝜇𝜔𝐻𝐿
2𝜉0(3𝜉0 − 10)) 

(6-51) 

where the ODE constant 𝐶5 is obtained by ensuring the kinematic continuity of the function 

𝐹(𝑡 = 𝜏, 𝜉 = 𝜉0) at the transition time point 𝑡 = 𝜏. Since Eqn. (6-49) is a closed-form expression, 

it is tractable analytically to obtain the end phase of motion. This phase terminates at 𝑡 = 𝑇2 as 

the length of the central plastic zone vanishes, i.e. 𝜉 = 0. Thus: 

𝑇2 = (1 − 2𝜏) ∓
√6

12
√24(3𝜏 − 1)2  − (𝜔𝜏𝑀0)

−1 𝐻𝐿2𝜇(3𝜉0
2 + 8𝑙𝑛(𝜉0 + 1) − 10𝜉0) (6-52) 

Provided 𝜉0 ≪ 1, the terms of 𝜉0 in the surd may be ignored, then 𝑇2 → 𝜏 is suggestive of the 

solution approaches that of pattern (A) as the phase 1 and 2 merge together. While an exact 

solution to the Eqn. (6-50) at 𝜉(𝑡) = 0 exists, for brevity in analysis, the evaluation of 𝑇2 in Eqn. 

(6-52) is approximated by truncating trigonometric terms into their equivalent Taylor series, i.e. 

sin𝜔𝜏 ≅ 𝜔𝜏, 1 − cos𝜔𝜏 ≅ 𝜔2𝜏2/2. The velocity profile of the third phase is given by 

𝑊
.

3

𝐻𝜔1
= 

1

2
𝜂 (𝑠𝑖𝑛(𝑇2𝜔1) − 𝑠𝑖𝑛(𝜔1(𝑇2 − 𝜏))) −

1

2
𝜂 (𝑠𝑖𝑛(𝜔1𝑡) − 𝑠𝑖𝑛(𝜔1(𝑡 − 𝜏))) −

𝑑4𝑠𝑖𝑛(𝜔𝜏)

𝐻𝜔1𝜔𝐴2
  (6-53) 

Which is integrated over time to yield the corresponding dispalcement field, the integration 

constant is unequivocally derived by imposing the kinematic continuity conditions, in the similar 

fashion to Section 6.7.3 

𝑊3

𝐻
=
1

2
𝜔1𝜂(𝑇2 − 𝑡){𝑠𝑖𝑛(𝑇2𝜔1) −  𝑠𝑖𝑛(𝜔1(𝑇2  − 𝜏))}  

+
𝜂

2
{𝑐𝑜𝑠(𝜔1(𝑡 − 𝜏 )) − 𝑐𝑜𝑠(𝜔1(𝑇2  − 𝜏))} +

1

2
𝜂[𝑐𝑜𝑠(𝑇2𝜔1) − 𝑐𝑜𝑠(𝜔1𝑡)] 

(6-54) 
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+
𝑑4 sin(𝜔𝜏)

𝐴2𝜔𝐻
(𝑇2 − 𝑡) −

𝑑4{𝜔 sin(𝜔𝜏) (𝑇2 − 𝜏) +  1 − 𝑐𝑜𝑠(𝜔𝜏)}

𝐴2𝜔
2

  

It may be shown that the motion of the plate ceases at time 𝑇𝑓 expressed as: 

𝑇𝑓 =

{𝜔1𝜏 + 2 arccos (cos (𝑇2𝜔1 −
𝜔1𝜏
2
) −

𝑑4 sin(𝜔𝜏)

𝐻𝐴2𝜂𝜔1𝜔 sin (
𝜔1𝜏
2
)
)} 

2𝜔1
 

(6-55) 

and the permanent deformation achieved through substitution of Eqn. (6-55) in (6-54). 

6.9 IMPULSIVE LOADING  

In the case of impulsive loading, the total change in linear momentum equals the total impulse 

imparted upon the system, hence the conservation of linear momentum yields the impulsive 

velocity, defined in Eqn. (5-67). The associated permanent deformation of each scenario is 

furnished in terms of the dimensionless initial kinetic energy 𝜆 as follows. 

6.9.1 Pattern (A)  

The impulsive velocity is evaluated in terms of duration as 𝜏 =
𝛽

𝜂𝜔1
√24𝜆  as sin

𝜔1𝜏

2
≅

𝜔1𝜏

2
. 

Eqn. (6-25) then furnishes to: 

𝑊𝑓

𝐻
=
1

2
(√

24(𝜂 − 1)

 𝜂
𝜆𝛽2 + 1 − 1) (6-56) 

Provided the response is solely governed by membrane action, and the duration of the load is 

infinitesimal to the natural period of structure, by using the approximation sin
𝜔1𝜏

2
≅

𝜔1𝜏

2
 , the 

permanent deformation can be recast in terms of the dimensionless kinetic energy as: 

𝑊𝑓

𝐻
= 𝛽√6𝜆 (6-57) 

when 𝑟𝑒 → 𝐿, and 𝛽 →
1

6
  the Eqn. (6-57) converges to the solution found in the literature 

[35]. 
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6.9.2 Pattern (B) 

The impulsive load case of the plated elements undergoing the travelling bending hinge may 

be treated in the same fashion as to the case of stationery plastic bending hinges. The 

dimensionless kinetic energy may now be expressed as: 

𝜆 = (
𝜔𝜏𝜂

𝛽
)
2

{
−3𝜉0

3 + 𝜉0
2 + 𝜉0 + 1

1 + 𝜉0
 } (6-58) 

Using the bounds theorems on the exact yield surface (Figure 6-1), the solutions investigated 

herein inscribe and circumscribe the exact dynamic plastic collapse of membrane as illustrated 

in Figure 6-16. The solution to the inscribed yield criterion can be obtained by replacing 𝜆 with 

𝜆/0.618 in the expressions of each pattern. Clearly, the difference between the two curves is 

inconsequential where the response is influenced by active bending hinge (Figure 6-16b), 

highlighting the reliability of the solutions sought hereabove. However, for design applications, 

given the prescribed charge mass and stand-off, both circumscribing and inscribing curves may 

be implemented to estimate the response of the metal plates to reduce the estimation errors even 

further. 

 

(a) (b) 

Figure 6-16. Maximum permanent transverse displacements for various impulse values, with combined 

bending and membrane effects (C), without bending effects (M) comparison of (a) pattern (A) and (b) 

pattern (B)  
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6.10 PLATES OF VARIOUS BOUNDARY CONDITIONS  

The dynamic plastic collapse of plates which are secured with various boundary conditions is 

treated analogously to that of the simply supported plates. In such circumstances, the energy 

dissipated in the plastic hinge at the plate peripheries corresponding to the fully clamped edges 

is essentially considered when formulating Eqn. (6-10). This is given by 𝛼𝑏𝑀0𝜃
.

2𝐿, where 𝛼𝑏 =

1,2 is the half the number of clamped faces. For example, for 𝛼𝑏 = 2 the panels are fully clamped, 

while for 𝛼𝑏 = 1 only the two faces (typically the opposite sides) are clamped. Thus, an additional 

term of 𝛼𝑀0 would be added to Eqn. (6-26). The deformation of first and second phase of panels 

for pattern (A) would become: 

𝑊1 =
1

2
𝐻(𝜂 − 1 −

𝛼𝑏
2
)(1 − cos(𝜔1𝑡)) (6-59) 

𝑊2 = −
1

2
𝐻 {(𝜂 −

𝛼𝑏
2
− 1) cos(𝜔1𝑡) − 𝜂 cos(𝜔1(𝑡 − 𝜏))  +

𝛼𝑏
2
+ 1} (6-60) 

The permanent deformation of the impulsively loaded fully clamped plate with stationery 

bending hinges is furnished to  

𝑊𝑓

𝐻
= (

2𝜆̅

3
+ 1)

1/2

 − 1 (6-61) 

where �̅� = 9𝛽2𝜆 . Eqn. (6-61) is analogous to the expressions of fully clamped, uniformly 

loaded plate found in the literature [35], except with the influence the load shape characteristics 

modified by the coefficient 𝛽. 

Similarly, in the case of moving bending hinge, Eqn. (6-27) remains valid, but with 𝑑2 replaced 

with �̅� as: 

�̅� =
2𝑀0𝜂( (𝐿𝑏𝜉0 + 2)𝑒

−𝑏(𝐿𝜉0−𝑟𝑒) − ( 𝐿𝑏 + 2) e−𝑏(𝐿−𝑟𝑒) + 𝐿𝑏[(𝑏2𝑟𝑒
2 + 2 𝑏𝑟𝑒 + 2)(𝜉0 − 1)/2])

 𝛽(𝜉0 − 1)𝐿
3𝑏3

+
(2 + 𝛼𝑏)𝑀0

(𝜉0 − 1)
 

(6-62) 

Eqn. (6-62) indicates the ODE function 𝑓(𝑡, 𝜉, 𝜉
.

)  in (6-49) is increased by 𝛼𝑀0 . The 

permanent deformation due to the increased strain energy dissipated in the supports is 

expressed as: 
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𝑊3 =
1

2
𝐻𝜂{cos(𝜔1(𝑡 − 𝜏)) − cos(𝜔1(�̅�2 − 𝜏))}

+
1

4
𝐻𝜔1(𝑡 − �̅�2) [sin(𝜔1�̅�2) (𝛼𝑏 + 2 − 2 𝜂) + 2𝜂 sin(𝜔1(�̅�2 − 𝜏))

− 4�̅�
𝑠𝑖𝑛(𝜔𝜏)

𝐴2𝐻𝜔𝜔1
] +

1

4
𝐻(𝛼𝑏 + 2 − 2𝜂){cos(𝜔1𝑡) − cos(𝜔1�̅�2)}

−
𝑑̅(𝜔(�̅�2 − 𝜏) sin(𝜔𝜏) − cos(𝜔𝜏) + 1)

𝐵2
 

(6-63) 

where �̅�2  is the duration of the second phase of motion to be determined by numerical 

methods, in the same spirit as in Section 6.7.2.  

6.11 STRAIN RATE SENSITIVITY (VISCO-PLASTICITY)  

The scope of analysis in Sections 6.9 may be extended to encompass the strain-rate sensitivity 

effects of materials. Plastic hinges cannot develop in a strain rate sensitive material because an 

infinitely large strain would occur at a plastic hinge which would give rise to infinitely large 

stresses [105]. Thus, similar to the that of Jones [105] on the response of uniformly loaded 

circular and rectangular ductile metallic plates, the results here represent a modal solution, but 

with the localised effects retained in the study. 

Perrone and Bhadra [170] presented an approximation method to approximate the influence 

of strain rate sensitivity using a mass connected by strings on either side. The system was loaded 

with uniform impulsive velocity 𝑉1 = 𝑉0/𝜖1  to incur large inelastic deformation such that the 

influence of finite displacement was retained in the study. The authors observed that the 

maximum strain rate is reached when half of the kinetic energy is dissipated, i.e. at 𝑉1/√2, at 

which point the transverse deformation reached two third of the permanent deformation. The 

strain rate was halved to estimate for the average strain rate.  

Using this approximation and considering the strain as 𝜀𝑥 ≅ (𝜕𝑤/𝜕𝑥)
2/2  or 𝜀𝑦 ≅ (𝜕𝑤/𝜕𝑦)

2/

2  (ignoring the in-plane displacements), the strain rate, e.g. in zone I of pattern (A), is 𝜀
.

𝑥 ≅

𝑊𝑊
.
/𝐿2, or 𝜀

.

𝑥 = (1/2)(2𝑊𝑓/3)(𝑉1/√2)/𝐿
2 and the average equivalent strain rate, assuming 𝜀𝑒

.
≅

(𝜀𝑥 + 𝜀𝑦)/√3, would be reduced to: 

𝜀
.

𝑒 ≅ √2𝑊𝑓𝑉1/(3𝐿
2). 

(6-64) 

The Cowper-Symonds constitutive equation expressed by Eqn. (3-1) is assumed to govern the 

visco-plasticity phenomenon. The parameters 𝐷  and q are the could be obtained empirically 
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using the Servo-Hydraulic machines or Hopkinson Bar strain rate gauges. The prescribed values 

of e.g. 𝑞 = 5 and 𝐷 = 40.4𝑠−1 for mild steel or 𝑞 = 5 and 𝐷 = 300𝑠−1 for RHA steel here are most 

prevalent in the literature, although higher values of D have also been reported on various low 

carbon steel and aluminium grades to accurately capture the deformations of the 

experimental/numerical models[26], [60], [76]. Since the parameter q is quite large, even 

relatively rough estimates of strain rates would lead to reasonable predictions of the dynamic 

yield stress. Thus, the expression of equivalent strain rate may be implemented in Eqn. (3-1). To 

avoid iterations, the expression of 𝑊𝑓 in Eqn. (6-64) is replaced by its equivalent expression of 

dimensionless kinetic energy, i.e. either Eqn. (6-57) for pattern (A) or using Eqn. s’ (6-58), and 

(6-54) for pattern (B). Thus, using the estimate 𝑊𝑓/𝐻 = √(2/3)�̅� , the parameter 𝜎0  in the 

expressions of dimensionless kinetic energy may be replaced by 𝜎𝑦′, although 𝜎0 is retained in 

Eqn. (6-64) to avoid iterations. For example, for a simply supported plate, governed by roof shape 

velocity profile of pattern (A), we have 𝜀
.

𝑒𝑎 = 4𝛽𝑉1
2√(𝜌/𝜎0)/√3𝐿, thus: 

𝑊𝑓

𝐻
=

[
 
 
 
 
 

2𝜆̅

3 (1 + (
4𝛽𝑉1

2√(𝜌/3𝜎0)  
𝐷𝐿

)

1/𝑞

)
]
 
 
 
 
 
1/2

  (6-65) 

6.12 VALIDATIONS OF THE THEORETICAL MODELS 

The proposed theoretical methods were compared against the numerical and experimental 

studies using two categories. In the first category, a Finite Element model was set-up to 

investigate the assumptions of each pattern (A) scenarios (viz. membrane or combine bending 

and membrane action), while in the second category, the accuracy of each pattern of motion was 

investigated using the available experimental data. The experimental data by Jacob et al [21] on 

the effect of stand-off on blast phenomenon, as well as those of Langdon et al. [61], [133] on blast 

protection armour steel plates was used. The numerical results of Ref. [119] were also compared 

for the second approach. The difference between the experiments, despite the material type, 

geometry and load conditions presented in Table 6-1, was the method whereby the blast load was 

imparted on the panels. Jacob et al. [21] used a circular rigid-mild steel tube to provide the varying 

stand-off distance, the blast pressure was confined to a radial central portion of the target plates, 

while Langdon et al. [61] utilised polystyrene bridge arrangement to provide the stand-off. Both 

studies employed PE4 disc explosive to generate the blast wave pressure. Details of these studies 

have been discussed elsewhere [61], [133], thus, only the results of interest are presented here 

for validations.  
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6.12.1 Materials and models 

In the current theoretical models, the influence of transverse shear and rotatory inertia were 

discounted. This corresponds to a range of plate thicknesses as 𝐻/𝐿 ≤ 0.025, a range pertinent 

to most practical design applications.  

The candidate plates from the first category were 400×400mm panels of ARMOX370T, 

ARMOX440T and Mild Steel (MS4), with material properties presented in Table 3-1. The armour 

steel types exhibit high strength and hardness compared to mild steel but lower ductility, leading 

to less Specific Energy to Tensile Fracture (SETF). The candidate armour steel of [61], [119] were 

ARMOS370T, ARMOX 440T and ARMOX 500T. The panel configurations were as presented in  

Figure 6-17 draws the stress-strain curve of the armour steel specimen under uniaxial strain 

test. To account for the hardening of the materials, the mean flow stress for the analytical was 

averaged as 𝜎0 = (𝜎𝑦 + 𝜎𝑈𝑇)/2. A loading decay parameter of 𝑏 = 50𝑚−1, typical of most blast 

waves was taken for all blast scenarios studied here.  

Table 6-1- Experimental tests load configurations by [61], [119], where 𝑫𝒆 represents charge diameter 

Designation Stand off 
(mm) 

𝐃𝐞  
(mm) 

𝝎𝟎  

AR370T-AR440T 
25-50 

40-50 
0.33 

MS4 75 

MS 25-300 34 0.32 

 

 

Figure 6-17. Stress strain curve of armour steel models. 
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The experimental specimens of Jacob et al. had characteristic dimensions of 244mm ×244mm, 

yield strength of 244MPa and slenderness ratio 𝐻/𝐿 = 0.015, while the loading was confined to 

the exposed area of 106mm diameter.  

6.13 FINITE ELEMENT (FE) MODEL AND VALIDATIONS  

A full 3D Finite Element model is set up in commercial software ABAQUS® Explicit 14.4 on 

ARMOX steel and mild steel candidate materials. The blast load is axi-symmetric and the plate has 

2 axes of symmetry. This simplified the size of numerical model to only a quarter of the plate with 

associated symmetry boundary conditions as illustrated in Figure 6-18. 

The Young modulus of the steel panels was assumed 200GPa and Poisson ratio as 0.3. The 

modified Ramberg-Osgood constitutive model-with perfect plasticity- was assumed for the steel 

materials. The strain rate sensitivity was investigated for mild steel plates only. The panels were 

discretized with a mesh of four noded S4R elements (doubly curved, generic shell elements with 

finite in-plane strain formulation) having 5 Simpson points of integration through the plate 

thickness. A total of 12550 elements were used (elemental length of 4mm) to satisfy mesh 

convergence. An additional 20mm along the plate periphery was considered for the two upper 

and lower clamps. The clamps were tied to the plate by penalty contact of coefficient 0.3 and 

modelled as rigid body. This model was similar to pure Lagrangian models discussed in Section 

3.4   

The loading was implemented by a FORTRAN coded user defined subroutine VDLOAD in each 

case. To maintain low ratio of loading duration to the natural period of the plate, a rectangular 

pulse shape profile with low duration (𝜏 = 50𝜇𝑠) was assumed for the pulse shape. With respect 

to the spatial distribution of the load, the radius of the centrally blast loaded plate was calculated 

as 100mm and 50mm for AR440T and AR370T, respectively. The magnitude of the load varied in 

the range of 20-70MPa, as shown in Figure 6-19, which corresponds of a range of blast loads with 

various stand-off distances for the same charge mass. Using the procedure to determine the 

impulsive asymptote (simplified model), the results of membrane/combined bending and 

membrane cases are compared in Table 6-2.  

The mild steel panels, on the other hand, had various loading constant zone radii, while the 

magnitude of the load was adjusted to yield constant total impulse of 50N.s. Thus, using the 

expression 𝐼 = ∫ ∫ 𝑝(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑡, a crude estimate for the calculated pressure was found as 

𝑝0 = 𝐼/(𝜋𝑟𝑒
2𝜏) . Subsequently, each considered load parameter 𝜔0 = [0.25, 0.5, 0.75, 1] 

corresponds to pressure of 𝑝0 = [127, 34.8, 14.1, 7.96] 𝑀𝑃𝑎, respectively.  
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Figure 6-18. FE mesh of the quarter plate 

model  

Figure 6-19. Spatial distribution of the blast loads 

(central intersection view) 

 

It turns out that the theoretical results on armour panels agree with the numerical 

counterparts, the maximum average difference occurring at 𝑝0 = 20𝑀𝑃𝑎 as 22% and 19.5% for 

AR370T and AR440T, respectively. The membrane formulation would overpredict the results in 

the low range of magnitude of pressures. In such circumstances, the ab initio assumption is 

violated unless the bending moment contribution in energy formulation is retained in the study. 

By referring to the accuracy of the mild steel model which retained the visco-plasticity effects, 

Perrone and Bhadra’s method [171] with 𝐷 = 40.4 yields maximum of 23% larger displacement 

on 𝜔0 = 0.5 (Figure 6-20). 

 

Figure 6-20. Comparison of numerical and theoretical 

results (Eqn. (6-65)) on MS4 panels,  Numerical 

results,  theoretical results with 𝑫 = 𝟒𝟎. 𝟒𝒔−𝟏 and 𝒒 =
𝟓,  theoretical results with 𝑫 = 𝟏𝟑𝟎𝟎𝒔−𝟏 and 𝒒 = 𝟓 

 

 



148 
 

Table 6-2- The predicted normalised Mid-point deformation combined (C) and membrane only (M) of 

circumscribing yield curve for Full Eqn. (using the expression of permanent displacement field) vs. 

simplified (using impulsive asymptote) 

AR440T AR370T 

  𝑾𝒇/𝑯 (C) 𝑾𝒇/𝑯 (M)   𝑾𝒇/𝑯 (C) 𝑾𝒇/𝑯 (M)  

𝒑𝟎 𝝀 
Full 
Eqn. 

Simpl. 
Full 
Eqn. 

Simpl. ABAQUS 𝝀 
Full 
Eqn. 

Simpl. 
Full 
Eqn. 

Simpl. ABAQUS 

20 37.30 1.113 1.135 1.595 1.610 1.222 85.00 0.63 0.69 1.08 1.09 0.964 

25 58.27 1.496 1.503 1.994 2.013 1.763 132.81 0.88 0.92 1.35 1.36 1.167 

30 83.91 1.885 1.882 2.392 2.416 2.504 191.25 1.13 1.16 1.62 1.63 1.280 

50 233.09 3.459 3.439 3.987 4.026 4.396 531.25 2.18 2.17 2.69 2.72 2.585 

70 456.87 6.045 5.020 5.582 5.637 5.43 1041.25 3.24 3.23 3.77 3.80 4.176 

 

6.14 DISCUSSION OF THE RESULTS AND OF EXPERIMENTAL VALIDATIONS 

In Figure 6-21 correlates between the analytical models of pattern (A) and (B) and the results 

of Jacob et al. [21]. The radius of the blast 𝑟𝑒  is estimated as the charge radius. Under the 

circumstances where the charge radius to plate length ratio is more than a third, pattern (B) gives 

a more conservative estimate in accordance with the experimental values. Clearly, the prediction 

of the permanent displacement necessitates the accurate prediction of the load radius and 

exponent from the experimentally/numerically captured pressure time histories, or using 

empirical estimates [27]. The pressure loads of shorter stand-off result in higher values of 

permanent deformation, evidently as most of the blast is concentrated on the localised region of 

the target. Due to the proximity of the blast the ratio of 𝑟𝑒/𝐿 decreases, while the decay exponent 

increases. However, the length of the target plate is restrained to the portion to which most of the 

blast load is absorbed. This can be estimated as the exposed area of the plate.  

Upon circumstances of proximal blasts, provided the ratio of the charge diameter to the 

expensed length of the target is infinitesimal, such as those in [119] (Figure 6-22), the majority of 

the load is dissipated before reaching the target boundaries, thus, it is reasonable to consider the 

effective length of the panels in use of pattern (A). Such a model, when compared against the 

experimental data with exposed area of 300×300mm target where in the range of 
𝑟𝑒
𝐿⁄ ≪ 1 , 

would give an upper bound prediction while the results of pattern (B) are too conservative 

estimates to the prediction of the permanent deflection of the panels. This suggests that if  
𝑟𝑒
𝐿⁄ ≪

1 the incipient bending hinges remain stationary.  
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Figure 6-21. Predicted curves of the permanent deformation due to membrane effect 

(circumscribing yield criterion), compared against the experimental data by Jacob et al.  

An odd result of [21] presented in Figure 6-21 was that, while the blast load scenarios with 

increased stand-off (i.e. SOD=300mm) may be assumed as uniform, the associated predicted 

deformations deviated from the theoretical predictions available in the literature. This is because 

of ignoring the strain rate sensitivity effects, assuming the stationery bending hinge while in fact 

the plastic hinge is moving one, and the adiabatic shear deformations.  

Adiabatic shear deformations occur due to the elevated temperature induced by proximal 

blasts causing the large strain localisations [65], [66], [172]. The adiabatic heat generated due to 

the high strain rates leads to the elevated temperature in the localised region while the 

surrounding region of the plate strain hardens. In such cases the thermal softening may overcome 

the strain hardening effects. Thus, the mathematical treatment incorporating the adiabatic shear 

effects is fraught with difficulty, and to date the authors are unaware of an exact solution where 

this effect was retained in the analyses of this kind. However, the concurrence of the, herein, 

theoretical approach and the available experimental/ numerical results in the literature is 

promising.  
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Figure 6-22. Prediction of the permanent deformation, theoretical models vs. the 

experimental data of Langdon et al. [61] 

 

 

Figure 6-23. Theoretical predictions of deformation of the square plate (membrane only) with 𝜷 =
𝟏/𝟏𝟐  and 𝒃 = 𝟓𝟎𝒎−𝟏  (typical values of blast wave) compared against the experimental data by 

researchers post 1989.  

In Figure 6-23, the solution of membrane case is compared against the experiments post 

1989. The curve is casts into Non-Dimensional Impulse Parameter (NDIP) 𝜙𝑐 = √𝜆 /2  and a 

critical estimate of 𝛽 = 1/12 was considered. 

[44] 

[21] 

[135] 

[41] 
[71] 

[61] 
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II. PART II: ELASTIC RESPONSE OF SQUARE MEMBRANES SUBJECT TO LOCALISED 

BLAST LOADING  

Modern armour graded steel plates are widely used in protective systems against transient 

pulse pressure loads, such as localised blasts. The combined elastic-plastic response which 

contributes to dissipation of total impulse from such extensive loads accounts for energy stored 

elastically which limits the deformation, while the energy dissipated as plastic work (which is 

almost entirely converted to heat) limits the extent of transferref forces in the structure. Due to 

the tailored metallurgy, armour steel panels benefit from high elastic energy storage capacity 

which contributes to dissipation of total impulse from extensive blast loads within the bands of 

their elastic region. Higher elastic energy storage capability mitigates the catastrophic damage 

and the ensuing large deformations otherwise occurring in the case of the conventional graded 

metallic panels. While blast assessment of the armour plated structures is significant in design 

and application of protective systems, limited studies are available on their response to the 

localised blasts. 

The organization of part II is as outlined. Following a brief literature review of the elastic 

response of plates to blasts in Section 6.15, the associated governing equations are presented I 

Section 6.16. In Section 6.17 a localised blast elastic energy parameter is determined. the 

theoretical solutions are sought in Section 0 and validated in Section 6.19 by numerical models. 

Section 6.20 discusses the elastic-perfectly plastic response of the plate while Section 

6.21concludes the theoretical solutions of this chapter.  

6.15 BACKGROUND 

Derived based on the finite displacement theory, the Föppl Von-Kármán model is particularly 

pragmatic to capture the pronounced variation of shell transverse deformation field with its 

membranal strains using the minimal geometric nonlinearity [173]. In fact, the scientific 

literature devoted to applications of this model spans from buckling and post-buckling of plates 

in aerospace engineering [174], [175] to blast response of laminate glass [81], [176], [177], from 

instabilities of composites under thermal loads [178] to wrinkling of soft biological tissues [179]. 

Recently, in the fields of aerospace, structural ad mechanical engineering, the complex response 

of plates to blast loads of distinct types has highlighted the limitations of the classical theories 

and the need for consideration of geometric nonlinearities using the FVK method. This is 

particularly integral to determination of the response of structures whose contribution of the 

elastic energy through the plate to the total kinetic energy cannot be ignored.  
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In fact, for thestructural systems made of rate insensitive material and no hardening, the 

dynamic response is strain rate independent the constitutive equations may be treated as that of 

elastic-perfectly plastic or rigid-perfectly plastic isotropic material. It has been argued by Li and 

Meng [180] and Fallah et al [88], that when the dimensionless structural response 𝛼 = R0/𝐾𝑦𝑐  

(where R0, 𝐾, 𝑦𝑐  denote the resistance, stiffness matrix and critical deformation, respectively) is 

less than unity and the maximum pressure 𝑝0 does not exceeds the structure resistant, the rigid-

perfectly plastic simplification may not be applicable. In such circumstance, the quotient of the 

energy stored elastically in the system to the kinetic energy of the plate is noticeable [35], [98], 

[181].  

Teng et al [182] examined the transient deflection of the simply supported and clamped 

square plates under uniform blast load with exponentially decaying time function. The FVK 

expressions were reduced to Duffing equations by using the variational techniques. The authors 

employed the Poincaré-Lindstedt perturbation method to analyse the plate response. While the 

transient deformation at the first approximation was concurrent with that of numerical models, 

prediction of the response was limited to the loading phase only.  

Linz et al [176] presented an experimental and numerical study on the performance of 

laminated glass due to blast loads. The material properties (average stiffness, Poisson’s ratio and 

average areal density) of the full composite action was estimated as an average of the properties 

of each lamina (consisting of glass and Polyvinyl Butyral (PVB)). The analytical model employed 

FVK expressions to capture the PVB membrane forces and maximum deformations. The authors 

assumed a trigonometric expansion of the displacement function truncated into order of seven 

cosine terms. The assumption of using a single term for the deformation and Airy stress function 

series was found appropriate for the lower intensity blasts to characterize the pre-crack 

behaviour of the composites. However, the Digital Image Correlation of the experimental 

specimens revealed that such a deflection shape would not be suitable for more intense loading. 

The curvature field measured from DIC technique was non-uniform, being concentrated on the 

plate edges. Their analytical model, however, was incomplete, i.e. the elastic post loading 

behaviour of the plate was not investigated analytically. Clearly, the transient pulse load induced 

dynamic response is a two-step process which comprises a forced and a free vibration, the latter 

occurring after the load is complete. 

Yuan and Tan [100] examined the response of elastic-perfectly plastic beam to uniform pulse 

pressure loads by extending the minimum Δ0  technique from Symonds [148] Three distinct 

phases of motion were assumed whereby the motion was classified into phase 1- elastic vibration, 

phase 2- perfectly plastic deformation and phase 3- residual elastic vibration  at this phase. The 
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influence of membranal stretching was only retained at phase III when the motion was 

characterised by travelling plastic hinge. Thus, the elastic and plastic responses were distinctly 

separated in each phase of motion while the influence of membrane forces in the elastic regime 

was ignored. 

Thus, the objective of this work is to derive the theoretical equations for the non-linear elastic 

response of the square plates subjected to the localised blasts. The plates examined here are 

assumed simply supported, wholly elastic, encountering large deformations, the influence of 

geometry changes due to membrane forces has been retained in the analyses conducted. This is 

achieved by implementing the well-known Föppl-Von Karman (FVK) nonlinear theory. The 

combined effects of elastic-perfectly plastic plates is discussed further in the context of the 

problem.   

6.16 GOVERNING EQUATIONS 

The plated structure studied in this part comprises an initially flat, monolithic, ductile metallic 

square membrane with side length of 2𝐿, thickness of 𝐻 and areal density of 𝜇 = 𝜌𝐻. The Young 

modulus is 𝐸, and 𝜌 represents the density of the material of the plate. The plate is secured along 

its periphery with simply supported boundary conditions.  

The general expression of the strain tensor with respect to the displacement field 𝑢 is given 

as: 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑘,𝑖𝑢𝑘,𝑗) (6-66) 

where the subscript comma denotes the differentiation with respect to the vector, i.e. 𝑢𝑖,𝑗 =

𝑑𝑢𝑖/𝑑𝑎𝑗. The reference space general coordinates 𝒞(𝑖, 𝑗, 𝑘) may be replaced by their Cartesian 

counterparts 𝒞(𝑥, 𝑦, 𝑧) for convenience. Thus, given the Cartesian coordinates (𝑥, 𝑦) on 𝒞 centred 

in its centroid, and the characteristic in plane displacement 𝑣 = (𝑣𝑥 , 𝑣𝑦) , 𝑤 being the transverse 

displacements, the strain tensor components and those of the curvature tensor using the 

reciprocity conditions (𝑎𝑖𝑗 = 𝑎𝑗𝑖) in a 2-dimensional state of stress are simplified to:  

𝜀𝑥 =
𝜕𝑣𝑥
𝜕𝑥

+
1

2
( 
𝜕𝑤

𝜕𝑥
)
2

,       𝜀𝑦 =
𝜕𝑣𝑦

𝜕𝑦
+
1

2
( 
𝜕𝑤

𝜕𝑦
)
2

, 

(6-67a-c) 

𝛾𝑥𝑦 =
𝜕𝑣𝑥
𝜕𝑦

+
𝜕𝑣𝑦

𝜕𝑥
+
𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑥
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𝜅𝑥 = −
𝜕2𝑤

𝜕𝑥2
,     𝜅𝑦 = −

𝜕2𝑤

𝜕𝑦2
,       𝜅𝑥𝑦 = −

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (6-68) 

The second term of the Eqns. (6-67a-c) represent the membranal strains whose associated 

deformation gradients are the sole contributors to the nonlinearity. The compatibility condition 

of the strains is given by 

𝜕2𝜀𝑥
𝜕𝑦2

+
𝜕2𝜀𝑦

𝜕𝑥2
−
𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
= 𝜅𝑥𝑦

2 − 𝜅𝑥𝜅𝑦 = −det 𝑘 (6-69) 

∇ × 𝑘 = 0 
(6-70) 

Eq. (6-69) represents the Gaussian invariant curvature κ̅ (Gauss Theorema Eregium). The 

Föppl-Von Kármán Equations read: 

𝐷𝑟∇
4𝑤(𝑥, 𝑦, 𝑡) − 𝐻ℒ(𝑤,Φ) = 𝑝(𝑥, 𝑦, 𝑡) (6-71) 

∇4Φ(𝑥, 𝑦, 𝑡) = −
𝐸

2
ℒ(𝑤,𝑤) ⟺ −E(κx𝜅𝑦 − 𝜅𝑥𝑦

2 ) (6-72) 

Eq. (6-72) is a compatibility equation, where 𝜙(𝑥, 𝑦, 𝑡) represents the Airy stress function, 

𝐷𝑟 =
𝐸𝐻3

12(1−𝜈𝑒
2)

 is the flexural rigidity of the plate, ∇4 is the biharmonic operator, (also referred to 

as the square of the Laplacian operator). Thus, the Gaussian curvature is quadratic with respect 

to the transverse displacement field. The function ℒ(𝑤,Φ) in (6-71) is the differential operator 

represents 

ℒ(𝑤,Φ) =
𝜕2𝑤

𝜕𝑥2
𝜕2Φ

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑦2
𝜕2Φ

𝜕𝑥2
− 2

𝜕2𝑤

𝜕𝑦𝜕𝑥

𝜕2Φ

𝜕𝑥𝜕𝑦
 (6-73) 

Eq. (6-72) is a compatibility equation as discussed earlier, as ℒ(𝑤,w)can also be recovered 

by replacing Φ with 𝑤 in (6-73). Eqns.’ (6-71)- (6-73) are coupled, highly nonlinear, fourth order 

Partial Differential Equations (P.D.E) which represent the geometric nonlinearities of an elastic 

system induced by in-plane displacements and membranal forces. Indeed, even for simple 

engineering problems, the exact solution of von Karman Equations is extremely notorious. 

Minimization of the FVK energy functionals calls for numerical Finite Element techniques, 

boundary elements or variational methods. An iterative technique, combined with Galerkin’s-Ritz 

method is sought hereunder to simplify the inherently cumbersome calculations.  
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The Galerkin-Ritz method was employed here as an efficient variational strategy to 

dynamically update the dependence of the membranal stresses on the transverse displacement 

field (Eqn. (6-74a)). The technique to minimize the total elastic energy can be sketched as. 

𝐹𝑉𝐾1:∫∫ {𝐷𝑟∇
4 𝑤𝑖+1

(𝐴)

 − 𝐻ℒ(wi, Φi+1) + 𝜇𝑤
.. i+1 }𝛿𝑤𝑑𝐴 = ∫∫ 𝑝(𝑥, 𝑦, 𝑡)𝛿𝑤𝑑𝐴

(𝐴)

 (6-74a) 

𝐹𝑉𝐾2 : ∫∫ {∇4Φi+1 +
𝐸

2
ℒ(wi, wi)} 𝛿Φ

(𝐴)

𝑑𝐴 = 0 (6-74b) 

In Eqns. (6-74a)- 𝛿𝑤  and 𝛿Φ  represent a virtual weight function attributed to the 

displacement and Airy stress function, respectively. 

The mathematical procedure to solve the FVK expressions is as follows: 

i. Assume an ansatz for the displacement field components and the associated stress 

tensors. 

ii. Determine the membrane stress from the compatibility relation (6-74b).  

iii. The final form of transverse displacement and velocity fields will be nonlinear, but in 

the reduced closed form in an elliptic manifold.  

As the initial informed guess (ansatz) for the displacement and Airy stress functions it is 

assumed they take a form expandable as infinite trigonometric series as: 

𝑤(𝑥, 𝑦, 𝑡) =∑ ∑ Wmn(𝑡) cos
𝑚𝜋𝑥

2𝐿
cos

𝑛𝜋𝑦

2𝐿𝑛𝑚
  (6-75) 

Φ(𝑥, 𝑦, 𝑡) =∑ ∑ 𝐹𝑚𝑛(𝑡) cos
𝑚𝜋𝑥

2𝐿𝑛𝑚
cos

𝑛𝜋𝑦

2𝐿
  

(𝑚 = 1,3,5,…  𝑎𝑛𝑑 𝑛 = 1,3,5,… ) 

(6-76) 

The characteristic displacements fields and the associated stress tensors in (6-75)-(6-76) are 

each expressed multiplicative of the relevant temporal and spatial distributions. Clearly, these 

expressions satisfy the displacement boundary conditions at the plate periphery as well as at its 

centre. The bending and membrane strain energy contributors would become: 

 ℒ(𝑤, 𝜙) =
1

32

𝜋4

𝐿4
𝑚2𝑛2∑ ∑ 𝑊𝑚𝑛𝐹𝑚𝑛  (cos

𝑚𝜋𝑥

𝐿
+ cos

𝑛𝜋𝑦

𝐿
)

𝑛𝑚
 (6-77) 

∇4𝑤 =
1

16

𝜋4

𝐿4
(𝑚2 + 𝑛2)2∑ ∑ 𝑊𝑚𝑛 cos

𝑚𝜋𝑥

2𝐿𝑛
cos

𝑛𝜋𝑦

2𝐿𝑚
 (6-78) 
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6.17 LOCALISED BLAST  

The temporal and spatial part of the localised blast load have been defined by Eqns. (5-1)-

(5-2). The virtual work of the load (per unit displacement) is expressed in the right-hand side of 

Galerkin’s expression (6-74a). The load is rotationally symmetric and thus independent of the 

polar angle 𝜃. Thus, while the integral may be evaluated in two circumstances, i.e. (i) considering 

a circular plate of radius 𝑅 = 𝐿 and (ii) with the radius being 𝑅 = √2𝐿. In fact, the difference of 

the evaluated integrals between the two cases is infinitesimal and may be ignored. By 

implementing the transformation of coordinates, such a functional may be simplified in terms of 

a single parameter 𝛼1 to express the load distribution over the central zone as well as its decay 

type given as: 

∫∫ 𝑝0 cos (
𝜋𝑥

2𝐿
) cos (

𝜋𝑦

2𝐿
)𝑑𝑥𝑑𝑦

𝐴

+∫∫ 𝑝0𝑎𝑒
−𝑏𝑟 cos (

𝜋𝑥

2𝐿
) cos (

𝜋𝑦

2𝐿
)𝑑𝑥𝑑𝑦

𝐴

 

= ∫ ∫ 𝑝0 cos (
𝜋𝑥

2𝐿
) cos (

𝜋𝑦

2𝐿
) 𝑟𝑑𝑟𝑑𝜃

𝑟𝑒

0

𝜋
2

0

+∫ ∫ 𝑝0𝑒
−(𝑏𝑟−𝑏𝑟𝑒) cos (

𝜋𝑥

2𝐿
) cos (

𝜋𝑦

2𝐿
) 𝑟𝑑𝑟𝑑𝜃

𝐿

𝑟𝑒

𝜋
2

0

=
𝜋𝑝0
2
{∫ 𝑟cos2 (

𝜋𝑟√2

4𝐿
)𝑑𝑟

𝑟𝑒

0

+∫ 𝑟 cos2 (
𝜋𝑟√2

4𝐿
)𝑒−(𝑏𝑟−𝑏𝑟𝑒)𝑑𝑟

𝐿

𝑟𝑒

}

= 𝛼𝑒𝑝0𝐿
2 

(6-79) 

In matrix form, the elastic external load parameter, 𝛼𝑒 may be furnished as the product of 

matrix α𝑖𝑗 and 𝒇𝑗𝑘: 

αe =
1

𝐿2𝑏2(2𝐿2𝑏2 + 𝜋2)2
[ α0 + 𝑡𝑟(α𝑖𝑗 . 𝒇𝑗𝑘𝛿

′
𝑖𝑘)]      (6-80) 

Where 𝛿𝑖𝑘
′  represents the Kronecker delta, the components of  α𝑖𝑗 and 𝒇𝑗𝑘 are defined in (A. 

1)-(A. 7) and (A. 8), respectively. It can be seen from Figure 6-24 that the various parameters of 

𝛼1  converge to a unique value pertinent to the case of uniformly distributed load as 𝑟𝑒 → 𝐿 

independent of the decay type. 
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Figure 6-24. Influence of the load parameters on the value of 𝜶𝟏  

An elastic moment per unit length is defined for convenience as  

𝑀𝑒𝑙 = 𝛼𝑒𝑝0𝐿
2 (6-81) 

In the sequel that follows, the mathematical treatment is carried out in two stages of motion, 

the first being characterised by the forced vibration due to the pressure pulse load, which 

transitions into a free vibration instantaneously after the load is complete at 𝑡 = 𝜏.  

6.18 DYNAMIC RESPONSE  

6.18.1 First Phase of Motion  

For the brevity in the mathematical analysis, only the first term of the truncated series (𝑚 =

𝑛 = 1) was considered. Thus, the first iteration is expressed as: 

w(1)(𝑥, 𝑦, 𝑡) = W(1)(𝑡) cos
𝜋𝑥

2𝐿
cos

𝜋𝑦

2𝐿
 (6-82) 

Φ(1)(𝑥, 𝑦, 𝑡) = 𝐹(1)(𝑡) cos
𝜋𝑥

2𝐿
cos

𝜋𝑦

2𝐿
 (6-83) 

𝛼𝑒𝐿
2 
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Figure 6-25. Gaussian curvature field Figure 6-26. Mises stress field 

 

The compatibility Eq. (6-74b) yields: 

 𝐹(𝑖+1) = −
4𝐸

3𝜋2
{𝑊(𝑖)}

2
 (6-84) 

By substituting Eqn.s’ (6-84), (6-77)-(6-78) in (6-74a) and performing the calculations, the  

form of FVK is reduced to an O.D.E in terms of the transverse displacement field 𝑊(𝑖). Defining 

the dimensionless parameters �̅� = 𝑊/𝐻 , 𝜖 =
8𝐻2

9𝐿2
 as the small perturbation parameter, the 

infinite dimensional variational problem (Eq. (6-74a)) boils down to a sequence of finite O.D.E’s 

as 

𝒟𝛿:  𝜔e
2�̅�(𝑖+1) + �̅�

..
(i+1) +

E

ρL2
ϵ(�̅�(𝑖))

3
=
𝛼𝑒𝑝0𝐿

2

𝐴1𝐻
 (6-85) 

where the parameter 𝐴1 =
1

4
𝜇𝐿2 , while 𝜔𝑒  represents the pulse frequency given in Eqn. 

(6-87a). Eqn. (6-85) is a inhomogeneous form of Duffing equation, which, in crude terms, 

represents the motion of a nonlinear spring. [183]. Using the separation of variables, the integral 

of Eqn. (6-85) represents the kinetic energy of the system (�̅�
.
2 + �̅�2 +

E

2ρL2
ϵ�̅�4 = ℎ +

2𝛼𝑒𝑝0𝐿
2

𝐴1
 -

where ℎ is the integration constant) in the elliptic manifold as ϵ is positive. Figure 6-27 sketches 

the kinetic energy where its abscissa is the transverse displacement field.  

The first iteration of the displacement field is achieved by linearization of this O.D.E, i.e. 

eliminating the Airy stress function by F1 = 0. The general solution satisfying the initial boundary 

problems �̅�(0) = �̅�
.
(0) = 0 is expressed as 
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�̅�1
(1)
= 𝐶0(1 − cos(𝜔𝑒𝑡))  (6-86) 

 

 
Figure 6-27. Manifold of the displacement function 𝑭(𝒘) = 𝟏/𝟐�̅�𝟐 + 𝟏/𝟒𝝐𝑬�̅�𝟒  and kinetic energy of 

the system per unit mass. 

where  

𝜔𝑒 =
1

2
√
𝐷𝑟
 𝜇

𝜋2

𝐿2
 (6-87a) 

𝐶0 =
16𝑀𝑒𝑙𝐿

2

𝜋4𝐷𝑟𝐻
 (87b) 

From Eqn. (6-86) the second iteration for the Airy Stress function at the plate centre is 

attained. Sequentially, the O.D.E Eqn. (6-85) is re-evaluated and solved to determine, 

unequivocally by imposing the initial boundary conditions, the transverse displacement as 

�̅�1
(2)  =

Γ sin2 (
1
2𝜔𝑒𝑡)

8𝐴1𝜔e
2 (

16𝛼𝑒𝑝0
Γ

 − 15 + 5 sin2 (
1

2
𝜔e𝑡) + 2 sin

4 (
1

2
𝜔e𝑡))

+
15Γ𝑡𝑠𝑖𝑛(𝜔e𝑡)

32𝐴1𝜔𝑒
 

(6-88) 

where Γ =
8

9
𝐸
𝐻3

𝐿2
𝐶0
3 . The procedure may be continued to evaluate the expression 

displacement field in the third iteration, written in matrix form as: 

𝑊1
(3) =  𝑡𝑟(𝓐𝑖𝑗𝑩𝑗𝑘𝛿

′
𝑖𝑘) + 𝑡𝑟(𝑻𝑖𝑗𝓖𝒋𝑘𝛿𝑖𝑘

′ ) (6-89) 
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where 𝛿𝑖𝑘
′  is the Kronecker delta, 𝑩𝒋𝒌 and 𝑻𝒊𝒋 are the matrices of trigonometric components 

given in Eqn.s’ (6-90)-(6-91), respectively, 𝑑𝑒 = 6.77 ×
107𝐻𝜋2

6𝐿2
𝐸Γ and 𝓐𝑖𝑗 and 𝓖𝑗𝑘 represent the 

polynomial matrices of displacement field, given in (A. 9)-(A. 17) and (A. 18)-(A. 22), respectively. 

In the case of impulsive loading where 𝜏 → 0, convergence of the displacement field is satisfied 

after 2 iterations, as a difference of less than 3% was observed between consecutive high order 

iterations Thus, for brevity in the analysis the mathematical procedure may be carried out with 

two iterations for the next phase of motion.  

𝑩𝑗𝑘 =

[
 
 
 
 
𝑠𝑖𝑛(ωe𝑡)

2 𝑑𝑒𝑠𝑖𝑛(3ωe𝑡)
2 𝑑𝑒𝑠𝑖𝑛(2.5ωe𝑡)

2

𝑠𝑖𝑛(ωe𝑡) 𝑑𝑒𝑠𝑖𝑛(3ωe𝑡) 𝑑𝑒𝑠𝑖𝑛(5ωe𝑡)

𝑠𝑖𝑛 (
1

2
ωe𝑡)

2

𝑑𝑒𝑠𝑖𝑛(1.5ωe𝑡)
2 𝑑𝑒𝑠𝑖𝑛(3.5ωe𝑡)

2
]
 
 
 
 

 (6-90) 

𝑻𝑗𝑘 = 𝑑𝑒 [

𝑠𝑖𝑛(7ωe𝑡) sin(4.5ωe𝑡)
2 sin(4ωe𝑡)

2

𝑠𝑖𝑛(4ωe𝑡) sin(6ωe𝑡) 𝑡 𝑠𝑖𝑛(2ωe𝑡)
2

𝑠𝑖𝑛(2ωe𝑡) 1 1

] (6-91) 

 

6.18.2 Second phase of motion 

The loading is complete at time 𝑡 = 𝜏, however, the motion continues due to the initial inertia. 

Thus, the actual transient dynamic of the system comprises of the forced vibration part 

contingent upon the load duration [184], ensued by free vibration beyond 𝑡 = 𝜏.  

The analysis in this phase may commence by enforcing the same procedure as the previous 

phase of motion- i.e. linearisation of the FVK functional in the iterative technique. However, it 

turns out the maximum amplitude of the transverse displacement grows unboundedly, after a 

each cyclic response, due to the presence of a mixed mode secular term, which grows 

unboundedly, rather than reflecting the periodic motion within the bounds of the phase plane 

[183]. The unbounded growth of the displacement in the phase plane is represented in Figure 

6-28. As observed, the presence of secular term would have negligible effect at the first phase of 

motion, provided the loading phase has been curtailed to a short period (i.e. 𝜏~30𝜇. 𝑠). We may 

adjust/scale the amplitude of the oscillations to eliminate the secular term by exercising two 

methods hereunder. Remark that the expressions of the normalised frequency and transverse 

displacement in the case of forced vibrations, using the second method are expressed in (A. 23)-

(A. 26) 
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(a) (b) 

Figure 6-28. Unbounded growth of displacement and its gradients with 10KPa load and 𝒓𝒆 = 𝟐𝟓𝒎𝒎 at 

(a) first phase of motion (Eq. (6-88) , (b) second phase of motion with 𝒕𝒅 = 𝟑𝟎𝝁𝒔 represented by 

Eqns.(A. 26)-(A. 27)  

Linearization of the highly nonlinear FVK would otherwise not be concurrent with the 

periodic response that is predicted of the physics of the problem. Thus, in the first method the 

nonlinear term is maintained by increasing the incipient increment of stresses. The increase of 

stresses aims to normalize the oscillation amplitudes. To this end, an ansatz of the stress is 

assumed whereby the displacement field is achieved sequentially. The Airy stress function at time 

𝑡 = 𝜏 was heuristically presumed as F2
(1)
= 𝐹1

(2)(𝜏), which furnishes the Eqn. (6-85) as 

(𝜔e
2 −

2𝜋2

3𝜌𝐿4
𝐹2
(1)
) �̅�2

(1)
+ �̅�

..

2

(1)
= 0 (6-92) 

 

Eq. (6-92) has a solution of the form: 

�̅�2
(1)
= C0{C11 sin(ω3t) +  C12 cos(ω3t)} (6-93) 

𝜔3 = √𝜔𝑒
2 + 4𝜖

𝐸𝐶0
2

𝜌𝐿2
𝑠𝑖𝑛 (

1

2
𝜔𝑒𝜏)

4

 (6-94) 

 

where the constants 𝐶11, 𝐶12are defined in (A. 28)-(A. 29), while the oscillation frequency has 

been raised to reduce the amplitudes. Further iterations of the temporal part of Airy stress 

function are possible, the first of which is evaluated, in Eqn. (6-95), by either using Eqn. (6-93) in 

(6-84) or incorporating (6-93) back into the Eqn. (6-74b):  
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𝐹2
(2) = −

4𝐸

3𝜋2
C0
2{C11 sin(ω3t) + C12 cos(ω3t)}

2 
(6-95) 

Accordingly, Eqn. (6-95) is substituted in Eqn. (6-85) (with 𝑝0 = 0) to evaluate the second 

iteration of the displacement field as 

�̅�2
(2) = C13sin(ωet) + C14cos(ωet)

−
Γ

4A1𝐶5
{(ωe

2 − ω3
2)C12(3C11

2 − C12
3 )cos(ωet)

3

+ C11(C11
2 − 3C12

2 )(ωe
2 − ω3

2)sin(ω3t)

− 3((ωe
2 − 3ω3

2)C11
2 − 2C12

2 ω3
2)C12cos(ω3t)

− C11((ωe
2 − 7ω3

2)C11
2 − 6C12

2 ω3
2)sin(ω3t)} 

(6-96) 

where the kinematic constants,𝐶5, C13, C14 and 𝐶5, are expressed in Eqns.(A. 30), (A. 31)-(A. 

32) and (A. 33), respectively.  

The second method entails the Poincaré-Lindstedt perturbation method. To this end, the 

frequency response is adjusted as �̅� = �̅�𝑡 , where �̅� = 𝜔𝑒 + 𝜖�̅�𝑒  and 𝜖  is a small number. The 

displacement field is assumed to be a truncation of iterative terms as  

𝑊(𝜏̅) = 𝑊(1)(𝜏̅) + 𝜖𝑊(2)(𝜏̅) + 𝑂(𝜖2) (6-97) 

 𝜔e
2(𝑊(𝑡)  +𝑊

..

(𝑡)) +
𝐸

𝜇𝐻𝐿2
ϵ𝑊3(𝑡) = 0 

(6-98) 

where the higher order terms may be ignored for simplicity as 𝜖 is small. The first iteration of 

the truncated series is obtained when 𝜖 = 0, i.e. by disregarding the nonlinear term of the Eqn. 

(6-85) and satisfying the kinematic continuity conditions at 𝑡 = 𝜏 as: 
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𝑊1/𝐻 = 𝐶0(𝑐𝑜𝑠(𝜔𝑒(𝑡 − 𝜏)) − 𝑐𝑜𝑠(𝜔𝑒𝑡)) (6-99) 

Substituting (6-99) and in Eqns. (6-97) and (6-98) and ignoring the higher order terms gives 

 
𝑊2

𝐻
= 𝐶15𝑐𝑜𝑠(𝜏̅) + 𝐶16𝑠𝑖𝑛(𝜏̅)

+  
𝐸𝐶0

3

32𝐿2𝜌𝜔𝑒
2
{−3𝑐𝑜𝑠(3𝜏̅ − 2𝜔𝑒𝜏) + 3𝑐𝑜𝑠(3𝜏̅ − 𝜔𝑒𝜏) +  𝑐𝑜𝑠(3𝜏̅ − 3𝜔𝑒𝜏)

+ 6𝑐𝑜𝑠(𝜏̅ − 2𝜔𝑒𝜏) − 6𝑐𝑜𝑠(𝜏̅ + 𝜔𝑒𝜏) − 𝑐𝑜𝑠(3𝜏̅)}

+  
𝐶0𝜔𝑒̅̅̅̅

2𝐿2𝜌𝜔𝑒
( 𝑐𝑜𝑠(𝜏̅ − 𝜔𝑒𝜏) − 𝑐𝑜𝑠(𝜏̅))

+
2

3
𝐶0𝜔𝑒𝑡(𝑠𝑖𝑛(𝜔𝑒(𝑡 − 𝜏) − 𝑠𝑖𝑛(𝜔𝑒𝑡)) (

2

3
𝜔𝑒̅̅̅̅ 𝜔𝑒𝐿

2𝜌 + 𝐶0
2𝐸𝑐𝑜𝑠(𝜔𝑒𝜏) − 𝐸𝐶0

2)  

(6-100) 

With 𝐶15, 𝐶16 expressed in (A. 34)-(A. 35). The value of 𝜔e̅̅̅̅  can be unequivocally determined to 

eliminate the secular term appearing in Eqn. (6-100), whereby the response can be made 

periodic: 

𝜔𝑒̅̅̅̅ =
3

2

𝐸𝐶0
2

𝜔𝑒𝐿
2𝜌
(1 − 𝑐𝑜𝑠(𝜔𝑒𝜏)) (6-101) 

and the corresponding Airy stress functions is obtained by using Eqn. (6-84).  

 

(a) (b) 

Figure 6-29. Influence of the load duration and central blast zone radius on the normalised amplitude 

of oscillation on Increase stress method (a) and Poincaré-Lindstedt method (b) , with H=2,8,20 and 

40mm and 200mm plate half length. 
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(a) (b) 

Figure 6-30- Profile of curvature distribution at the plate centre due to variation of slenderness ratio, (a) 

Gaussian curvature, (b) curvature in x direction, 𝒓𝒆 = 𝟎. 𝟐𝟓𝑳. 

Figure 6-29 shows the dependence of the frequency in each approach on the load parameters. 

In the case of heavy plate limit (H/L>0.1) the oscillation frequency 𝜔3  is not affected by the 

loading conditions since 𝜔𝑒  in Eqn. (6-94) is large. Where the quotient of the frequencies 

(𝜔3/𝜔𝑒 ) approaches unity corresponds to the circumstances of impulsive localised loads due to 

proximal charges, i.e. 𝜏 → 0 and 𝑟𝑒/𝐿 ≪ 1. The central blast load radius effect is less significant on 

Poincaré Lindstedt virtual frequency. An increase in either oscillation frequencies 𝜔𝑒  or 

𝜔3 clearly decreases the oscillation peaks of deformation.  

The variations of curvature with plate thickness is illustrated in Figure 6-30 and a contour 

plot of stress and equivalent strain distribution are presented in Figure 6-31-Figure 6-32. The 

equivalent Mises stains is given in (6-102), while the components of strains are derived by 

substitution of Eqn. (6-96) or (6-100) in Eqn.s’ (6-67a-c). In a similar spirit, the components of 

the stress tensor may be derived from the Airy Stress function, as 𝜎11 =
𝜕2Φ

𝜕𝑦2⁄  , 𝜎22 =

𝜕2Φ
𝜕𝑥2
⁄  and 𝜎12 = −

𝜕2Φ
𝜕𝑥𝜕𝑦⁄ .  

𝜺𝒆𝒒 =
1

3
√6ε11

2 + 6ε22
2 + 3ε12

2  (6-102) 
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Figure 6-31. Variation of Mises stresses over time throughout the plate. 

 

 

Figure 6-32- Contour plot of evolution of equivalent Mises strains over time throughout the plate. 
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6.19 NUMERICAL VALIDATIONS AND DISCUSSIONS 

In this section, the analytical solutions are validated with the numerical models devised in 

Finite Element commercial software ABAQUS®14.4 Explicit. A full 3D quadrangular plate of 

4.6mm thickness was set up with total geometric exposed area of 400 × 400mm . The material 

and geometric properties were those of AR440T, given in Table 3-1. The plate was fixed along its 

periphery with simply supported boundary conditions. The axisymmetric properties of the load 

reduce the numerical studies to consider only a quarter of the plate, while the influence of finite 

deflections (geometry changes) was retained in the numerical model.  

The models were discretized with a mesh of four noded S4R isoperimetric shell elements with 

identical mesh discretization as those examined in Figure 6-18 and in Section 6.13. Two blast load 

scenarios of 40MPa and 200MPa magnitude but with same pulse duration of 30𝜇𝑠 were assumed. 

The central uniform blast zone radius was assumed 25mm and 50mm for each case.  

The transient deformation of the panels was captured and compared in each blast scenario in 

Figure 6-33-Figure 6-35. The comparison of the transient deformation from the analytical model 

with the numerical model serves two purposes, viz. (i) to ensure the accuracy of the harmonic 

vibration’s displacement field at every instant of time, and (ii) to estimate the components of 

stress tensor in the state of general principle stresses and the associated membrane forces. The 

latter are so derived to predict the yield point of the plate beyond which the trajectory of the force 

displacement curve follows straight line (i.e. that of the rigid-perfeclty plastic plate).  The increase 

of peaks in Figure 6-34 may be associated with the presence of the secular term (𝑡𝑠𝑖𝑛𝑡) from first 

phase of motion which becomes significant when the central blast load radius and impulse 

increase. Both methods provide concurrent estimate for the transient deformations with the 

numerical models, however, the P.L method shows more accuracy when higher order terms are 

involved.  
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Figure 6-33. 𝒑𝟎 = 𝟒𝟎𝑴𝑷𝒂, 𝒓𝒆 = 𝟐𝟓𝒎𝒎, 𝒃 = 𝟓𝟎, First iteration,   

second iteration,  FE model,  P.L method (second iteration),  P.L 

method (truncated series) 

 

 

 

Figure 6-34. 𝒑𝟎 = 𝟒𝟎𝑴𝑷𝒂 , 𝒓𝒆 = 𝟓𝟎𝒎𝒎 , 𝒃 = 𝟓𝟎 , First iteration,   

second iteration,  FE model,  P.L method (truncated series) 
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Figure 6-35. Transient deformation of AR440T with 200MPa load and 𝒓𝒆 =
𝟐𝟓𝒎𝒎 from P.L method. 

 

6.20 ELASTIC-PLASTIC RESPONSE OF THE PLATES 

As discussed earlier, the actual response of the structure may be simplified into a three stage 

of elastic-plastic response: the first stage may be presumed to wholly elastic, which is terminated 

when the yield criterion is invoked, followed by a rigid, perfectly plastic stage. Finally, the motion 

is concluded with a residual elastic vibration, corresponding to a ‘latent’ elastic strain energy of 

the rigid-plastic stage [148].  

According to Symonds [148], the three stage analysis may be idealised, preferably, into a 

primarily dominating rigid-plastic form solution with infinite elastic stiffness, together with the 

‘latent’ elastic deformations by permitting the flexural rigidity to revert to its actual value from 

infinity. The actual deformations would be summation of the rigid-plastic part as well as the 

elastic deformations.  

The foregoing analysis assumed the material performance is either wholly elastic or wholly 

plastic. Indeed, the material points through plate section strain plastically when the trajectory of 

the stress state reaches the yield curve of the associated constitutive yield criterion. Since large 

nonlinear deformations are of concern, it may be presumed that the bending strain energy is 

insignificant to the membrane strain energy. To determine the elastic-plastic deformations, it is 

assumed that the response is predominantly governed by the membrane forces.  

In the 3D state, the principle stresses are the roots of the Eqn. (6-103).  
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𝝈𝟑 − 𝑰𝟏𝝈
𝟐 + 𝑰𝟐𝝈 − 𝑰𝟑 = 𝟎 (6-103) 

where  

𝑰𝟏 = 𝜎𝑖𝑖 (6-104) 

𝑰𝟐 =∑
𝐢𝐢
= |
σ11 σ12 
σ12 σ22 

| + |
σ22 σ23 
σ23 σ33 

| + |
σ11 σ13 
σ13 σ33 

| 
(6-105) 

𝑰𝟑 = |

σ11 σ12 σ13

… σ22 σ23

… … σ33

| 

(6-106) 

In (6-104) the Einstein’s summation convention holds. The principle stresses reduce to Eqn. 

(6-107) in 2-Dimensional state: 

𝝈𝒌 =
𝜎11 + 𝜎22

2
± √(

𝜎11 − 𝜎22
2

)
2

+ 𝜎12
2  (6-107) 

With 𝑘 = 1,2 giving the maximum and minima of the principle stresses, respectively. Eqn. 

(6-107) may be substituted in Eqn. (6-108) to determine the membrane forces as presented in 

(6-108)-(6-109). 

𝑁 = ∫𝜎𝑘𝑑𝑍 (6-108) 

𝑁 = −
𝜋2𝐹𝑐(𝑡)𝐻𝑐𝑜𝑠 (

𝜋(𝑥 + 𝑦)
2𝐿

)

4𝐿2
 (6-109) 

which states a quadratic relationship of the transverse displacement field with the 

membranal forces, which attains a peak at each peak of displacement field. When 𝑁 = 𝑁0  the 

plate yields. Yielding occurs almost instantaneously before the plate reaches its first peak. The 

normalised membrane force displacement of armour steel and mild steel are plotted in Figure 

6-36-Figure 6-38 in various case of loading scenarios. The path of deformation, having reached 

the critical point of yielding, follows the straight line governed by Rigid-perfectly plastic theory.  
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Figure 6-36- Force vs normalised mid-point displacement plot of steel 

plates, with 𝒑𝟎 = 𝟐𝟓𝟎𝑴𝑷𝒂, 𝒓𝒆 = 𝟓𝟎𝒎𝒎 

 

 

�̅� 

Figure 6-37 Force vs normalised mid-point displacement of the panels 

subject to localised blast load with parameters 𝒑𝟎 = 𝟔𝟎𝟎𝑴𝑷𝒂, 𝝉 =
𝟐𝟎𝝁𝒔 and 𝒓𝒆/𝑳 = 𝟎. 𝟑𝟑 and 𝒃 = 𝟓𝟎𝒎−𝟏 
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Figure 6-38 Force vs normalised mid-point displacement of the 

panels subject to load parameters 𝒑𝟎 = 𝟐𝟎𝑴𝑷𝒂, 𝝉 = 𝟎. 𝟏𝒎𝒔 and 

𝒓𝒆/𝑳 = 𝟎. 𝟑𝟑, 𝒃 = 𝟓𝟎𝒎−𝟏 

 

6.21 CONCLUDING REMARKS 

This chapter extended the classical theory of the plate, discussed in chapter 5, to a rigorous 

analysis on the localised blast response of plates using (nonlinear) large deformation theories in 

two parts. The scope of part one encompassed the nonlinear dynamic performance of thin, strain 

rate insensitive, rigid-perfectly plastic square plates of various boundary conditions. In part two, 

a nonlinear elastic solution was sought using the Galerkin’s variational technique combined with 

perturbation techniques. In both parts spatial distribution of the localised blast load was 

represented by a piecewise continuous function  

Each of the blast parameters of the spatial distribution have been found as bijective functions 

of the stand-off distance and the explosive mass [22], [27]. The loading type is, therefore, 

universal which enables the theoretical solution capable of modelling close-in to uniform blast 

load responses. 

The pulse shape effects have not been studied here. This is because the method of eliminating 

the pulse shape proposed by Youngdahl has well been examined in the literature [75], [91], [114], 

[152], [157]. The difference between the rectangular and linear pulse shape for circular plate was 

found 5% [169]. Thus, the permanent transverse deflection may be furnished using the impulsive 

simplification for the assumed rectangular pulse, irrespective of the pulse shape. For blast of high 

magnitude and low pulse duration, the transverse deformation was reduced into an expression 
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of dimensionless initial kinetic energy and found to be consistent with the available experimental 

results in the literature.  

The plates were assumed as ‘thin’ membranes, indicating the influence of transverse shear 

and rotatory inertia (corresponding to the Mindlin-Reissner plate theory) could be disregarded. 

With large deflection theory in mind, the influence of the geometry changes, or finite 

displacements were retained in the analyses. This reflects on the roof shaped deformation profile 

having stationery or travelling plastic hinges, which latter results yield more conservative 

estimates than the former.  

A final remark seems in order. While the results are most suitable for rate insensitive 

materials, such as high strain ARMOX steel [185], the results prove to be conservative when 

implemented on the materials which exhibit visco-plasticity (strain rate sensitivity) effects. 

However, using the modal method proposed by researchers [105], Perrone and Bhadra’s 

approximation and Cowper-Symonds equation, the commentary on the response of rate sensitive 

materials has been discussed in the context of the problem. The current results in each case may 

further be analysed to retain the visco-plasticity phenomenon using Cowper-Symonds, or 

Johnson-Cook [128], constitutive models. 
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7 CHAPTER 7 

Thick Plates: Effect of Transverse Shear 

7.1 BACKGROUND 

In most cases, the idealisation of the plated elements as thin plates or membranes with rigid-

perfectly plastic material suffice for treatment of these elements with large inelastic deformation 

due to the proximal blast loads with reasonable estimation. The theoretical treatment of the thin 

plates utilises the Kirchhoff Love theory with/without the influence of finite displacements. There 

are, however, cases where the influence of the transverse shear effects cannot be ignored. These 

cases consist of sufficiently thick plate where the Mindlin-Reisner theory of plates that accounts 

for the shear deformation through thickness of the plate in the mathematical treatment [162]. 

Jones and Co-authors have examined the response of the thick beams and circular plates a to 

uniform [111]–[115]. With the increase in plate thickness, the plastic work rate due to bending 

transcends the membrane plastic work rate [117]. Further increase in the plate thickness renders 

a considerable contribution of the influence of rotatory inertia and shear deformation, as 

presented in Figure 7-1 and Figure 7-2. The retention of transverse shear, combined with the 

influence of rotatory inertia, could give rise to an increase in the shear sliding at the support and 

a decrease in the central deformation of the plate.  

Rotatory inertia effects will contribute toward the moment equilibrium conditions for stocky 

circular plates or beams in which case, it has been shown the plastic hinges do not develop in the 

plate [111], [112]. However, Ref. [111] observed 11.5%-14% change in the quantities due to the 

rotator inertia, discussing further that the rotatory inertia may be included in the analysis where 

high accuracy is required in the stocky plates, having dimensionless plastic shear to moment ratio 

𝜈 = 1.5 ≤ Q0 R/2M0  < 4, where 𝑅 is the radius of the circular plate. Li and Huang [118] showed 

that while the inner plastic region undergoes a small transverse shear force, it increases rapidly 

in the outer plastic region. On the other hand, the bending moment is large throughout most of 

the region and only decreases rapidly near the supports. It transpires that the transverse shear 

forces induce sliding at the support at which interface the deformation profile is discontinuous. 

7.2 AIM OF THE CURRENT WORK 

The work in this chapter has been submitted to the International Journal of Impact 

Engineering [186]. To the best of author’s knowledge, to date, no work has been published on the 

performance of thick quadrangular plates due to localised blast loads. Thus, the major thrust of 
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this work focuses on the impulsively loaded plates, while the influence of the dynamic loads is 

also presented for simply supported plates of moderate thickness (𝜈 > 4).  

 

Figure 7-1-Pure plate shearing (a) undeformed shape (b) deformed shape 

 

 

Figure 7-2- Pure plate bending (a) undeformed shape (b) deformed shape (after [35]) 

 

7.3 DYNAMIC EQUILIBRIUM EQUATIONS 

The governing equilibrium equations in Cartesian coordinates for the dynamic performance 

of a plate element that is loaded laterally are given as: 

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
=  𝜇�̈� − 𝑝(𝑥, 𝑦, 𝑡) (7-1) 

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 = 𝐼𝑟𝜕

2𝜓/𝜕𝑡2  (7-2) 

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑄𝑦 = 𝐼𝑟𝜕

2𝜓/𝜕𝑡2 (7-3) 

 

(a) 

(a) 

(b) 

(b) 
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Figure 7-3- Temporally rectangular pulse shape Figure 7-4- Spatially exponential distribution 

of load 

where 𝐼𝑟 is the rotatory inertia, the transverse shear strain is defined by 𝛾 = 𝜕𝑤/𝜕𝑥 − 𝜓; the 

𝜕𝑤/𝜕𝑥 = 𝜓 + 𝛾 is the out of plane rotation of a line- in 𝑥 direction- originally normal to the initial 

mid-plane due to bending, curvature rates in due to bending in 𝑥, 𝑦 and twisting in 𝑥𝑦 directions 

are defined by 𝑘
.

𝑥 = 𝜕𝜓
.

/𝜕𝑥, 𝑘
.

𝑦 = 𝜕𝜓
.

/𝜕𝑥 and 𝑘
.

𝑥𝑦 = −𝜕
2𝜓
.

/𝜕𝑦𝜕𝑥, respectively. Clearly, both the 

transverse shear strains and rotational inertia contribute to the dynamic equilibrium equations 

in Eqns. (7-2)-(7-3), when the out-of-plane rotations emerge from transverse shear strains. In the 

absence of rotatory inertia, the right-hand side of these equations vanish, which is the scenario 

under study herein.  

By referring to the dynamic continuity conditions across discontinuity front in beams and 

circular plates, it is noted that for quadrangular plates, [𝑀𝑖] = −𝑍
.
𝐼𝑟[𝜓

.

𝑖] , [𝑄𝑖] = −𝜇𝑍
.
𝐼𝑟[𝑤

.
], where 

[𝐴] = 𝐴2 − 𝐴1 is the difference of the quantity 𝐴 across the discontinuity interface [114], [115]. 

For a simply supported plate, the boundary conditions are: 

𝑀𝑛|𝑧=1 = 0 ,    𝑄𝑥|𝑥=𝐿,𝑦=0 = 𝑄𝑦|𝑦=𝐿,𝑥=0 = −𝑄0,     𝑤
|𝑧=1 = 0,   𝑤

.
|𝑧=0 = 𝑊

.

   (7-4a-d) 

In a similar procedure to the work of Cox and Morland [92] presented in Section 5.9, the 

bending moments across the interface may be expressed in terms of moment function 𝑓(𝑧) , 

where 𝑧 is the auxillary generalised coordinates of plate (as illustrated in Figure 7-5): 

𝑀𝑥 = 𝑀0 + 𝑥
2𝑓(𝑧)  (7-5) 

𝑀𝑦 = 𝑀0 + 𝑦
2𝑓(𝑧)  (7-6) 

𝑀𝑥𝑦 = 𝑥𝑦𝑓(𝑧)  (7-7) 

Eqns. (7-5)- (7-7) satisfy the moment boundary conditions at the plate centre and at the 

supports. However, they must also satisfy the kinematic admissibility conditions and the 

conservation of linear and angular momentum, i.e. they should nowhere violate the yield 
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conditions. It transpires that the principle moments across the plate, 𝑀2  and 𝑀1  are bound to 

−𝑀0 ≤ 𝑀𝑛 ≤ 𝑀1 , where 𝑀𝑛  is the bending moment normal to the generalised coordinate in 

direction n, given in [160]. Provided the rotator inertia effects are ignored, combining Eqns. (7-5)-

(7-7) with (7-1)-(7-3), given that 𝑧𝐿 = √𝑥2 + 𝑦2 yields Eqns. (5-18)-(5-19) 

In a similar procedure to the theoretical treatment in Section 5.9, the non-homogenous, 

ordinary differential equation is solved for various loading conditions that give rise to the 

corresponding velocity profile which must satisfy the yield conditions. While the definitions in 

Eqns. (7-5)-(7-7) give rise to 𝑀1 = 𝑀0 , the principle moment 𝑀2  and transverse shear forces 

would reduce to: 

M2

𝑀0

= 1 + 𝑧2𝐿2𝑓(𝑧)/𝑀0 (7-8) 

𝑄𝑥 = 𝑥 (3𝑓 +
𝑧𝜕𝑓

𝜕𝑧
) (7-9) 

𝑄𝑦 = 𝑦 (3𝑓 +
𝑧𝜕𝑓

𝜕𝑧
) (7-10) 

7.4 YIELD CRITERION 

It is assumed that the transverse shear strains emerging from the infinitely large shear sliding 

are sufficiently large to contribute to rotation changes at the onset of the motion. Considering the 

Drucker’s plasticity postulate on convexity of the yield surface and ignoring the visco-plasticity 

(strain rate sensitivity) effects, the plastic flow is controlled by interaction of transverse shear 

and bending moment, in the extended yield surface square which circumscribes the Tresca’s yield 

surface and normality conditions, as shown in Figure 7-6, the direction if the strain rate remains 

orthogonal to the yield surface at any point. 

𝑀0 = 𝜎0 𝐻
2/4 

(7-11) 

𝑄0 ≅
𝜎0𝐻

2
 

(7-12) 

In Eqns. (7-11)-(7-12), 𝑀0  and 𝑄0  being the maximum plastic bending moment per unit 

length and the maximum lateral shear force per unit length, respectively. It is pragmatic to define 

the following dimensionless parameters: 

𝑞𝑑̅̅ ̅ = 𝑄𝑑/𝑄0,   �̅� = 𝑀2/𝑀0,   �̅� =
𝑉0
2𝐿2𝜇

𝑀0𝐻
,    �̅�𝑓 = 𝑊𝑓/𝐻,    (7-13a-g) 

𝜏∗ = 𝜇𝐿2𝑉0/𝑀0,     𝑤
..̅ =

𝑀0

𝐿2𝜇
    𝜈 = 𝑄0𝐿/2𝑀0  
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The dimensionless parameter 𝜈 in Eqn. (7-13-g) characterises the ratio of plastic bending to 

shear and reduces to slenderness ratio 𝐿/𝐻  for the prismatic sections, a measure of plate 

geometry.  

 

 

 

(a) (b) 
Figure 7-5- (a) The top view of a simply-supported square plate (coordinates 𝒙, 𝒚, 𝒓  and 

dimensionless parameter 𝒛 are shown), (b) the plate with side lengths 2L whose diagonals are 

in the Cartesian Coordinates 

 

 
Figure 7-6 Tresca yield surface (−.−) vs. the square yield surface (continuous bold line) 
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7.5 IMPULSIVE LOADING 

The impulsive blast pressure is already defined in Section 4-14. It has been established that 

the impulsive velocity due to localised blast is given by:  

 

𝑉0 = 
𝜏𝑝0 

𝜇
(
𝜖1
𝐿2
) (7-14) 

𝜖1 = [
𝑟𝑒
2𝑏2 − 2𝑎𝑒−𝐿𝑏(𝑏𝐿 + 1) + 2𝑟𝑒𝑏 + 2

𝑏2
] (7-15) 

Most typical cases of localised blast the ratio of stand-off to charge diameter varies between 

0.5 to 5, which correspond to the normalised loading radius 𝑟𝑒/𝐿 ≤ 0.2 assuming small values and 

the loading exponent ranging from 50 ≤ 𝑏 ≤ 100. Thus, the impulse parameter 𝜖1 would have a 

range of 𝜖1 ≤ 0.2𝐿2 , as observed in the Figure 7-7. It transpires that for the typical impulsive 

localised blasts, the impulsive velocity is irrespective of the loading distribution and is directly 

proportional to the peak pressure load and duration of the pulse pressure. 

 

 

Figure 7-7- variation of 𝜶 with the radius of the blast load 

 

7.6 STATIC COLLAPSE PRESSURE 

7.6.1 Transverse shear of plate in static pressure  

Through the consideration of bound theorem, the exact static plastic collapse of the plate 

subject to a generic blast load was expressed in Eqn. (5-27). Substituting Eqns. (5-20a-b) in the 

𝜖1/𝐿
2  
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Eqn. (7-9) and using (5-21a-c) and (7-4-b) leads to the static transverse shear at the boundary in 

Eqn. (7-16). An identical expression would be reached if Eqn. (7-10) was employed.  

|
𝑄𝑠
𝑄0
| = −

[(𝐿𝑏 + 1)𝑒−𝐿𝑏+𝑏𝑟𝑒 −
1
2
𝑏2𝑟𝑒

2 − 𝑏𝑟𝑒 − 1]

2𝐿2𝑏2𝛽𝜈
 (7-16) 

7.7 DYNAMIC COLLAPSE PRESSURE 

Through consideration of static admissibility, it has been shown that a critical value of the 

dynamic amplification factor 𝜂 exists such to avoid yield violation in the case of stationery plastic 

hinge. For square plates subject to uniform blasts, 𝛽 = 1/6  thus, 𝜂 = 2  [35], while for the 

localised blast, 𝜂 has been evaluated as in Eqn. (5-40). 

Now, using an identical procedure to the static case, by considering the shear sliding at the 

supports (i.e. Eqn. (7-4-b), the dynamic transverse shear is evaluated as: 

|
𝑄𝑑
𝑄0
| =  (

2𝐿2𝑏2𝛽 + 𝑎𝑒−𝑏𝐿(1 + 𝐿𝑏) − 𝑏𝑟𝑒 −
1
2
𝑏2𝑟𝑒2 − 1

4𝐿2𝑏2𝛽
) (
𝜂

𝜈
)   −

1

𝜈
 (7-17) 

The expressions (7-16) and (7-17) in various loading conditions are graphed in Figure 7-8- 

Figure 7-11.  

 

Figure 7-8-Influence of the Loading parameters on the 

Dynamic transverse shear at the plate contour. With 𝑯/𝑳 =
𝟎. 𝟎𝟐 and 𝒓𝒆/𝑳 = 𝟎. 𝟏𝟐𝟓 

Figure 7-9-Static transverse shear 

effect with various loading type- With 

𝑯/𝑳 = 𝟎. 𝟎𝟐 and 𝒓𝒆/𝑳 = 𝟎. 𝟏𝟐𝟓 
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Figure 7-10-Influence of the overloading factor on 

the dynamic transverse shear (𝒓𝒆/𝑳 = 𝟎. 𝟕) b=50 

Figure 7-11-Influence of the thickness on the 

static transverse shear (𝒃 = 𝟓𝟎) 

From the observations in Figure 7-8-Figure 7-11, in the range of 𝐻/𝐿 ≪ 1, evidently, the static 

transverse shears do not contribute to the overall response. As the loading is concentrated to the 

localised portion of the plate, i.e., 𝑟𝑒/𝐿<<1-which is the typical case of the localised blasts, the 

transverse shears become vanishingly small. However, the dynamic shear sliding is highly 

influenced by the load amplification factor 𝜂. With the increases of 𝜂 beyond 30, the region where 

the loading can be attributed as impulsive(as observed in Figure 5-13), considerable shear sliding 

may emerge even for plates of moderate-high thickness, i.e. 𝐻/𝐿=0.3 or 𝜈 = 3.3 (Figure 7-10). 

Transverse shear effects in low values of 𝜂 is important only for very stocky plates which are not 

practical cases in the design of protective systems.  

7.8 IMPULSIVE LOADING OF CLASS I (VERY STOCKY) PLATES (𝝂 ≤ 𝟑/𝟐) 

It may be assumed that the deformation profile of stocky plates of this class would take the 

form of Figure 7-12, as the plate is weak under the shear and the velocity profile is dominantly 

characterised by the shear sliding at both ends. Subsequently, from Eqn. (5-30), 𝑓 = 𝜇𝑊
..
/6 (since 

𝐼𝑟 = 𝑝0 = 0) which may be rewritten as: 

𝑊
..

=
−2𝑄0
𝜇𝐿

 (7-18) 

since at 𝑥 = 𝐿 and 𝑧 = 1(or 𝑦 = 𝐿 and 𝑧 = 1), 𝑄 = −𝑄0. Two-time integration of Eqn. (7-18), 

with 𝑊(0) = 𝑊
.
(0) = 0,  gives:  
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Figure 7-12-velocity profile of very stocky plates 

 

  

Figure 7-13- The assumed velocity profile-phase 1 
Figure 7-14-The assumed velocity profile-phase 

2 

 

𝑊(𝑡) =
−𝑄0
𝐿𝜇

𝑡2 + 𝑉0𝑡 (7-19) 

The plate rests at 𝑇 = 𝑉0 𝐿𝜇/2𝑄0  when the velocity of the plate vanishes. This gives the 

permanent deflection as: 

�̅�𝑓 =
𝜆̅

8𝜈
 (7-20) 

Thus, the principle moment in Eqn. (7-8) may be expressed as : 

�̅� = 1 −
2𝜈𝑧2

3
 (7-21) 

Provided 𝜈 ≤ 1.5, the static admissibilty is satisfied with the plate profile assumed in Figure 

7-12. The bending moment penetrates the yield surface with 𝜈 > 1.5  and the yield condition in 

the is violated. The yield violation implies an alternative velocity profile described as follows. 
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7.9 IMPULSIVE LOADING OF CLASS II (STOCKY) PLATES, (𝟏. 𝟓 <  𝝂 ≤ 𝟐) 

The velocity profile of class II plates of 𝜈 > 1.5, may be characterised in two phases of motion: 

an incipient velocity discontinuity at the support, occurring at the first phase due to the infinite 

shear sliding, as presented in Figure 7-13, which vanishes at the second phase as the shear sliding 

vanishes at the plate contours. The velocity profile in the first phase would take the form 𝑤
.
=

𝑊
.

𝑠 + (𝑊
.
−𝑊

.

𝑠)(1 − 𝑧), which develops into profile in Figure 7-14 in the second phase of motion. 

Thus, the moment function can be written as in Eqns. (7-22)- (7-23); with the constants 𝐴2 −

𝐷2 = 0 considering impulsive load case.  

 

𝑓 =

{
 
 

 
 (𝜇 ((�̈� − �̈�𝑠 )(2 − 𝑧) + 2�̈�𝑠)  − 𝑝0)

12
+
𝐴1
𝑧2
+
𝐵1
𝑧3

−𝑎𝑝0𝑒
−𝑏𝐿𝑧(𝑏𝐿𝑧 + 2)

(𝑏𝐿𝑧)3
+
𝜇 ((�̈� − �̈�𝑠)(2 − 𝑧) + 2�̈�𝑠)

12
+
𝐷1
𝑧2
+
𝐸1
𝑧3

 

0 ≤ 𝑧 ≤ 𝑟𝑒/𝐿 (7-22) 

𝑟𝑒/L ≤ 𝑧 ≤ 1 (7-23) 

In the same fashion, the boundary conditions of transverse shear and bending moments at the 

plate contour, i.e. 𝑄𝑥(𝑥 = 𝐿, 𝑦 = 0) = −𝑄0 and 𝑀2(𝑧 = 1) = 0 results in two sets of simultaneous 

expressions, which solutions gives Eqns. (7-24)-(7-26): 

𝑊
..

= −
12𝑀0(2 − 𝜈)

𝐿2𝜇
 (7-24) 

𝑊 = 𝑉0𝑡 −
6𝑀0𝑡

2(2 − 𝜈)

𝐿2𝜇
 (7-25) 

𝑊
..

𝑠 =
12𝑀0(1 − 𝜈)

𝐿2𝜇
 (7-26) 

This phase terminates 𝑡 = 𝑇1,  denoted in Eqn. (7-27) as the time when the velocity 

discontinuity at the support disappears. Thus, the maximum deformation is furnished to Eqn. 

(7-28): 

𝑇1 =
𝐿2𝑉0𝜇

12𝑀0(𝜈 − 1)
 (7-27) 

𝑊1

𝐻
=

𝜆̅(3𝜈 − 4)

24 (𝜈 − 1)2
 (7-28) 

with the inertia terms now known priori, the bending moment from Eqn. (7-21) at any point of 

the plate yields: 

�̅� = −(𝑧 −  1)(𝑧 + 2𝜈𝑧2 − 3𝑧2 + 1) 
(7-29) 
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At the plate centre; the range of 𝜈 > 2, causes a yield violation (𝜕2�̅�/𝜕𝑧2 > 0). Consequently, 

the profile assumed in this phase is only valid for the range of 1.5 ≤ 𝜈 ≤ 2.  

7.9.1 Second phase of motion 

A time-derivative of Eqn. (7-25) suggests that the kinetic energy is maintained in the plate, 

which must be dissipated before the motion ceases. The velocity profile in this phase is now 

written as 𝑤
.
= 𝑊

.
(1 − 𝑧); which furnishes the solution of the P.D.E (Eqns. (5-30 a-b)) to Eqn. 

(7-22), (7-23), but with 𝑊
..

𝑠 = 0. Thus, solving the condition of �̅� = 0 (at the plate contour) for 

transverse inertia gives 𝑊
..
= −12𝑀0/𝐿

2𝜇, whereby the associated transverse velocity is: 

 

𝑊
.

2 = 2𝑉0 − 12𝑀0𝑡/𝐿
2𝜇 (7-30) 

𝑊2 = 𝑉0 [2𝑡 +
𝜏∗ 

24(1 − 𝜈)
−
6𝑡2

𝜏∗
] (7-31) 

The succeeding Eqns. (7-30)-(7-31) are obtained by ensuring the kinematic continuities of 

velocity and transverse displacement field with the previous phase at 𝑡 = 𝑇1. The plate rests at 

𝑡 = 𝜏∗/6, reducing the permanent transverse displacement to: 

�̅�𝑓 =
𝜆̅(4𝜈 − 5)

24(𝜈 − 1)
 (7-32) 

7.10 CLASS III PLATES (𝝂 >  𝟐) 

7.10.1 Phase 1- 𝟎 < 𝒕 < 𝑻𝟏 

As discussed before, when 𝜈 > 2 , a yield violation occurs at the centre of the class II plates, 

suggesting a modification to the velocity profile. To avoid the yield violation, it is assumed that 

the velocity profile of class III plates is characterised with three stages of motion, namely, (i) phase 

1 with appearance of incipient stationary plastic hinge Figure 7-15, (ii) a transient phase 2, where 

the plastic hinge travels inward toward the centre of the plate (Figure 7-16) and (iii) phase 3 with 

the residual deformation as the length of the central plastic hinge line vanishes, wherein the 

velocity profile develops from Figure 7-16 to Figure 7-14. Thus, in the first phase of motion, the 

velocity profile may be assumed as: 
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𝑤
.
= 𝑊

.
 𝟎 ≤ 𝒛 ≤ 𝝃𝟎 (7-33) 

𝑤
.
=
(𝑊
.
−𝑊

.

𝑠 )(1 − 𝑧)

1 − 𝜉0
+𝑊

.

𝑠 𝟎 ≤ 𝒛 ≤ 𝒓𝒆/𝑳 (7-34) 

which are substituted in the succeeding moment function to: 

 

𝑓 =

{
 
 
 
 

 
 
 
 (𝜇𝑊

..

− 𝑝0)/6 + 𝐴3/𝑧
2 + 𝐵3/𝑧

3

𝜇𝑊
..

6
−
𝑎𝑝0𝑒

−𝑏𝐿𝑧(𝑏𝐿𝑧 + 2)

(𝑏𝐿𝑧)3
+ 𝐷3/𝑧

2 + 𝐸3/𝑧
3

−𝑎𝑝0𝑒
−𝑏𝐿𝑧(𝑏𝐿𝑧 + 2)

(𝑏𝐿𝑧)3
+

𝜇 (
(�̈�1 − �̈�𝑠)(2 − 𝑧)

1 − 𝜉0
+ 2�̈�𝑠)

12
+
𝐹3
𝑧2
+
𝐺3
𝑧3

 

0 ≤ 𝑧 ≤ 𝑟𝑒/𝐿 (7-35) 

𝑟𝑒/L ≤ 𝑧 ≤ ξ0 (7-36) 

ξ0 ≤ 𝑧 ≤ 1 (7-37) 

It is also assumed that 𝜉0 ≥ 𝑟𝑒. The yield condition of the bending moment in the central zone 

yields  �̅� = 1 ; hence, 𝑄 = 0  and 𝜇𝑊
..
= 𝑝0  throughout the entire zone ( 0 ≤ 𝑧 ≤ 𝜉0 ).  The 

succeeding time integrations of the latter expression gives 𝑊
.

1 = 𝑝0𝑡/𝜇  and 𝑊1 = 𝑝0𝑡
2/2𝜇 , 

respectively. Accordingly, the constants of the moment function in the central zone are obtained 

by ensuring the kinematic continuity of the transverse shear and moment at 𝑧 = 𝑟𝑒/𝐿 and the 

plate centre; giving identical expressions to those of Eqns. (4-21a-b), whereas the constants in 

(7-37) are evaluated from the kinematic conditions of 𝑓 at 𝑧 = ξ0, (i.e. 𝑄 = 0 and �̅� = 1) as: 

 

𝐹3 =
(−6𝑎(𝜉0 − 1)(𝐿𝑏𝜉0 + 1)𝑒

−𝐿𝑏𝜉0 − (𝑏𝐿𝜉0)
2(2𝜉0 − 3)) 𝑝0

6𝐿2𝑏2(𝜉0 − 1)
−

𝑊
..

𝑠𝜇𝜉0
3

6(𝜉0 − 1)
 (7-38) 

𝐺3 =
[(3𝜉0 − 4)(𝑏𝐿𝜉0)

3 + 12𝑎(𝜉0 − 1)((𝑏𝐿𝜉0)
2 + 2𝐿𝑏𝜉0 + 2)𝑒

−𝐿𝑏𝜉0]𝑝0
12𝐿3𝑏3(𝜉0 − 1)

+
𝑊
..

𝑠𝜇𝜉0
4

12(𝜉0 − 1)
 (7-39) 
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Figure 7-15 the assumed velocity profile for plates of  

𝝂 > 𝟐 at first phase of motion 

Figure 7-16- assumed velocity profile for plates 

of  𝝂 > 𝟐 at subsequent phase of motion 

 

Thus, substituting Eqn. s (7-34)-(7-36) in (7-8)-(7-10), then enforcing the boundary 

conditions of 𝑄𝑥 = −𝑄0 and 𝑀1 = 0 at  𝑥 = 𝐿 yields two sets of expressions, the former is used to 

evaluate the inertia at the support 𝑊
..

𝑠 in Eqn. (7-40). Thus: 

 

𝑊
..

𝑠 = [
𝛿1𝑝0

𝑀0𝑏
2(𝜉0

2 + 𝜉0 − 2)
+

12𝜈

(𝜉0
2 + 𝜉0 − 2)

]𝑤
..̅  (7-40) 

 

where 𝑤
..̅ = 𝑉0/𝜏

∗  and 𝛿1 is given by: 

𝛿1 = 6𝑎(𝐿𝑏𝜉0 + 1)𝑒
−𝐿𝑏𝜉0 − 6𝑎(𝐿𝑏 + 1)𝑒−𝑏𝐿 + 2𝑏2𝐿2(𝜉0 + 1/2)(𝜉0 − 1) (7-41) 

 

The latter condition is used to evaluate an expression of the stationary plastic hinge 𝜉0 in Eqn. 

(7-42).  

�̅� =
Γ1𝜂

12𝐿3𝑏3𝛽
+
𝜇𝐿2(𝜉0 + 1)(𝜉0 − 1)

2𝑊
..

𝑠

12𝑀0
+ 1 = 0 (7-42) 

where 

Γ1 = 12𝑎 (2 + 𝑏
2𝐿2𝜉0(𝜉0 − 1) + 𝑏𝐿(2𝜉0 − 1))𝑒

−𝐿𝑏𝜉0 − 12𝑎(𝐿𝑏 + 2)𝑒−𝐿𝑏

+ 𝐿3𝑏3(3𝜉0 + 1)(𝜉0 − 1)
2 

(7-43) 

 

𝜉0𝐿 
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The expression of 𝜉0  in (7-42) is highly nonlinear which can only be solved by numerical 

methods. It should be noted that, in the absence of the inertia term 𝑊
..

𝑠 , which occurs as 𝜈 

approaches large values, Eqn. (7-42) converges to the plates under consideration of bending only. 

Eqn. (7-40) is similar to the analysis of [111], [114], except an additional term of load appearing 

in the first term of the bracket, emerging from the spatial distribution of the (dynamic) load type. 

A time integration1 of (7-40) yields: 

𝑊
.

𝑠 = [
−𝛿1𝑝0𝜏

𝑀0𝑏
2(𝜉0

2 + 𝜉0 − 2)
+

12𝜈𝑡

(𝜉0
2 + 𝜉0 − 2)

]𝑤
..̅ 2 (7-44) 

 

This phase terminates when the shear velocity at the support vanishes, at time 𝑇1given in 

(7-45):  

𝑇1  =
𝛿1𝑝0𝜏

12𝑏2𝑀0𝜈
 (7-45) 

The permanent displacement corresponding to this time is given as:  

𝑊1
𝐻
 =  

𝛿1
2𝑝0

3𝜏2

288𝑀0
2𝑏4𝜈2𝜇𝐻

 (7-46) 

 

If the transverse shear effects are neglected, this phase lasts until the load disappears at 𝑇1 =

𝜏. Considering the impulsive load scenario, 𝑊
..
= 𝑝0 = 0, only the last terms on the right-hand side 

of the expressions (7-38)-(7-39) would remain. In such a case, the transverse deformation at the 

discontinuity front reduces to 𝑊𝑠 = 𝑉0t + (6𝑉0𝜈𝑡
2)/(𝜏∗ (𝜉0

2 + 𝜉0 − 2)) . Thus, the end time of this 

phase may be evaluated as the velocity at the discontinuity front vanishes, occurring at 𝑇1 =

−𝜏∗/12(𝜉0
2 + 𝜉0 − 2). The associated final deformation of this phase is given in Eqn. (7-47): 

𝑊1
𝐻
=

−�̅�

12[𝜉0
2 + 𝜉0 − 2]

 (7-47) 

 

                                                           

1 The first term contributes to the duration of the load and is integrated from the onset of motion until the 

load vanishes at 𝑡 = 𝜏, while the second term is integrated arbitrarily. The discontinuity front at the 

support continues to decelerate beyond 𝜏 until it rests at 𝑡 = 𝑇1.  
2  
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which is similar to  the results obtained for impulsively loaded circular plates in Ref. [112], 

except the spatial distribution of the load contributes to the magnitude of the impulsive velocity 

𝑉1, and, by extension, the dimensionless kinetic energy. Hence, the moment and shear in the outer 

zone of the (impulsively loaded) plate simplify to: 

�̅� = 1 +
𝑊
..

𝑠(𝜉0 + 𝑧)(𝜉0 − 𝑧)
3

12𝑤
..̅𝑧(𝜉0 − 1)

 𝛏𝟎 ≤ 𝒛 ≤ 𝟏 (7-48) 

𝑄𝑥 =
−𝜇𝑥𝑊

..

𝑠(𝜉0  −  𝑧)
2(𝜉0  +  2𝑧)

6𝑧2(𝜉0 −  1)
 𝛏𝟎 ≤ 𝒛 ≤ 𝟏 (7-49) 

 

 

Figure 7-17-variation of 𝝃𝟎 with 𝝂 

 

Since 𝑀 is continuous at the plastic bending hinge (i.e. 𝑀𝑥 = 𝑀0 at 𝑥 = 𝜉0𝐿 and 𝑦 = 0 or 𝑀1 =

𝑀0  at 𝑧 = 𝜉0), an expression of the initial plastic hinge is achieved in Eqn. (7-50) and plotted 

Figure 7-17. 

𝜉0 =
(−1 + √4𝜈2 − 8𝜈 + 1)

2𝜈
 (7-50) 

 

7.10.2 Phase 2- 𝑻𝟏 < 𝒕 < 𝑻𝟐 

The second phase initiates as the transverse shear sliding is removed at the supports beyond 

𝑡 = 𝑇1, the deformation profile takes that of Figure 7-16. Due to the absence of the loading, the 

central zone travels with constant velocity 𝑊
.

2  while the size of the central zone diminishes 

monotonically as the time dependent plastic hinge 𝜉(𝑡) now moves inward. Thus, clearly 𝑊
..
= 0, 
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and the kinematic admissibility dictates that 𝑊
.

2 = 𝑊
.

1 at 𝑡 = 𝑇1, giving rise to 𝑊
.

2 = 𝑝1𝑇1/𝜇. The 

piecewise moment function in (7-35)- (7-37) remains valid, with 𝐴3 − 𝐷3 = 0 while constants 

Eqn. (7-37) become: 

𝐹3 =
𝜇𝜉2𝑊

.
𝜉
.
(2𝜉 − 3 )

6(𝜉 −  1)2
 (7-51) 

𝐺3 = −
𝜇𝜉3𝑊

.
𝜉
.
(𝜉 − 4/3)

4(𝜉 − 1)2
 (7-52) 

 

which were obtained by substitution of 𝑤
..
 =  (1 − 𝑧)𝑑(𝑊

.
/(1 − 𝜉(𝑡)))/𝑑𝑡 in Eqns. (5-30 a-b), 

using 𝑝1 = 0 and solving the Partial differential equation (P.D.E). 

By appreciating the boundary condition of the principle moment at the edge, (i.e. 𝑀2|𝑧=1 = 0), 

an expression of the travelling plastic hinge is obtained: 

�̅� = 1 − 1/4𝜏∗𝜉
.
(𝑡) (𝜉(𝑡) +

1

3
) (𝜉(𝑡) − 1)  = 0 (7-53) 

 

A time integration of Eqn. (7-53) furnishes the succeeding expression of travelling plastic 

hinge in Eqn. (7-54): 

𝑡 +
𝜏∗𝜉(𝑡)(𝜉(𝑡)2 − 𝜉(𝑡) − 1)

12𝑀0
= 𝜏∗ (7-54) 

 

where the constant of integration is obtained from the kinematic conditions at 𝑡 = 𝑇1, 𝜉(𝑇1) =

𝜉0. The size of the central platform zone decreases monotonically and ultimately vanishes as the 

plastic hinge 𝜉(𝑡) reaches the centre of the plate, i.e. 𝜉(𝑡) = 0. This marks the end of phase 2 which 

occurs at time 𝑡 = 𝑇2, given as: 

 

𝑇2 =
𝜏𝛿𝑝0[𝑝0𝐿

2𝜉0(1 − 𝜉0
2 + 𝜉0) + 12𝑀0)

144𝑀0
2𝑏2𝜈

   (7-55) 

which is simplified to 𝑇2 = 𝜏
∗/12 for impulsive load cases.  
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7.10.3 Phase 3 𝑻𝟐 ≤ 𝒕 ≤ 𝑻𝒇 

The central plastic hinge disappears at 𝑡 = 𝑇2. However, due to the reserved kinetic energy 

the motion continues with residual deformation until all kinetic energy is dissipated before the 

plate finally comes at rest. The velocity profile in this phase is expressed by a conical velocity 

which is identical to the previous case, i.e. the profile given in Figure 7-14; while the inertia term 

expressed by 𝑊
..

3 = −12𝑤
..̅ . The solutions to the state variables (permanent deformation and 

velocity fields) at this phase are achieved by time integrations of this expression and ensuring the 

kinematic admissibility of the transverse velocity and deformation with the previous phase. The 

final displacement can be evaluated when the velocity vanishes, (i.e. 𝑊
.

3=0): 

 

𝑊𝑓 =
𝑝𝑐 (

𝜂
𝛽
(− 𝜉0

3  +  𝜉0
2  + 𝜉0  +

1
2
) +  6)

1728𝜇𝜂
(
𝛿1𝜏𝜂𝑝0
𝜈𝑀0𝑏

2
)
2

 
(7-56) 

Regarding the impulsive load response, the inertia term is identical to Eqn. (7-24) and the 

deformation fields are furnished as per Eqns. (7-57)-(7-58). 

𝑊3

𝐻
=
2𝑉0𝑡

𝐻
 −

�̅�

24
−
6𝑉0𝑡

2

𝜏∗𝐻
 (7-57) 

𝑊
.

3 = 2𝑉0 −
12𝑀0𝑡

𝐿2𝜇
  (7-58) 

In such case of impulsive loads, Eqn. (7-56) simplifies to �̅�𝑓 = �̅�/8, similar to the results of 

[162] for circular plates, whereas the loading distribution affects the magnitude of �̅� . The 

permanent deformation in the case of impulsive load would occur at 𝑇𝑓 = 𝜏
∗/6.  The central and 

end-point permanent deformations of the plate in various values of 𝜈 are plotted in Figure 7-18, 

Figure 7-19. 

Provided the transverse shear strains do not contribute to the element rotations, the 

transverse shear sliding along the plate periphery can be neglected. The end time of first phase of 

motion 𝑇1  from Eqn. (7-45) occurs at 𝑇1 = 𝜏  and reduces the terms of the Eqn. (7-56) to the 

solution of plates where the plastic flow is governed by the interactive yield curve of bending only. 

The combined influence of the load magnitude and the plate thickness (based on 𝜈) are graphed 

in Figure 7-20-Figure 7-21. 
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Figure 7-18- Variation of the permanent deformation (𝑾𝒇) against 𝝂 

for various loading conditions of impulsive load, where 𝝎𝟎 = 𝒓𝒆/𝑳 

 

 

 

Figure 7-19- Variation of the deformation profile at discontinuous front 

(𝑾𝒔) against 𝝂 for various loading conditions 
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Figure 7-20- Intercative surface of dynamic load amplification factor, 

plastic hinge and central deformation  

 

 

Figure 7-21- Influecne of the plate thickness and dynamic load 

amplification factor on the central deformation 

 

7.11 FULLY CLAMPED PLATES 

The foregoing analysis was limited to the simply supported plate systems, while in practical 

applications the plates are often designated with clamped boundary conditions. Notwithstanding 

this, the theoretical solutions in previous sections may be extended to the case of fully-clamped 
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plate. Considering the boundary condition of principle moment at the plate contours, �̅� = −1, the 

static plastic collapse furnishes to 𝑝𝑐𝑙 = 2𝑀0/(𝛽𝐿
2 ). Thus, all the expressions of fully clamped 

plate may be obtained by merely replacing 𝑀0 with 2𝑀0, 𝜂 with �̅� = 1/2𝜂 and 𝜈 with �̅� = 1/2 𝜈. 

The range of slenderness ratio in each class of the plate would be: 

 

• Class I plates �̅� < 3 

• Class II plates 3 < �̅� < 4 

• Class III plates 4 < �̅� 

 

7.12 DYNAMIC PRESSURE PULSE LOADING 

In this section, a study on the influence of the pulse shape on the final response of the structure 

is presented, which includes exponential and linear pulse shapes. The type of explosion would 

give rise to the various pulse shape, i.e. exponential (high explosives), sinusoidal (gas 

deflagration/detonation) and linear. The diversity in the type of pulse pressure inhibits making 

correlation between various results.  

However, hitherto, the foregoing analyses were limited to pulse pressure load having 

rectangular shape. A blast peak pressure with dynamic pressure more than 10 times the static 

collapse can be idealised as rectangular pulse [35], in which case the blast is idealised as impulsive 

and the pulse shape has no intrinsic effect on the response of the system. However, more often 

than not, the majority of the blast loads are non-impulsive and assume various pulse shapes 

(linear, exponential, sinusoidal). While the pulse shape can have significant effect on the overall 

response of the non-impulsive structure, its effect can be eliminated by utilising the Youngdahl’s 

correlation parameters[37], [91], [152], [157], which efficacy is confirmed for monotonically 

decaying pulses by [100]. A general expression of the pulse shape introduced by Li and Meng 

[180] reads: 

 

𝑝2(𝑡) = {
(1 − 𝑋

𝑡

𝜏
) 𝑒−𝑌

𝑡
𝜏,          0 ≤ 𝑡 ≤ 𝜏

  0                             𝜏 ≤ 𝑡

 (7-59) 
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Figure 7-22- Typical temporal pulse loading shapes 

(R) rectngular (L) linear, (E) exponential 

 

While the expression (7-59) represents a generic exponential function, in particular 

circumstances, it reduces to rectangular pulse (when 𝑋 = 𝑌 = 0), or linear pulse (when 𝑋 =

1, 𝑌 = 0), as plotted in Figure 7-22. 

An exponential pulse shape is defined as illustrated in Eqn. (7-59). Using the same procedure 

as described in Section  7.10.1 for class III plates, the deformation field and its derivatives are: 

𝑊1
..
=
𝑝0 (1 −

𝑡
𝜏) 𝑒

−
𝑡
𝜏

 𝜇
 

(7-60) 

𝑊1
.
=
𝑝0𝑡𝑒

−
𝑡
𝜏

 𝜇
 (7-61) 

𝑊1 = −
𝑝0𝜏(𝑡 + 𝜏)𝑒

−
𝑡
𝜏

𝜇
 (7-62) 

The end time of motion at phase 1 occurs as the velocity across the discontinuity front at the 

support vanishes. Eqn. (7-40) remains valid but with loading taking account of the modification 

in the pulse shape. Thus, integrating Eqn. (7-40)  yields: 

 

𝑊
.

𝑠 = [
𝛿1𝑝0𝜏𝑒

−1

𝑀0𝑏
2(𝜉0

2 + 𝜉0 − 2)
+

12𝜈𝑡

(𝜉0
2 + 𝜉0 − 2)

]𝑤
..̅  (7-63) 

 

The first and second term are integrated separately as in the same manner in Section  7.10.1. 

The duration of the first phase is evaluated as: 
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T1 = −
𝜏𝑒−1𝑝0𝛿1
12𝑀0𝑏

2𝜈
 (7-64) 

The velocity of the second phase remains constant which is evaluated by substituting the time 

𝑇1 in Eqn. (7-61). Phase 2 continues until time 𝑇2 when the central hinge zone vanishes, given as: 

 

T2 = 𝑇1 + 𝑇1
𝜂𝑒−

𝑇1
𝜏 (−𝜉0

3 + 𝜉0
2 + 𝜉0)

𝛽
 (7-65) 

 

Thus, the mid-point deformation at this phase is: 

𝑊2 = −
𝑒−

𝑇1
𝜏 𝑝0

2𝜏𝑒−1𝛿1𝑡

12𝑀0𝑏
2𝜈𝜇

+ 𝐴4 

(7-66) 

𝐴4 = −
𝑒−

𝑇1
𝜏 𝑝0𝜏

2(144𝑀0
2𝑏4𝜈2 − 12𝑀0𝑒

−1𝑏2𝛿1𝜈𝑝0 + 𝑝0
2𝑒−2𝛿1

2)

144𝑀0
2𝑏4𝜈2𝜇

 

 

Finally, the deformation, velocity and acceleration fields of the third phase are given by:  

𝑊3

..
= −12 𝑤

..̅   (7-67) 

𝑊3

.
= −12 𝑤

..̅𝑡 + 𝐶4 (7-68) 

𝑊3 = −6𝑤
..̅𝑡2 + 𝐶4𝑡 + 𝐶5 (7-69) 

 

Where the constants of integrations are obtained by the kinematic admissibility conditions of 

the velocity and deformation fields at 𝑡 = 𝑇2 with those of the previous phase as: 

𝐶4 =
𝑝0𝑒

−1𝛿1𝜏 (𝐿
2𝑝0(𝜉0

3 − 𝜉0
2 − 𝜉0 − 1)𝑒

−
𝑇1
𝜏 − 12𝑀0)

12𝑀0𝐿
2𝑏2𝜈𝜇

  
(7-70) 

𝐶5 = −
(𝑝0𝐿𝜉0𝑇1𝑒

−
𝑇1
𝜏 )

2

(𝜉0
2 − 𝜉0 − 1)

2

24𝑀0𝜇
+ (7-71) 
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((𝜉0
3 − 𝜉0

2 − 𝜉0 − 1)𝑇1
2 − 𝜏𝑇1 − 𝜏

2)𝑝0𝐿
2𝑒−

𝑇1
𝜏 − 6𝑀0𝑇1

2

𝜇𝐿2
  

Thus, the permanent deformation would reduce to: 

𝑊𝑓 = −

(𝐿2𝑝0𝑇1
2 (𝜉̅ +

1
2 ) 𝑒

−
𝑇1
𝜏 + 12𝑀0𝜏(𝑇1 + 𝜏)) 𝑒

−
𝑇1
𝜏 𝑝0

12𝑀0𝜇
  

(7-72) 

Occurring at: 

𝑇𝑓 =
(12𝑀0 − 𝐿

2𝑝1𝜉̅𝑒
−
𝑇1
𝜏 )𝑇1

12𝑀0
   

(7-73) 

where 𝜉̅ = 𝜉0
3 − 𝜉0

2 − 𝜉0 − 1. 

 

Figure 7-23- Pulse shape dependent response of the rectangular pulse (a) exponential pulse (b) (𝒃 =
𝟓𝟎𝒎−𝟏, 𝝂 = 𝟏𝟎) with various load radii. 

The permanent deformation of the linearly decaying pulse, with 𝑇1 = 𝛿𝑝1𝜏/(24𝑀0𝑏
2𝜈) can be 

written as: 

𝑊𝑓 = −

((𝑇1 − 2𝜏) ((𝜉̅ + 1)𝜏
2 − (2𝜉̅ + 1)𝑇1𝜏 + (𝜉̅ +

1
2
) 𝑇1

2) 𝜂 + 8𝛽𝑇1𝜏(𝑇1 − 3𝜏)) 𝜂𝑇1𝑝𝑐

48𝜏2𝛽𝜇
   

(7-74) 

Occurring at: 

𝑇𝑓 = (
1

24
) (𝐿2(𝜉̅ + 1)𝜏2 − 2𝑇1𝐿

2𝜉�̅� + 𝐿2𝑇1
2𝜉)̅𝜂/(𝜏𝛽𝐿2) + 𝑇1 (7-75) 
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Figure 7-24- Pulse shape dependent response with transverse shear effects (a) without transverse shear 

effects (b) (𝒃 = 𝟓𝟎𝒎−𝟏, 𝒓𝒆/𝑳 = 𝟎. 𝟎𝟓, 𝝂 = 𝟏𝟎) 

 

A plot of exponential and rectangular pulse shape effects for various loading radii is graphed 

in Figure 7-23. Clearly, large variation in the response is observed as the loading radius decreases. 

The difference in the response also increases in the low range of the dynamic loading magnitude 

(i.e. 𝜂 > ~1), as observed in Figure 7-24b. Clearly, there is a large variation in the normalised 

deformations due to the pulse shape, which increases with the increase of load magnitude as 

illustrated in Figure 7-24 (a). The reason for the difference in the curves of Figure 7-24 is when 

taking account of the transverse shear effects, the predicted duration of the first phase (𝑇1) is 

influenced by the magnitude of the loading, leading in turn to a divergence of the normalized 

permanent deformations. However, this is only valid for low magnitudes of the load. On the 

contrary, the deformation of the impulsively loaded plate, is pulse independent. This is also 

evident in Figure 7-24b on the plates where the intrinsic effect of the transverse shear is 

vanishingly small.  

As discussed earlier, if the shear sliding during phase 1 of motion is neglected beyond loading 

duration, the term 𝑇1 = 𝜏 yields 𝛿1 = −12𝑏
2𝑀0𝜈/𝑝1. Clearly, the exercise on dynamic response of 

class III plates may be simplified to a particular case of the plates where bending effects transcend 

those of membrane and transverse shear.  

The effect of pulse shapes can virtually be eliminated for monotonically decreasing pressure 

pulses by incorporating the Youngdahl’s correlation parameters in the analysis: 
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𝐼𝑒𝑓𝑓 = ∫ 𝑃(𝑡)𝑑𝑡
𝑇

𝑡0

 (7-76) 

𝑡𝑚 =
1

𝐼
∫ 𝑡. 𝑃(𝑡)𝑑𝑡
𝑇

𝑡0

 
(7-77) 

𝑝𝑒 =
𝐼

2𝑡𝑚
 

(7-78) 

where 𝐼  is the total impulse, 𝑃(𝑡) = 𝑝1(𝑥, 𝑦)𝑝2(𝑡)and 𝑝𝑒  is the effective pressure, 𝑡0  is the 

initial plastic deformation time, taken as zero, assuming the plasticity in rigid plate occurs 

instantaneously. T is the time where plastic deformation ceases and 𝑡𝑚  is the centroid of the 

pulse. A rectangular pulse, for example, would give rise to 𝐼𝑒𝑓𝑓 = 𝑝0𝜏 and 𝑝𝑒 = 𝑝0 while centroid 

of the pulse occurs at 𝑡𝑚 = 𝜏/2. 

Evaluating the above for each pulse shape, a single plot, independent of the pulse shape is 

obtained in terms of the effective pressure and effective impulse, as given in Figure 7-25. 

 

 

Figure 7-25 Pulse shape independent response of the rectangular pulse 

( 𝒃 = 𝟓𝟎𝒎−𝟏, 𝝂 = 𝟏𝟎,𝝎𝟎 = 𝟎. 𝟎𝟓 ). 𝜼𝒆 = 𝒑𝒆/𝒑𝒄  is the effective 

overloading factor. 
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7.13 FINITE ELEMENT VALIDATIONS 

7.13.1 Description of models 

The analytical solutions of class III plates for simply supported and clamped plates are 

validated against full 3D numerical models in Finite Element commercial software ABAQUS® 

Explicit. Due to axisymmetric nature of the load, only a quarter of the plate was considered in 

each model with symmetry boundary conditions.  

The parametric validations were carried out in two categories. The first category FE models 

were investigated in the pure Lagrangian reference frame, whereas the second category 

comprised of a full 3D CEL analysis. Full details of the CEL analysis and the material models has 

been discussed previously in Chapter 3 and in Refs. [57], [70], [119], [138]. 

The target plate was assumed monolithic flat panels made of either austenitic Mild steel and 

aluminium alloy AA5083 H116 (for the pure Lagrangian models) or ultra-hard armour steel alloy 

ARMOX440T from [131] (for  the CEL models). The pure Lagrangian models were pinned along 

their periphery, while the CEL models were specified with two upper and lower clamps of 20mm 

width (details previously discussed in Chapter 3). The assumed material properties of the steel 

panels were density of 7850kgm-3, Young modulus of 200GPa and characteristic in-plane lengths 

of 400×400mm, thicknesses of 60mm for Mild steels and 10mm for armour steels, with modified 

Ramberg-Osgood material model which was idealised as elastic-perfectly plastic with isotropy. 

The visco-plasticity phenomenon was disregarded in this study. However, the flow stress was 

taken as the average of yield stress (𝜎0 ) and ultimate tensile stress 𝜎𝑢𝑡 to approximate the 

influence of strain hardening, i.e. i.e. 𝜎𝒂𝒗 = 1/2(𝜎0 + 𝜎𝑢𝑡).  The values of 330MPa and 1342MPa 

were chosen for Mild steel (M.S) and Armour steel (AR), respectively. 

 

Figure 7-26- Quasi-Static Stress-strain plot of Aluminium 

alloy, after [61]  
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Table 7-1- The properties of the numerical model 

Material Material and geometric properties  Loading 

 
𝜎0 

(𝑀𝑃𝑎) 

𝐸 

(𝑀𝑃𝑎) 

𝜌 

(𝑘𝑔𝑚−3) 
𝜐 

𝐿 

(mm) 

𝑝0 

(𝑀𝑃𝑎) 

𝜏 

𝜇𝑠 

𝑟𝑒 

(mm) 

𝑏 

(𝑚−1) 

Steel 330±5 200000 7850 3.33 200 2400 30 Various 100 

Aluminium 

5083 H116 
300±5 79000 2190 15 150 Various 50 50 50 

 

The aluminium alloy panels had characteristic lengths of 300×300 and 20mm thickness. The 

material and geometric properties of aluminium alloy were taken from [61] and are presented in 

Table 7-1.  The loading was varied as 𝑝0 = [20,40,60,80,120]MPa. The range of loading magnitude 

corresponds to detonation of 16gr TNT-or 12gr PE4 explosive, given the TNT equivalency of 1.34- 

which characterises blast scenarios at various stand-offs [20], [23], when using the Hopkinson 

Cranz law scaled distance presented in Table 7-2. Figure 7-26 presents the approximation of the 

plastic flow stress in aluminum alloy. 

Table 7-2-various threat  

Scaled model (𝑚𝑇 = 16𝑔) Prototype (𝑚𝑇 = 2𝑘𝑔) 

Z 
SoD 

(mm) 

SoD 

(cm) 

0.25 63 31.50 

0.3 76 37.80 

0.375 95 47.25 

0.42 106 52.92 

0.6 151 31.50 

 

All panels were discretised with a mesh of four node S4R conventional shell elements, with 

finite membrane strains, hour glass control and reduced integration. Elemental length was 4mm 

in all cases to ensure mesh convergence. The S4R elements are compatible with thick plate’s 

formulations. Due to the increased plate section thickness, the integration points per section of 

Mild steel panels was increased to 75 to accurately capture the through thickness state variables 

(stresses) and to accurately model the cross-sectional behaviour.  
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In each pure Lagrangian model, the loading was applied by FORTRAN-coded user-defined 

subroutine (VDLOAD) in ABAQUS/Explicit to describe the spatial and temporal shape of the blast. 

Regarding the CEL models, the loading magnitude and duration was determined by a preliminary 

Lagrangian-Eulerian analysis, set up with rigid target to delineate the load parameters for the 

analytical model. A total of four FE models were set up with Plastic Explosive 4 (PE4) cylindrical 

sheet explosive of designated charge diameter 𝐷𝑒 = [50,75, 100,140] at constant 50mm stand-off 

from the target. The charge of design number 1 had depth of 22.26mm, while the depth of the rest 

was kept constant of 5.57mm. The clamps were also modelled as 10mm specified rigid chamfers 

at the edge of the target. Due to the increased charge radius to plate length ratio, the clamps would 

affect the wave propagation on the target, absorbing some portion of the total impulse generated 

by the charge [67]. The pressure registered with each target gauge point was recorded and 

plotted in Figure 7-27-Figure 7-28. A curve fitting tool in MATLAB® 2016 was utilised to predict 

the loading parameters 𝑏, 𝑟𝑒 , as illustrated in Figure 7-29 and summarised in Table 7-3. This table 

also presents the charge properties and associated loading magnitudes of each designation.  

 

Table 7-3- load parameters from the FSI model 

Design number 1 2 3 4 

𝐷𝑒(𝑚𝑚) 50 70 100 140 

𝐻(𝑚𝑚) 10 10 10, 20 20 

𝑀𝑒(𝑔) 70.0 39.4 70.0 137.3 

𝑝0 (𝑀𝑃𝑎) 600 440 680 732 

𝑟𝑒(𝑚𝑚) 18.4 22.4 36.9 54.3 

𝑏(m−1) 50.1 51.2 57.6 48.7 

 

Two sets of parametric studies have been carried out to compare with the analytical solutions 

on impulsive and dynamic loaded panels. To ensure the plasticity occurring in the plate, the 

equivalent plastic strain (𝜀�̅� ) as monitored and it was ensured that the plate reaches ‘residual’ 

vibrations.  

The design number 4 (with the 10mm target plate) experienced excessive distortion and was 

disregarded from the results, thus two further panels of 20mm thickness were investigated 

instead. 
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Figure 7-27- Recorded pressure at gauge points vs distance from the target 

-140mm PE4 explosive 

 

 

Figure 7-28- Recorded pressure at gauge points vs distance from the target 

-75 mm PE4 explosive 

 

 
Figure 7-29- Curve fit of the loading parameters 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 7-30- Distribution of the �̅�𝒑, Mises stress and displacement fields in the plate with b=100 and 𝒓𝒆/𝑳 =

𝟎. 𝟓. (a-c)- Distribution of �̅�𝒑 at 𝒕 = 𝟔𝟎𝝁𝒔, 𝟎. 𝟏𝒎𝒔 and 𝟐𝒎𝒔, respectively. (d-e) distribution of Mises stress 

at 𝒕 = 𝟔𝟎𝝁𝒔 and 𝟐𝒎𝒔, respectively. (f) permanent displacement at 𝒕 = 𝟐𝒎𝒔 

 

   

(a) (c) (e) 
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(b) (d) (f) 

Figure 7-31  (a), (b) distribution of the Mises stress; (c), (d) Equivalent plastic strain (�̅�𝒑) ; (e), (f) 

displacement field at 𝒕 = 𝟎. 𝟏𝒎𝒔 and 𝒕 = 𝟐𝒎𝒔 in the plate with 𝝂 = 𝟑. �̅�, b=100 and 𝒓𝒆/𝑳 = 𝟎. 𝟏. 

 

7.13.2 Pure Lagrangian models and results  

Accurate prediction of the permanent displacement relies on verification of the position of the 

plastic hinge 𝜉0 . The position of the plastic hinge 𝜉0  in beams and plates may be monitored 

numerically by tracing the maximum equivalent plastic strain (𝜀𝑝̅̅̅) that appears instantaneously 

at the onset of loading. However, for the locally blasted plates, particularly those of loading radius 

𝑟𝑒/𝐿 < 0.4 , the trace of plastic strain becomes intrinsically cumbersome due to the complex 

nature of the load. Furthermore, there is always certain width observed with the maximum (𝜀𝑝̅̅̅). 

Nevertheless, the size of central plastic zone broadens with the increase of load radius in the FE 

model, which corroborates with the analytical results. The distribution of the displacement, 

equivalent plastic strain and Mises stress fields at various times are illustrated in Figure 7-30 -

Figure 7-31. 

The numerical results in Figure 7-32 (a)-(b) compare favourably with those of the analytical 

model, with the error decreasing as the radius of the load increases. The results also indicate the 

assumed velocity profile predicts the permanent deformation with reasonable accuracy, with 

error less than 17% in for most loading radii (Figure 7-32 a). Some differences in prediction of 

the permanent deformation may be due to the influence of material elasticity. With the increase 

of the material strength, the strain energy stored elastically during the impact would be 

significant which influences the post-peak behaviour. However, as the plate thickness increases, 

the rigidity of the plate increases, thus the contribution of the elastic energy to dissipate the work 

done by the load decreases. Consequently, the system can be idealised as rigid body in which case 

the analytical formulations of rigid-perfectly plastic model suffice to predict the response, i.e. the 

case studied here. 
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(a) (b) 

Figure 7-32 (a) Variation of the permanent deformation with load radius, impulsive loading (b) Variation 

of the permanent deformation with load magnitude, dynamic load. 

 

In  Figure 7-33a comparison of the energy effectiveness ψ′, i.e. the ratio of the initial kinetic 

energy to Specific Energy to Tensile Fracture is also presented for 20mm panels. This parameter 

is conducive to compare the effectiveness of energy absorption of plates made of various 

materials for design purposes. The energy effectiveness obviates the need for experiments, since 

it may be calculated theoretically as the SETF, i.e. the area under the stress-strain curves 

measured experimentally in quasi-static tests, the load parameters and the impulsive velocity in 

most blast scenarios are known 𝑝𝑟𝑖𝑜𝑟𝑖. 

  

Figure 7-33 The dimensionless energy (𝛙′) predicted theoretically  and numerically  on 20mm plate, 

the dimensionless deformations predicted theoretically  and numerically   for 10 and 20mm target 

plate

 

‘ 
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7.14 SUMMARY AND CONCLUSIONS 

In this chapter, an analytical model in chapter 4 was extended to predict the response of 

simply supported, monolithic thick square plates-which behaves as rate insensitive, ductile metal 

when impacted by dynamic and impulsive generic blasts.  

While the Mindlin-Reissner plate theory was incorporated in the analysis, the plate was 

assumed to be sufficiently thick, with the focus on the transverse shear effects while ignoring the 

build-up of membrane resistance. Thus, the overall response is governed by the interaction of 

bending and transverse shear. With idealisation of rigid-perfectly plastic behaviour in mind, the 

analytical formulations for mid-point and support transverse deformations were obtained in 

terms of impulsive velocity that incorporates the localisation of the blast. The deformations were 

both affected by the transverse shear in the low range of plate slenderness ratio (𝜈 < 2). This 

range of 𝜈  is impractical in the design applications of protective systems. The midpoint and 

support transverse displacements have been found to be both affected by the transverse shear in 

the low range of 𝜈 . The influence of transverse shear was found even less significant for the 

localised blast. In such cases, the influence of bending would suffice to estimate the response of 

the plates. 

On the contrary, the theoretical results showed that pulse shape effect plays a considerable 

role in the permanent deformation of the non-impulsively localised loaded plates. Thus, the 

assessment of the blast response is fraught with difficulty since it is impractical to experimentally 

monitor the pressure data of localised loads. However, the pulse shape effects virtually fall onto 

a single curve, when using  𝜂𝑒 = 𝑝𝑒/𝑝𝑐 . 

 

Parametric studies on impulsively loaded plate showed good correlations between the 

numerical and analytical models. 
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8 CHAPTER 8 

Dimensional Analysis  

8.1 BACKGROUND 

It has already been established that the blast loads from proximal charges give rise to a 

localised mode of failure compared to the those emanated from far field charges. With the ever-

increasing demand to identify the blast load parameters, the dimensional analysis provides a 

useful set of dimensionless numbers useful for scaling purposes and consequentially avoid 

unnecessary repetition of results in dimensionless space. Thus, the major thrust of this chapter is 

driven by the particular deliberation on the dimensionless form of the parameters influenced by 

localised blast. The dimensionless parameters aid the designers to predict the blast load 

conditions that will ensue rupture in the structural elements. 

The context of the present chapter serves two purposes:  

1-  To conduct a dimensional analysis to derive a set of dimensionless parameters that can 

fully elucidate the parameters that characterise the phenomenon of the blast load, the 

generic blast load variations (both spatial and temporal) and plated structure response 

due to such phenomenon.  

2- To ascertain the effectiveness of the structure to withstand various blasts scenarios. This 

is achieved by predicting the dimensionless impulse and energy absorbing effectiveness 

parameters.  

A portion of the work in this chapter has been published in the International Journal of 

Multiphysics [27]. 

8.1.1 Dimensional analysis 

Dimensional analysis is a useful tool of generalisation and is used here to ascertain the 

phenomenon of blast loading and the physics of response of full-scale prototype through the study 

of geometrically similar small-scale models, without the necessity of conducting experiments on 

the former. The principle of scaling enables the engineers to obtain a set of dimensionless 

parameters through multiplicative combination of defining variables used in numerical 

calculations or experimental measurements.  

In the past, dimensionless parameters have been utilised by various researchers to study the 

elastic and/or plastic response of the structures to blast loads. The work by Neuberger et al. [24]  

on numerical analysis predicted a marginal 7% difference of dimensionless maximum 
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deformation between the small-scale model and a full scale prototype four times as large. The 

authors stated the discrepancy was due primarily to the change in material properties during 

scaling. Their experimental results, however, showed a 10% difference in peak deflections.  

In other works of literature, the small-scale model results have been generally furnished in 

terms of a non-dimensional impulse parameter (NDIP) against characteristic response 

deformations (viz., permanent normalised midpoint deflections), the empirical models alike have 

been proposed and discussed in Section 4-5. However, relying on impulse and deflections alone 

can be misleading, because in most practical cases, the loading regime may be characterised as 

dynamic rather than impulsive. Furthermore, much of the research in the literature was based on 

ad hoc basis, focused on providing expressions for the response of the structure. Such analyses 

are devoid of proposing expressions to actually describe the air blast load itself and the ensuing 

localised response. The present chapter derives a set of dimensionless parameters that can fully 

delineate both the blast loading effects and the structural response thereof. It is predicted that 

these parameters would aid the designer with some 𝑝𝑟𝑖𝑜𝑟𝑖 knowledge of the blast phenomenon 

without the need to conduct complex experimental or numerical analysis. 

8.2 NON-DIMENSIONAL PARAMETERS  

8.2.1 Localised blast load 

The presumed blast wave assumed throughout this thesis is generated from a cylindrical 

explosive of certain mass 𝑀𝑒 , the heat energy per mass of 𝑄𝑒 , having the diameter 𝐷𝑒, which is 

placed at stand-off distance 𝑑 from the target. This gives parameters defining the blast source 

uniquely as: 𝑀𝑒 , 𝑑, 𝐷𝑒, and 𝑄𝑒 .  

The blast wave pressure represents  a multiplicative decomposition of functions of the spatial 

part (also called load shape) and temporal part (pulse shape) [152], given in Eqn. (8-1).  

𝑝(𝑟, 𝑡) = 𝑝0𝑝1(𝑟)𝑝2(𝑡) (8-1) 

The spatial distribution of the blast is already discussed in (5-1). Thus, the parameters that 

fully define the loading profile are: 𝑝0, 𝑡𝑑 , 𝛼, 𝑏  and 𝑅𝑒 . It should be noted that the parameter 𝑎 =

𝑒𝑏𝑅𝑒  is not an independent parameter as it links the two functions proposed for the spatial 

distribution of loading. The temporal function of the blast is assumed as  

 

𝑝2(𝑡) = (1 − 𝑡/𝑡𝑑  )𝑒
−𝛼𝑡 (8-2) 
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It is assumed that the blast overpressure is imparted transversely on the target, i.e. the load 

is axisymmetric at the wave target interface, thus, a quadrangular plate of characteristic half-

length  𝐿 , characteristic thickness 𝐻, having the density 𝜌𝑝 , made of ductile material of Young 

modulus 𝐸  and quasi-static yield stress 𝜎0  gives rise to an axisymmetric displacement field of 

final maximum transverse deformation 𝑊𝑓 . The dynamic flow stress is described with simplified 

form of Johnson-Cook constitutive model given in Eqn. (8-3). 

 

𝜎′𝑦 = [𝐴1′ + 𝐵1′𝜀
𝑛][1 + 𝐶𝑙𝑛(𝜀̇∗)] (8-3) 

where 𝐴1′ = 𝜎0 is the static yield stress, 𝐵1
′  and 𝑛 are the hardening constant and exponent, 

respectively. While this model ignores the Bauschinger effect, it conveniently predicts the visco-

plasticity and strain hardening behaviour of isotropic material which undergo large 

deformations. Thus, the parameters attributed to the material and geometric properties of the 

plate are 𝑊𝑓 , 𝐻, 𝜌𝑝,  𝜎0 , 𝐿, 𝐵1′, 𝐸, 𝜀
.
.  

The rank nullity theorem was exercised, and the dimensional parameters identified in Table 

8-1. By applying Buckingham’s Pi-theorem, a system of 17 independent variables over the rank 

of 3-dimensional matrix of equations leaves a kernel of (17-3=) 14 dimensionless Π parameters. 

The coefficients of Table 8-1 satisfy the conditions of Eqn. (8-4). 

Table 8-1 Dimensional parameters of load -structure system 

Parameter [𝑀] [𝐿] [𝑇] 𝑎𝑖 Parameter [𝑀] [𝐿] [𝑇] 𝑎𝑖 

𝑊𝑓 0 1 0 𝑎1 𝑏 0 -1 0 𝑎10 

𝐻 0 1 0 𝑎2 𝛼 0 0 -1 𝑎11 

𝜌𝑝 1 -3 0 𝑎3 𝑡𝑑 0 0 1 𝑎12 

 𝜎0 1 -1 -2 𝑎4 𝑝0 1 -1 -2 𝑎13 

𝐿 0 1 0 𝑎5 𝑄𝑒  0 2 -2 𝑎14 

𝐵1′ 1 -1 -2 𝑎6 𝑀𝑒  1 0 0 𝑎15 

𝐸 1 -1 -2 𝑎7 𝐷𝑒  0 1 0 𝑎16 

𝜀
.
 0 0 -1 𝑎8 𝑑 0 1 0 𝑎17 

𝑟𝑒  0 1 0 𝑎9      
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝑎1 − 𝑎2 = 0

𝑎10 − 𝑎16 = 0

3𝑎12 + 𝑎13 + 1/2 𝑎14 − 𝑎15 = 0

𝑎16 − 𝑎17 = 0

2𝑎15 − 6𝑎16 + 𝑎14 − 𝑎3 − 𝑎4 = 0

2𝑎16 − 𝑎14 − 2𝑎12 = 0

𝑎11 − 𝑎12 = 0

𝑎2 − 𝑎5 = 0

𝑎9 − 𝑎16 = 0

𝑎9 − 𝑎5 = 0

𝑎7 − 𝑎6 = 0

𝑎3 + 𝑎16 − 𝑎15 = 0

𝑎6 − 𝑎3 − 𝑎14 = 0

𝑎8 + 𝑎12 = 0

 (8-4) 

 

Solving the Eqn. (8-4), the 14 dimensionless parameters are extracted as defined by Eqn. ‘s 

(8-5)-(8-18): 

 

Π1 =
𝑊𝑓

𝐻
 (8-5) 𝚷𝟐 = 𝒃𝑫𝒆 (8-6) 

Π3 =
𝑝0√𝑄𝑒𝑡𝑑

3

𝑀𝑒

 (8-7) 𝚷𝟒 =
𝒅

𝑫𝒆
 (8-8) 

Π5 =
𝑀𝑒

𝐷𝑒
3 √

𝑄𝑒
𝜌𝑝𝜎0

 (8-9) 𝚷𝟔 =
𝑫𝒆

√𝑸𝒆𝒕𝒅
 (8-10) 

Π7 = 𝛼𝑡𝑑 (8-11) 𝚷𝟖 = 𝑳/𝑯 (8-12) 

    
Π9 =

𝑟𝑒
𝐷𝑒

 
(8-13) 𝚷𝟏𝟎 = 𝒓𝒆/𝑳 (8-14) 

Π11 =
𝐸

𝐵1′
 (8-15) 𝚷𝟏𝟐 =

𝝆𝒑𝑫𝒆
𝟑

𝑴𝒆

 (8-16) 

Π13 =
𝐵1′

𝜌𝑝𝑄𝑒
 

(8-17) 𝚷𝟏𝟒 = 𝜺
.
𝒕𝒅 (8-18) 
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It should nevertheless be mentioned that various parametric relations may be recognised 

from the Eqns. (8-5)-(8-18), while through some algebraic manipulation, the unknown 

parameters of interest, 𝑝0, 𝑏, 𝑡𝑑 , 𝛼 , 𝑟𝑒 ,𝑊𝑓 are all found to be related to the quotient (
𝑑

𝐷𝑒
) as: 

𝑝0 =
𝐸𝑀𝑒

𝜌𝐷𝑒
3
𝑓1 (

𝑑

𝐷𝑒
) (8-19) 

𝑏 =
1

𝐷𝑒
𝑓2 (

𝑑

𝐷𝑒
) (8-20) 

𝑡𝑑 =
𝐷𝑒

√𝑄𝑒
𝑓3 (

𝑑

𝐷𝑒
) 

(8-21) 

𝛼 =
√𝑄𝑒
𝐷𝑒

𝑓4 (
𝑑

𝐷𝑒
) (8-22) 

𝑟𝑒 = 𝐿𝑓5 (
𝑑

𝐷𝑒
) (8-23) 

𝑊𝑓

𝐻
=

𝑀𝑒

𝜌𝑝𝐷𝑒
3
𝑓6 (

𝑑

𝐷𝑒
) 

(8-24) 

The dimensionless functions are obtained by curve fitting approximations onto the results of 

a series of numerical studies. It should be stressed that, with armour steel in mind, the strain rate 

sensitivity parameters have not been investigated in this study, as the material exhibits little 

sensitivity to this phenomenological effect.  

8.3 EXPERIMENTAL SETUP 

8.3.1 Material characterisation 

Some of the experimental tests on ARMOX steel panels have been carried out by Ref.’s [119], 

[133]. The details of the experimental setup have already been discussed earlier, however; the 

supplementary results of AR500T not in the scope of the earlier studies are set out in Table 8-2 

and Figure 8-1. These panels had identical geometry to the earlier panels and tested on ballistic 

pendulum apparatus but subjected to a range of charge mass from 24g to 70g PE4.  
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(a) (b) 

 
 

 

 
(c) 

Figure 8-1- Rupture of ARMOX panels with 25mm stand-off, (a) 70g charge AR500T (specimen C2), (b) 

60g charge AR500T (specimen C3), (c) 60g charge AR440T (specimen B5) 

 

Table 8-2 Experimental results on armour panels with 50mm charge diameter 

Test 
Configuration 

Designation d 𝑴𝒆 𝑾𝒇 
Impulse  

(N.s) Failure mode 

AR370T ASP1 25 40 29.5 80 
II*c (partial 

tearing in central 

area) 

AR440T B5 25 60 
Crack length 

20.25mm 
117.2 II*c 

AR500T 

C1 

25 

50 23.4 98.3 Itc 

C2 70 
Capped 31mm 

dia., 4 cracks 
114.7 IIc 

C3 60 
Crack length 

22.4mm 
129.2 II*c 

C4 

38 

70 22.3 107.5 

Itc 
C5 60 24.3 126 

C7 33 13.98 57.34 

C8 24 11.48 43.76 
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8.3.2 Constitutive Damage models  

Ductile damage and fracture of steel and RHA steel under ballistic conditions have been 

investigated numerically and experimentally. In addition, several constitutive damage models 

have been proposed in the literature. The multi-axial state of stress in a constitutive model has 

been commonly expressed as a function of accumulated plastic strain, plastic strain rate and 

absolute temperature [62], [187], [188].  

Gàlvez et al [189] measured the stress intensity factor history-integral to calculating the 

fracture toughness, of armour AR500T using mixed numerical /experimental methods. The 

difference of the dynamic fracture toughness to the static counterpart was insignificant, clearly 

because the armour steel materials are insensitive to strain rates. Gupta and co-authors [190] 

investigated the constitutive behaviour of AR500T steel under varying stress state, strain rate and 

temperature and observed significant decrease in strength of beyond 200oC, but significant 

increase in ductility.  

 

In microscopic level, the terminology ductile damage denotes the fracture as a result of 

nucleation, growth and coalescence of the voids within the material [128], [191], [192], while in 

the macroscopic level, it is the connotation of the large deformation of the material at the onset 

of necking, which is followed by stress degradation. Fracture of the body results in discontinuity 

of the total displacement field, whereas dislocation reflects the discontinuity of the elastic/plastic 

displacement field. [193] 

Ductile fracture is characterised by the accumulation of the plastic strain at the current stress 

state described by  

𝒟 = ∫
𝜀
.

𝑝𝑙

𝜀𝑓
𝑑𝑡      (8-25) 

where 𝒟 is the damage parameter which equates to maximum 1 when the material element 

erodes, 𝜀
.

𝑝𝑙  denotes the plastic strain rate, while 𝜀𝑓 is the fracture strain, which is a function of the 

normalised third deviatoric invariant (𝜁), temperature and strain rate at any proportional stress 

state, and the stress triaxiality (𝜍), given by Eqn. (8-26). Stress triaxiality is the quotient of mean 

flow stress (𝜎𝑚)- also referred to as the Hydrostatic pressure stress- to effective stress (𝜎𝑒𝑓𝑓).  

𝜀𝑓 = ϕ(𝜍, 𝜁)𝑔(𝜀
.

𝑝𝑙)ℎ(𝑇) (8-26) 

At the onset of necking, the state of stress is represented by 
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𝜎 = (1 − 𝐷)𝜎 (8-27) 

In Eqn. (8-27), 𝜎  and �̅�  represent the state of stress tensor with and without damage, 

respectively. At the point of maximum damage parameter, the elemental stresses vanish, causing 

the material failure. In microscopic level, this is characterised by the coalescence and growth of 

voids in the material particles. Studies reveal that the triaxiality, the state of stress and material 

ductility are interrelated. Higher triaxiality increases the speed of void growth void growth [194] 

rapidly, resulting in the reduced ductility and hence fracture strain [190], [195], [196] .  

The functions ϕand 𝑔 can be identified from the JC ductile fracture criterion [128], [197] in 

(8-28).  

𝜀𝑓 = (𝐷1 + 𝐷2𝑒
−𝐷3𝜍)(1 + 𝐷4 ln 𝜀

.

𝑒𝑞
∗
)(1 + 𝐷5𝑇

∗)    (8-28) 

where 𝐷1… .𝐷5  are the material constants determined from experimental tests. The ratio of 

strain rate to the reference strain rate is given as 𝜀
.

𝑒𝑞
∗
= 𝜀

.
/𝜀0, where the reference strain rate is 

usually set as 1𝑠−1 . 𝑇∗  represents the homologous temperature, i.e. 𝑇∗ =
(𝑇 − 𝑇𝑟)

(𝑇𝑚 − 𝑇𝑟)
⁄  

where 𝑇𝑟 and 𝑇𝑚 are the room temperature and melting temperature, respectively. Basaran [198] 

proposed an extended form of the ductility function ϕ(𝜍, 𝜁) defined by the JC model as a quadratic 

truncation of the stress triaxiality. The parameters 𝐷1 − 𝐷5 from JC model were averaged and 

compared against the parameters proposed by Bridgman [199] and Gupta et al [190] in Table 8-3, 

while Figure 8-2 illustrates the influence of the triaxiality on the fracture surface. 

 

Table 8-3- JC parameters proposed in the literature 

JC parameters  𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 

JC-Average 0.040 6.71 -2.63 -0.0035 1.4 

JC-Bridgman 0.017 2.30 -3.10 -0.0035 1.4 

JC-Gupta et al.  0.043 2.15 -2.76 -0.0066 0.86 

 

Ignoring the temperature and strain rate effects, the JC parameters proposed by Bridgman and 

Gupta et al. yield conservative estimates of the fracture surface, as observed in Figure 8-2. In this 

work, the parameters from JC-Bridgman model were used to estimate the fracture strain at each 

triaxiality.  
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(a) (b) 

Figure 8-2. Fracture surface of the JC models (a) JC- average parameters vs JC-Bridgman (b) JC 

Bridgman vs JC-Gupta et al 

 

It is assumed that the material degradation occurs due to linear softening of the stress strain 

curve. In this work, Hillerborg’s damage evolution [200], assuming the brittle fracture concept, is 

implemented in the FE models. To eliminate the mesh dependency, the energy per unit area of 

crack is defined as [144] 

𝐺𝑓 = ∫ 𝜎
𝑢𝑝𝑙

0

𝑑�̅�𝑝𝑙 = ∫ �̅�𝜎𝑑𝜀0̅
𝑝𝑙

�̅�𝑓
𝑝𝑙

�̅�0
𝑝𝑙

  (8-29) 

where �̅�  is the characteristic lengths of the element formulation, �̅�𝑝𝑙 = �̅�𝜀0̅
𝑝𝑙

 represents the 

traction separation displacement (crack tip displacement). The stress degradation beyond plastic 

strain at the onset of necking is assumed linear. Elements are removed when damage evolves in 

all section points.  

8.4 NUMERICAL MODELS AND MATERIALS 

A Multi Material Arbitrary Lagrangian Eulerian analysis representing free air blast load was 

performed in the same spirit as discussed earlier in Chapter 3. The details of the material models 

(air and explosive) are presented in (Table 4-3). The blast wave is assumed to be generated by 

detonation of a cylindrical composition-C4 (PE4) plastic explosive of prescribed mass 𝑀𝑒 =

40𝑔 at various stand-offs, having the characteristic diameter 𝐷𝑒 = 50𝑚𝑚 and constant charge 

height determined as ℎ𝑒 =
4𝑀𝑒

𝜋𝜌𝑒𝐷𝑒
2 = 12.73𝑚𝑚 . The detonation is assumed to initiate from the 

centre of the explosive mass. The value of specific heat energy 𝑄𝑒 for PE4 is taken from Ref [201]. 
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A total of 9 UEL simulations were carried out over the range of 0.5 ≤  
𝑑

𝐷𝑒
≤ 3, which consisted 

of six simulations where stand-off increased incrementally by 25m, while the rest entailed 𝑑 =

27, 30, 38mm . In crude terms, by utilising the Hopkinson- Cranz law, the assumed range 

corresponds to the full-scale spherical IED (Improvised Explosive Device) threats having 

diameter of 70-700mm at 300-500mm stand-off, assuming the spherical and cylindrical 

explosives to have the same mass to generate the same pressure load.  

8.4.1 FE damage models 

In this section, the panels which underwent rupture during the experiments were also 

investigated numerically, using the MMALE techniques, as comparison and supplementary to the 

experimental data.  

The damage parameters of the panels were initially investigated using the pure Lagrangian 

simulations, with the revere FE technique. The prescribed loading consisted of a localised blast of 

600MPa magnitude and 25mm central constant load radius, which lasted for 30𝜇𝑠.  

The relevant simulations were carried out using CEL technique, except the steel panels were 

further partitioned into three levels of mesh refinements across its characteristic in-plane 

directions. The central portion of the plate was a square of 60mm side length, discretised with a 

biased mesh of 1.5mm to 5mm element length, near the vicinity of the PE4 charge. Within this 

portion a smaller square of 30mm length was circumscribed, associated with an unbiased mesh 

of 1.5mm elemental length. The remaining of the plate had a coarser mesh of 5mm element length. 

Linear conventional shell and continuum shell elements with enhanced hourglass control and 7 

Simpson’s integration points through thickness were used. The plate prescribed with three 

elements stacking through section thickness as illustrated in Figure 8-3. 

 

Figure 8-3. FE mesh of SC8R elements 
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8.5 DIMENSIONAL ANALYSIS RESULTS AND DISCUSSIONS 

For each test, the inflow of pressure was quantified along the rigid target gauge points in radial 

direction. In Figure 8-4 and Figure 8-5 the pressure history at different gauge points is recorded, 

while Figure 8-6 illustrates the advection of the explosive and fluid surface interaction at different 

times, while  

When the characteristic features of the loading parameters (spatial and temporal) are known 

a priori, an approximate to the transverse deflection of the plate in Eqn. (8-24) due to such a load 

can be measured by utilising UEL analysis. In each case, the loading in the separate pure 

Lagrangian analysis was implemented by generating a 3d matrix of the pressure load associated 

with the generalised coordinates of each element, applied directly onto the panels. Figure 8-7 

shows the maximum displacement of the two panels at varying stand-off.  

Using the curve fitting tool in MATLAB, a set of dimensionless functions are obtained as 

presented in Eqns. (8-30)-(8-37), and illustrated in Figure 8-8-Figure 8-14. To investigate the 

influence of charge mass on the decay exponent (b), the numerical results of 60g charge (19mm 

charge height) are also plotted in Figure 8-9. 

𝑓1 = 0.11 (
𝑑

𝐷𝑒
)
−1.153

 (8-30) 

𝑓2 = 4.591 (
𝑑

𝐷𝑒
)
−0.42

 (8-31) 

𝑓3 = 21.56 (
𝑑

𝐷𝑒
) + 54.3 (8-32) 

𝑓4 =
0.359

(
𝑑
𝐷𝑒
) + 2.138

 
(8-33) 

𝑓5 = 0.0363 ln (
0.4𝑑

𝐷𝑒
) + 0.0819 

(8-34) 

𝑓6 = 344.8𝑒
−1.753(

𝑑
𝐷𝑒
 )

 (8-35) 

 

Eqn. (8-24) can be furnished in the form of Eqn. (8-36), where 𝐼∗  is the impulse density 

(impulse per unit area). Thus, the dimensionless function relating the plate response to the 

impulse is given in Eqn. (8-37) and Figure 8-14. Table 8-4 summarises the impulse obtained in 

UEL method by using Eqn. (8-40) over the radial distance (R) of 200mm. 
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Figure 8-4. Pressure load at various radial local 

coordinates ((𝒅/𝑫𝒆  = 𝟎. 𝟐𝟓) 
Figure 8-5. Curve fit of pressure load across the 

target (𝒅/𝑫𝒆  = 𝟎. 𝟓𝟒) 

 

 

 

(a) 𝑡 = 2𝜇𝑠 

 

(b) 𝑡 = 8𝜇𝑠 

 

(c) 𝑡 = 10𝜇𝑠 

 

(d) 𝑡 = 20𝜇𝑠 

 

(e) 𝑡 = 30𝜇𝑠 

 

(f) 𝑡 = 40𝜇𝑠 

 

 (g) 𝑡 = 50𝜇𝑠 

 

 (h) 𝑡 = 60𝜇𝑠 

 

 (i) 𝑡 = 80𝜇𝑠 

Figure 8-6. Advection of the blast wave from 40g explosive in air medium at 25mm stand-off 
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=
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𝐻√𝜌𝑝𝜎0 
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𝑑
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) (8-36) 
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Table 8-4- Mid-point deflection vs impulse of MMALE models for ARMOX 

440T 

Test Number 𝒅/𝑫𝒆 
Impulse  (𝑰) 

(N.s) 
Test Number 𝒅/𝑫𝒆 

Impulse  (𝑰) 
(N.s) 

1 0.5 65.11 5 1 51.78 

2 0.54 59.87 6 1.5 44.41 

3 0.6 56.68 7 2 33.99 

4 0.76 54.52 8 2.5 24.82 

   9 3 22.55 

 

Clearly, regarding the proximal blasts with 
𝑑

𝐷𝑒
≤ 1.5, an incremental decrease in the abscissa 

leads to an abrupt increase in the ordinate of Figure 8-8-Figure 8-13. The value of 𝑑 = 1.5𝐷𝑒 can 

be considered as a transition point in the response type of the target plate, beyond which the 

variation of the deformation with pressure is smoot, the blast load is projected more uniformly 

onto the plate surface, therefore the deformation and the profile shape shift from a local to a more 

global mode.  

As observed in Figure 8-9-Figure 8-12, while the load radius may be affected by the charge 

mass, the variation of load decay constant 𝑏 with the charge mass is smooth linear. Thus, the 

spatial parameters 𝑏, 𝑟𝑒  of most blasts are constrained to a specific range and cannot grow 

unrestrained. considering the mass of explosive and the fluid (air) in which the blast wave 

propagates, then Eqn. (8-20) may be modified as 𝑏 =
𝑀𝑒

𝐷𝑒
4𝜌𝑎

𝑓′ (
𝑑

𝐷𝑒
) . Thus, combining this 

expression with Eqn. (8-31) yields: 

 

𝑓′2 (
𝑑

𝐷𝑒
) =

𝐷𝑒
3𝜌𝑎
𝑀𝑒

𝑓2 (
𝑑

𝐷𝑒
) (8-38) 

giving: 

 

𝑓7 = −2.036(
𝑑

𝐷𝑒
) + 10.08 0.5 ≤  

𝑑

𝐷𝑒
< 0.75 

(8-37) 
 

𝑓7 = 4.28 (
𝑑

𝐷𝑒
)
−2.5

+ 0.1 0.75 ≤
𝑑

𝐷𝑒
≤ 3 
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𝑏𝐷𝑒 =
𝜌𝑝
𝜌𝑎

𝑊𝑓𝑓2

𝐻𝑓6
 (8-39) 

 

The furnished expression (8-39), plotted in Figure 8-9, estimates the decay constant 

independent of the charge mass with reasonable degree of accuracy when combined with Eqn. 

(8-38), as presented in Figure 8-15. 

 

  

Figure 8-7. Maximum deformation of the panels with (a) 𝒅/𝑫𝒆 = 𝟎. 𝟓 and (b) 𝒅/𝑫𝒆  = 𝟐 

 

 

Figure 8-8. Dimensionless pressure load (Eqn. (8-30)) 
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Figure 8-9. Dimensionless load shape decay constant (Eqn. (8-31)) 

 

 

Figure 8-10. Dimensionless paraments relating the duration of the load (Eqn. (8-32)) 

 

 

Figure 8-11. Dimensionless pulse shape decay constant 𝜶 (Eqn. (8-33) 
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Figure 8-12. Dimensionless 𝒓𝒆 (Eqn. (8-34)) 

 

 
Figure 8-13. Dimensionless permanent deflections of the plate (Eqn. (8-35)) 

 

      
Figure 8-14. Curve fit of normalised displacement-impulse (Eqn. (8-37)) 
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Figure 8-15. Normalised data of load decay parameter 

 

8.6 PREDICTION OF RUPTURE IMPULSE 

8.6.1 Damage models 

A comparison of the crack lengths of panels is presented in Table 8-5. The cracks grow 

unidirectionally from the pinnacle of the deformed smaller dome at the plate centre Figure 8-16. 

Unfortunately, in light of the CEL model C2 failed during simulations, the relevant Lagrangian 

model was assessed (Figure 8-16 (a)). The Lagrangian model was subjected to a 780MPa load of 

25mm central constant radius and 30 𝜇. 𝑠  load duration. The JC-Bridgman fracture model 

overpredicted the damage surface, although the sketched trajectory of cracks is somewhat 

analogous to the experiment observations. The observed difference in the crack propagation of 

the numerical and experimental damage models is attributed to the estimation of the fracture 

strain, triaxiality and fracture energy. 

 

Table 8-5- comparison of the panels crack length 

Model B5 ASP1 C3 C2 

Crack 
length 
(mm)  

Numerical 23.2 12.7 33.7 
Capped 34mm 

dia, 
4 cracks 

Experimental 20.25 - 22.4 
Capped 31mm 
dia., 4 cracks 
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(a) (b) 

 

(c) 

Figure 8-16. Crack propagation along the panel axes (a) Lagrangian model C2, (b) model C3, 

(c) AR370T (ASP1) 

 

8.6.2 Impulsive loading 

Eqn. (8-40) represents the impulse imparted to the plate from the centre of projection to the 

characteristic radial distance 𝑟∗ = 𝑟  from centre:  

𝐼(𝑟) = 2𝜋∫ ∫ 𝑝(𝑟∗, 𝑡)𝑟∗𝑑𝑟∗𝑑𝑡∗
𝑟

0

𝑡𝑑

0

 (8-40) 

Assuming the impulse imparted over the square surface target of characteristic side length 𝐿 

is equivalent to a circular target of radius R, and defining 𝜔0 = 𝑟𝑒/𝐿 and �̅� = 𝑟/𝐿, we integrate 

Eqn. (8-40) to give: 

𝐼(�̅�) =  

{
 
 

 
                                                  

𝜋𝑝0(𝛼𝑡𝑑 + 𝑒
−𝛼𝑡𝑑 − 1)(𝜔0𝐿)

2

𝑡𝑑𝛼
2

                                                     �̅� < 𝜔0

𝜋𝑝0(𝛼𝑡𝑑 + 𝑒
−𝛼𝑡𝑑 − 1)

𝑡𝑑𝛼
2 ((𝜔0𝐿)

2 +
2

𝑏2
((1 + 𝜔0𝐿𝑏) − 𝑒

−𝑏𝐿(�̅�−𝜔0)(1 + �̅�𝐿𝑏)))    �̅� ≥  𝜔0

 
(8-41) 
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The total impulse that the charge could potentially impart to the target would thus be given 

by: 

𝐼(∞) = lim
�̅�→∞

{𝐼(�̅�)} =
𝜋𝑝0(𝛼𝑡𝑑 + 𝑒

−𝛼𝑡𝑑 − 1) 

𝑡𝑑𝛼
2

[(𝜔0𝐿)
2 +

2(1 + �̅�𝐿𝑏)

𝑏2
] (8-42) 

Thus, a non-dimensional impulse, 𝑖, can be defined as the quotient of the impulse imparted to 

a target over the total impulse that the blast can generate:  

𝑖 =
𝐼(�̅�)

𝐼(∞)
=

{
 
 

 
  

(𝜔0𝐿)
2

2 + 2𝜔0𝐿𝑏 + (𝜔0𝐿𝑏)
2
                               �̅� < 𝜔0 

1 −
2𝑒−𝐿𝑏(�̅�−𝜔0)[1 + �̅�𝐿𝑏]

2 + 2𝜔0𝐿𝑏 + (𝜔0𝐿𝑏)
2 
                 �̅� ≥  𝜔0

  (8-43) 

Eqn. (8-43) indicates the efficacy of the plate to dissipate the transmitted impulse, measured 

against the total impulse required to penetrate the plate (rupture impulse or impulse threshold). 

Potentially, Eqn. (8-43) could be used in design purposes of protective armour plates. Most blast 

scenarios investigated here correspond to 50 ≤ 𝑏 ≤ 120, for the finite region of 0 < �̅� < 0.5 the 

charge is 95% efficient (Figure 8-17). Turning the argument around, the reciprocal of Eqn. (8-43) 

determines the efficiency of the blast wave to perforate the target, with 𝐼(�̅�)/𝐼(�̅�) = 1 indicating 

the full impulse imparted to the target, a measure used in military purposes. 

For the blast loads generated by the same mass of explosive, Figure 8-18 suggests that most 

catastrophic scenarios would be the small charge diameter and larger charge height, rather than 

high charge diameter and lower charge height. This is due to the nature of the detonation waves 

in a cylindrical explosive, the shock front advances in the direction perpendicular to its 

orientation plane. The pressure wave generated by the explosive product of larger 

height/diameter ratio would therefore concentrate on the centre of its projection on the plate, 

imparting more energy locally, thus possessing a higher value of surface traction, giving rise to 

more localised penetrating effect. For example, within the finite region of 0 < 𝜆 < 0.5 , most 

localised blast load scenarios considered here correspond to the range of 60 < 𝑏 < 120 , 

generating a potentially perforating impulse. To predict which panels would undergo rupture, a 

set of   
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Figure 8-17. interaction surface of the dimensionless impulse 𝒊 

 

 

 

         

Figure 8-18. interaction surface of dimensionless impulse 𝒊 against normalised stand off 

 

8.6.3 Energy Absorbing Effectiveness Factor (EAEF) 

8.6.3.1 Numerical investigations 

Many parameters have been introduced by authors to assess the effectiveness of structural 

members subjected to static and dynamic loading [202]–[206]. A dimensionless energy absorbing 

effectiveness factor was introduced by Jones [207] as: 

𝜓 =
𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑎𝑛𝑑 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑏𝑦 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟

𝑒𝑛𝑒𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑢𝑝 𝑡𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑖𝑛 𝑡𝑒𝑛𝑠𝑖𝑜𝑛
 (8-44) 

𝑖 = 𝐼(𝜆)/𝐼(∞)  

d/De 𝜆 

𝑖 = 𝐼(𝜆)/𝐼(∞)  
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The denominator of Eqn. (8-44) is the energy absorbed in the same volume of material up to 

rupture in a uniaxial tensile test specimen. The dynamic energy absorbing effectiveness factor 

was also defined, similar to Eqn. (8-44) for the energy absorbing effectiveness factor subject to 

dynamic loads. Eqn. (8-44) can be modified and rewritten as: 

𝜓′ =
∫ 𝜙(𝜀, 𝜎0, 𝜀

.
)𝜀𝑑𝜀

𝜀𝑓
0

𝑉𝑝𝑆𝐸𝑇𝐹
 (8-45) 

Where 𝜙(𝜀, 𝜎0, 𝜀
.
) is the strain rate dependent stress tensor of the material subject to dynamic 

loads, 𝑉  is the volume of the material and 𝑆𝐸𝑇𝐹 = 70𝑀𝐽/𝑚3  is the Specific Energy to Tensile 

Fracture of the material, which is the area under the stress strain curve of the material up to 

failure in the quasi-static test. Clearly, Eqn. (8-45) can be used to determine the effectiveness of 

structure under various blast loading scenarios, independent of the material type and geometry. 

This is particularly useful for the designer to determine the effectiveness of the structures of 

various geometry and material to dissipate the transmitted momentum of blast without rupture. 

For example, considering the blast generated by an explosive of 𝑀𝑒 = 60𝑔, 𝑑 = 25𝑚𝑚 and 𝐷𝑒 =

50𝑚𝑚, the ARMOX 440T panel of 4.6mm thickness ruptured during the experiment. Thus, the 

calculated energy absorbed effectiveness factor can be stipulated as the pivot threshold energy to 

predict rupture of various ARMOX440T panels, when subjected to various proximal or distal 

pressure waves at increased stand-off but generated with disc explosives of higher masses and 

(Figure 8-19).  

 

Figure 8-19. Dimensionless energy absorbing effectiveness factor 𝝍′ 

for ARMOX 440T, the region of  𝝍′ > 𝟎. 𝟐𝟒𝟖 correspond to the blast 

load which is predicted to penetrate the plate. 
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Figure 8-20. Prediction of the failure of ARMOX 370T panels with 

𝑴𝒆 = 𝟔𝟎𝒈 ( ), using experimental result of ARMOX370T which 

exhibit Mode II failure (partial tearing at centre) with 𝑴𝒆 = 𝟒𝟎𝒈, 

𝒅/𝑫𝒆  = 𝟎. 𝟓 ( ).   

 

The data from the AR370T plates are graphed in Figure 8-20. The plastic flow in the plate was 

characterised by Johnson-Cook visco-plastic model with strain hardening and rate sensitivity 

given as in (Table 3-2) with identical geometric properties to AR370T except with 𝐻 = 3.81𝑚𝑚, 

𝜎0 = 𝐴1 = 1157𝑀𝑃𝑎 and 𝜀𝑓 = 8% . In this case, the threshold energy corresponds to loading 

parameters of 𝑀𝑒 = 40𝑔 , 𝑑 = 25𝑚𝑚  and 𝐷𝑒 = 50𝑚𝑚  [61], which ensued partial crack in the 

centre of the plate. Table 8-6 summarises the deformation and the predicted failure modes of the 

plates. Whether the panels with higher value of ordinate in Figure 8-20 than those of the threshold 

energy will actually undergo mode II (tearing at the centre) or mode III (shear failure and 

capping) failure is not investigated here and requires further experiments.  

Table 8-6- permanent and maximum transverse mid-point deflection of the 

plate from MMALE analysis 

Test plate 
𝑑 

(mm) 

Range of 

𝑀𝑒 (g) 

𝑊𝑓  

(mm) 

𝑊 

(mm) 
Predicted Failure mode 

AX370T 

25 40 29.5 42.93 II (from expt.) 

25 

60 

-(*) 47.12 II 

27 33.73 45.20 II 

30 31.82 43.65 II 

38 26.21 38.58 I 

50 20.33 32.90 I 

AX440T 

25 

60 

28.91 40.21 II (from expt.) 

27 27.59 38.80 I 

30 27.78 37.84 I 

38 23.27 33.90 I 

50 17.46 28.79 I 

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.5 0.6 0.7 0.8 0.9 1

ψ
'

d/De
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8.6.3.2 Theoretical predictions of rupture impulse  

McDonald et al. [52] carried out a series of experimental studies on class 1 RHA, HHA and 

improved rolled homogeneous armour (IHRA) steel. The authors proposed a minimum mass of 

PE4 explosive to induce rupture at stand-off 25mm and 13mm of 400mm side length and 4mm 

thick square plates. However, the relationship between the rupture impulse and the stand-off was 

not established. The impulse correction parameter was limited to the plates’ assumed 

characteristic thickness. Thus, the results were valid to the range of stand off investigated while 

full relationship between the stand off, charge mass and rupture threshold may not be explicityly 

defined.  

On the other hand, the concept of energy absorbing effectiveness enables a comparison of 

structural elements, varying in material properties and geometry, to be drawn on their 

effectiveness against the perforation impulse unequivocally. By implementing the principle of 

virtual velocities, the numerator of Eqn. (8-44) may be replaced by the total external energy 

imparted onto the target. The plate acquires its maximum momentum when the load is complete 

at 𝑡 = 𝑡𝑑. By assuming an impulsive load regime and using the expressions of velocity and inertia 

from pattern (A) of motion, a substitution of time derivatives of Eqn. (6-16) in Eqn. (8-47) yields  

𝜓′ =
(𝑐𝑜𝑠(𝜔1𝜏) − 1)(𝜌𝜔1

2(𝜂 − 1)(𝑐𝑜𝑠(𝜔1𝜏) + 1) − 48𝛽𝑝0)(𝜂 − 1)

48𝑈
 (8-46) 

The load parameters of each blast scenario may be evaluated empirically from the Figure 

8-12-Figure 8-15 and Eqn. (8-45) whereby the EAEF of the panels is compared in Figure 8-21. 

The rupture threshold of the material may be estimated as the minimum value of the energy 

absorbing effectiveness factor 𝜓′ where the cracks appeared through the surface of the material, 

which was calculated as 25. At this value, a transition from Mode I failure to higher modes was 

noticeable. 

However, in accordance with the previous experimental findings, it turns out that the 

predictions of rupture impulse in Figure 8-21 are irrespective of the significant influence of stand-

off effects, overestimating the rupture threshold of the panels with high impulse emanating from 

more distal charges (e.g. panel ASP6, ASP4 and C4). Higher impulse emanating from increase of 

charge mass would suggest higher energy absorbing factor, although the increase of impulse was 

offset by the stand-off. The disparity of the prescribed loading parameters (𝑏, 𝑅𝑒 , 𝑡𝑑 , 𝑝0) in each 

blast load scenario would further bring about complications in accurate estimation of the energy 

absorbing effectiveness factor. More often than not, the rapid assessment of localised blast 

response is not straightforward unless a priori knowledge of each load parameter is established 

accurately. To this end, Eqn. (8-45) may be modified into: 
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𝜓′𝑠 = |𝜓′ ln (
𝑑

𝐷𝑒
)| (8-47) 

Which is the EAEF of impulsive loads. To eliminate the pulse dependence, however, the load 

magnitude 𝑝0 and pulse duration 𝜏 may, be replaced with effective load 𝑝𝑒  and centroid of the 

pulse 𝑡𝑚, respectively.  

Using this approach, the pivot threshold of 𝜓′𝑠 was identical for the investigated panels in the 

Table 8-7. Thus, the single non-dimensional parameter can estimate the disparity in the plethora 

of load configurations, as illustrated in Figure 8-22. The mere use of the Non-Dimensional Impulse 

parameter 𝜙𝑞𝑙 should be couched in caveats as it does not account for the influence of the material 

type. For example, Armour ASP1, while the mild steel panel MSP6 and aluminium alloy 

AA5083H116 all ruptured due to similar loading configurations, each gave a different value of  

𝜙𝑞𝑙 = 12.21, 21.87 and 6.08. In contrast, the difference in the values of 𝜓𝑠 of these panels was 

inconsequaential.  With the exception of models ASP1 and ASP4 which impulse measurement 

were higher than the ruptured panels, preliminary predictions of rupture impulse by mere 

utilisation of  𝜓′𝑠 or ensemble with 𝜙𝑞𝑙  is promising. 

Table 8-7-tabulated data of the materials investigated in Figure 8-21-Figure 8-22 

MODEL  𝜙𝑞𝑙  𝜓𝑠
′    𝜙𝑞𝑙  𝜓𝑠

′   𝜙𝑞𝑙  𝜙𝑞𝑙 𝜓𝑠
′  

A
R

3
7

0
T

 

ASP1* 12.21 4.95 

A
4

4
0

T
 

AX24 4.51 0.39 

A
lu

m
in

iu
m

 a
ll

o
y

 

AL1 3.80 0.72 

ASP2 10.09 3.27 B1 5.84 0.66 AL2 3.72 1.74 

ASP3 12.55 5.88 B2 8.28 1.35 AL3 5.35 1.46 

ASP4 21.86 18.06 B3 5.91 1.70 AL4 5.40 3.78 

ASP5 12.29 1.93 B6 9.77 4.78 AL5* 6.08 4.81 

ASP6 15.28 3.01 B5* 12.08 7.36 AL7 3.04 1.14 

ASP7 13.58 0.38 B4 5.77 0.69 AL8 2.98 0.43 

ASP8 15.28 0.46 B7 12.90 3.55 AL9 2.12 0.53 

M
S4

 

MSP1 12.65 1.76 

A
5

0
0

T
 

C1 11.29 3.02 

G
F

P
P

 

TW1 2.96 4.27 

MSP2 19.86 4.37 C2* 14.84 5.26 TW2 2.33 2.54 

MSP6* 21.87 6.54 C3 13.02 4.13 TW3 3.62 6.58 

MSP8 17.99 4.42 C4 12.34 1.98 TW4 2.88 10.18 

MSP10 21.29 3.82 C5 14.47 1.43 TW5 1.71 1.26 

   C7 6.58 0.40 TW6 2.33 6.41 

   C8 5.03 0.23 TW7 1.71 3.18 
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Figure 8-21. Graph of Energy Absorbing Effectiveness for various materials, (-) 

Aluminium alloy AA5083H116,  Twintex GFPP,  AR370T,  AR440T,  

AR500T (data for Aluminium alloy and GFPP were taken from Ref. [61] 

 

 

Figure 8-22. Prediction of rupture based on material type, accounting for the 

stand-off effects.  
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Figure 8-23-In teraction surface of the overloading factor 𝜼, pulse 

factor 𝝎𝟏 and 𝝍𝒔
′   (with 𝝉 = 𝟓𝟎𝝁𝒔, 𝒓𝒆 𝑳⁄ = 𝟎. 𝟏𝟐, 𝒃 = 𝟏𝟎𝟎𝒎−𝟏, 𝑯 =

𝟒𝒎𝒎, 𝑳 = 𝟏𝟓𝟎𝒎𝒎 for High hardness armour (𝝈𝟎 = 𝟏𝟔𝟎𝟎𝑴𝑷𝒂) 

 

 
Figure 8-24 Interaction surface of the influence of load duration and 

overloading factor on 𝝍𝒔
′  for High Hardness Armour (𝝈𝟎 =

𝟏𝟔𝟎𝟎𝑴𝑷𝒂, 𝒓𝒆 𝑳⁄ = 𝟎. 𝟏𝟐, 𝑳 = 𝟏𝟓𝟎𝒎𝒎) 

 

The interaction surface of the parameters such as pulse factor 𝜔1𝜏 , load radius 
𝑟𝑒

𝐿
 and 

overlocing factor on the magnitude of the EAEF are graphed in Figure 8-23-Figure 8-24.  
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8.7 CONCLUDING REMARKS 

This chapter investigated the dynamic plastic response of localised blast loaded steel plates 

through dimensional analyses of the target and close-in blast loading. By implementing the 

piecewise blast function in the analysis, a set of 7 dimensionless functions are identified by 

applying the rank-nullity (Buckingham’s Pi-) theorem. The functions were parametrised in terms 

of standoff/diameter ratio, and obtained in two stages, by a well-known preliminary numerical 

MMALE method in ABAQUS in conjunction with a regression analysis. The MMALE technique was 

based on the full interaction of the PE4 explosive products with the rigid structure, from which 

various loading parameters were obtained. The regression analysis performed on the scatter 

plots of the loading parameters identifies the form of dimensionless functions.   

Preliminary results reveal the existence of a critical stand-off, beyond which the variation of 

the plate deformation, shifts from abrupt to smooth change, demonstrating a shift in the 

sensitivity of the plate response to the projection of the blast. With more proximal blast, the 

projection of the blast is focused on the central part of the plate, leading to large deformations, 

higher deformation gradients and potential rupture of the plate.  

The dimensionless parameters studied here provide a spectrum of data that can render the 

same trend for the response of full-scale prototype plates possessing the same values of 

dimensionless parameters as the small-scale models to blast loads, without having to perform 

rigorous blast testing on the physical panel prototype. 

A series of further FSI simulations was performed using deformable target surface. The 

numerical models were compared against the experimental data, showing good agreements in 

terms of permanent and maximum deformations. Although further investigations are required to 

predict the influence of the FSI on the damage model of the plates and accurate estimations 

accordingly, a commentary on the damage model of the plates was discussed in the context of the 

problem. 

For experimental specimens with loading parameters that resulted in the rupture of the 

panels (Mode II failure), the dimensionless energy absorbing effectiveness factor was quantified 

numerically and utilised to predict the rupture of the plates for more distal blasts but increased 

charge heights (mass). This approach provides a pragmatic tool on prediction the threshold point 

of rupture, at which the transition of the deformed plates mode from mode I to higher modes 

occurs. geometrically similar ARMOX prototype panels, on which the load is generated by a 

cylindrical PE4 charge, assuming the material properties, such as visco-plasticity phenomenon, 

are impervious to scaling laws. 
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9 CHAPTER 9 

Conclusions and recommendations for future work 

9.1 INTRODUCTION 

In light of the scope of this thesis, as outlined in Section 1.5, a literature review of the existing 

work on the subject was explored. The review signified the dearth of any available methods to 

describe the phenomenon of, and effects associated with, the localised blast load emanated from 

certain charge geometry, charge mass and stand-off on quadrangular plates-particularly high 

strength armour steel. The review also investigated the recent methods to capture the transient 

response of the plates, the significance of the localised blasts discussed in experimental and 

numerical studies pertaining to the performance of the high strength steel panels. The thesis also 

reviewed available theoretical models on the blast response of metallic plates, having various 

slenderness ratios, subjected to uniform blast.  

Based on the literature survey, the scope of the first study entailed the findings from a series 

of experimental tests carried out in BISRU, which were supplemented by various numerical. It 

was found imperative to utilise the methods incorporating the FSI effects, such as MMALE, to 

predict accurate response of the structure numerically. Empirical methods were also performed 

to correlate between the findings of this thesis, available experimental studies, such as those on 

ARMOX 370T by [61].  

The limitations highlighted in the literature, revealed a significant difference between the 

experimental/numerical results in this thesis and available empirical/theoretical models. 

Furthermore, the literature was found devoid of any theoretical models on quadrangular plates 

subjected to localised blast. This led to the various analytical studies attributed to the rigid-plastic 

and elastic-plastic plate constitutive equations, using the interactive yield surface of bending, 

combined bending and membrane or bending - transverse shear yield surfaces.  
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9.2 SUMMARY OF PRINCIPAL FINDINGS 

9.2.1 On the characteristics of the localised blast load 

The conclusions in this respect are as follows.  

• The blast load function was assumed as a multiplicative decomposition of its spatial 

part and temporal part. The spatial part of the blast load was stipulated as a piecewise 

continuous function described by Eqn. (5-1), which is universal and adjustable, 

through alteration of its parameters, to replicate various loading scenarios from 

proximal (localised) to distal (global) blast loads. Various forms of the temporal part 

of the load were investigated in the context of the problem. The form of blast function 

corroborated with the numerical simulations and the findings in the literature [67], 

[208].  

• A series of dimensional parameters that fully describe the blast load parameters 

(spatial and temporal functions) were quantified. The physics of the localised blast 

phenomenon, its highlighted effect on structure with respect to the plate geometry 

and stand-off distance was investigated. The correlation between the state variables 

was stipulated on the basis of a dimensional study. 

• Past empirical analyses were extended to speculate the relationship between the 

permanent deformation of steel panels with the dimensionless impulse, considering 

a large scatter of data from experiments. It should be appreciated that, the empirical 

correlations, based on the inductive methods, are not universal and vary depending 

on the material type, blast test conditions, or set-up, of the explosive geometry and 

type. However, these models serve as a baseline approximation of the plate geometry 

for the design applications.  

9.2.2 Blast testing on armour and mild steel  

It can be concluded that 

• Quasi-static tensile tests were performed on AR440T, the tensile stress strain curve 

gave the Young’s modulus of 𝐸 ≅ 200𝐺𝑃𝑎, yield stress of 1210MPa and rupture strain 

of 6%. Information for other materials used was taken from the literature.[18], [61], 

[132]  
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• The transient deformation of panels was captured numerically and validated by those 

from the DIC techniques. The martensitic high hardness armours (AR440T and 

AR500T) exhibited lower deformations than the mild steel or RHA type class 1 

AR370T, due to the higher strength, the ability of energy dissipation increased. 

• For the same blast threat, AR500T with areal density 𝜇 = 32𝑘𝑔/𝑚2  and same 

geometry offers most reduction in permanent deformations and prevents rupture, 

when compared to mild steel or other armour steel type investigated earlier.  

• None the panels exhibited rupture at stand-off beyond 25mm. The armour steel 

AR500T cracked due to 60g PE4 of 50mm diameter placed at 25mm, while AR440T 

exhibited rupture at a decreased mass of 50g. However, the results of [61] showed 

that hardness or ductility cannot be used to predict the rupture threshold of panels, 

as both AR370T and mild steel ruptured due to same impulse. However, the 

permanent deformation of AR370T was lower than the mild steel specimen. 

9.2.3 On the fluid structure Interactions 

The findings from the fluid structure interaction phenomenon are outlined as follows. 

• The plate stiffness/rigidity, which is influenced by its characteristic thickness, 

inherently affects the magnitude of the imparted pressure to the target, in the case of 

localised blasts.  

• Due to the superposition of the incident wave and the reflected wave at the fluid 

structure interface, a pressure of low magnitude builds up underneath the charge 

which travels along the plate characteristic dimensions. This pressure does not 

contribute to the maximum deformation of the plate but may be attributed to the 

change of curvature at certain distance from the target centre. However, the total 

impulse imparted to the rigid target plate may be reduced on the deformable clamped 

target, because of the contributions of the clamped boundaries to absorb the pressure 

build-up This occurs provided the quotient of the blast diameter to plate side length 

increases beyond 0.33. As the stand off on the target plates studied in this thesis was 

low, only negligible difference between the two impulses was observed.  

• The pressure build-up due to the fluid structure interaction is often ignored in 

simplified models, viz., the pure Lagrangian and ConWep studies. Therefore, the CEL 

methods are essentially preferred due to accurate estimation of the state variables. 
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However, due to the computational expenses associated with the 3D MMALE 

methods, the 2D models may be set up to conveniently estimate the Mode I response 

[52], [138]. 

• The permanent and maximum deformation of the UEL, CEL and pure Lagrangian 

models were compared. The deformations of CEL methods were lower than the other 

methods, more concurrent with the experimental results, due not only to a reduction 

of transmitted impulse on flexible target, but also the implementation of FSI.  

• The reduced form of load shape as a central uniform blast, pertaining to the 

Lagrangian models, considerably sacrifices the accuracy of the numerical solutions. 

9.2.4 On the theoretical solutions of dynamic plastic collapse of the plates 

The following points have been identified from the analytical work in this thesis. 

• Using the constitutive framework of limit analysis, an expression for the static plastic 

collapse of the square plate, subject to the localised blast load was presented. 

• This led to an investigation of the permanent deformation of the dynamically loaded 

square plates in the circumstances where the associated Kirchhoff-Love plate theory 

may be invoked. The apparition between the kinematically admissible velocity 

profiles was distinguished by the value of critical load amplification factor, having a 

stationary plastic hinge when 𝜂 ≤ 𝜂𝑐𝑟𝑖𝑡 and travelling hinge provided 𝜂 ≤ 𝜂𝑐𝑟𝑖𝑡 . The 

associated permanent displacement was given in Eqn. (5-38) and (5-65) in each case, 

respectively. 

• The analysis was extended, within bounds of rigid-plastic theory, to the large 

deformation of the membranes. The rigorous analyses revealed that the former case; 

i.e. stationary plastic hinge, would also occur provided the quotient of the central 

uniform blast load constant to plate length, 𝜔0 =
𝑟𝑒

𝐿
≤ 0.3  regardless of the load 

magnitude, while the two necessary conditions to occurrence of an active hinge are 

given by the larger values of 𝜔0  and 𝜂 ≥ 𝜂𝑐𝑟𝑖𝑡 . The associated permanent 

displacement in each case is given in Eqns. (6-21) and (6-35), respectively. 

• The reduced theoretical forms of the permanent deformations, which considered the 

membrane action only using each velocity profile pattern, was found sufficient to 

predict the large permanent deformations without the loss of accuracy. Excellent 
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agreements were found between the theoretical models and the numerical and 

experimental models in the thesis. In dimensionless forms, the theoretical models 

gave an accurate fit to the large scatter of experimental data in the literature.  

• The influence of boundary conditions was investigated in the context of each analysis 

developed from constitutive expressions regarding the bending, combined bending 

and membrane, combined transverse shear and bending yield surfaces. The analyses 

of simply-supported and clamped boundaries provide upper and lower bound 

estimates for the most practical deign applications.  

• A commentary on the influence of visco-plasticity phenomenon was added. Further 

modal solutions implementing this phenomenon may be found, a posteriori, by 

replacing the corresponding loading parameters of the uniform blast with those of the 

localised one (viz., 𝑉0 = 𝑉1𝜖1, 𝜏,𝑊𝑓), mutatis mutandis, in the expressions of strain or 

strain rate tensor from Ref. [105]. However, it turns out that the high strength armour 

steel material are insensitive to blast load up to strain rate of 3000𝑠−1 , thus, the 

derived theoretical expressions for membranes, as observed from the validation 

studies, predict the permanent deformation of the square plates with high degree of 

accuracy.  

• The theoretical solutions of class III thick plates 𝜈 ≥ 5 , characterised by Mindlin-

Reisner plate theory, converge to the cases of bending only. The range of slenderness 

ratio 𝜈 < 5  is impractical in the design applications of protective plates against 

localised blasts. Thus, for moderately stocky plates, provided the membrane forces 

are insignificant, the classical Kirchhoff Love plate theory sufficiently estimates the 

permanent deformations. 

• Results for alternative pulse shape than rectangular pulse were presented in  

• The pulse shape played a significant role in the overall performance of the plate 

described by either aforementioned theories, provided the blast load regime is 

dynamic; however, the pulse load effect was virtually eliminated by considering 

Youngdahl’s correlation parameters. The non-monotonic decay type of blast was not 

investigated, given the assessments of this type have been addressed in the literature 

[100]. 

• A study of nonlinear elastic systems was also conducted, which, combined with the rigid-

perfectly plastic theory, signifies the deformation path of the elastic-plastic plates subject 
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to various load conditions. It is anticipated that the mere FVK solutions provide useful 

information on the non-linear deformation of the membranes prior to point of stiffness 

degradation.  

9.2.5 On the parameters affecting the blast load 

The main findings are 

• For experimental specimens with loading parameters that resulted in the rupture of the 

panels (Mode II failure), the dimensionless energy absorbing effectiveness factor was 

quantified numerically and utilised to predict the rupture of the plates for more distal 

blasts but increased charge heights (mass). This approach provides a pragmatic tool on 

the prediction of the rupture threshold, at which point the transition of the deformed 

plates mode from mode I to higher modes would occur. geometrically similar ARMOX 

prototype panels, on which the load is generated by a cylindrical PE4 charge, assuming 

the material properties, such as visco-plasticity phenomenon, are impervious to scaling 

laws. The energy absorbing effectiveness parameter is preferred over the SETF, ductility 

or hardness of the materials, as it provides an established correlation between the 

rupture threshold and material type.  

• The dimensionless parameter accounting for the slenderness ratio, stand off and plate 

geometry [36] was revised to fit the larger data from experimental and numerical 

findings. 

• The dimensional analysis identified a set of 14 dimensionless parameters that 

characterise the blast phenomenon and its effect on the isotropic, ductile plates.  

 

9.3 LIMITATIONS OF THE STUDY AND A NOTE FOR FUTURE WORK 

The scope of this thesis was, within reasonable bounds of accuracy, limited to simplifications 

in mathematical and numerical treatments. The limitations of this work have been addressed as 

follows hereunder. The limitations highlight the need for future investigations  
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9.3.1 On the dimensionless parameters characterising the blast load 

The experimental and numerical work in this thesis were contingent upon consideration of 

PE4 charges, having cylindrical geometry. It is recommended that the various charge shapes 

and types (TNT, Composition B) are studied. 

The influence of saturated impulse has not been investigated in this thesis. This phenomenon 

is referred to the critical pulse length beyond which no change in deformations occur. In other 

words, when the duration of the transverse rectangular pressure pulse load increases, the 

maximum and permanent deformation of the target plate would be affected by only part of 

the load, while the rest of the pulse makes no contribution to further increase in deformation 

[209], [210].  

9.3.2 On the theoretical models  

The classical constitutive framework of limit analysis was utilised effectively in the rapid 

assessment of the locally blast loaded plated structures. It is anticipated that the 

theoretical analyses in this thesis may be used for various practical application of blast 

loaded plates. For strain rate sensitive materials, it is suggested that the theoretical 

solutions retaining this phenomenon are investigated. 

In the same spirit, the adiabatic shear phenomenon may be incorporated in the theoretical 

or numerical assessment of plates subjected to localised blasts.  

Although various analyses in this thesis considered a special case of square plate, the exact 

theoretical analyses of rectangular plates may not be straightforward as the functional of 

the exponential function of the load shape yields an error function. Thus, further insights 

into the theoretical analysis of localised pressure pulse effects on rectangular plates are 

recommended.  

In the circumstances of stiffened plates, assuming the stiffeners will behave as rigid 

elements, the theoretical solutions may be effectively altered by incorporating the strain 

energy (flexural strain energy and the strain energy at the plastic hinges), as well as the 

kinetic energy of the stiffeners, to the right and left-hand side of dynamic energy 

equilibrium Eqn. (6-5), respectively. An SDOF model of this analysis on uniform blast is 

presented by [98]. 

The foregoing analysis performed on the elastic response of thin, isotropic membranes 

may be extended to the composite materials such as PVB laminated glass, provided the 
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full composite action may be considered a reasonable assumption prior to the failure 

point of the composite [211], [212]. To this end, the rule of mixture may be implemented 

to estimate the stiffness and Poisson’s ratio of the system. The combined Young modulus, 

Poisson’s ratio and mass per unit area mis given as 𝐸 = (2𝐸𝑔ℎ𝑔 + 𝐸𝑝ℎ𝑝)/(ℎ𝑔 + ℎ𝑝) and 

Poisson’s ratio 𝜈𝑒 = (2𝜈𝑔ℎ𝑔 + 𝜈𝑝ℎ𝑝)/(ℎ
𝑔
+ ℎ𝑝), where 𝐸𝑔 and 𝐸𝑝 represent the modulus 

of the glass and PVB, respectively, ℎ𝑔 and ℎ𝑝 denote the corresponding thicknesses, while 

𝜈𝑔 and 𝜈𝑝 represent the Poisson’s ratios of glass and PVB, respectively [211]. 

While the expressions of elastic vibrations, considering only the first term of the truncated 

series of transverse displacement and Airy stress function ((6-75),(6-76), respectively) 

predicted the transient deformation of the plate with good estimate, it is interesting to 

investigate to which degree the truncation of the series would ensure the convergence of 

the theoretical predictions to the numerical/experimental measurements with high 

degree of accuracy. 

9.3.3 Blast design and FSI 

The state variables concerning the FSI in the studies by Refs. [31]–[33] concerned the 

uniform blast load. Similar studies in the circumstances of localised blasts are 

recommended for further study.  The theoretical treatment may be effectively 

investigated in Cartesian or curvilinear coordinates. In a similar fashion, the numerical 

and analytical work on FSI may be extended to blast threats of multiple charges, such as 

the cases of reactive armour [213], [214].  

The spring-back of the system was not investigated. The spring-back arises due to the 

elastic rebound of deformation, however, measuring spring-back analytically is difficult 

as the elastic and plastic zones are inter-spread in the structure.  

Dimensional analysis and a comparison of the rupture performance of armour steel, 

composites and hybrid systems (Fibre Metal Laminates) due to various charge types, 

geometry and stand-off, by utilising the MMALE methods are recommended for future 

work.  
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APPENDIX A1. FIRST PHASE OF MOTION 

The components of 𝛼𝑒 function are defined as 
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𝜋2)
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The components of 𝓐𝑖𝑗  are 
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The components of 𝓖𝑗𝑘 are  
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In the first phase of motion, the expression of the transverse displacement using Poincaré-

Lindstedt method is expressed as 
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𝑊1
(2)
 =  𝐶3𝑐𝑜𝑠(𝜔𝑒𝑡)

+
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6

𝜖
) 

(A. 23) 

Where the integration constant 𝐶3 is determined by invoking the kinematic continuity of the 

displacement and transverse velocity at the onset of loading (i.e. 𝑊(𝑥, 𝑦, 0) = 0,𝑊
.
(𝑥, 𝑦, 0) = 0 : 

𝐶3 =
𝐴1𝐶0(4𝐿
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6
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 (A. 24) 

While the attributed frequency of vibration to eliminate the secular term may be determined 

as 

𝜔𝑒̅̅̅̅ : =
15𝐶0

2𝐸

8𝐿4𝜔𝑒  
 (A. 25) 

APPENDIX A.2 SECOND PHASE OF MOTION 

In the second phase of motion, the expression of second iteration of the transverse displacement 

field, with retention of the secular-term is given as: 
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Where  
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The O.D.E constants of first iteration at final phase of motion are: 
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3

4
) (𝑐𝑜𝑠(𝜔𝑒𝑡𝑑)

− 1) 
(A. 34) 

𝐶16  =  −
𝐸𝐶0

3

4𝐿2𝜌𝜔𝑒
2
(𝑐𝑜𝑠(𝜔𝑒𝑡𝑑)

3 −
3

2
𝑐𝑜𝑠(𝜔𝑒𝑡𝑑)

2 +
3

4
 𝑐𝑜𝑠(ωe𝑡𝑑) −

4𝜌𝐿2𝜔𝑒
2

𝐸𝐶0
2 −

1

4
) 𝑠𝑖𝑛(ωe𝑡𝑑) (A. 35) 
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APPENDIX A.3 VDLOAD FORTRAN SUBROUTINE [5]  

   subroutine vdload(nblock, ndim, stepTime, totalTime,amplitude, curCoords, velocity, dirCos, jltyp, 

sname, value) 

C 

        include 'vaba_param.inc' 

C 

        dimension curCoords(nblock, ndim), velocity(nblock, ndim),dirCos(nblock, ndim, ndim), 

value(nblock) 

C 

        character*80 sname 

C 

C  

C ****************** 

C input parameters 

C ****************** 

C Ro: constant part, mm 

C blastTime: duration of blast event, s 

C Po: constant pressure under charge diameter, MPa 

C W: parameter for temporal distribution, /s 

C A: parameter for spatial distribution, MPa 

C B: parameter for spatial distribution, /mm 

C 

        parameter (Ro = 25,blastTime = 0.00003, Po = 200, W = -135322,A = 661,B = -0.0506) 

C 

C 

C ********************** 

C temporal distribution 

C ********************** 

C assumes an exponential decay over time of the form P(t) = EXP(W*t) 

C 

          if (stepTime .LE. blastTime) then 

                ampTime = EXP(W*stepTime) 

          else 

                ampTime = 0 

          endif 
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C 

C 

C ******************* 

C spatial distribution 

C ******************* 

C !assumes an exponential decay over space of the form P(r) = A*EXP(B*r) 

C  

    do k = 1, nblock 

C 

C !works out radial distance from centre 

C 

       r = SQRT(((curCoords(k,1))**2) + ((curCoords(k,2))**2)) 

C 

          if (r .LE. Ro) then 

                value(k) = Po*ampTime 

          else 

                value(k) = (A*EXP(B*r))*ampTime 

          end if 

       enddo 

C 

C 

        continue 

C 

      return 

      end 

C******************************************************************************************* 

 


