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Abstract

Allostery is the process whereby binding of a substrate at a site other than the active site modulates the

function of a protein. Allostery is thus one of the myriad of biological processes that keeps cells under tight

regulatory control, specifically one that acts at the level of the protein rather than through changes in gene

transciption or translation of mRNA. Despite over 50 years of investigation, allostery has remained a difficult

phenomenon to elucidate. Structural changes are often too subtle for many experimental methods to capture

and it has become increasingly obvious that a range of timescales are involved, from extremely fast pico-

to nanosecond local fluctuations all the way up to the millisecond or even second timescales over which

the biological effects of allostery are observed. As a result, computational methods have arisen to become a

powerful means of studying allostery, aided greatly by the staggering increases in computational power over

the last 70 years.

A field that has experienced a surge in interest over the last 20 years or so is network theory, perhaps stimulated

by the development of the internet and the Web, two examples of immensely important networks in our

everyday life. One of the reasons for the popularity of networks in modelling is their comparative simplicity:

a network consists of nodes, representing a set of objects in a system, and edges, that capture the relations

between them.

In this thesis, we both apply existing ideas andmethods from network theory and develop new computational

network methods to study allostery in proteins. We attempt to tackle this problem in three distinct ways,

each representing a protein using a different form of a network. Our initial work follows on logically from

previous work in the group, representing proteins as graphs where atoms are nodes and bonds are energy

weighted edges. In effect we disregard the 3-dimensional structure of the protein and instead focus on how

the bond connectivity can be used to explain potential long range communication between allosteric and

active sites in a multimeric protein. We then focus on a class of protein models known as elastic network

models, in which our edges now correspond to mechanical Hooke springs between either atoms or residues,

in order to attempt to understand the physical, mechanistic basis of allostery.
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Chapter 1

Introduction

1.1 Motivation

Despite its critical importance to cellular regulation, allostery is still not a well understood phenomenon.

Historically, theories about how allostery is governed have tended to be limited by the available experimen-

tal evidence. Initial explanations focused on thermodynamics descriptions of allostery, whereby binding of a

ligand shifts the equilibriumof the protein to attenuate or enhance activity. Whilst suchmodels[165, 166] are

still useful, they are ultimately phenomenological and unable tomake predictions about specific cases. Later,

as high resolution crystal structures became available, the likes of Perutz[188] were able to begin to provide

a structural basis for allostery based on comparisons of active and inactive structures. The concept of struc-

tural pathways began to emerge as an explanation as to how binding of a ligand at one site on the protein

could cause an apparent functional change at the active site. Much later statistical studies on evolutionar-

ily conserved residues by Lockless et al[142] also pointed towards pathways of residues in proteins. Here,

a multiple sequence alignment (MSA) is used to find those pairs of residues that are statistically coupled,

defined as the extent to which the type of the amino acid at one site changes in response to an alteration at a

different site over the set of sequences. However, recent conceptions of allostery as a function of the free en-

ergy landscape, such as the ensemble allosteric model[168] have instead suggested that structural pathways

are not necessary, and that instead allostery should be considered a property of an ensemble of proteins.

Furthermore, earlier work by Cooper and Dryden[43] had raised the prospect of entropic contributions to

allostery, casting further doubt on the structural view as the dominant driver.

The main aim of this thesis then is to elucidate whether long range structural perturbations from allosteric

1



2 Chapter 1. Introduction

sites may be a plausible mechanism of allostery. There are currently no experimental methods that have the

level of resolution required to observe this effect directly and as such, computational methods have been

recruited towards this purpose. Perhaps the primary tool in this area is molecular dynamics, however even

now the simulation of proteins on the time scale required for biological processes such as allostery (generally

occurring from the millisecond[124] to the second range[92]) is extremely challenging. Here instead we

draw on ideas from network theory, allowing us to develop efficient methods that probe various simplified

network representations of proteins.

From a practical point of view, a deep understanding of allostery would offer great opportunities in the field

of drug discovery[180]. The vastmajority of current drugs target the active site of proteins, which often leads

to problems with off-target effects given many proteins exhibit homology. Allosteric drugs by contrast have

the potential to be both more specific and modulate protein function far more precisely and as such both

a general understanding of allostery and a means to identify potential allosteric sites is of great theraputic

interest.

1.2 Thesis outline

In Chapter 2 we introduce the requisite ideas andmathematics from network theory that we will use consis-

tently throughout this thesis, with a particular focus on random walk dynamics and percolation which are

both areas that deal with flow and communication on networks. Chapter 3 then introduces the biological as-

pects of the project. Allostery is discussed from two distinct but complementary viewpoints: the traditional

thermodynamic explanation, which is supplemented with a more modern approach that considers the en-

tire free energy landscape of the protein, and the structural view that considers how the actual mechanism of

transition between protein states is triggered by binding of small ligands at some site on the protein surface.

Chapter 4 utilises a method called bond-to-bond propensities that was introduced by Amor et al[5] to find

allosteric sites in proteins given only knowledge of the active site using a graph representation of the protein.

Here, we use the method to model the effect of binding of an allosteric ligand to ATCase, a large allosteric

protein and discover those parts of the protein that are particularly energetically coupled to the allosteric site.

We attempt to extend the principles of bond-to-bond propensities to elastic models of proteins in Chapter

5 where edges are now springs, developing a method called elastic response that models the effect of an lig-

and binding to a protein as the propagation of strain through the edges of the elastic model away from the
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allosteric site. We also use the same mechanical framework to develop a method called interaction embed-

dedness to find those edges that experience the highest average strain when the elastic network fluctuates

randomly in a heat bath and link these high strain regions to protein function. In Chapter 6 we use a form

of convex optimization called semidefinite programming to design de novo allosteric elastic networks that

exhibit long range mechanical effects by optimizing the spring constants of the springs in the network.

Finally, we provide possible future directions for themethodology used in this thesis, in particular toMarkov

State models. There, each node in the network is a microstate of the protein derived from a molecular dy-

namics trajectory and the network thus takes the form of aMarkov matrix that represents a discrete approx-

imation to the free energy landscape.

1.3 Publications

The results presented in Chapter 4 were based on the work published in:

Hodges, M., Barahona, M. Yaliraki, S. N.Allostery and cooperativity in multimeric proteins: bond-to-bond

propensities in ATCase. Sci. Rep. 8, 11079 (2018).



Chapter 2

Network Theory

“
Why is network anatomy so important to characterize? Because structure always a�ects

function.

”

Steven Strogatz, Exploring complex networks

2.1 Networks: an overview

The last twenty years have seen an explosion of interest in the study of networks, undoubtedly due to the

pervasiveness of such structures and the raft of data made available by the digital era. A full treatment of

the extent of networks’ appearances in apparently disparate areas of the literature is not possible here, but

metabolism and gene regulation, citations, transport, ecology, theWeb and the brain are just a small sample

of those subjects that have harnessed (and further developed) themachinery of network science. Indeed, the

development of the field of networks, under the broader umbrella of complex systems, across such a wide

range of disciplines is perhaps not surprising when noting Steven Strogatz’s remark above, that ultimately

if we wish to understand how a system works, we must first elucidate how its various parts interact. There

has then, somewhat recently, been an attempt to establish certain unifying principles that apply to networks

across a range of different fields and as such, network theory has emerged as its own domain, though one

that continues to be rooted firmly at the cross section of many other fields.

4



2.1. Networks: an overview 5

a b

c d e

Figure 2.1: A number of commonly studied networks. a) A ’scale free’ network[16], in which most nodes

have small degree whilst a small number (in orange) have a very large number of connections such that the

degree distribution follows a power law. b)Aweightednetwork, inwhich the edgesmay take different values.

The weight of an edge may indicate the strength of connection between two nodes for example. c) A small

world network. By startingwith a regular lattice, rewiring just a small number of edges significantly decreases

the average shortest path length[240]. d) A directed network. e) The graph from the Bridges of Königsberg

problem.

The common starting point for any discussion of networks is the solution by Euler in 1736 to the Seven

Bridges of Königsberg problem, which is usually remarked to be the creation of the subject of graph theory.

The terms graph theory and network theory are often used interchangeably and the difference is perhaps

more one of emphasis, with network theory describing the application of mathematical methods to real

world systems, rather than the study of networks or graphs for their own sake. In any case, Euler did solve

a real world problem using the central abstraction of networks: that a system may be represented as a set of

nodes (or vertices) that are joined together by a collection of edges (or links) as shown in Figure 2.1e. By doing

so, Euler proved the problem of visiting all islands (the nodes) whilst crossing each bridge (the edges) only

once had no solution: either zero or two nodes can have an odd number of edges joining them to act as the

end points of the walk, but every other node must have an even number of edges to allow a walker to arrive,

then depart. The Königsberg problem has 4 nodes with odd numbers of edges so is not traversable without

revisiting edges.



6 Chapter 2. Network Theory

Whilst many facets of networks are of great interest[172, 160], we focus here on those that will be used

throughout this report. A network is said to be unweighted if its edges take on values of either 1 (presence of

an edge) or 0 (no edge). Weighted edges may take on any value, though we shall only encounter those from

the real numbersR. An edge between two nodes can be undirected or it may possess a specific direction, in

which case it isdirected, though it should be noted that anundirected edge is equivalent to twodirected edges

of equal weight pointing in opposite directions. The degree of a node is the sum of the weights of the edges

connected to that node (hence is simply the number of joined edges in the unweighted case). For directed

networks, we often differentiate between the in-degree and the out-degree, which as might be expected, refer

to the total weights of edges into and out of a node.

A network ofN nodes may be representedmathematically by anN ×N adjacency matrix,A, such that the

entryAij is equal to the weight of the edge between nodes i and j in a network containingN nodes. If the

network is undirected, then the adjacencymatrix is symmetric. It is possible for nodes to possess self loops (i.e.

an edge from the node back to itself), which show up as entries along the diagonal of the adjacencymatrix. If

the degrees of each of the nodes are compiled into anN × 1 vector d, we may then define a diagonal matrix

of node degrees: D = diag(d). From this, we can define a representation of the network that we will use

more commonly in this report, the Laplacian matrix: L = D −A. The entries of the Laplacian are thus:

Lij =


−wij, i , j∑
i wij, i = j

(2.1)

with wij the weight of an edge from nodes i to j. Another useful description of a network is given by the

incidence matrix that maps pairs of nodes to the edges that link them. Representing the incidence matrix B

as anE ×N matrix, each row corresponds to an edge with an entry of 1 at the index of node i and -1 at index

j if the edge joins nodes i and j. The importance of the permutation of the signs depends on the system in

question; for some networks it does not matter which way round it is (i.e. it would not matter if the entry

of 1 was at entry j and -1 at i) but where direction is important (such as the spring models of Chapter 5), or

for directed networks, a consideration of the meaning of the signs is crucial. The definition of the incidence

matrix allows us to provide an alternate (but equivalent) construction of the Laplacian matrix:

L = BTGB (2.2)
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whereG is a diagonal matrix containing the edge weights of the network. The undirected Laplacian is posi-

tive semidefinite, which can be seen using Eq.(2.2). For any vector v:

vTLv = vTBTGBv

= (Bv)TG(Bv) ≥ 0

(2.3)

which is just the sum of a set of squares, each multiplied by a positive number, which must be positive. If

the network is connected, which for an undirected network consequently means that any node is reachable

fromanyothernode, then theLaplacianhas anullspace of dimension 1, corresponding to the zero eigenvalue.

The nullspace is spanned by (any scalar mulitple of) the vector v =
(
1 1 · · · 1 1

)
, which in electrical

networks is physically represented by Kircho�’s Voltage Law that says the potential difference around any

closed loop must be zero.

Figure 2.2: Left: a geographically accurate representation of the London Underground. Right: the familiar

topological form of the map designed by Harry Beck in 1931 who, taking inspiration from electric diagrams,

realised the connectivity of the network was more important to passengers than their actual location.

2.2 Random walks on networks

A particular aspect of networks we focus on in this report is that of a random walk process occurring on the

network. An excellent review of simple randomwalks on networks is provided byMasuda et al[151] but we

again provide some relevant details here.

We first point out the relationship between a random walk on a network and a Markov chain[230, 177]:
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if we consider the outgoing probability of a walker leaving a node along a particular edge, as the weight of

that edge divided by the total weight of edges exiting the node, then we have defined a Markov chain. For a

discrete time random walk, we can make this relationship explicit:

M = D−1A (2.4)

M is theMarkov matrix that contains the probability of a random walker jumping from node i to node j

in the entryMij. For directed networks, we replaceDwithDout , the diagonal matrix of the weights of edges

leaving each of the nodes. If we then consider the probability distribution of the random walk over theN

nodes contained in anN × 1 vector p:

pt+1 = ptM (2.5)

By induction and defining some starting distribution p0, we can see that the probability distribution on the

network at some positive integer timestep t is simply:

pt = p0M t
(2.6)

These last two relationships rely on the defining property of Markov chains, that they are memoryless. In

words, this simply means that when a randomwalker reaches a particular node i, the probability of where it

goes next depends only on its current position, not on where it came from previously:

Pr (Xn+1 = x | X1 = x1, X2 = x2, · · · , Xn = xn) (2.7)

=Pr (Xn+1 = x |Xn = xn) (2.8)

Random walks that do have memory are possible[200, 207], including the creatively named elephant ran-

dom walk that retains entire memory of where it has been[210]. We restrict ourselves here however only to

those that areMarkovian and have no knowledge of their past trajectory. Note thatM is a stochastic matrix

so that its rows sum to 1 (in fact in the undirected case,M is doubly stochastic as its columns also sum to 1),
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capturing the fact that once a randomwalker reaches a node, it must leave along an edge (though a self loop

would of course take it back to itself).

In order to generalise the above process to continuous time, we consider the dynamics of the walker on the

network as being represented by a first order differential equation:

dp
dt
= −Lp (2.9)

where p is anN × 1 vector whose ith entry is the probability of a walker being on node i in a network and

thus the entries of p sum to 1. L is the discrete Laplacian, so named because of its correspondence with the

continuous Laplacian operator. If we write the heat equation[19] for continuous space:

dp
dt
= −∇2p (2.10)

We see the discrete Laplacian takes the place of the Laplace operator, now acting on the discrete space defined

by our network. As it appears in Eq. (2.9), we refer to L as the combinatorial Laplacian. By considering the

waiting time of a random walker at a node, we may also construct a different type of random walk in which

the waiting time at each node is identical[130]:

dp
dt
= −D−1Lp (2.11)

whereD is a diagonal matrix containing the total weight of the edges attached to each node. The operator

D−1L is similar (that is it has an identical set of eigenvalues) to the normalised LaplacianL = D−1/2LD−1/2

and thus we refer to it from now on as the normalised Laplacian. In the combinatorial case (Eq. (2.9)), the

waiting time for a walker on a particular node will depend on the total weight of edges out of that node; if

the total weight is twice as high, the expected waiting time is half as long. By dividing through the row i of

L by the node degree di, the matrix D−1
has the effect of normalising the expected waiting time a random

walker spends on each node (so that a walker will spend as much time on average on a node with 3 edges,

as one with 2 edges), hence the name. There are in fact a number of alternatives for of the dynamics of the

random walk, for example if we replaceD−1
byD, we have a model for a web surfer who spendsmore time

on a node with a greater number of edges[130].
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The solution to equation (2.11) is:

pt = p0 exp

(
−D−1Lt

)
(2.12)

In certain cases, for example for systems with very large numbers of nodes, the numerical calculation of the

exponential term can be very expensive. We can linearise by taking only the first two terms of the Taylor

series of the matrix exponential:

pt ≈ p0 [I −D−1L]t (2.13)

= p0 D−1[D − L]t (2.14)

= p0M t
(2.15)

where we have used the relationshipsL = D−A andM = D−1A. By restricting (2.13) to integer time steps,

we can see that we have recovered the discrete time random walk dictated by the Markov matrix.

An important property of Markov chains are their stationary distributions, which are guaranteed to exist

when the Markov chain is ergodic (any node can be reached from any other, so we also assume that the

network is connected) and reversible and all the networks in this thesis satisfy these two properties. The

stationary distribution then is the long time distribution that is unchanged under application of the transfer

matrix and can be calculated as the leading left eigenvector of the matrix:

π = πT (2.16)

whereT refers to either exp

(
−D−1L

)
orM if we have linearised andπ is the stationary distribution, which

is the same whether we use the full or linearised expression. The stationary distribution can therefore often

be thought of as an equilibrium state of the network. Even if we construct a directed network where we can

move between any two nodes, we do not necessarily guarantee stationarity at long time scale. The additional

constraint is that the random walk must be reversible or satisfy detailed balance:

πiTij = πjTji (2.17)
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or by defining the symmetric matrixΠ as diag (π):

ΠT = (ΠT )T = TTΠ (2.18)

The stationarydistributionhasbeen commonlyused ranknodes, perhapsmost famously inGoogle’s PageRank[184]

and the closely relatedHITSalgorithm[121] forwebpages, bothofwhich are variants of eigenvector centrality[21].

2.3 Percolation

Percolation theory[221] is often utilised when discussing transport or communication through structures,

including within proteins[132]. The principle of percolation theory is, imagine if we had a grid of connected

sites which could take one of two states: filled or empty. The question is then, what fraction of sites needs to

be filled, on average, in order to create a continuous path from one side of the network to the other. More

specifically, this describes site percolation. If instead we fix the sites to all be filled, then we can instead ask

what proportion of the edges need to be present to allow for a flow to occur through the network; this is

bond percolation[24].

Figure 2.3: Site percolation on a square lattice. Two sites are said to be joined if they are adjacent to each

other horizontally or vertically and are both filled. As the fraction of filled sites is increases from left to right,

the critical value is surpassed and the inifite cluster forms.

One of the reasons for the intense interest in percolation models is because they are one of the simplest

systems to display a phase transition. In both site percolation and bond percolation, above a certain critical

value pc of the fraction of filled sites or bonds p, a significant number of the sites are connected together

to form a giant cluster. In the 2-dimensional square lattice for example, pc for bond percolation is exactly
1

2
[117], though it should be noted that this result (and all analytic results for critical values) strictly hold in
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the limit as the network size tends to infinity. Most critical points do not have exact values, and indeed the

site percolation critical value for the same lattice type is approximately 0.5927[51, 68, 173].

One physical realisation of a percolation problem is a random resistor network[119], where current is in-

jected at one node and extracted at another on the other side of the network. Current will thus only flow

in the network when there is a contiguous path of edges between the two nodes. As the fraction of edges is

increased, the current remains zero until the critical point, when the giant cluster forms, so at that point cur-

rent can flow. Above the critical point, the resistance of the network continues to drop as a greater number

of alternate pathways are available for current to traverse. In elastic network representations of proteins (as

explored in Chapter 5), a three dimensionalmodel of the protein is constructedwhere the network nodes are

balls (which are usually atoms or residues) and the edges are Hooke springs (representing chemical bonds

or coarse-grained residue-residue interactions). The equivalent percolation problem is then: choosing two

nodes at either end of the network and applying a force, in opposite directions, along the straight line be-

tween them, is there any resistance to that force?

ba

Figure 2.4: a) Two rigid subparts of a network are connected by a single node that has a floppy mode and thus
rigidity cannot percolate between the two subparts. In the equivalent connectivity percolation problem

however, current could flow across the bridging node. b) The square lattice exhibits no resistance to shear
stress. Each of the bonds stays the same length after applying opposing forces to the top and bottom of the

lattice and thus the square lattice can be deformed at zero energy cost.

It was not initially realised[50] but this rigidity percolation problem is in fact distinct from the connectivity

percolation problem represented by the random resistor network. Feng and Sen[67] note that the rigidity

percolation problem involves the propagation of a vector through the network (i.e. a 2-vector for displace-

ment in 2D or a 3-vector for 3D), whilst the connectivity problem concerns the transfer of a scalar over the

network, for example charge in the random resistor model. As a result, when we consider model containing

only central forces, that is Hooke springs that join pairs of nodes, a rigid cluster must consist of a contiguous

set of edge-sharing triangles in 2D or a set of face-sharing tetrahedra in 3D. Those nodes within the network

that are not part of a rigid cluster are then free to move whilst admitting no change in the length of their

attached springs (as in Fig.2.4a), thus there is a zero energy cost to their motion. These nodes are said to have
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one (or more) floppy modes, and the network as a whole can be divided into rigid and floppy regions.

Oneway to determine these floppymodes is to construct thedN×dN sti�ness matrix for the elastic network

(whered is the spatial dimension) and compute thematrix eigendecomposition. Every network structure has

a number of rigid motions: in 2D there are 2 rigid translations and a rotation in the place, whilst in 3D there

are 3 translations and 3 rotations. These motions correspond to eigenvectors of the stiffness matrix with zero

eigenvalues. Any additional zero eigenvalues equate to floppy modes of the network, from which we can

group together rigid and floppy nodes (with a caveat that there are no special symmetries in the network

as discussed in Chapter 5). However, particular for larger networks, this approach can be computationally

expensive. An alternative approach developed by Thorpe[231, 189] is based on constraint counting, an idea

that dates back toMaxwell[153]. Each node in the system has d degrees of freedom (d again being the spatial

dimension), and the addition of each edge results in the total degrees of freedom being reduced by one, so

long as the constraint is redundant. A very simple case is that of two free nodes in 2-dimensional space: each

node has two degrees of freedom, summing to a total of four. By adding an edge between them, wemay still

move one (arbitrarily chosen) node wherever we like but the second is now confined to the 1-dimensional

line forming a circle around the first node (Fig. 2.5a). Thus our systemnowhas only three degrees of freedom

(assuming our edge is rigid, and thus cannot vibrate) corresponding to rigid motions.

a b

Figure 2.5: a) Whilst two individual nodes in 2-dimensions each have two degrees of freedom (chosen arbi-

trarily to be the vertical and horizontal directions), the addition of a rigid constraint between them means

that relative to the first node, the second node can onlymove along a 1-dimensional line. b) A rigid system of

four nodes in 2-dimensions. The addition of an additional constraint (shown as a dotted line) has no effect

on the total degrees of freedom of the system (here simply the three rigid motions) and thus is defined as

being redundant.

In two dimensions, this idea can be used to find the rigid components of the network using a method called

the Pebble game[99], that assigns two "pebbles" (representing the two degrees of freedom) to each node.

When an edge is placed between two nodes, one of the pebbles must cover the edge, representing the loss

of a degree of freedom. Redundant edges are then those where there are no pebbles left to add to the edge.

The pebble game has been extended to 3-dimensions [102, 101] under the name Floppy Inclusion and Rigid

SubstructureToplogy (FIRST) in order to study the flexibility of proteins[100, 191]. However the additional
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caveat is that angle constraints must be included in the 3-dimensional case - this is in fact realistic for many

bonds, such as covalent bonds, that resist changes to their angles as well as their lengths. The flexiblemotions

of the protein are thus determined by dihedral angles in the FIRST framework.



Chapter 3

Protein dynamics

“
Biological function is ultimately rooted in the physical motions of biomolecules.

”

Katherine Henzler-Wildman &Dorothee Kern,Dynamic personalities of proteins

3.1 Molecular Machines

Proteins are the uncomplaining workhorses of nature, shuffling around the crowded environment of the

cell to perform their exquisitely specialised tasks, driven only by fundamental physical laws. It is perhaps

only relatively recently, however, that the "jigglings and wigglings"[70] of proteins have been pushed to the

forefront of the mission to understand how proteins function[92]. By considering the motions of the pro-

tein, and by extension the ensemble of states it may exist in, the study of proteins has returned to the realm

of statistical physics, aided by a plethora of modern experimental methods that probe the protein at minute

timescales. However this is no trivial task,made particularly difficult by the huge range of timescales at which

proteinsmotions occur, frompicosecond vibrations of bonds to biological processes such as allostery or pro-

tein folding taking place on even the second timescale for larger structures.

Whilst a dizzying array of high resolution X-ray crystal structures populate the Protein Data Bank[17], we

must be conscious of the fact that these structures are only a snapshot of a protein. It has been discovered

that crystal structures fail to capture some substates of proteins[69] and even within a unit cell of a crystal

15
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there may be more than one stable state[190], whilst the structure itself can be affected by the conditions

in which it was crystallised[138]. The dynamical equilibrium behaviour of proteins is sometimes said to be

captured by the B-factors (also called Debye-Waller factors), but lattice disorder is encapsulated in the value

in addition to true atomic fluctuations and so is not a true representation of the ensemble[92]. Furthermore,

B-factors may also simply reflect crystallographic errors rather than any sort of intrinsic disorder, such that

weak electrondensity in apart of the structure does not actually correspond to large amplitudemotions[103].

3.2 Free energy landscapes of proteins

Traditionally proteins have been viewed as somewhat rigid structures once they have folded into their native

state, partly as more rigid structures have tended to be easier to crystallise[248] and as a result, observed

conformational changes in proteins even upon complex formation are quite oftenminor[222]. As such, it is

common to read of "states" of a protein, perhaps the active state and the inactive state, such that each state is

discrete. Amore modern view, covered in depth in a number of reviews[241, 88] posits that instead proteins

inhabit a spectrumof states as determinedby theBoltzmanndistribution. Changes in conditions, such as the

addition of an allosteric ligand that increases the rate of a catalyst, are not then reasoned as the binary change

from the inactive state to the active state, but instead as the alteration of the underlying landscape such that

there is increased sampling of the active forms of the protein. Importantly then, it is the energy landscape of

the protein that is subject to selection pressure, asmodulation of the landscape determines protein function.

Though the idea is not new, being introduced nearly 30 years ago by Frauenfelder et al[73], it has beenmade

compelling by a range of experimental and computational techniques (many of which are discussed later in

this chapter).

Indeed the concept of the energy landscape is hardly foreign to the study of proteins, being the basis of the

protein folding problem[211] and the resolution of Levinthal’s paradox[134] via the folding funnel. These

recent developments then say that thebottomof the funnel is itself richwith structure atmultiple resolutions

and is what ultimately determines the function of the protein. It should be pointed out that in addition to

the various timescales of motion, protein motions are highly directional as a result of various interactions

between the constituent atoms. Furthermore, any energy landscape represents the distribution of states

under specific conditions (pH, temperature etc) and so diagrams such as those in Fig 3.1, whilst helpful, are

purely illustrative (though in some cases, by using a scalar coordinate such as the fraction of native contacts,

a funnel shape can in fact be seen[182]).
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Figure 3.1: Ultimately, what drives protein function is the free energy landscape. Left, we see that protein

dynamics occurs on huge range of timescales, spanning at least 10
12
orders of magnitude, that are coupled

together. Allostery can therefore be explained as the preferential stabilisation of the active state (or states) by

a ligand so that it is sampled more frequently by the protein ensemble, as shown on the right.

3.3 Allostery

The thermodynamic view

Allostery is the process through which binding of a molecule distal to the active site of a protein causes an

attenuation or an enhancement in the catalytic rate of that protein [179, 88, 196]. Despite being a crucial

means of regulation within cells (being described as "the second secret of life" by Jacques Monod), the phys-

ical mechanisms underpinning this effect are still not well understood at the microscopic level, thus limiting

the potential for chemical design and intervention. Most of the previous work on allostery has focused on

thermodynamic models linking changes in catalytic rates to modifications in the conformation of the pro-

tein. Such an outlook led to the traditional models of allostery: the Monod-Wyman-Changeaux (MWC)

model [165], whereby binding of allosteric substrates causes a concerted conformational shift of the protein

subunits towards the active state, and the Koshland-Nemethy-Filmer (KNF) model [126], which proposed

that binding of an allosteric substrate to a subunit drives the latter towards the active state and the overall

transition to the full active state is sequential.

As noted by Guo and Zhou[88] however, there is often some confusion in the literature on the slightly

subtle delineation between comparisons of the MWC and KNF models, and the two alternative allosteric

mechanisms of induced fit and conformational selection, where the MWC and KNF models really concern
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howmultimeric proteins transition between states: each subunit sequentially or all at once. Induced fit[125]

describes the idea that the allosteric ligand binds at a protein site, causing a structural change at the bind-

ing pocket that destabilises the inactive state and drives a transition to the active state. Conformational

selection[30, 146] (sometimes referred to as population shift) posits a pre-existing equilibrium between the

active and inactive states, according to the Boltzmann distribution, that the allosteric effector alters in favour

of the active state by preferential stabilising it. Thus, induced fit and conformational selection describe the

transition pathways between inactive and active states. The two mechanisms are not necessarily orthogonal

however and bothmay occur in the same system,meaning discrimination between the twowithin a catalytic

system is not trivial - even the presence of a small proportion of the active state in the absence of ligand is

not sufficient to prove that conformational selection dominates[85], particularly in cases where the binding

pocket becomes closed in the active state[228]. Allostery must ultimately be a process where binding of a

substrate leads to a change in free energy of the ensemble such that it is more favourable for the active state

bound to the substrate to exist. More precisely, we must have ∆∆G = ∆∆H − T∆∆S < 0 for the bind-

ing of the substrate, where there are two possible contributions to ∆∆G. One is that the binding of the

allosteric ligand shifts the equilibrium of the active-inactive equilibrium over towards the active state as in

Fig. 3.1. Thus the catalytic rate increases simply because there ismore active catalyst for the reaction substrate

to bind to. The other is that the∆∆G of the binding of the reaction substrate decreases. We dealmainlywith

the first case in this thesis, in particular the effect that allosteric ligand binding has on the change in enthalpy

of the active state, that is the case where ligand binding causes some rearrangement of (weak) bonds within

the protein leading to a favourable enthalpy change. We do also, however, deal with the entropic description

in Chapter 6 where we consider network structures where two sites are coupled for a normal mode of the

protein, as in the "scissor" model of McLeish[159].

More recently, Hilser and coworkers proposed the ensemble allosteric model (EAM) [168], which ratio-

nalises allosteric outcomes according to the effect of the substrates on the entire conformational ensemble

of the protein. They note that development of explanations for allostery have naturally been constrained by

available experimental data, such that traditionally there has been an overemphasis on high resolution, but

static X-ray crystal structures. There is now a growing appreciation of the role of dynamics in allostery [237],

having initially been proposed by Dryden and Cooper[43] as a means of resolving how allostery can occur

without structural change. Often described as a "broadening of the free energy basin"[88] of the active state,

the result is that the average conformation of the protein in the active state is unchanged upon ligand ad-

dition, so that a solely static picture cannot explain functional changes. The intriguing example given by

Cooper and Dryden is that of the binding of an allosteric substrate leading to a "stiffening" of the protein
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(by "freezing" out the lower frequency modes) and thus an increase in entropy (offset by the decrease in en-

thalpy from bond formation). Thus subsequent binding of the active site substrate leads to a smaller drop

in entropy than there otherwise would be in the absence of the allosteric ligand and thus a more negative

∆∆Gbinding. An idealised structural example of this effect is the "scissor molecule"[159], which has a single

degree of freedom allowing for a "scissor" motion with active and allosteric sites positioned at either end of

themolecule. Despite the distance between the two sites, because the decrease of entropy occurs via freezing

of the normal mode, the effect is global, thus linking the two sites.

Further computational methods have been developed to probe the role of entropy in allostery: Kalescky et

al[110] performed in-silicomutatgenisis, scanning across all residues in molecular dynamics simulations the

PDZ domain of human PTP1E protein. By applying rigid body constraints to each residue in turn, they

were able to ascertain the contribution each residue made to the internal degrees of freedom - important

residues were then those that showed a smaller entropy difference between unbound and bound states than

the difference in the Wildtype case.

The importance of entropywas recently confirmed by experimentally by the design of protein switches [40],

whereby a flexible linker was introduced between a effector binding domain and a catalytic domain. Initially,

the isolated enzyme domainwas dominated by the active state even in the absence of ligands, thus exhibiting

no allostery. When the flexible linker was introduced, the additional conformational entropy reduced the

effect of entropy, "flattening out" the energy landscape and allowing the ligand to then exhibit an allosteric

effect.

Notably, the EAM does not require the existence of structural pathways between the allosteric sites and

active sites within the protein (though it does not necessarily rule it out either). In particular, the discovery

that intrinsically disordered proteins (IDPs)[244] exhibit allostery has generated particular intrigue, given

their lack of the fixed tertiary structure that would seem necessary to transmit energetic changes between

distal sites. An example is the Phd/Doc toxin-antitoxin system, which is an inhibitor of the ribosome A site

and exhibits coupling between two regulatory sites and a DNA binding domain[79] that binds at PhD’s

own operon. As the concentration of Doc increases, it first acts to inhibit PhD before then reactivating

transcription, in a process termed "conditional cooperativity".
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The structural view

Whilst thermodynamic models of allostery provide understanding of the equilibrium effects of substrate

binding, they are unable to provide a detailed description of how a signal may be transmitted between the

allosteric binding site and the active site at the microscopic scale. The so called structural view of allostery

posits that some form of propagation pathway between the allosteric and active sites exists as a condition

for allostery, though the existence of such a pathway does not imply allosteric behaviour by itself. Tsai and

Nussinov [235] argue that both a structural and a thermodynamic component is required for a complete

description of allostery. The idea that structural pathways might exist in proteins began when Perutz[188]

analysed the differences between haemoglobin with and without oxygen bound, identifying an important

salt bridge in the inactive "T" state. Later, Szabo and Karplus[229] were able to incorporate this informa-

tion, in addition to dependence on pH, into a quantitative model, marking the first attempt to make use of

structural information to explain allostery.

The viability of long range transfer in proteins is often questioned, particularly when initiated by what ap-

pears to be very small perturbations at the allosteric site. However, as noted by Yu and Koshland[247], the

remarkable specificity of enzymes should lead one to be less surprised that a 1Å change at a site can result in

significant modulation, especially when one considered the constraint that changes are limited by the bind-

ing energy of the ligand. Furthermore, the authors point out that while earlier forms of proteins may have

shown poorer communication, allosteric changes must have been optimized by evolution, bringing tomind

the adage that "Nothing in biology makes sense except in the light of evolution"[58].

The nature of this energy propagation is usually presumed to occur via the propagation of strain, that is

generated at the allosteric site and travels through the protein towards the active site[53]. Leitner notes [132]

that there are two alternate descriptions of this energy transfer: the traversing of energy from one residue

to another along structural pathways (often utilised in discussions of energy dispersion after photoexcita-

tion [127, 27]) or energy transfer between the normal modes of the protein [91, 118]. These two possibilities

have been creatively described as the "domino model" and the "violin model"[124]. The domino model has

been suggested to act as the propagation mechanism in PDK[142] and haemoglobin[143] based on conser-

vation of residues forming a pathway within the protein. In the violin model, binding of a small molecule

has an appreciable effect on one or more of the modes of the protein, much in the same way the pitch of a

violin is altered by placing a finger at a certain point on the string. The authors argue that the dominomodel

makes sense formuch larger scalemechanical structures, at the scale of everyday life, but that at themolecular

scale, thermal noise would lead to inadvertent activation of the "domino pathways", whilst the violin model
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Figure 3.2: The two proposed transition pathways for allostery: induced fit moving clockwise from the top

left and conformational selection moving anticlockwise. The two alternative are not in fact orthogonal and

in fact, induced fit may really be seen as a special case of conformational selection, as even if ligand binding

drives the inactive state over the energy barrier, it must still also preferentially stabilise the active state.

actively relies on this equilibrium motion of the protein structure. Similarly, McLeish et al[158] argue that

small structural changes tend to be localised by elastic inhomogeneities within the protein, as a particular

example of Anderson localisation[205].

Energy flow is sometimes rationalised using concepts from percolation theory[193], in particular the percola-

tion of node vibrations on a fractal object, which Alexander and Orbach found to be:

R2 ∼ tα, α = ¯d/D (3.1)

with R2
the mean square displacement, D the fractal dimension and

¯d the spectral dimension. The fractal

dimension results from the relationship (with massM and length L): M ∼ LD, and D has been found

to be roughly 2.54 for proteins[63, 8]. This value is very close to that of a percolation cluster in three
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dimensions[170], suggesting proteins may well be folded in such a way close to the percolation threshold

so as to optimize vibrational flow through specific channels.

Allosteric site

Allosteric site 1 Allosteric site 2

Active site

Active site

α

α β

γ

δ

Figure 3.3: In the unified view, a coupling constant α is introduced that quantifies how stabilising the effect

of ligand binding is at the active site. On the right, the idea can be extended to explain cooperative effects be-

tween allosteric sites, such that binding of a second ligand has a direct effect on the communication between

the first ligand and the active, labelled as δ.

The unified view, of Tsai and Nussinov, fuses together the structural and thermodynamic explanations by

considering allostery as a function of the energy landscape. If we imagine a protein consisting of a single

regulatory and a single catalytic subunit, then the key parameter is the allosteric efficacy, α. The allosteric

efficacy determines the differential stabilisation of the catalytic subunit between a ligand binding when the

catalytic subunit is in either the active or inactive states. A positive effector is then one that preferentially

stabilises the active state. In this framework, a pathway between the allosteric binding site and the catalytic

subunit becomes a necessary but not sufficient condition for allostery; that is the pathway of residues itself

is not what determines whether the protein is allosteric but instead how energetically favourable changes

induced by the ligand are in the active state of the catalytic subunit relative to the inactive state. Thus a

ligand may well stabilise the inactive state but so long as it stabilises the active state to a greater extent, it will

have a positive allosteric effect.

3.4 Experimental approaches

Despite significant advances in single molecule experimental techniques, the study of energy propagation in

individual proteins is far from trivial. Dyer et al [135] usedultrafast infrared spectroscopy to examine the flow
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of energy within albumin and found that the flow was ballistic and anisotropic rather than diffusive, sup-

porting the idea that structural pathways existwithin proteins that allow for efficient energy transfer between

coupled sites. In fact, anisotropic energy flow appears to be commonwithin proteins across a number of pro-

cesses in addition to allostery, including diversion of energy from heated cofactors[127], photosensing[128]

and photodissociation of ligands[203] as measured by Raman spectroscopy. There is evidence that the ex-

istence of such energy channels is essential in the preservation of the protein’s folded state; substituting Zn

into cytochrome c and exciting with ultraviolet light appears to lead to partial unfolding of the protein[131],

suggesting proteins may use energy pathways to shunt away excess heat.

One of the challenges involved in experimental studies of allostery is that structural changes upon ligand

binding can be subtle. A technique that is capable of measuring structural changes at an atomic level to an

exquisite level of sensitivity is nuclear magnetic resonance spectroscopy (NMR)[201] and as a result, NMRhas

become a vital tool for probing allosteric changes. Additionally, NMR is suited to elucidating dynamics at a

range of timescales[74], from the very fast ps changes implicated in entropically driven dynamic allostery[96,

104, 74] to slow ms timescales, close to to the timescale over which allostery is generally thought to take

place. Allostery is often marked by very small structural changes, yet Falk et al [66] were able to exploit

the high sensitivity of NMR chemical shifts to small structural changes and by using mutational studies

to create singly bound thymidylate synthase dimers, they demonstrated that binding of the first allosteric

effector primes the enzyme for the binding of the second effector, such that both effectors are required for

the allosteric response. In an earlier study, Volkman et al[237] usedNMR relaxation to study allostery in the

signaling proteinNtrC, a single domain protein. By observing the protein before and after phosphorylation,

the authors discovered NtrC undergoes a population shift with a dynamical equilibrium between the two

structures even in the absence of phosphate.

Studies on CheY cast doubt on a previously assumed[208] two state model of allostery. CheY is involved

in the regulation of the flagella motors in E. coli, which drive bacterial motion[41]. Phosphorylation of

CheY causes a conformational change at the active site that binds to the motor switch protein FLIM. Carr-

Purcell-Meiboom-Gill (CPMG) dispersion experiments were used to follow the dynamics switching of the

unphosphorylated formofCheY[156], finding that a two state concerted switch is not themodeof transition,

but instead a pathway of residues switching asynchronously leads to the change between states. In a later

studyby the same authors[157], phosphorylationdriven changes of the dynamics in the ps−ns range occurred

mainlywithin this set of residues, hinting at specific structural alterationsmodulating entropic contributions

to allostery.
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3.5 Computational approaches

Due to the challenges inherent to the experimental studies of allostery, a wide range of computational meth-

ods have been developed to model allosteric behaviour [196]. Whilst it is ultimately in experiments that

we must put our trust, the freeing of practical constraints means that computational methods for studying

protein dynamics have become immensely powerful, aided by the staggering growth in computer power in

the last 50 years. There is currently no experimental method that can provide atomic level resolution for the

dynamics of even moderately sized proteins and so it falls to computation methods to attempt to provide

the detail at this level.

Molecular dynamics

Perhaps the gold standard in the computational studyof protein dynamics,molecular dynamics (MD)works

on the principle of numerically integrating Newton’s equations of motions over the desired timescale given

a defined force field[76, 194]. There are a number of force fields, including CHARMM[25], AMBER[45]

and GROMACS[236] but the functional form is largely similar:

Etotal =
∑
bonds

(
r − req

)
2

+
∑
angles

Kθ
(
θ − θeq

)
2

+
∑

dihedrals

Vn
2

[
1 + cos

(
nϕ − γ

) ]
+

∑
i<j

[
Aij
R12

ij
−
Bij
R6

ij
−
qiqj
Rij

] (3.2)

That is, the force field is classical, though quantummechanical computations are used to calculate the force

parameters. The suitability of MD for studying protein ensembles derives from the ergodic principle, the

same principle discussed in Chapter 2 in the context of randomwalks on networks, which in effect says that

the time averaged properties of a single protein (over a long enough period) are the same as the snapshot

ensemble average of the protein.

The history ofMD[1] dates back to 1957, when small simulations on hard-spheremodels were performed[3],

whilst modern daymethods are capable of reachingmillisecond timescales for some proteins[215]. However

even now, studying biological phenomena (often on the timescale of milliseconds, if not even seconds) is

out of reach for moderately sized proteins, necessitating the use of various techniques to reduce the issue
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of structures becoming "stuck" in local energy minima. Specifically, the process of interest may be very fast,

but infrequent. A constraint on how quickly MD simulations can explore the state space for a protein is

that the time step for the integration algorithmmust be shorter than the fastest process occurring within the

protein, which is usually hydrogen bond vibrations that take place on the order of 10
−15

seconds. Activated

MD[154] first restricts a series of trajectories to be near the energy barrier between two states of interest in or-

der to identify the barrier, before then running further conventionalMD trajectories in the barrier’s vicinity.

Steered MD[97] uses additional forces to encourage trajectories along paths of particular interest, though

this then imposes difficulties when applied to the study of equilibrium distributions. Langevin dynamics

can be used to model the effect on motion of solvent:

M
d2r
dt2
= Γ
dr
dt
+ F (r) + ϕ(t)

where Γ is a diagonal matrix representing a diffusion term and ϕ(t) is 3N × 1 vector of Gaussian noise

that acts as a heat bath, with F (r) our internal force interactions andM the mass matrix. The random

perturbations to the system can aid in crossing energy barriers, improving sampling[1]. When the viscosity

of the surrounding the solvent is particularly high (Γ » M), we say the system is overdamped and set the

acceleration term to zero:

dr
dt
= −F (r) + ϕ(t) (3.3)

where we have also set Γ to 1. Equation (3.3) now describes brownian dynamics (BD), the diffusional coun-

terpart of MD[64]. The damping of the solvent thus removes inertial effects and the protein performs a

random walk over the state space determined by the force field. In the special case where the system is a

1-dimensional line of springs, such that the internal force terms are simply a set of spring constants, we can

write:

dx
dt
= −Lx + ϕ(t) (3.4)

and can see that we have obtained an equation of the same form as Eq. (2.10) from Chapter 2 (with the

addition of the noise term), showing the correspondence between a random walk on a network and the

scalar vibrations of anoverdamped spring system,where the removal of inertia guarantees thememorylessness
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property.

MD simulations have found agreement with evolutionary conservation analysis; Ota and Agard[183] used

a nonequilibrium MD method they called anisotropic thermal diffusion to simulate the protein PSD-95,

a member of the PDZ family. By reducing the signal-to-noise ratio, the authors were able to discern long

range dynamical correlations, which agreed closely with the residues highlighted by Lockless et al[142]. A

subsequent study[212] on the same protein used a pump-probe MD method to identify energy transport

channels and once again the same pathway was found, giving a physical basis to the evolutionary analysis.

Ranganathan et al subsequently performed sequence analysis on other allosteric proteins[218, 227], includ-

ing G-protein coupled receptors and haemoglobin and again discovered connected sequences of residues

between distal functional sites.

Metadynamics is anMD technique that incorporates trajectory history into the force field, allowing it to "fill

up" explored energy minima andmore efficient explore the state space. Metadynamics was used by Palazzesi

et al[185] to study binding of MLL to the KIX domain of CREB-binding protein (CBP). Previous NMR

studies[26] had suggested that binding of MLL primes the KIX for binding of a second ligand, c-Myb,

through a pathway linking the two binding sites. In the MD experiments, the MLL interaction with the

L12 − G2 region is transmitted through an α−helix to a hydrophobic core, allowing the residue Ile657 to

rotate into a favourable position for binding of the second ligand.

Markov State Models

Despite the rapid advances in processing power of modern computers, molecular dynamics simulations on

even moderately sized proteins are time consuming, particularly if explicit solvent is used. The assembly

of specialised hardware has allowed for trajectories running well into the millisecond timescale[213], but is

currently prohibitively expensive. A more general approach however, is provided by Markov State Models

(MSMs)[186, 39]. In an MSM, after a trajectory is collected, a set of features is selected, for example the

set of dihedral angles. A dimensionality reduction step projects each of the snapshots of the trajectory into a

reduced space using amethod called time-lagged independent component analysis (tICA)[164] and snapshots

that are close together within this space are clustered together to form a set of microstates, such that the

dynamics within a microstate is fast enough that they may be considered a single conformation. Each of

the microstates is then a node in a network. The edge weights can then be found empirically by counting

the number of times the trajectory moves between each of the states, ultimately generating a discretized
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approximation to the free energy landscape of the protein. The power of MSMs is that they can also be

built using a number of shorter MD runs, in order to more effectively sample the state space and avoid the

problem of remaining trapped inside an initial energy well.

MSMs have been used to uncover "cryptic allosteric sites", that is functionally relevant sites that are una-

menable to conventional methods[22]. MSMs were constructed for three proteins (TEM-1 β-lactamase,

interleukin-2 (IL-2), and RNase H) in their apo, or unbound, states. By applying a pocket detection algo-

rithm to a representative structure from each of the approximately 5000microstates in theirMSM, theywere

able to not only identify cryptic sites that appear infrequently, but to quantitatively assign a probability of

the site being open. Furthermore, when the authors applied a clustering technique based on the mutual

information between rotameric states of pairs of amino acids in β−lactamase, they found that the allosteric

pocket and the active site were gathered into the same community. Malmstrom et al[149] built an MSM

from both the active and inactive states of the cyclic nucleotide-binding domain of the regulatory subunit

of protein kinase A.

Markov chainMonte Carlo

Famously introduced by Metropolis et al[161] having been initially devised by Stanislaw Ulum during the

Manhattan project, Markov chainMonte Carlo (MCMC) basedmethods are an alternative approach to un-

covering thepotential energy landscape via sequentially generating configurations of theprotein. Bydefining

a suitable acceptance rule, it can be guaranteed that the set of samples converges to the correct (Boltzmann)

distribution (though there are not necessarily any bounds on how long this may take). Using π as the (un-

normalised) probability of a particular configuration at equilibrium:

accept new configuration =


1, ifπnew > πold
πnew
π
old

, ifπnew < πold
(3.5)

which is known as the Metropolis method and is a special case of a more general set of choices that must

satisfy detailed balance. In particular, a choice must be made about how to generate the moves in the first

place (the "Markov chain" part ofMCMC) and if the choice is symmetrical (so that the probability of choosing

a move from i to j is the same as from j to i) then the above equation holds. A fundamental issue, however,

of MCMCmethods is the difficulty of designing them to efficiently explore the state space: if the moves are

too large, then there is only a very small probability that the move will be accepted, whilst generating only
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small moves will tend to lead to a random walk that takes a very long term to converge to the stationary

distribution. These issues are a particular problem for large biomolecules[178].

Apowerful combinationofMDandMCMCmethods is transitionpath sampling (TPS)[20], that efficiently

samples trajectories between two pre-defined states. A set of trajectories between the two sites is generated

using MD before using Monte Carlo techniques to accept or reject each of the paths, generating an ensem-

ble of transitions with their associated probabilities. TPS was used to study the inactive-active transtion in

CheY, thought to occur via a mechanism whereby a Thr87 residue moves away from the active upon phos-

phorylation, then allowing Tyr106 to occupy its active conformation inside the active site. Ma and Cui[147]

examined the rotation of the Tyr106 residue, finding that rather than being dependent on the movement

of Thr87, it is actually the formation of a hydrogen bond between the two residues that stabilises the active

conformation. The finding highlights the necessity of an atomistic level of resolution to elucidate transition

pathways, with individual bonds often having crucial effects on function.

Network models

True potential 

Harmonic potential

Figure 3.4: For a system at its energyminimum, a common approach is tomodel the potential energy surface

as a quadratic. In many cases, this is a reasonable assumption under the condition that the system’s displace-

ment is small relative to its equilibrium position. In other words, a possibly complex interaction is modelled

as a Hooke spring, which is exactly solvable.

Given the high computational demands ofMDmethods, there has beenmuch attentionpaid to the develop-

ment of simplified models of proteins that attempt to retain important characteristics of dynamics. Perhaps

the most successful of these have been elastic network models (ENMs), in which the force field in Eq. (3.2) is

replaced with a set of Hooke springs between pairs of atoms, usually determined by a distance cutoff. The

seminal work in this area was carried out by Tirion[233] who used an atomistic ENM to perform normal

mode analysis (NMA) onG-actin, amuscle protein. By Taylor expanding the potential energy surface about
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a minimum point with respect to the atom displacements:

V (r − r0) = V0 + J (r − r0) +
1

2

(r − r0)TH (r − r0) + O((r − r0)3) (3.6)

and using the fact that at the bottom of the energy well, all the first derivatives must be zero (i.e. J = 0

where J is the Jacobian matrix) and the constant term V0 is arbitrary as we are only interested in potential

energy changes and so can be set to zero. All terms of order (r − r0)3 are then dropped so that V (r − r0) =
1

2
(r−r0)TH (r−r0), with theHessian,H , thematrix ofmixed second order partial derivatives for all pairs of

atoms. The normal modes then are those motions of the structure whereby the displacements line up with

the internal forces. Using that force, F, is the derivative of potential energy
dV

d(r−r0) = H (r − r0), we wish to

find those displacement that are in the same direction as the forces, or:

Hri = λiMri (3.7)

so that the problem reduces to a generalised eigenvalue problem involving the Hessian matrix and the mass

matrixM . Tirion found that despite the relative simplicity of the elasticmodel, the slowest frequencymodes

were in fact a goodmatch toMDsimulations of the sameprotein[234], anobservation that has been repeated

in numerous additional studies[13, 61].

NMA has been frequently used in techniques that aim to model allosteric binding. Balabin et al[15] mod-

elled the perturbation induced by the binding of an allosteric ligand to an elastic network and calculated the

effect on themotion along a normalmode. Theywere then able to construct a couplingmatrix that describes

those parts of the protein that show strong coupling to other sites. Mitternacht and Berezovsky[163] defined

functional sites as those that undergo high strain when bound to a ligand, in the sense that the surrounding

residues are moving in different directions, using a measure they termed ’binding leverage’. These sites thus

allow coupling to a number ofmodes tomodulate dynamics. Anothermethodused a technique that defined

important residues as those whose perturbation caused large changes to conformation[11]. In fact, there are

now an extensive number of web servers that make use of normal mode calculations to predict allosteric

sites on proteins, including Allosite[95], Allopred[84] and SPACER[82], aided by the speed of eigenvalue

calculations on modern workstations.

ENMs have also been combined with MD simulations as a hybrid approach. Gur et al[89] calculated the

normal modes of adenylate kinase to determine potential transition pathways between states, while simul-
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taneously using an MD procedure to determine the energetics of the dynamics. Ligand induced large scale

conformational change was investigated by Wang et al using umbrella sampling, a form of MD that aids in

sampling parts of the energy landscape separated by large barriers. Again, NMAwas used to generate plau-

sible transitions between states. The authors found that across three proteins (adenylate kinase, calmodulin

and p38α), a conformational selection mechanism was seen for the first two, but an induced fit appeared

to be the means of transition in the third, once more highlighting that transition pathways are likely to be

tuned for specific proteins, rather than following rigid, general principles.

Other network based methods

Network based approaches have become increasingly common, aided by the suite of techniques developed

by the growing field of network theory for the general study of network topology. Daily et al[49] identi-

fied those residueswhose interactions change upon binding bymodelling proteins as residue-residue contact

networks (that is, N × N graphs as distinct from 3N × 3N elastic networks), finding that in 15 allosteric

structures, a set of residues exhibiting large contact rearrangement formed a contiguous path between the

allosteric and active sites, though no such path was present in the remaining 10 proteins. Del Sol et al[52]

borrowed shortest path techniques from graph theory to find those residues that are particularly crucial to

signalling within allosteric proteins finding that conserved residues were particularly important in main-

taining a low characteristic path length (the average of the number of steps of the shortest paths between all

pairs of nodes in the network) in these proteins. Ribeiro andOrtiz usedMD trajectories to build up so called

protein energy networks (PENs)[195]. In a separate paper, they discovered that when residue motion corre-

lations are used to create the network, statistical errors render the results less accurate than when interaction

energies are used, as a result of the high sensitivity of the signalling pathways to the network topology[?].

Network-theoretic machine learning tools have also been applied to fully atomistic protein graphs [54, 4]

demonstrating that a wealth of information can be obtained from static structures, avoiding the time con-

suming calculations often involved in molecular dynamics or Monte Carlo approaches.
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Bond-to-bond propensity analysis of ATCase

4.1 Aspartate carbamoyltransferase: a model for allostery in multimeric

proteins

Aspartate carbamoyltransferase, or ATCase, is a classic example of an allosteric enzymewhose catalytic rate is

attenuated by the binding of various substrates, and has been the subject of intense study for over 50 years[33,

80]. Biologically, its role is to catalyse the initial step of the pyrimidine biosynthesis pathway; that is the

conversion of L-aspartate and carbamoyl phosphate to N-carbamyl-L-aspartate and phosphate. Adopting a

dodecameric structure, ATCase consists of six catalytic subunits and six regulatory subunits andnotably does

not follow Michaelis-Menten kinetics, as observed by the absence of a hyperbolic saturation curve where

increases in rate slow down with increasing substrate concentration as the enzyme saturates. Instead, the

enzyme exists in two distinct states: a biologically active "relaxed" state (or R state) and an inactive "tense"

state (T state) that exist in a dynamic equilibrium [139], resulting in a sigmoidal curve, in which the rate

accelerates with higher ligand concentration before flattening out at saturation[?].

ATCase displays both homotropic and heterotropic allostery. Binding of the reaction substrates to one of

the active sites (in the multimeric structure) leads to a shift in equilibrium towards the active R state - we

call this homotropic allostery. Heterotropic allostery then refers to the binding of ligands distinct from the

reaction substrates to the protein, usually at a distal site, that cause a change in the reaction rate[165]. Both

ATP (positive effector) and CTP (negative effector) bind to ATCase and it is this phenomenon that drives a

negative feedback mechanism. CTP is a pyrimidine and thus high levels of pyrimidine biosythesis generates

31
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Figure 4.1: ATCase comprises of six catalytic and six regulatory subunits, shown in green and gold respec-

tively, with more than 43000 atoms. PALA (red) is a bisubstrate analogue of the reaction substrates (car-

bamoyl phosphate and aspartate) and sits in the active site, while ATP and CTP bind to the regulatory sub-

units and are shown in silver.
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Figure 4.2: The inactive "tense" (T) state and active "relaxed" (R) states of ATCase. ATCase expands by 11Å

along its 3-fold axis upon transitioning to the R state.

higher concentrations of CTP, that in turn attenuate the catalytic rate. Whilst both ATP and CTP bind to

both the active and inactive state ofATCase and cause slight changes in the quaternary structure, the binding

of ATP to the inactive T state and CTP to the active R state is not sufficient to cause a population shift to

the opposite state[111].

4.2 Application of bond-to-bond propensity

Bond-to-bond propensities was shown byAmor et al[5] to be able to predict allosteric sites in a large range of

proteins through knowledge only of the active sites of those proteins. A number of features of the method

stands out. Firstly, it uses an atomistic description of the protein when constructing the network so does

not use any coarse-graining techniques to reduce the complexity of the protein structure. Despite this, the

method is very computationally efficient; the calculations are carried out in almost linear time with respect

to the number of edges as a result of recent work in algorithmic theory[220, 116]. Finally, in contrast tomany

graph theoretical approaches, bond-to-bond propensities is focused on the edges in a network, and thus in a

biological system, the bonds. It is through bonds that energy transfer occurs in a protein upon binding of an

allosteric ligand[?] and this appears to be the vital link between the mathematical basis of the method and

the physical processes occurring in the protein.

The success of the method in identifying these sites motivates this chapter, in which we study the "reverse"
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process. That is, using ligands bound to the allosteric site on the protein as the source of a perturbation so as

to replicate the actual physical process that occurs. From this, we are able to examine how that perturbation

spreads throughout the protein structure and identify those residues that are particularly crucial to energy

transport. By comparing the process on both the active and inactive states of ATCase, we aim to then explain

how the different energy propagation processes may affect the equilibrium between the two states and thus

the allosteric effect of altering the catalytic rate of the protein.

The formulation of bond-to-bondpropensitywas presented in detail inRef [5] and thus is summarised here.

The key matrix that defines bond-to-bond propensities isM , the m × m bond-to-bond transfer matrix,

where m is the number of bonds. The elementMji describes how a perturbation at bond i is transmitted to

bond j via a propagation that includes the entire graph structure [206].M is shown to be given by

M =
1

2

WBTL†B (4.1)

whereB is the n×m incidencematrix for the graphwith n nodes andm edges andL† is the pseudo-inverse of

theweighted LaplacianmatrixL, which governs the diffusion dynamics on the energy-weighted graph [130].

The weighted Laplacian is given by:

L =


−ωij, i , j.∑
j ωij, i = j,

(4.2)

where ωij corresponds to the interaction energy between atoms i and j. More compactly, the Laplacian can

be rewritten as L = BWBT whereW = diag(ωij) is a m × m diagonal matrix that contains the average

fluctuation energy of interactions of all edges on the diagonal:Mbb =
1

2
〈wbybyb〉 = 1

2
〈wb (xhead(b)−xtail(b))2〉.

To evaluate the effect of perturbations from a group of bonds b′ (e.g., belonging to a ligand) on another

bond b we select the corresponding columns of the matrixM and compute the sum of the absolute values

in the bth row of the selected columns:

Π
raw

b =
∑

b′∈ ligand
|Mbb′ | (4.3)

where b′ includes all the weak bonds between the protein and the source (i.e., the ligand).

The bond propensity is then defined as:

Πb =
Π raw

b∑
b Π

raw

b
, (4.4)
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which is normalised by the total propensity score of all the bonds in the system.

The results presented in this chapter are often in the form of the residue propensity, which is calculated by

summing over the normalised bond propensities of the bonds belonging to the residue R:

ΠR =
∑
b∈R
Πb. (4.5)

Quantile regression

In general, the propensity of a bond within the protein decays away from the perturbation source. To de-

tect significant effects in the protein structure, we need to compare bond propensities at a similar distance

from the source, thus taking into account the expected effect of distance. This is achieved using conditional

quantile regression (QR) [123], which allows us to identify high propensity bonds at the tail of the highly

non-normal distribution [5].

The distance of a bond from the perturbation source is taken to be the minimum distance between that

bond b and any of the bonds of the chosen source residues:

db = min

b′∈source bonds
|xb − xb′ | , (4.6)

where xb holds the cartesian coordinates of the midpoint of bond b. Because propensity scores are seen

to generally fall away exponentially with distance, the logarithm of the propensity is used to generate the

parameters in the QRminimisation problem:

ˆβ
prot

b (p) = argmin

(βb,0, βb,1)

protein∑
b

ρp
(
log(Πb) − (βb,0 + βb,1db)

)
(4.7)

where

ρp(y) =
��y (p − 1y<0)

��
(4.8)

is theQR loss function to beminimised for each quantile p and1 denotes the indicator function. The result

of this optimisation is the model
ˆβ
prot

=
(

ˆβprotb,0 (p), ˆβprotb,1 (p)
)
that describes the quantiles of the propensities

for all bonds in the protein. In continuum elastic models, the response to an external perturbation scales

as r1−d
with r the distance from the perturbation source and d the spatial dimension[133] but we see em-

pirically across all the proteins studied thus far that the propensity values decay rapidly with distance from
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the source[5], a result concomitant with observations in granular materials where local response is hetero-

geneous and dependent on structure[140, 148]. Thus the more quickly decaying exponential function is a

more suitable fit here.

The bond quantile score can then be calculated for each bond in the protein by finding the quantile ρp such

that:

pb = argmin

p∈[0,1]

���log(Πb) −
(

ˆβprotb,0 (p) + ˆβprotb,1 (p) db
)��� (4.9)

for bond b with propensity Πb at a distance db from the source bonds. The corresponding residue quantile

score (pR) is similarly defined, instead using residue propensities and the minimum distance between the

atoms of each residue and those of the source bonds:

ˆβ
prot

R (p) = argmin

(βR,0, βR,1)

protein∑
R
ρp

(
log(ΠR) − (βR,0 + βR,1dR)

)
(4.10)

and

pR = argmin

p∈[0,1]

���log(ΠR) −
(

ˆβprotR,0 (p) + ˆβprotR,1 (p)dR
)��� (4.11)

We can then use this bond quantile score (and its corresponding residue analogue pR) to establish which

bonds (and residues) have significantly propensities once the distance effect has been regressed out. Our

quantile regression calculations make use of the R library quantreg written by R. Koenker [122]. QR is dis-

cussed in further detail in the Appendix.

4.3 Structural data

The three X-ray crystal structures of ATCase used in this work were downloaded from the Protein Data

Bank (PDB) [17]. We studied two active state structures: 4KGV, the R state bound to ATP (obtained at

1.2Å resolution [42]); and 1D09, the unligated active state (resolved at 2.1Å [107]). We also used one inactive

structure: 5AT1, the T state bound to CTP (obtained at 2.6Å resolution [224]).
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Figure 4.3: A perturbation is applied to theweak bonds between the allosteric ligand and the protein and the

reponse across the entire set of bonds in the protein is calculated. Bonds that are more strongly coupled to

the allosteric site exhibit a stronger response and are thus said to have a higher propensity. Then propensity
scores are ranked according to their distance from the allosteric source by quantile regression to give their
final score.

4.4 Construction of the protein graph

The initial step in themethod is the conversion of the 3-dimensional coordinates of the atoms of the protein

to a graph, that is a collection of nodes (here representing the atoms) and edges that link them. The weight

of an edge between two nodes corresponds to the interaction energy of that bond or weak interaction. The

construction step was initially developed by Delmotte[54] and is described briefly here.

The crystal structures typically do not contain hydrogen atoms and so the program Reduce[243] is used to

add these. Following this, the software FIRST[101, 102] identifies: covalent bonds, which are weighted using

standard bond energies[105]; hydrogen bonds, given a value according to the potential of Mayo[48] using a

threshold of 0.01kcal mol
−1

; and hydrophobic interactions (threshold of 8Å), weighted using the potential

developed by Lin et al[137]. Finally, electrostatic interactions are accounted for using a standard Coulomb

potential and atomic charges for the residues are assigned using the OPLS-AA force field[108].

4.5 Results and Discussion

We investigate here three different scenarios: the binding of the positive allosteric effector, ATP, to the active

R state of ATCase and binding of inhibitory CTP to the inactive T state (the inverted case, that is ATPwith
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Figure 4.4: The three dimensional coordinates from the PDB file are converted into a graph of the protein
with edges weighted by bond energies.

theT state andCTPwith theR state shownegligible effects experimentally so are not considered[111]), which

is the heterotropic case. We then study the interaction of the bisubstrate analogue N-(phosphonacetyl)-l-

aspartate (PALA) with the active site of the R state in order to elucidate the homotropic mechanism.

Active R State with ATP source

Identification of key residues involved in allostery

ATP is an allosteric activator of ATCase, able to increase the activity of the enzyme by 180% at a 2mM

concentration[111]. ATP does not affect the maximal rate of the enzyme, but instead induces a shift from

the inactive T state to the active R state. TheMWC and EAMmodels would suggest this shift is caused by a

preferential stabilisation of the activeR state over the inactiveT state, whilst theKNFmodelwould attribute

this to the binding of ATP to the inactive state driving it towards the active state. The two models are not

necessarily orthogonal however, and we instead focus on the energy transfer within the individual states as a

result of ligand binding.

The crystal structure of ATCase chosen (4KGV) has six binding sites for ATP. Bond-to-bond propensities

relies on the selection of one or more source residues, such that the weak bonds associated with the atoms in

those residues act as the source of the perturbation (Figure 4.3). In order to assess the effect of ATP binding

to ATCase, ATP was chosen as the source residue, so that the source of the perturbation was the bonds

between ATP and the protein. By representing the protein structure as a graph, bond- to-bond propensities

uses a full atomistic description of the protein and so it was possible to select multiple source sites, allowing



4.5. Results and Discussion 39

2.0

0 10 20 30 40 50 60 70

1.5

1.0

0.5

0.0

Distance (Å)

Pr
op

en
sit

y

99th quantile

Quantile score

Top 1% of 
residues
Perturbation 
source

Tyr240
Active site

Front Side on

a

c

b

PALA

Asn84

Tyr240

Figure 4.5: Residue ranking of the active R state of ATCase with 6 ATPs as the source by bond-to-bond

propensities and conditional quantile regression. All residues are ranked (shown from a red to blue scale)

and can be seen either directly on the structure (a) or plotted against distance from the source (b). Here,

we further focus on the top 1% as the most significant and plot them on the protein structure (c). Thus

(c) displays entirely equivalent results to (a) but the method allows us to highlight those residues that are

particularly important to energy distribution without making any changes to the underlying data.

us to examine the effect of changing the number of ATP residues to the source and simulating the effect of

altering ATP concentration. Initially, all six ATPmolecules were included as the source residues in order to

clearly identify those residues that score particularly highly and are thus in some way significant to energy

transfer in the active R state.

Figure 4.5a demonstrates the output of the method. Each residue in the protein receives a propensity value,

which is then ranked by conditional quantile regression, taking account of the distance of the residue from
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the source sites. Thus in Figure 4.5b, residues are coloured red if they rank highly and blue if they achieve a

low rank. In order to investigate the effect of energy flow on allostery, we are interested in the highest scoring

residues and so Figure 4.5c displays in red only those residues that obtained a score in the top 1% (pR ≥ 0.99).

The highest scoring residue is Tyr240, with each of the six residues scoring pR = 1 (see Table A.1). Tyr240

is known to play a role in the T↔R transition, with each pair of tyrosine residues forming bonds between

their phenyl rings in the R state across the gap between the two catalytic trimers, as opposed to an hydrogen

bond to Asp271 in the T state[36, 31]. Cherfils et al used site directed mutagenesis to substitute Tyr240 for

phenylalanine[36], which is has the effect of removing the hydroxyl group that forms the hydrogen bond

in the T state. The resulting mutated enzyme (in the presence of a subsaturating level of PALA such that

the amount of T and R state ATCase was approximately equal) shifted strongly towards the R state upon

addition of ATP, in contrast to the wild-type protein where no effect was observed when ATP was added.

The other residue which scores highly across all six instances is PALA (average pR = 0.996) , the bisubstrate

analogue that sits in the active site, indicating a very strong link between the allosteric and active sites. Indeed

it can be seen starkly from Figure 4.5 that the highest scoring residues are concentrated at both the allosteric

and active sites. Interestingly, there does not appear to be a clear path between the two sites, a result that is

somewhat similar to the strain analysis carried out byMitchell et al[162] suggesting a more complex form of

communication than energy simply being shunted along residue "pathways".

Table 4.1: Active R state with six ATP sources, showing the top 20 residues by quantile score. All six active
site substrate PALA residues and all six Tyr240 residues score above the 99.5% quantile.

Residue Name and Chain Quantile Score Residue Name and Chain Quantile Score

Tyr240 A 1 Pala401 G 0.996

Tyr240 I 1 Pala401 A 0.996

Pala401 K 1 Pala401 K 0.996

Pala401 C 1 Arg65 C 0.996

Tyr240 E 1 Arg65 K 0.996

Tyr240 C 1 Pala401 E 0.996

Tyr240 K 1 Pala401 I 0.996

Tyr240 G 1 Asn84 J 0.996

Asn84 B 1 Asn84 L 0.996

Asn84 F 1 Asn84 D 0.996

The propensity score of a residue is simply the sum of its bond propensity scores. It is often important then

to look at the bond scores directly, as key bonds within residues may be missed if other low scoring bonds

in the residue "average out" the overall propensity score for the residue. Indeed, this approach highlights the

vital importance of understanding proteins at the bond-level, as even course-graining to the residue level can
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remove crucial information.
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Figure 4.6: Bonds ranking in the active R state of ATCase with 6 ATPs as the source by bond-to-bond

propensities and conditional quantile regression. Eachbond receives a propensity score, which is then ranked

by conditional quantile regression, (a) and (b). We can clearly highlight the highest scoring bonds by only

selecting those that have scored above the 99
th
percentile and display those bonds that are disproportionately

affected by the perturbation at the six allosteric sites (c).

To this end, one of the key bonds that emerges is the in hydrogen bond between Lys164 and Glu239, which

is a bond that forms in the R state but is not present in the T state[111] (a different Lys164 - Glu239 interac-

tion exists in the T state) and has been highlighted as important in the T↔ R transition. All six instances

of the bond (from each of the six catalytic subunits) score very highly, with an average score of pb = 0.997.

When either of Lys164 or Glu239 is substituted with glutamine and lysine respectively, the mutant ATCase

protein exists in the R state even in the absence of PALA and does not exhibit homotropic or heterotropic
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effects[171], highlighting the role of this interaction for cooperativity and allostery. Similarly, Asn111 in the

regulatory chain forms a new bond in the R state with Glu109 in the catalytic chain and again this hydrogen

bonds scores very highly across all six instance, though interestingly there is a slight asymmetry across the

two trimers. In chains C, G and K (See Figure 4.1), the average bond score is pb = 0.997, whilst it is slightly

slower for chains A, E and I on the other catalytic trimer (pb = 0.985). Mutation of Asn111 to alanine also

leads to the absence of homotropic and heterotropic effects and a shift to the R state[62]. Another inter-

domain interaction identified as being highly important for stabilisation of the active R state is the Glu50 -

Arg234[225] and indeed two different hydrogen bonds score very highly across all six catalytic chains: 0.995

for one set of six hydrogen bonds and 0.994 for the other, suggesting that the link between these two residues

is particularly important for energy transfer.

Formation of allosteric pathway appears to require three ATP sources in cyclic formation

Whilst in the previous section, all six ATPmolecules were used as the source of the perturbation, themethod

allows us to select any number of ligand sites as the source. We can then model the effect of progressively

adding more ATP molecules to ATCase to investigate how energy flow occurs when different numbers of

ligand sites are bound to. Starting with a single ATP source on chain B, further ligands are added to the

perturbation source on chain F (i.e. two sources), then chain J (three sources) and the bonds and residues

are scored in each case.

When just a single ATP source is used (in this case, arbitrarily, on the regulatory chain B), it is immediately

apparent that the ranking of the residues in the protein (and thus their response to the energy perturbation

originating at the allosteric ligand) is different to when all six ATP molecules are used as the source. For

example, the active site residue PALAwas one of the highest scoring residues when six ATPmolecules were

used (average quantile score = 0.996) but it scores lower here (average score = 0.941). Instead, most of the

highest scoring residues appear to be located near to the allosteric site on chain L, which is situated across the

multimer from the chain B source (see Fig 4.1) Asp19 (which binds to ATP) on chain L scores pb = 1, whilst

Lys56 scores pb = 0.996. Mutation of Lys56 to alanine led to the disappearance of homotropic cooperativity

in the presence of ATP, but not CTP[44], suggesting it is involved in the communication pathway between

ATP and the active site. The other highly significant residue in the case of the six ATP sources was Tyr240

(pb = 1) and the results here are interesting. The pair of Tyr240 residues in chains E and K still score highly

(pb = 0.993 and 1 respectivelywhilst theTyr240 residues in theother four catalytic chains score lower (average

of 0.932 across the four catalytic chains). As Fig 4.1 shows, catalytic chains E and K are in fact situated on the
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Figure 4.7: a) Binding of the first two ATP molecules does not appear to show communication between

the allosteric source sites and the active site (identified by the gold PALA residues) in the active R state by

bond-to-bond propensities. However, binding of a third ATP ligand leads to a switching effect, at which

point all six active site PALA residues score within the top 20 residues out of 2790. b) Scatter plot showing

the average rank of the two highest scoring residues (out of 2790) from the 6 ATP case.

other side of the protein to the chain B source, again suggesting that communication within ATCase is both

long range and not driven by a contiguous pathway of individual residues.

As can be seen in Figure 4.7, the pattern of high scoring residues is similar when a second ATPmolecule (on

chain F) is included in the perturbation source, with significant residues appearing again in the region of the

allosteric sites on chains J and L distal to both the source sites on chains B and F. Indeed PALA’s score is very

similar to the single ATP source case (pb = 0.946, showing little change in the communication to the active

site upon "binding" of a second ligand. Tyr240 scores slightly higher on average here (pb = 0.955), though no

single Tyr240 residues scores as highly as in the six ATP case. The overall effect is that there does not appear
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to be a significant change in the response to the perturbation between one or two ATPmolecules binding.

In contrast, a significant change occurs upon addition of a third ATP molecule to the perturbation source.

The average score for PALA now jumps to pb = 0.996, the same as it is in the six ATP case, whilst Tyr240

receives a score of pb = 0.998. If a third ATP source is added instead to chain D (see Fig 1), the increases

are not as stark (PALA = 0.948 and Tyr240 = 0.962), suggesting that the "cyclical" distribution of the ATP

sources around the protein may be important for facilitating communication with the active site.

Active unligated R state with PALA source

In order to study energy flow in homotropic case, PALA, which acts as a bisubstrate analogue in the active

site, was used as the perturbation source (or more specifically, the bonds between PALA and the active site

were the source). Again, all six PALA residues were included as source residues in order to clearly identify

those residues in the structure that are particularly significant with respect to energy distribution and thus

may be implicated in the cooperative mechanism.

Active site Quantile
score

Figure 4.8: To investigate homotropic cooperativity, the six PALA substrates were selected as the source on

the active unligatedR state. The structure on the right shows just one half on the protein for clarity and here

it is clear that the highest scoring regions (in red) of ATCase are located around the active and allosteric sites.

Figure 4.8 shows the overall effect of a perturbation at the six active sites. Similarly to when ATP is used as

the source, the highest scoring regions are clustered around both the allosteric and active sites. The result

reinforces the idea that there is a form of communication between these distal sites and once again, it is

interesting to observe that there do not appear to be obvious, individual pathways between the two types of

site.
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Table 4.2: R state unligated (1D09), showing the top 20 residues by quantile score. Every Glu50 residue

scores the maximum of 1.

Residue Name and Chain Quantile Score Residue Name and Chain Quantile Score

Asp19 D 1 Ile44 L 0.996

Asp19 H 1 Ile44 H 0.996

Asp19 L 1 Ile44 D 0.996

Glu50 E 1 Asp90 E 0.996

Glu50 A 1 Asp90 A 0.996

Glu50 K 1 Asp90 C 0.996

Glu50 G 1 Arg105 G 0.996

Glu50 I 1 Arg105 C 0.996

Glu50 C 1 Arg105 K 0.996

Met1 H 0.996 Met1 D 0.996

As seen in Table 4.2, the highest scoring residue is Glu50, with all six instances of the residue scoring the

maximum of pb = 1. As mentioned earlier, Glu50 is a crucial residue for the stability of the R state and

substitution of glutamic acid for alanine leads to dramatic changes in the enzyme. Activity is reduced by 15-

fold and cooperativity is completely lost[174]. Significant communication to the allosteric sites is also seen,

with Asp19 (one of the residues that interacts with ATP and CTP) scoring pb = 0.992 over the six sites,

whilst Lys60, another allosteric residue, scores highly (pb = 0.989) over the regulatory chains on one side

of the protein (chains D, H and L), again demonstrating asymmetry in the distribution of energy over the

structure. Glu233 forms a salt link with Arg229 only in the R state, which orients Arg229 into the active

site[112]. The removal of the salt link via mutation of glutamic acid to serine leads a significant decrease in

both catalytic activity and cooperativity[18] and indeed Glu233 scores highly overall (pb = 0.985), though

once again a difference is seen between the two catalytic trimers (trimer AEI scores pb = 0.993 vs pb = 0.977

for the opposite trimer CGK).

Analysis of the bond level data reveals further information. As expected, the previously mentioned Glu233

- Arg229 salt bridge ranks very highly (pb = 0.996) whilst the Glu50 interaction with Arg167 (which itself

interacts with PALA in the active site, being positioned correctly by its association with Glu50) involving

two types of bonds scores above pb = 0.995 across all bonds. The Asp19 - Lys56 link scores an average

of pb = 0.999 over its six instances and it was found that substitution of lysine by alanine affected not only

cooperativity but also removed the ability ofATP to activate the enzyme[44]. AsAsp19 is oneof the allosteric

residues, it appears that this bond to Lys56 may be crucial in communicating with the active site.
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Table 4.3: T state with CTP (5AT1). The top 20 residues by quantile score are listed and both Arg56 and

Arg65 appear six times each. These residues sit at the C1-C2 interface within the catalytic subunits.

Residue Name and Chain Quantile Score Residue Name and Chain Quantile Score

Arg65 G 1 Arg65 I 0.996

Arg56 G 1 Arg65 E 0.996

Arg65 C 1 Arg56 C 0.996

Arg65 A 1 Arg56 I 0.996

Arg56 A 1 Arg56 E 0.996

Arg65 K 1 Arg85 H 0.996

Asn84 H 1 Ile86 F 0.996

Asn84 D 1 Ile86 B 0.996

Ile86 J 1 Asn84 L 0.996

Arg56 K 0.996 Ile86 H 0.996

Stabilisation of the catalytic trimer: inactive T state with CTP

In contrast to both the case of ATP and PALA being used as a the perturbation source in the active R state,

the highest scoring regions of the proteinwhenCTP is the source in the inactiveT state appearmost strongly

at the C1-C2 interface (See Figure 4.9) instead of the active site. The catalytic trimers move as essentially rigid

units during the T↔R transition so there is little change between the inactive T state and the active R state

in this region.

Two residues inparticular standout inTable 4.3: Arg65 (average pb = 0.999) andArg56 (average pb = 0.998).

It can be seen from Figure 4.9 that both these residues bridge the C1-C2 interface, though they do not form

links to each other. Looking at the bond data, one of the key interactions made by Arg65 is with Asp100

(average pb = 0.999). This specific interaction was identified as being important for the stability of the

catalytic trimer[14] and replacement of Asp for either Asn or Ala reduces the half life of inactivation of the

catalytic subunit. Arg65 additionally forms a hydrogenbond toHis41, another residue implicated in catalytic

subunit stability and this interaction also scores highly (pb = 0.983), though once again there is a significant

difference between the two catalytic subunits, with the interactions in the AEI trimer scoring pb = 0.999,

compared to pb = 0.968 in trimer CGK. There is possibly a link here with experimental data showing that

in the R state, only half (i.e. three) of theHis41-Glu37 interactions are broken[83, 223] during the transition

from the T state, demonstrating an intriguing asymmetry that appears to be captured by bond-to-bond

propensities. In fact, the results forGlu37 are evenmore stark,with the averagequantile score across chainsA,

E and I 0.990 versus 0.262 for chains C, G and K, a remarkable difference between essentially symmetrically

equivalents sets of residues. Glu37 itself has been associated with stabilising the catalytic trimer[14].
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Figure 4.9: When six CTPmolecules are used as the perturbation source on the inactive T state, the highest

scoring residues appear at the C1-C2 interface, which is the boundary between catalytic subunits within the

catalytic trimer. Arg56 and Arg65 are two of the highest scoring residues, shown on the right, forming a link

across the C1-C2 interface.

Conversely, there appears to be little experimental data on Arg56, nor on the two highest scoring links it

makes: to Gly72 (pb = 0.999) and Gln60 (pb = 0.986), though the Gly72 interaction occurs across the C1-

C2 interface[107, 223] so it would seempossible that this interaction is also involved in stability of the trimer.

Perhaps less surprisingly, a number of residues located close to the CTP site also rank highly: Ile86, which

forms a non-polar interaction with the nucleotide[111], and Asn84, which interacts with the phosphate part

of CTP[223] score pb = 0.993 and 0.985 respectively. Val17 also forms a non-polar interaction with CTP,

though scores slightly lower with an average quantile score of 0.978.

Sequential binding of CTP shows a similar pattern to that of ATP

Whilst the identity of the highest scoring residues when CTP is used as the perturbation source is different

to that when ATP is used, there is a similar "switching effect" when a third CTP molecule is included as a

source residue in a cyclic arrangement around the ATCase structure. As seen in Figure 4.10, inclusion of

a third ligand leads to the clustering of high scoring residues in the region of C1-C2 interface, between the

catalytic subunits within a trimer, in a similar fashion to the previously discussed six CTP source case. It

appears to be the interaction between the CTP ligands located in such a way around the ATCase protein
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that leads to energy flow focusing on those residues identified as particularly significant.
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Figure 4.10: a) The top 2% of residues displayed when varying numbers of CTP molecules are included as

source residues. In contrast to the ATP case, there does not appear to be as much communication with the

distal allosteric sites for one or two source ligands but again inclusion of a third ligand on chain J leads to the

results resembling the six CTP case described previously. b) Scatter plot showing the average rank of the two

highest scoring residues (out of 2790) from the 6 CTP case.

This effect is illustrated by focusing on two of the highest scoring residues from the previous case where all

six CTP residues were included as source residues: Arg56 and Arg65. Starting from a single CTP source, the

scores for Arg65 progress from0.904 to 0.961 and then to 0.989when a third ligand is includedwhilst equiv-

alently for Arg56, the scores are 0.779, 0.916 and 0.982 as each of the CTP ligands is added. The increases

in scores here of the two highest scoring residues are actually more "linear" than in the case of ATP but it is

still only when a third CTP ligand is included cyclically that the results from the six CTP case are replicated.

When the third ligand is instead added to chainD, such that the three CTP ligands are now bound to chains

B, D and F, the increase in score upon addition of the third ligand is smaller for both Arg65 (pb = 0.973)
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and Arg56 (pb = 0.922) which again suggests that it is a particular feature of the geometric arrangement of

the allosteric ligands that facilitates communication to the key residues within the protein.

4.6 Conclusions

In this chapter, we have demonstrated that bond-to-bond propensities, having previously been used to pre-

dict allosteric sites from knowledge only of the active site of a protein, can be used to investigate the energy

flow process of the "reverse process" of a ligand binding to an allosteric site. In the active R state, using ATP

as a source of a perturbation reveals a number of residues as being particularly significant, including Tyr240,

which links the two sides of the ATCase protein, and PALA, which sits in the active site. There is thus a clear

communication pathway between the allosteric and active sites inATCase but in accordancewith other com-

putational studies of ATCase[162], this communication does not appear to occur through discrete pathways

of residues but instead via a collective of lower scoring residues. A qualitatively similar effect is observed in

the ’scissor model’ of allostery in which the normal mode of the system leads to large changes at either end of

the molecule, whilst leaving the centre of the molecule largely unperturbed[159]. In each case, the network

structure of the protein appears to arranged in order to facilitate long range communication between sites.

Furthermore, it appears that the geometrical distribution of the ligands is important. Only when three ATP

residues arranged cyclically around the ATCase structure are used as the perturbation source are the previ-

ouslymentioned residues identified as high scoring; when a single or twoATPmolecules are used then there

does not appear to be a strong link the active site, though there does seem to be communication between the

distal allosteric sites.

Homotropic allostery was investigated by using the six PALA substrates as the perturbation source. The

regions that scored most highly in this case were the active and allosteric sites, reinforcing the idea that the

two types of sites are highly coupled in the active state and also hinting that homotropic and heterotropic

effects are not orthogonal phenomena and are instead closely intertwined.

Finally, allosteric inhibition of ATCase by CTPwas studied by using the CTPmolecules as the perturbation

source. Interestingly, rather than the active site region being identified as significant, it was instead the C1-

C2 interface of the catalytic trimers that was found to be particularly coupled to the allosteric sites. The

boundary between the catalytic subunits has been found to be important for stability of the enzyme but not

particularly vital for catalytic activity. It is possible that the allosteric ligandsmay play subtlety different roles
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when binding to the active and inactive states of the enzyme.



Chapter 5

Elastic networks

5.1 Introduction

Given the success of the bond-to-bond propensity method in both predicting allosteric sites using only the

crystal structure of a protein[5] and its ability to elucidate key aspects of the allosteric mechanism as pre-

sented in Chapter 4, the question is raised as to the particularity of the physical process propensity describes.

Consideration of how binding of a ligand to a protein propagates energy across the protein structure thus

lead to the development of a novel computational method: Elastic network response. In this chapter, we

describe themotivations for the method and provide a derivation based on the equations of equilibrium for

a mechanical system. We then apply the method to a range of proteins and supplement the analysis using a

technique called infinitesimal rigidity to provide a complete description of how mechanical perturbations

are distributed over the network structure of the protein.

5.2 Motivation: A mechanical view of allostery

Using a combination of the Elastic response method and Infinitesimal rigidity, we are able to build up a

complete description of how a structural perturbation at a chosen site (modelled as the compression of a

set of bonds, for example those between a ligand and the protein allosteric site) is distributed over the entire

protein structure. Wewould tend to expect that a highly flexible proteinwould be unlikely to transfer energy

in this fashion so infinitesimal rigidity allows us to measure and visualise those parts of the protein that are

rigid and thus more likely to be amenable to communication through structural perturbations.

51
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The potential mechanism we can attempt to elucidate using our method is the extended conformational

selection model[7, 47, 28], invoked to explain how conformational selection can occur in proteins where

either the active or allosteric sites are closed in the active state[228]. Here, we consider that the active state

itself is composed of two (or perhaps more) substates so that binding of a ligand to the allosteric site of an

"active state" protein causes a small change at the active site, perhaps leading to some structural rearrangement

that further stabilises the active site, via the breaking of various weak interactions in a specific manner. We

therefore hypothesise that any perturbation of the allosteric site by our ligand would cause a particularly

high response at or around the active site in the active state of the protein. The methods described in this

chapter strictly only hold in the regime of infinitesimally small changes and our assumption is that it will

approximately hold for the small structural changes often seen upon allosteric binding.

5.3 Elastic network response

The 1-dimensional case

Two centre interactions

The mathematical underpinnings of bond-to-bond propensity were first introduced by Schaub et al[206]

in the context of electrical networks. We make use of the well known "mechanical-electrical analogy" to

interpret the presented equations instead in terms of a 1-dimensional ball-and-spring model.

1

x1 →

2

x2 →

3

x3 →

4

x4 →

We start by considering the displacement of the atoms (mechanical displacement therefore plays the role of

potential in the electrical network) and how they relate to the edge variables, which here are stretches (or

compressions) of the springs, analogous to potential di�erence using a small model as an example:
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y1 = x2 − x1

y2 = x3 − x2

y3 = x4 − x3 (5.1)

We canwrite thismore succinctly inmatrix formbyutilising the incidence matrixB, thatmaps node variables

to edge variables:

y = BTx (5.2)

In order to find the force on each spring, we multiply by the spring constant, k, according to Hooke’s Law:

f1 = k1y1 (5.3)

f2 = k2y2 (5.4)

f3 = k3y3 (5.5)

or in vector form by compiling the spring constants into a diagonal matrix G:

f = Gy (5.6)

We then consider the corresponding force on the balls by Newton’s Third Law, taking into account any

external forces fext on the balls:

fext,1 = −f1 (5.7)

fext,2 = f1 − f2 (5.8)

fext,3 = f2 − f3 (5.9)

fext,4 = f3 (5.10)
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which is just:

fext = Bf (5.11)

Overall therefore we can write:

fext = BGBTx (5.12)

= Lx (5.13)

L being our Laplacian from previously, which in this context therefore takes the form of a sti�ness matrix.

In order to solve this equation for a set of displacements given some input forces, we multiply both sides by

the Moore-Penrose pseudoinverse of L:

x = L†fext (5.14)

as L is singular and has a single zero eigenvalue, which here corresponds to the rigid translational degree

of freedom along the 1-dimensional line. The presence of this rigid mode presents a problem: imagine we

introduce a set of external forces on the nodes that lead to a displacement and obtain a numerical value. We

are then able to add any multiple of

[
1 1 1 1

]
and still obtain a solution. In other words the solution we

obtain is not unique. The situation is resolved by working in the translationally and rotationally invariant

edge-space, which we know from Eq. (5.2) how to do, using the incidence matrix:

y = BTL†fext (5.15)

Whilst we have amended the issue of infinite solutions in the node-space, we face a similar problem of redun-

dancywhen considering our input force vector on the nodes. If we choose an input force of
[
3 −2 0 0

]
,

we will obviously compress the first spring, but wewill also still have a net force to the right, leading to trans-

lational motion. What would be more convenient is if we restrict the choice of input forces to only those

that lead to pure stretches or compressions, so that we do not accidentally choose force vectors that have large
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translational components, given our desire is to study internal energy transfer within the protein. We make

use once again of the incidence matrix:

fext = Bf0 (5.16)

where f0 now represents a set of external input forces on the bonds. Putting this all together:

y = BTL†Bf0 (5.17)

Giving us an expression for the change in length of the various springs in the system, given a particular input

set of external forces applied to the springs. We can then convert this to the output force on each bond by

simply multiplying through by each spring constant:

f = GBTL†Bf0 (5.18)

and the potential energy increase of each bond is:

V =
1

2

y � y (5.19)

where � is the Hadamard, or elementwise, product. We now have an equation (5.18) that appears similar to

our expression for bond-to-bond propensity. Can we therefore conclude that we are modelling our protein

as a elastic model? Whilst clearly a protein is not a 1-dimensional object, might we propose that we can

separate out the three directional components so each has a expression in the form of Equation (5.18)? The

precedent for doing so comes from the formulation of the Gaussian Network Model (GNM) of Bahar et

al[12, 90], who justified their model on the basis that motion of a residue within a protein is determined

by the number of contacts around it and thus drew inspiration frommodels such as those of Flory[72] and

Rouse[109] who studied polymer physics. The Hamiltonian for the GNM, defining a displacement of a

node from equilibrium position as u = x − x0, is:
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V =
1

2

∑
〈i,j〉,α
(uαi − uαj )K αij (uαi − uαj ) = Vx + Vy + Vz (5.20)

Unfortunately we run into a serious problem, pointed out by Thorpe[232] that this model, whilst possess-

ing the necessary translational invariance, lacks rotational invariance. The consequence of this is that if we

substitute rotational motion, as defined by the cross product, into the Hamiltonian we calculate a non-zero

contribution to the energy:

ui = Θ(Ri × ẑ) (5.21)

withΘ a small angle, ẑ an arbitrary rotational axis and Ri a vector from any point on that axis to a point in

the protein (for example an atom or residue). If we set u = d for all atoms to represent a rigid translation,

we can see that all terms in u simply cancel out in Equation (5.20), but in general u terms in the rotational

case will not. As a rigid body rotation involves no change in the lengths of any of the springs in the model, it

should not induce a change in the potential energy of the system. Thorpe further notes that Equation (5.20)

corresponds to a Born model, that was initially used to study motions of lattices but was eventually realised

to be inadequate because of its inability to account for rotations[114].

If we instead write the form of the Hamiltonian for what is known as the Anisotropic Network model

(ANM) (in a slightly unusual form that will be convenient later):

V =
1

2

∑
〈i,j〉
kij[(ui − uj) · r̂ij]2 (5.22)

where r̂ij is the unit vector between nodes i and j. The ANM is a 3-dimensional model that incorporates

information about the orientation of the springs joining pairs of atoms. Again, it is obvious that setting all

the displacement terms to the same value will result in a zero energy contribution from translational motion

as required. Here, however we correctly capture the necessary rotational invariance. By plugging in the

rotation term to the Hamiltonian again:
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V =
Θ

2

∑
〈i,j〉
kij

[ (
(ri × ẑ) − (rj × ẑ)

)
· r̂ij

]
2

=
Θ

2

∑
〈i,j〉
kij

[ (
(ri − rj) × ẑ

)
· r̂ij

]
2

= 0

where we have used the fact the cross product is distributive. Using the definition of the cross product, the

term inside the brackets will produce a vector that is orthogonal to the vector ri − rj and thus orthogonal to

r̂ij which is just the unit vector in the same direction as ri − rj. Therefore we are taking the dot product of

two orthogonal vectors, which gives us the required zero energy contribution.

It is clear then that if we wish to interpret Equation (5.17) as representing an elastic model representation of

a protein, we must construct the model including the full 3-dimensional structure of the protein.

The 3-dimensional case

Webuildup the frameworkusing similar arguments to thoseof Strang[226]whodealswith the 2-dimensional

case of static structures in the context of structural stability. However, whilst Strang uses angles to represent

spatial information, we instead use vectors here as this turns out to be more transferable to later arguments.

Throughout we use a right handed coordinate system, as this is used by the PDB files that will eventually

provided the atom coordinates for the method.

Firstlywe consider how the extension of an edge can bewritten in terms of the displacements of its associated

nodes for a single spring:

e = |rij | − |rij,0 | (5.23)

or simply the extension is the length after displacement minus that before. In order to find how this expres-

sion is related to the components of the displacement (xi for node i, xj for node j and likewise in the y and z

directions), we first expand |rij,0 |:
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i

i

j

j

(Xi, Yi, Zi)

(Xj, Yj, Zj)

(Xi + xi, Yi + yi, Zi + zi )

(Xj + xj, Yj + yj, Zj + zj )|rij,₀|

|rij|

|rij|

x

y

z

i

j

Figure 5.1: Edge displacement in a three dimensional elastic network model in terms of node position

changes.

|rij,0 |2 =
[
(Xi − Xj)2 (Yi − Yj)2 (Zi − Zj)2

]
=

[
(X2

i − 2XiXj + X2

j ) · · · · · ·
]

where Xi represents the initial position of node i in the x-axis and similarly for the other directions and we

have abbreviated the y and z terms in the third line. We can do the same for the stretched spring:

|rij |2 =
[ (
(Xi + xi) − (Xj + xj)

)
2

(
(Yi + yi) − (Yj + yj)

)
2

(
(Zi + zi) − (Zj + zj)

)
2
]

=
[
X2

i + 2xiXi − 2(XiXj + xiXj + xjXi + xixj) + X2

j + 2xjXj + x2

j · · · · · ·
]

= |rij,0 |2 + 2xiXi − 2xiXj − 2xjXi + 2xjXj + · · · + · · · + Θ(x2)

In the last line, we have collected nonlinear terms together and will drop them from the calculation. Phys-

ically, this means the model will only hold for small displacements. We then used the expansion of |rij,0 |2

from earlier to substitute the for the relevant terms. We now rewrite the second part of the equation such

that we can complete the square:
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|rij |2 = |rij,0 |2 + 2|rij,0 |
(xiXi − xiXj − xjXi + xjXj + · · · + · · ·

|rij,0 |

)
+ O(x2)

=
(
|rij,0 | +

(xiXi − xiXj − xjXi + xjXj + · · · + · · · )
|rij,0 |

)
2

+ O(x2)

Square rooting both sides and ignoring nonlinear terms:

|rij | = |rij,0 | +
(xiXi − xiXj − xjXi + xjXj + · · · + · · · )

|rij,0 |

= |rij,0 | +
(
(Xi − Xj)xi − (Xi − Xj)xj + (Xi − Xj)yi + (Yi − Yj)yj + (Yi − Yj)zi + (Zi − Zj)zj

)
|rij,0 |

We therefore have an expression for the extension e, which can be written more conveniently using vector

notation:

e =
(
(Xi−Xj)
|rij,0 |

(Yi−Yj)
|rij,0 |

(Zi−Zj)
|rij,0 | − (Xi−Xj)|rij,0 | − (Yi−Yj)|rij,0 | − (Zi−Zj)|rij,0 |

) ©«
ui

uj

ª®¬
or even more compactly:

e =
(
rij,0
|rij,0 | −

rij,0
|rij,0 |

) ©«
ui

uj

ª®¬ (5.24)

It is apparentnowthat the rowvector containing the terms in rij,0 is our incidencematrix for the 3-dimensional

case, where instead of each row containing a 1 and -1 in the positions i and j for the nodes joined by the edge,

we have rij,0 and −rij,0, each being a 1 × 3N vector. We can then follow the argument through in a similar

manner to the 1-dimensional case, using Hooke’s law and Newton’s 3
rd
law to match the x,y and z compo-

nents of the external forces to reach the equation:



60 Chapter 5. Elastic networks

fext = BGBTx (5.25)

= Ku (5.26)

where K is the stiffness matrix and u is the 3N × 1 vector of node displacements. Equation (??) is one of the

central equations inmechanical engineering (via the Finite ElementMethod) and takes the formof a discrete

Green’s function describing an impulse-response. We can use the same arguments as for the 1-dimensional

case, where we solved for x and then crucially restricted the input force to being either a pure stretch or

compression in the edge-space and converted the output node displacement to a series of edge variables so

that they were invariant to rigid body motion of the entire protein structure:

e = BTK †Bf0 (5.27)

fout = GBTK †Bf0 (5.28)

now using e to represent the edge length changes to avoid confusion with the y variable used previously for

node displacements. Potential energy changes can also be determined as before.

Three centre interactions

In the preceding work, we showed how the equation for bond-to-bond propensity could be re-derived in a

mechanical context so as to describe how an input force is propagated across a protein structure modelled

as an elastic network. Each of the springs represented an interaction between two nodes, which may be

chosen to be atoms or residues in elastic models. However, if we use the procedure described in Chapter

4 to construct our bond network, we are able to identify specific chemical interactions using the software

FIRST, such as covalent bonds and hydrophobic interactions. We know that in addition to bond interac-

tions, chemistry in many cases places further restrictions on the angle between two bonds, for example an

sp3
hybridized carbon atom has an preferred bond angle of 109.28

◦
. As described in the previous section

however, there are no such restrictions on the angle between springs and as such, relative to a real protein

system, our elastic model is likely too "floppy". We therefore introduce, using the same linear framework, a

set of angle interactions within the structure.



5.3. Elastic network response 61

We start this time from the distance between the nodes i and k. As before we want to see how this distance

changes in relation to the displacements of each of the nodes:

e = |rik | − |rik,0 | (5.29)

|rik |2 = |rik,0 |2 + 2xiXi − 2xiXk − 2xkXi + 2xkXk + · · · + · · · + O(x2) (5.30)

However here we have just obtained the same expression as for the two centre case and thus is no different

to simply placing another spring between nodes i and k. The key step then is to additionally restrict the

lengths of bonds (i, j) and (j, k), so that we only allow motions that change the angle but not the lengths of

the bonds.

|rij |2 = |rij,0 |2

|rjk |2 = |rjk,0 |2

When we expand both of these equations, we obtain the relations:

2xjXj − 2xjXi − 2xiXj + 2xiXi + · · · = 0

2xjXj − 2xjXk − 2xkXj + 2xkXk + · · · = 0

which can be substituted in Equation (5.30):

|rik |2 = |rik,0 |2 + 2

[
(Xj − Xk)xi − (2Xj − Xi − Xk)xj + (Xj − Xi)xk + · · ·

]
+ O(x2, y2, z2) (5.31)

Completing the square and square rooting both sides as in the two centre case results in an expression for

the extension of the three centre (i, k) interaction:
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e =
(Xj − Xk)xi −

[
(Xj − Xi) + (Xj − Xk)

]
xj + (Xj − Xi)xk + · · ·

|rik,0 |
(5.32)

and again in a more convenient vector notation:

e =
(
rjk
rik,0 −

rji+rjk
rik,0

rji
rik,0

) ©«
ui

uj

uk

ª®®®®¬
(5.33)

Now our incidence matrix has three entries per row as might be expected now that we are relating three

nodes. Once again, we have assumed linearity and can construct our stiffness matrix for the set of angle

interactions we choose.

Four centre interactions

The natural extension of this is to also consider four centre interactions, which in the language of chemistry,

correspond to dihedral interactions. These are particularly important for double bonds, which restrict rota-

tion around the bond. The procedure is identical to the three centre case, except this time we need to restrict

the lengths of the three bonds (i, j), (j, k) and (k, l) and additionally the two angles (i, k) and (j, l). The final

expression for the extension is:

e =
(
− (rik+rij)|ril,0 | − (rji+rjk+rjl)|ril,0 | − (rkl+rki+rkj)|ril,0 | − (rik+rik)|ril,0 |

) ©«

ui

uj

uk

ul

ª®®®®®®®¬
(5.34)

Note that each of the n-centre interactions corresponds to motion in (n-1) dimensions: the two centre in-

teractions (or bonds) describe motions along a line, three centre (angle) interactions are movements of the

nodes in the plane, whilst four centre (dihedral) interactions capture the motions in and out of the plane

defined by the four atoms. We therefore do not need to go further and consider five centre interactions or

above, as these would simply accord with combinations of the previous n-centre interactions.
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5.4 Rigidity and Infinitesimal rigidity

Wenoted previously that it is important when constructingmechanical models tomake sure they have both

translational and rotational invariance. Mathematically, this equates to the stiffness matrix for the system

having six 0 eigenvalues: three for translation and three for rotations, where the value of the eigenvalue

represents the zero energy cost associated with that motion. Depending on the structure of the model, it is

in fact possible to have more than the six 0 eigenvalues, which equate to additional motions of the model

that lead to no change in the length of any of the springs. The study of such system is the basis of Rigidity

Theory, which has a long history stretching back to Lagrange andMaxwell.

Rigidity

To introduce the basic ideas of rigidity theory, we work initially in 2-dimensions, where any mechanical

system possesses three rigid motions: two translational modes in the x-y plane and a rotational mode about

an imaginary z axis passing through the plane. When considering the rigidity of an object, we no longer

imagine the edge variables as springs that can be deformed, but instead as hard constraints that we cannot

violate. Equivalently, we only allowmotions of the object that do not change the length of any of the edges.

Flexible Rigid

Figure 5.2: Mechanical networks can be classified as being either rigid or flexible. A flexible structure is one

that can be deformed at zero energy cost. That is, without changing the length of any of the edges.

A triangle in the 2D plane cannot be deformed in any way, so its only rigid motions are the universal transla-

tions and rotation. However, a square can be deformed if we "push over" the top edge so that the structure
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resembles a rhombus, where all the sides have unchanged length compared to the square (Fig. 5.2). If we

place an additional edge across one of the diagonals of the square, we form a structure that is now rigid.

Meanwhile a pentagon requires two additional edges to make it into an undeformable shape. This pattern

can be formalised as Laman’s Theorem:

Theorem 5.1. The edges of a graph G = (V, E) are independent in two dimensions if and only if no subgraph

G’ = (V, E) has more than 2N’ - 3 edges, where N’ is the number of vertices in G’.

Corollary 5.1. A graph G = (V, E) with 2N - 3 edges, where N is the number of vertices in G, is rigid if and

only if no subgraph G’ has more than 2N’ - 3 edges.

In other words, in order for a 2-dimensional structure to be rigid, we must have at least 2N − 3 constraints

but that alone is not a sufficient condition. Using a trivial example, if we had a square with 4 edges and

wanted to satisfy Laman’s Theorem, we would need 8− 3 = 5 edges. If we then added that edge "on top" of

one of the existing edges, we would have satisfied the counting rule (which is known as Maxwell counting)

but would still have a framework that was not rigid. The added edge must be independent. A more realistic

example is shown in Fig. 5.2, which contains two squares joined by an edge. The Maxwell counting term

2N − 3 is derived from the fact that a system of N nodes in 2-dimensions has 2N degrees of freedom. Each

independent constraint added removes a degree of freedomandwehave the three rigid bodymotions already

so we require 2N − 3 constraints to "freeze" the system.

Determining the rigidity of a structure in 2-dimensions is possible via the computationally efficient method

known as the Pebble Game, which utilises Laman’s Theorem to turn the determination of rigidity into a

counting problem. Here of course we are interested in the 3-dimensional problem. The Maxwell counting

rule for 3-dimensions is 3N − 6, which accounts for the six rigid motions described earlier. Unfortunately,

whilst Laman’sTheoremholds as anecessary condition in 3-dimensions, it is no longer sufficient, with typical

example of such a structure that satisfies Laman’s Theorem in 3-dimensions but is nevertheless flexible is the

"double banana"[98].

However, if we add the additional condition that every pair of two centre constraints is accompanied by an

angle constraint, then Laman’s Theorem appears to hold. These structures are known as body-bar frame-

works and whilst Laman’s Theorem has not been proven to hold generally, there have been no examples

discovered in over 20 years that contravene the rule. The flexibility of these structures can then be deter-

mined by a 3-dimensional equivalent of the Pebble Game, which is the premise of the software FIRST[102].

In the case of proteins, the requirement to include angle constraints is not too arduous; as explained earlier,
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chemistry places restrictions on the angles of many pairs of bonds anyway. Again, due to the conversion of

the rigidity problem into a combinatorial one, FIRST is highly efficient, running inO(n log n) time, which

has allowed for its application to systems as large as viral capsids.

Infinitesimal rigidity

Whilst FIRST has been successfully applied to a range of proteins to examine their flexibility, if we wish

to have more freedom over the set of constraints that we include in our structures, we must turn to other

methods. We can write the rigidity problem for M constraints explicitly as a set of M equations:

|pi − pj |2 = cij, (i, j) ∈M, (5.35)

where pi is the 3 × 1 position vector of node i. Solving this set of M nonlinear equations directly is usually

infeasible for anything other than very small systems. An alternative approach is Infinitesimal Rigidity.

We begin by taking the derivative of both sides of Equation (5.35) with respect to time t for all constrained

pairs:

(pi − pj) · (ui − ui) = 0, (i, j) ∈M, (5.36)

with ui =
dpi
dt . We expand out the brackets:

(pi−j)ui − (pi − pj)uj = 0, (i, j) ∈M, (5.37)

and write in vector form:

Ru = 0 (5.38)

R is called the Rigidity matrix and each row represents a single constraint. For example, a three node system

with each pair of nodes joined by an edge would have the Rigidity matrix:
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R =
©«
p1 − p2 p2 − p1 0

0 p2 − p3 p3 − p2

p1 − p3 0 p3 − p1

ª®®®®¬
(5.39)

GenericNon-generic

Figure 5.3: The network on the left is rigid but is not infinitesimally rigid as it has an infinitesimal flex.

Structures such as this are described as non-generic and generally occur when colinear edges are present in
the structure. The structure on the right by contrast is generic and is both rigid and infinitesimally rigid.

Our task then is to find those infinitesimal motions of the structure that have zero cost, or in other words,

calculate the set of vectors that comprise the nullspace of the Rigidity matrix. It has been shown that in-

finitesimal rigidity and rigidity are equivalent[242] in the case of generic frameworks (see Fig. 5.3), which is

the case for all of the structures examined in this thesis and therefore we are free from now on to refer to

the rigidity of structures. There are many different ways to compute the nullspace of a matrix but here we

use the somewhat standard approach of performing a singular value decomposition (SVD) of the Rigidity

matrix:

R = UΣVT (5.40)

In the case where we havemore edges than nodes (M>N), the nullspace spans the rows of the right singular

matrix VT that correspond to the singular values in the diagonal matrix Σ whilst if M < N, we take the

bottom (N -M) rows of VT in addition to any rows associated with singular values.
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Rigid cluster decomposition

Once we have our set of infinitesimal motions, or nullspace of R, we need a way to then ascertain those

groups of atoms within the structure that act as rigid bodies. We use the algorithm described in Ref. [46],

which has proven to be computationally efficient:

x

y

za b

c d

Figure 5.4: The steps for the rigid cluster decomposition algorithm. For each of the trivial infinitesimal

motions, such as the one in a) the atoms are moved by a small distance along each 3N × 1 vector to a new

position b). A rigid tetrahedron of atoms is selected in the new position then in c) this is moved back to its

original position. Any atoms that also return to their original position at the same time (for all infinitesimal

motions) are part of the same cluster. d)Theprocess is repeateduntil all atoms are clustered into rigid regions

or are assigned as floppy.

1. Identify a set of 4 atoms, T, that form a fully connected tetrahedron.
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2. Translate the coordinate frame to the centre of the set T.

pk := pk −
1

4

∑
k∈T
pk

3. Transform the three coordinate axes so that they correspond to the principle axes of the set T:

pk := Kpk

K is the rotation matrix whose rows are the eigenvectors of the matrix I:

Iαβ =
∑
k∈T
(|pk |δαβ − pkαpkβ), where (α, β) = (x, y, z)

4. Generate the trivial motions in this new coordinate frame: three rotations (rxk, r
y
k, r

z
k) and three trans-

lations (txk , t
y
k, t
z
k) for all of the atoms of the structure.

rαk = pk × êα; tαk = êα

5. Transform the trivial motions back into the starting coordinate frame:

rαk := K T rαk ; tαk := K T tαk

6. Compile the trivialmotions for each atom into columnvectors sowehave three 3N-dimensional trans-

lations tα and three rotations rα. Normalise each of these trivial motions:

rα :=
rα

|rα
T
| ; t

α
:=
tα

|tα
T
|

using the magnitude of the 12-dimensional vectors associated with the set T. Now the set of six 12-

dimensional trivial motions of the set T are orthonormal.

7. The set of displacements of each of the atoms relative to the set T can then be calculated by returning

the set T to its initial position:

∆pγ = q
γ −

∑
α
(qγT · r

α
T )r

α −
∑
α
(qγT · t

α
T )t

α
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where we now use γ additionally index over the set of trivial motions.

8. For each atom, calculate its absolute displacement in space away from its initial position due to the

infinitesimal motions. If the maximum displacement of the atom over the entire set of infinitesimal

motions is below a chosen small threshold value then we say that atom is part of the same rigid cluster

as the set T:

max

γ
|∆pγk | < δ

The value of δ used in this work is 10
−4

5.5 PDK1

3-phosphoinositide-dependent kinase 1, or PDK1, is a member of the AGC group of of Ser/Thr kinases and

is itself an upstream kinase for other members of the AGC family, such as protein kinease A (PKA) and

protein kinase B (PKB or Akt). As a consequence of its role in the PI3K pathway[167, 77], PDK1 has been

implicated in a number of cancers[59, 192] and as such is considered a potential drug target[78]. PDK1

contains an allosteric site: the PDK1-interacting-fragment (PIF) pocket that binds to a hydrophobic motif

on downstream substrates and activates PDK1[94]. Sadowksky et al[202] investigated the effect of binding

at the allosteric site using small molecule sulphides that were able to increase the activity of PDK1. We use

an active form of PDK1 as we are interested in the plausibility of propagation of strain as a mechanism for

the extended conformational selectionmodel.

Here, weuse the elastic responsemethod tomodel the allostericmechanism as a possible propagation of strain

induced by the formation of bonds between the ligand and the protein. An atomistic network structure of

the protein is constructed in a similar fashion to the bond-to-bond propensitiesmethod of Chapter 4, with hy-

drogen atoms added to the crystal structure obtained from the protein data bank using the programReduce.

The presence of the various bond types (covalent, hydrogen and hydrophobic interactions) is determined

by the software FIRST. Now, instead of using bond energies to weight the network edges, we assign values

to the edges according to their presumed spring constant. Using the Amber15fb force field[238], we assign

spring constants to the (relative) correct order of magnitude:

The reason we do not use the exact values from the force field is that hydrophobic interactions are here

modelled as two-centre interactions, whilst inmolecular dynamics simulations they result from the presence

of either implicit or explicit water that favours interactions to polar regions of the protein. As such, no such
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Table 5.1: Springs constants for each of the elastic network interactions.

Interaction Spring constant (relative)

Covalent 100

Hydrogen 10

Hydrophobic 1

Angle 1

Dihedral 0.1

spring constant values exist for hydrophobic interactions. In fact in the Amber force field, hydrogen bonds

are largely derived from electrostatic contributions and so again it is difficult to assign an exact value. In

contrast to bond-to-bond propensities, we do not apply further statistical methods such as quantile regression

here as wewish tomodel the actual, raw displacement felt by each of the interactions as would be the case for

the real protein. We also apply infinitesimal rigidity to the network representation of the protein in order to

decompose the structure into its rigid subparts.

Bonds only Bonds and angles Bonds,angles and dihedrals

Allosteric
site

Active
site

Figure 5.5: Infinitesimal rigidity results for PDK1where each cluster has a different colour and "floppy" atoms

are shown in transparent grey. a) Only bonds included as constraints, leading to a single large cluster in blue

with all other atoms floppy. b) Angle constraints included. c) Dihedral and angle constraints included.

We obtain the output displacement for all edges within the protein but remove the source edges from the

results as these invariably score much higher. In Fig. 5.6 we show the top 2% of bonds by absolute length

change (i.e. we donot discriminate betweenbond stretching or compression) in three scenarios: firstlywhere

only the two-centre bond interactions are used to construct the elastic network as is traditionally the casewith

elastic network analysis of proteins. Then, we also construct networkswhere angle constraints between pairs
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of covalent bonds are included and finally ones in which dihedral angle constraints from double bonds are

modelled. The choice is 2% here is arbitrary, however given the highest scoring interaction in the bonds only

case (the hydrophobic interaction between Lys120 and Asn122) experiences a distance change of 0.766, and

those interactions outside the top 2% experience a change of less than 0.01 it seems a reasonable assumption

that we can neglect the output of any bonds scoring less than this. From the infinitesimal rigidity results

presented in Fig. 5.5, even in the case where only two-centre constraints are included, the allosteric site and

the region around the active site: Val96, Lys111, Tyr161, Ala162, Thr222, andAsp223 all form interactionswith

the active site and appear in the large cluster, with Leu88 the only active site residue that has no atomswithin

the rigid cluster. When 3-centre and 4-centre constraints are included, almost all of the protein becomes part

of the rigid cluster, with some small groups of clustered atoms around the surface in the 4-centre case. It

appears then at least plausible that propagation of strain may be emitted from binding at the allosteric site

towards the active site, particularly through the rigid cluster formedby the 2-centre interactions that contains

a smaller subset of the atoms in the protein.

Bond results with
bonds only

Bond results with
bonds and angles

Bond results with bonds,
angles and dihedrals

Allosteric
site

Active
site

Figure 5.6: The top 2% of 2-centre interactions (bonds) by absolute change in length in PDK1 (PDB code:

3ORZ[202]). a) Only bonds are included in the elastic network b) 3-centre (angle) interactions are included

in the network but we calculate the output displacement of the bonds as we are interested in the potential
change in bonding pattern driven by ligand binding. c) Dihedral angles are additionally included and again

only output bond displacements are shown.

However the results from the elastic response results are less supportive of the possibility of long range me-

chanical transfer. As can be seen in Fig. 5.7, we obtain a linear decrease in the log edge displacement as

distance increases (correlation coefficient = -0.603, standard error = 0.0022) even when angles and dihedrals

are included, suggesting an exponential decrease decay in the mechanical propagation. Such a response is
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similar to random networks or continuummedia[245] and is not suggestive of a structure optimised for di-

rected perturbations. The two highest scoring interactions by some distance are the Lys120 - Asn122 (0.766)

and theVal124-Pro125 (0.437) hydrophobic interactionswith the next highest displaced bond (Val124-Val127)

scoring just 0.189. Both interactions arewithin 5Åof the allosteric source site, with the active site around 17Å

away. Indeed the highest scoring interactions involving active site residues are two Lys111-Phe157 hydropho-

bic interactions, which are displaced by 0.0122 and rank 130
th
and 131

st
. Of the top 2% (149 out of 7391)

of interactions by output displacement, all but 4 are hydrophobic interactions which is unsurprising given

they have the weakest spring constants but appears to lead to those weak interactions near the allosteric site

effectively acting like a sponge for the inputted force and preventing long range transfer of displacement. We

see this clearly when changing the force constant of the hydrophobic interactions to be 10 (the same as the

hydrogen bonds) as in Fig. 5.8, the range of the propagation increases. However, as discussed, it is difficult to

rationally assign spring constant values to the hydrophobic interactions without inadvertently biasing the

analysis. Indeed, when all spring constants are simply set to be equal (which is unrealistic physically), the

propagation extends even further, suggesting the method is highly sensitive to the set of spring constants

chosen. At the very least, we can see that topology alone is not a dominant enough factor to determine if a

mechanical explanation for allostery is plausible, the particular values of the edge variables are also crucial.

Certainly there does not appear to be strong evidence here that the allosteric effect exhibited by PDK1 is me-

diated by traversal of strain energy. The results also appear to support of the use of a coarse-grained, residue

level description of the protein when modelling using an elastic network as the residue-residue interactions

result from an "averaging" of the total set of interactions between the atoms of the residues. Modelling at the

atomistic level, as in molecular dynamics, requires a highly accurate parameterisation of the set of bonds.

5.6 h-Ras

The elastic response analysis was also performed on h-Ras, a GTPase involved in the regulation of growth

factor mediated cell division[155] andmutations in h-Ras have been implicated in a range of cancers[38, 37].

Buhrman et al[29] discovered that h-Ras can be allosterically modulated by calcium acetate and postulated

a network of hydrogen bonds that linked this allosteric site to the distal active site at catalytic residue Gln61

by comparing changes between the active and inactive states. Again, we decompose the protein network

structure (PDB code: 3K8Y) into its rigid subunits via the infinitesimal rigidity algorithm and model the

effect of a mechanical allosteric perturbation via elastic response.
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Figure 5.7: Plot of how log absolute displacement of interactions varies with increasing distance from the

allosteric source site. A linear decrease is seen with slope -0.142 (correlation coefficient = -0.603, standard

error = 0.0022), suggesting that the effect of the perturbation decays exponentially away from the allosteric

site. Whilst we note the possible existence of twobands of points (top and bottom), when the data clustering

algorithmDBSCAN[65] is run on the data set, no significant partition of the data is seen.

Hydrophobic spring constant = 1 Hydrophobic spring constant = 10

Allosteric

High scoring
interactions
far from
source

site
Active
site

Figure 5.8: Changing the value of the spring constant for the hydrophobic interactions, we see a greater

propagation of strain is possible but there is still an exponential fall off with distance.
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Bonds only Bonds and angles Bonds,angles and dihedrals

Allosteric
site

Active
site

Figure 5.9: Infinitesimal rigidity results for h-Raswhere each cluster has a different colour and "floppy" atoms

are shown in transparent grey. a) Only bonds included as constraints, leading to a single large cluster in blue

with all other atoms floppy. b) Angle constraints included. c) Dihedral and angle constraints included.

Whilst one of the atoms (themethyl carbon) of the allosteric ligandACT forms part of the large cluster in the

bonds only case in Fig. 5.9a, neither the active site ligandGNP, nor any of the active site residuesGln61, Thr35

or Tyr32 appear in this cluster. Even when both angles and dihedrals are included in the analysis (Fig. 5.9c),

only the same atom from ACT forms part of the single large cluster, though now the entire GNP active site

substrate is present in the cluster, as well as 10 out of the 18 atoms of the Gln61 active site residue. However,

once dihedrals are included, 2063 out of the 2673 total atoms in the protein are part of the large cluster, which

is at odds with the idea that fast pathways exist in the protein just below the percolation threshold that lead

to specific, directed flow[132].

Similarly to the PDK1 case, the elastic response results (Fig. 5.10) do not suggest the presence of pre-existing

pathways in the protein between allosteric and active sites, whether or not we include angle and dihedral

constraints in the analysis or not. Again, themajority of the highest scoring bonds by absolute displacement

are the weak hydrophobic interactions, rather than the pathway of hydrogen bonds suggested by Buhrman.

Absolute displacement similarly falls away exponentially with distance, with values outside the top 2% of

bonds by rank being displacement less than 2.5% of the value of the top scoring bonds, and there does not

appear to be any particular directionality to the mechanical propagation.



5.7. ATCase 75

Bond results with
bonds only

Bond results with
bonds and angles

Bond results with bonds,
angles and dihedrals

Allosteric
site

Active
site

Figure 5.10: The top 2% of 2-centre interactions (bonds) by absolute change in length in h-Ras (PDB code:

3K8Y[29]). a) Only bonds are included in the elastic network b) 3-centre (angle) interactions are included

in the network but we calculate the output displacement of the bonds as we are interested in the potential
change in bonding pattern driven by ligand binding. c) Dihedral angles are additionally included and again

only output bond displacements are shown.

5.7 ATCase

Wealso calculated the elastic response for theATP-protein interactions inATCase. Howeverwewere unable

to perform rigidity analysis due to the large size of ATCase; with 80,000 atoms, the infinitesimal rigidity

algorithm involves calculating the SVD of a matrix of size 240, 000 × 240, 000. Whilst software does exist

for calculation of eigenvalues in large, sparse matrices via iterative Arnoldi methods[?], even these methods

were unable to perform the decomposition in a reasonable time.

Much as with the previous two examples, we do not see significant propagation of strain from the allosteric

sites occupied byATP towards the active sites. Insteadwe observe a similar outcome to that of PDK (See Fig.

5.7) where the absolute bond displacement appears to fall off exponentially. Again, we perform the elastic

response calculation with just two-center interactions included, and with additional three- and four-center

interactions. Curiously, the longest range effects seem to occur when both two and three-center interactions

are included, with the inclusion of the four-center dihedral interactions giving the shortest range results of

the three cases. It can be seen in Fig. 5.11 that there are some high scoring edges nearer one of the active sites.

One of these is an Arg234 - Asn113 hydrophobic interaction, and Arg234 has been shown to be important

for R state stabilisation[225], though specifically through its hydrogen bond interactions with Glu50 rather

than to Asn113. Additionally the nearby Arg167 - Asn132 hydrophobic interaction also scores highly, with

Arg167 being one of the residues that interacts with the active site PALA residue. However, only a small
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Bond results with bonds only

Allosteric site Active site
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Figure 5.11: The top 2% of 2-centre interactions (bonds) by absolute change in length in ATCase (PDB code:

4KGV[42]). a) Only bonds are included in the elastic network b) 3-centre (angle) interactions are included

in the network but we calculate the output displacement of the bonds as we are interested in the potential
change in bonding pattern driven by ligand binding. c) Dihedral angles are additionally included and again

only output bond displacements are shown.

number of other bonds that are more than 20Å from the allosteric sites also score highly and once again,

it appears unlikely that long range mechanical pertubations are a plausible mechanism for communication

between allosteric and active sites.

5.8 Regular lattice

We also performed the elastic response calculation in a regular hexagonal lattice, which acts as a null model,

in order to see if the propagation may still in fact be significant in comparison to a structure not optimised

for long range mechanical transfer. We used a 16 × 16 × 16 lattice with 4096 "atoms", which most closely

corresponds in size to PDK1 and chose 18 atoms to act as the allosteric ligand and 28 edges to represent the

bonds between the ligand and the "protein", as shown in Fig. 5.12.

Again, we display the top 2% of edges by absolute edge displacement as below this, the values quickly be-

come negligable. Much as in the case of the real protein structures, the propagation of strain falls off in

an exponential manner (Fig. 5.14) rather than exhibiting any long range effects. In contrast to the proteins

however, the pattern of strain here is symmetrical, decaying in a spherical shape around the allosteric site

and the values for the edge displacements are more tightly distributed due to the symmetry of the lattice

(Fig 5.14). When we compare the results for PDK to the lattice, we can see that there is some heterogeneity
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Allosteric
site

Figure 5.12: 28 atoms are chosen as the "allosteric ligand" along with 28 edges representing bonds between

the ligand and the "protein", here portrayed as a 16 × 16 × 16 lattice.

in the propagation of strain away from the allosteric site, perhaps suggestive of some optimisation of longer

range transfer, the values for the edge displacements appear to decay too quickly tomakemechanical transfer

between the allosteric and active sites plausible.

5.9 Elastic response conclusions

In this part of the chapter, we investigated whether a method, elastic response, that could model mechanical

perturbations, could explain how binding of a ligand at an allosteric site may lead to perturbations at a distal

active site. The idea of strain propagating from the allosteric site in a directed manner towards the active

site is often invoked as a mechanism of allostery[235, 187]. By applying the method to the highly symmet-

rical hexagonal lattice, we see that long range transfer does not occur in that case and could not just result

as an artefact of all elastic network structures, leading to the hypothesis that the protein structure may be

optimised to facilitate mechanical communication between the allosteric and active sites.

However we do not find strong evidence this is possible, with perturbations in the proteins studied tending

to die away exponentially and in an essentially isotropic manner. Traditionally elastic models include only

2-centre interactions, which in this case correspond to chemical bonds. In order to model the full set of con-
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Top 2% of edges by
absolute displacement

Figure 5.13: Shown are the top 2% of edges by absolute displacements. All of these edges are clustered in a

spherical region around the "allosteric site", demonstrating an absence of any long rangemechanical transfer.

Figure 5.14: Similar results to those obtained in the case of PDK are found for the hexagonal lattice whereby

absolute change in bond length falls away exponentially with distance. However, the results aremore tightly

distributed than in the PDK case, most likely due to the symmetry of the lattice so that points at a similar

distance from the allosteric also have a similar local packing environment.

straints that chemistry places on the protein, we also devised expressions for angle and dihedral interactions,

whichwere presumed to increase the stiffness of the overall structure andmake the elucidation of long range
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effects more likely. Despite this, even the inclusion of additional constraints did not lead to a convincing

case for long range mechanical structural transfer. Infinitesimal rigidity analysis did show cases where both

allosteric and active sites were present within the same rigid cluster, however the clusters tended to be large

and covermuch of the protein, rather than resembling fractal structures just below the percolation threshold

that may be conducive to directed paths[132].

We note also that whilst here we do not cast our methods in terms of the dynamics of the protein (elastic

response as formulated below considers a static picture of the elastic model and considers how an input force

on a set of bonds leads to an output change in length of the bonds in the rest of the system), the equations

we derive are similar to those used in entropic studies of allostery. Capetelli et al[32] applied their dynamic

flexibility index (DFI) to residue-residue elasticmodels of proteins. They apply aperturbation to each residue

in turn and measure the global response on the set of other residues. The response to the perturbation is

written as:

[∆R]
3N×1

= [H ]−1

3N×3N [F ]−1

3N × 1 (5.41)

which has precisely the form of Eq. (5.28) except in the node space rather than the edge space. Usually,

in elastic models the Hessian H is precisely the stiffness matrix K but Capetelli et al in fact use a different

form ofH by constructing it from the covariance matrix C of a molecular dynamics simulation. They call

the resulting matrix G which has the form: G = C−1
. A promising future direction for this work therefore

would be to apply our edge-centric framework to a dynamicalmodel of perturbations, using thematrixG as

this would allow for a more principled means of constructing our Hessian as it would ultimately be derived

from well tested molecular dynamics forcefields.

5.10 Residue-Residue interaction embeddedness

Another method that we have developed within the elastic network framework is interaction embeddedness,

based on the general edge centrality measure of embeddedness introduced by Schaub et al[206] in the con-

text of randomwalks on networks. Importantly, embeddedness is not the same as betweenness centrality[75],

a popular measure of edge centrality. The shortest path for every pair of edges is calculated and the between-

ness of an edge is equal to the number of shortest paths that pass through that edge. Instead, embeddedness

is related to the property in electrical networks known as e�ective resistance[81]. Similarly to propensity, we
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reinterpret these measures in the case of amechanical system.

If we first define the bond-to-bond force transfer matrix by grouping together terms in Eq. (5.28):

fout = GBTK †Bfin (5.42)

fout = GRfin (5.43)

fout =Mfin (5.44)

Embeddedness is then defined as 1 −Mbb, in other words we are interested in the diagonal elements of the

transfer matrix. We can extract this entry for a particular bond b by setting the bth entry of fin to 1 (and all

others to 0) and looking at the bth entry of fout. Physically then, the diagonal elements ofM tell us what

proportion of the force applied to a bond is actually transmitted to that bond versus what is redistributed

over the rest of the elastic network. Those edges that are highly embedded are therefore those that have a

high value of 1 −Mbb, or equivalently small values for the diagonal elements of M.

Given an input force on a particular edge, the corresponding diagonal element of R tells us the change in

length of that edge, which (depending on the location of the spring within the network topology) is not

necessarily the same as if the spring was isolated (note: this is not the same R as the rigidity matrix). The

situation is therefore the mechanical analogue of e�ective resistance in electrical networks[81], also known as

the resistance distance[120]. In the electrical case, the effective resistance is defined as the drop in potential

difference across a wire given injection of a unit current; here the equivalent situation is the change in length

of an edge given the application of a unit force to it. However, in the mechanical case, it is both the connec-

tivity and the geometry of the network of the network (for two and three dimensions) that determines edge

responses.

Another (equivalent) interpretation that is perhapsmore natural from the point of viewof protein dynamics

is that the diagonal values ofR equate to the expectation value for the interaction length changesE
[
y2

]
and

the diagonal values ofM , the average potential energy of the interactions, given the elastic network sitting

in a heat bath. This can be seen from the following derivation, where we begin from the Langevin equation

in the overdamped regime, as discussed in Chapter 3 such that the inertia of the system is damped out and

we have Brownian motion as in Eq. (3.4):
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dx
dt
= −K (x − xeq) + ϕ(t) (5.45)

xt − xeq =
∫ t

−∞
exp [K (t − s)]ϕ(s) ds

Yt = BT
(
xt − xeq

)
= BT

∫ t

−∞
exp [K (t − s)]ϕ(s) ds

E
[
YtYTt

]
=

∫ t

−∞

∫ t

−∞
BT exp [K (t − s)]

[
ϕ(s)ϕ(ξ)T

]
exp

[
K (t − ξ)

]T B ds dξ
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−∞
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]
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BT exp [K (t − s)] exp

[
K (t − ξ)
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BT exp [K (2t − 2s)]B dξ

DecomposingK into its eigenvalues and eigenvectors:

E
[
YtYTt
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i=1

N
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−∞
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−λi

(
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) )
vivTi Bdξ
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N
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BTK †B

The expectation for thepotential energyof each interaction gbE
[
y2

b

]
are then thediagonal entries of

1

2
GBTK †B =

M , where we have multiplied each entry by its associated force constant gb. Here, rather than use atoms for
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the nodes, we use residues such that the edges in this case are the residue-residue interactions as rather than

measure the (small) mechanical response to an applied perturbation as in the previous section, we instead

study the long time fluctuations of the protein at equilibrium.

An elastic network model for ADK (4AKE[169]) was constructed (Fig. 5.15c) and the average displacement

for eachof the edge interactionswas calculated. A rangeofdistance cutoffswere tested (7Å, 10Å, 12Å and 15Å)

and the Spearman’s rank correlation coefficient (ρ) between the set of scores for the coincident interactions

was calculated. Between 7Å and 10Å, ρ = 0.216, for 10Å and 12Å, ρ = 0.679 and between 12Å and 15Å,

ρ = 0.801, demonstrating a greater robustness in the results for larger cutoff values (indeed below 7Å, zero

energymodes appear in the network as revealed by singular value decomposition of the rigiditymatrixR). As

such we use a cutoff of 12Å for the following results, which is in line with other reports in the literature[10].

A relatively right skewed distribution of edge displacement values is observed (Pearson median skewness =

0.580); the average value for 4AKEwas0.236with a small number of interactions scoring significantly highly.

The top 2% of interactions by rank are those scoring above 0.409 and the top 1% above 0.452. The most

highly scoring interactions are clustered primarily in the lid and AMPbind, corresponding closely to those

regions of the protein that are structurally altered during the open to closed transition. Qualitatively similar

results were obtained by Mitchell et al[162], who performed residue strain analysis of ADK by comparing

residue displacements across an NMR ensemble of structures to calculate local strain. Here, however just a

single structure is used and strain is predicted a priori, emphasizing that the intrinsic topology of the protein

determines where strain is distributed to assist function. The highest scoring interaction with 0.701 is Gly56

- Lys57; Lys57 is one of the residues that shifts more than 10Å during the open - closed transition[87] whilst

Gly56 has been shown to display particularly high fluctuations in coarse-grainedMD simulations[239].

In order to judge whether these results are significant or simply an artifact, we additionally constructed an

elastic model for a regular hexagonal lattice to act as a null model. Using a 6 × 6 × 6 hexagonal lattice with

nearest neighbour interactions only, we calculated the average fluctutations of each of the interactions and

found there was a clear difference between those edges in the centre of the lattice versus those at the surface.

The distribution of average edge fluctuations in Fig. 5.17b shows two distinct regions above and below 0.55,

with edges at the centre experiencing a lower average strain. It appears then that strain within the protein

structure is harnessed to achieve function,withhighly strained interactionswithin theproteinbeing localised

to specific regions rather than being randomly distributed over the surface of the protein.

We also carried out the edgedisplacement calculation for the allosteric proteinATCase, amultimer consisting

of six catalytic subunits, each hosting an active site, and six regulatory subunits where the allosteric sites are
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Figure 5.15: a) The structure of ADK from Escherichia coli (PDB: 4AKE). The lid and AMPbind domains

are highlighted. b) Comparison of the closed (1AKE) and open (4AKE) forms. The main differences are in

the lid and AMPbind domains. c) An elastic network model of ADK was constructed using a 12Å distance

cutoff between residues. d) The distribution of average edge displacements in ADK, showing a relatively

long tail of high scoring interactions such that the top 2% are significantly higher than the mean. e) Top 1%

and f) Top 2% of highest scoring residue-residue interactions shown only. Significant clusters of high scoring

interactions occur in the lid and AMPbind domains.

4AKE 3GMT 2RH53UMF

Top 2%

Figure 5.16: Top 2% of interactions by average strain across all 4 available open ADK structures. There is

a strong consistency is the location of the highest scoring interactions, which appear mostly in the lid and

AMPbind domains that undergo large transitions to the closed state.
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Figure 5.17: a) A hexagonal lattice with nearest neighbour interactions only. b) The distribution of average

edge displacements shows two sub-distributions: below 0.55 are the interactions within the bulk, whereas

those edges at the surface all score above 0.55. c) Bulk interactions. d) Surface interactions.

located. The distribution of the interaction scores is again right skewed (Pearson median skewness = 0.617).

The highest scoring interactions in the active state bound toATP (4KGV[42]) are strongly grouped at the six

allosteric sites (with the top 1% shown in Fig.5.18). A number of residues thatmake up the allosteric site form

interactions that score particularly highly: three of the Val9 - Glu10 interactions across the interface between

the two regulatory chains rank 83
rd, 84

th
and 85

th
out of 44979 interactions. 27 interactions involving ATP

are present in the top 1%, including those to Ala11, Lys94 and Tyr89 that are part of the allosteric site itself.

However, similarly to ADK, it is apparent that the localisation of high average residue-residue fluctuations

at functionally important sites is intrinsic to the protein structure; very similar results are obtained for the

active state with no bound ligands (1D09[107]) such that it is not the ATP ligand itself that generates the

strain at the allosteric site. For example three Asp19 - Asp4 interactions rank in the top 30 out of 45103,

Asp19 forms part of the allosteric site, whilst Asp4mutation to alanine is known to alter allosteric regulation

of ATCase. Indeed, Asp4, Lys6 and Leu7 at theN-terminus of the regulatory chain all appear to be involved

in allosteric signalling[56] and interactions involving one of these residues appear 75 times amongst the 423
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Figure 5.18: a) The top 1% of interactions by average edge displacement are shown in ATCase. The largest

clusters of interactions appear strongly around the six allosteric sites, two of which are shown close up in b).

c) The distribution of strain in each of the interactions. d) The allosteric sites are also seen to be the most

strained regions in the unbound case.

5.11 Interaction embeddedness conclusions

Shortest path measures of residues are often cited as being an important indicator of communicability in

proteins[9, 52], yet it is not immediately clear what process is being modelled in that instance. In con-
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trast, in this part of the chapter, we demonstrate that the network betweenness measure embeddedness[206]

has a explicit physical meaning in proteins (modelled as elastic networks), where a highly embedded edge

(residue-residue interaction) is one that exhibits low strain under equilibrium conditions and conversely,

highy strained interactions are those that have low embeddedness scores. Furthermore, we see that in two

proteins, it is those regions of the protein that are functionally important that are most highly strained. We

see that in ATCase, it is the allosteric sites that score highly and there are a number of potential explanations

for this. One is that strain is localised at the allosteric site to aid crossing of the energy barrier upon binding

(or release) of the allosteric ligands, such that the protein is "primed" for conformational changes. Another is

that these sites may display large changes in entropy upon ligand binding or unbinding, which is what alters

the energy landscape and thus the conformational populations of the various active and inactive states.

It should also be possible to experimentally verify the results of such analyses; Kolodziej et al[?] performed

site directed mutagenesis to a single residue in the aspartate receptor of Salmonella typhimurium and were

able to switch the protein fromnegative to positive cooperativity, indicating that single residue effects can be

crucial. In Fructose-1,6-Bisphosphatase, Lu et al[145] mutated a number of residues, again discovering that

changes in individual residues could have dramatic residues on allostery.



Chapter 6

Optimization of allosteric materials

6.1 Allosteric materials

There has been significant recent interest in the idea of developing "allosteric materials"; principled design

of structures that exhibit a significant mechanical change at a target site, in response to an input force at

distal site. These materials are thus inspired by the biological process of allostery, though specifically by

the idea of long range structural propagation rather than by, say, thermodynamic explanations of allostery.

A particular reason for this interest is that mechanical perturbations in randomly packed materials (a class

believed to include proteins [136]) tend to be both nondirectional and quickly decaying, properties that are

unconducive to the possibility of long range modulation of an active site.

Yan et al[245] then posed the question: is it possible to achieve a specific output displacement of a set of

chosen target nodes, given a set of forces on some input nodes, by optimizing the topology of an elastic

network? That is, given a set of nodes, how should we arrange a limited set of edges to achieve the desired

displacement, which is expressed as a fitness function. The authors used a Monte Carlo based method for

the arrangement of edges, in which the probability of moving an edge from one location to another was

determined by:

P( |σ〉 → |σ′〉 ) = min

[
1, exp

( F (|σ〉) − F (|σ′〉)
Te

) ]
(6.1)

where σ and σ′ refer to the configuration of edges before and after the movement of an edge, and Te is

an evolution temperature that determines the influence of the fitness function (so that at infinitely high

87
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temperatures, the algorithm simply produces random configurations). An average degree for the nodes of

the network was chosen to be 5, roughly corresponding to the case in proteins and just above the isostatic

value of 2d − d(d + 1)/N , whilst the lattice size was 12 × 12. Below the isostatic value, the network is

very floppy and unable to transmit mechanical strain. It was then found that below a certain evolution

temperature, it was always possible to achieve a perfect response in the network.

Target Target

SourceSource

Figure 6.1: Yan et al[245] demonstrated using a Monte Carlo method that by optimising the topology of a

network (given a fixed set of node positions and a predetermined number of edges) that a perfect output

response is achievable (on the right) given a defined input force (green arrows) and output displacement

(blue arrows). In contrast, a networkwith randomly placed edges displays a propagation of strain that decays

quickly away from the source site (left diagram).

The authors noted a number of features of the high fitness networks: the part of the networks near the

"active site" (target) was "soft", in the sense that the average node degree was very close to the isostatic point.

Further, the average node degree decreasedmonotonically from the "allosteric site" (source) to the active site,

inside a trumpet shaped region, that was rigid, but had a lower average degree than the bulk. The trumpet

was then flanked on either side by more rigid regions. The evolved structures then lead to an intriguing

outcome: whilst in randomnetworks (at high evolution temperature), propagateddisplacements decay away

quickly from the source site, in the high fitness networks, the displacement virtually disappears in the bulk,

before reappearing strongly at the target site. The same authors subsequently[246] applied similar principles

to three dimensional elastic networks and recovered a number of structures adopted by allosteric proteins:

shear, hinge (synonymous with the ’scissor’ mechanism[159]) and twist. Analogous results are seen as with

the two-dimensional case, in which there is heterogeneity in the response to the input force at the allosteric
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site across the network, with large parts of the network effectively acting like a rigid blockwhilst other display

a large response.

A similar approach was taken by Rocks et al[197], in a 2D network of 190 nodes and 400 bonds. Two pairs

of nodes were chosen to be the source and target and the average node degree was chosen to be just above

the isostatic value. By selectively removing certain edges, the authors attempted to maximise the ratio of

the strain on the target edge to that on the source edge. Remarkably, only 5 bonds on average needed to be

removed to achieve a strain ratio of 1, demonstrating the plausibility of protein networks evolving to allow

for long range mechanical transfer. Similar results were recorded for 3D networks, though even fewer (4 on

average out of 740) bonds needed to be removed. Impressively, the authors then used 3D printing to build

physical elastic networks based on their theoretical results andwere able to achieve the calculated strain ratios

with 98% accuracy.

Both the above approaches focused on the linear response of strain in elastic networks, which holds in the

regime of small displacements and is calculated using the standard stiffness matrix approach described in

Chapter 5. Flechsig[71] instead studied the full, nonlinear dynamics of elastic networks by numerically solv-

ing the overdamped Langevin equation:

dr
dt
= B(r)GB(r)T · (r − r0)T + fin (6.2)

using our notation fromChapter 5 but noticing that the incidence matrix is no longer a constant but is now

a function of node position that is recalculated at each timestep. A random network was then constructed

using a series of distance constraints and springs were added to the network according to a distance cutoff.

Once again, the propagation of strain was optimized between two sites by progressively changing the loca-

tion of springs and qualitatively similar results to the previous two analyses were achieved: randomnetworks

showed no directional flow ofmechanical strain whilst optimization of the elastic networks lead to softer re-

gions around the target. Furthermore, it was seen that in certain cases, a single mutation (here modelled

by the removal of a spring) could completely disrupt allosteric communication - analogous to the situation

in real proteins. By initially building the network as two district domains, Fleisig was also able to observe

the development of a flexible region joining the two domains that appeared to function as a hinge, again

recovering a common feature of real proteins.

In each of these cases, a number of assumptions are made when drawing a comparison between the evolved,

artificial elastic networks and allostery in proteins: firstly that we can use a harmonic approximation for
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residue-residue interactions as discussed in Chapter 5 and secondly that thermal fluctuations can be ignored

and the nodes only respond to the chosen input. It is nevertheless an important result that it is in fact pos-

sible to transmit mechanical strain across reasonably large distances within elastic networks such that this

is a plausible mechanism of allostery. Additionally, these evolved networks recovered important features of

many allosteric proteins, such as hinges, distribution of more rigid andmore flexible regions and vulnerabil-

ity to mutations at critical sites.

One drawback of the previous methods is that by optimizing a mechanical response based on the location of

a set of springs in the network, the authors have formulated integer programs, which are NP-hard and are

thus computationally demanding. In this chapter, we take a different approach: given a fixed set of springs,

can we optimize the value of the spring constants in order to maximise the response at a target edge, given an

input force on one (ormore) input edges? We show that this can in fact be presented as a convex optimization

problem, or more specifically, a subset of convex optimization called semidefinite programming. The advan-

tage of this approach is two-fold: convex optimization problems have in general the property that any local

minimum is also a globalminimum; in practice this usuallymeans there is just a single optimal solution. Sec-

ondly, this optimum can be quickly reached using efficient methods for which a range of software packages

exist.

6.2 Convex Optimization

a b

Convex set Non-convex set Convex function Non-convex function

Figure 6.2: Convex optimisation is concerned with the minimisation of convex functions over convex do-

mains. a) A convex set is one that satisfies the relation that for any two points x1 and x2 in the set, all points

defined by θx1 + (1 − θ)x2 are also present in the set, which can be seen visually by drawing a straight

line between the two points as in the figure. b) Convex functions are those that satisfy Jensen’s inequal-
ity: f (θx1 + (1− θ)x2) ≤ f (θx1)+ f ((1− θ)x2)) for any two points x1 and x2 in the domain of f . Intuitively,
this can be seen by drawing a straight line between any two parts of the function and observing that this line

must always lie above said function.

A detailed overview of convex optimization is not possible here but an excellent introduction to its theory
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and application is provided by Vandenberghe and Boyd[23]. The general form of a convex optimization

problem is:

minimise f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

where the functions fi(x) are convex and hi(x) are linear. f0(x) is our objective function that we wish to min-

imise, whilst the addtional functions fi are inequality constraints, that together with the equality constraints

hi(x) define the feasible region over which we allow values of x. Thus, in order for a problem to be convex,

we must be minimising a convex function over a domain that is a convex set. A generalisation of the above

convex optimization problem is where the inequality constraints are vector valued. The inequalities thus

become generalised inequalities:

minimise f0(x)

subject to fi(x) �Ki 0, i = 1, . . . , m

Ax = b

The equality constraints have now been written in matrix form for convenience. Generalised inequalities

extend the notion of ordering on the real number line R to vectors and matrices. The two most common

generalised inequalities involve the nonnegative orthant and the set of positive semidefinite matrices. The

nonnegative orthant inRn is simply the set of vectorswhere each of the components is positive. For example,

in R2
this would correspond to the vectors in the upper right quadrant. Thus K = Rn+ in the inequality

above. Denoting by S+ the set of positive semidefinite matrices (S being the set of symmetric matrices),

settingK = S+ leads to problems in semidefinite programming:
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minimise cTx

subject to x1F1 + . . . + xnFn + G � 0

Ax = b

where G, F1, . . . , Fn ∈ Sk, and A ∈ Rp×n. We have also dropped the Ki subscript as when the generalised

inequality involves matrices, it refers to semidefinite matrices the vast majority of the time.

a b

Figure 6.3: a) A convex function (in blue) has a single, global minimum, here just the bottom of the "bowl".

A simple case of a constrained convex optimisation problem is also shown. If we imagine the quadratic

function sitting in the x − y plane, then wemight wish to minimise the function given a fixed value of y and
this is represented by the red line. In effect, we take a "slice" through the 2-dimensional well to obtain a new

1-dimensional quadratic that has a different minimum to the unconstrained problem. b) In contrast, non-

convex problems often have a large number of local minima and typically obtaining the global minimum is

very difficult.

Our aim then is to pose our problem, of optimizing the spring constants of an elastic network to achieve the

greatest possible displacement response at a target edge, as a standard form convex optimization problem.

More specifically as it turns out, the problem can be framed as a semidefinite program. In order to do so,

and common tomany semidefinite problems, wemake use of a result involving the Schur complement (A.5.5

[23]) and here we introduce some necessary background. If we have a symmetric matrixX :

X =

A B

BT C

 (6.3)

whereA is also symmetric, then (ifA is nonsingular), the Schur complement of A in X is defined as:
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S = C − BTA−1B (6.4)

The Schur complement appears, amongst other places, in situations where we wish to minimise a quadratic

form over a subset of the variables:

min

u
uTAu + 2vTBTu + vTCv (6.5)

Minimising over u, we hold v constant, such that we wish to find the smallest value taken by the term:

f (u) = uTAu + bTu (6.6)

where we have collected constant terms into b. Noting that:

1

2

(u +A−1b)TA(u +A−1b) = 1

2

uTAu + uTb +
1

2

bTA−1b (6.7)

we can rewrite our function f (u) as:

f (u) = 1

2

(u +A−1b)TA(u +A−1b) − 1

2

bTA−1b (6.8)

The second term is just a constant but we have free choice over the value of u in the first term. If A has a

negative eigenvalue−λ associatedwith an eigenvectorw, such thatAw = −λw, we can chooseu = αw−A−1b

(as we can simply scale w however we wish):

f (u) = 1

2

αwTAαw − 1

2

bTA−1b

= − 1

2

α2λ |w|
2
− 1

2

bTA−1b (6.9)

so that our function can be made arbitrarily negative. To guarantee f (u) is bounded below, we must have

thatA � 0 (or here, reallyA � 0 as we assumeA is invertible). Furthermore, we can see that the minimum
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of f (u) is achievedwhen the first term in (6.8) is set to zero, which occurs when u = −A−1bwith aminimum

value of f (u) of − 1

2
bTA−1b.

Substituting the solution for u back into the quadratic form:

inf

u

[
u v

] 
A B

BT C



u

v

 = vTSv (6.10)

We can now see that ifA � 0, thenX � 0 if and only if S � 0. In our problem, however, we will bemaking

use of the stiffness matrix K , which we know is singular (having at least 6 zero eigenvalues representing the

rigid body motions) so possesses a pseudoinverse. We consequently require an additional restriction on the

form ofX , which we can uncover by extending the previous arguments for minimising a quadratic form.

Firstly, we write A as its eigendecompositionWTΣW and substitute into the form of (6.6) where A is

singular:

f (u) = 1

2

uTWT
ΣWu + uTWTWb

1

2

(Wu)TΣWu + (Wu)TWb (6.11)

exploiting the fact thatWTW = I . Then, assuming the rank ofA to be r, we setWu = ©«
x

y
ª®¬ andWb = ©«

c

d
ª®¬,

where x, c ∈ Rr and y, d ∈ Rn−r, we rewrite the expression for f (u):

f (u) = 1

2

(
xT yT

) ©«
Σr 0

0 0

ª®¬ ©«
x

y
ª®¬ +

(
xT yT

) ©«
c

d
ª®¬

=
1

2

yTΣry + yT c + zTd (6.12)

in which Σ is written in full showing the r nonzero eigenvalues contained in the invertible submatrix Σr

and the n − r zero eigenvalues in the bottom right. We know from the previous section that the sum of the

first two terms has a minimum of zero, here if Σr � 0 which is just the same as A � 0. Our additional
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restriction then arises because in order for (6.12) to be bounded below, we must have d = 0 and therefore

alsoWb = ©«
c

0

ª®¬. It can be shown that consequently b must lie in the range of A, which can be stated as

(I − AA†)b = 0. Comparing terms with the original problem in terms of X , we see that b = 2Bv, which

implies we need to have (I − AA†)Bv = 0. However, the expression must hold for all values of v if the

problem is to have a minimum and therefore the additional restriction in the case of singular matrices A is

(I − AA†)B = 0. Finally, we then again also require the Schur complement, this time with singular A, to

be positive semidefinite S = C − BTA†B � 0. Putting this all together, the result that we will use in our

semidefinite program is:

X � 0 ⇐⇒ A � 0, (I −AA†)B = 0, C − BTA†B � 0 (6.13)

6.3 Spring constant optimization

Wenowhave all the tools to set up our optimization problem. However, it turns out the presented solutions

obtained for the chosen objective function are not the true solutions and unfortunately only arise as a result

of the finite tolerance of the underlying convex optimization solver. Despite this, the results themselves are

still interesting and valid as an example of long range mechanical transfer, and as such are presented here in

full, before we discuss why the problem is in fact not solvable in the shown form.

If we firstly consider the case of applying a unit force to just a single source edge i as input to maximise the

output displacement on an edge j, we know from Chapter 5:

eji = BTj K
†Bi

= Tr BTj K
†Bi

= Tr (BiBTj )K † (6.14)

where we have used the fact that the trace of a scalar is just the scalar itself and the cyclic property of the trace.

The semidefinite program can now be written as such:
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minimise TrY

subject to 1
T g = 1, g ≥ 0,
K (BiBTj )† I

I Y

 ≥ 0 (6.15)

where g is our vector of spring constants (such that diag(g) = G) and we enforce the constraint that the

springs constants must all be positive. Additionally, we normalise the spring constants so that they sum to

1, which prevents the solution for g from growing arbitrarily large. Finally, we have introduced the dummy

matrixY . If our generalised inequality constraint matrix isX � 0, then using our previous definition of the

Schur complement: S = Y − (BiBTj )K † � 0 and therefore:

Y � (BiBTj )K † (6.16)

and sowe see that ifwe setY = (BiBTj )K † byminimisingTrY , we are equivalentlyminimisingTr(BiBTj )K †,

allowing us to formulate our desired optimization of the output displacement as a standard form semidefi-

nite program. Calculations were carried out using the python package for disciplined convex optimization

CVXPY[57, 2], using the solver SCS[181].

a b c
1

0

Figure 6.4: a) The edge displacement in a 5 × 5 lattice with the source edge shown as a dashed, dark grey

line. Displacement quickly decreases radially and there is a negligible effect on the target edge (displacement

values are normalised, not including the target edge). b) The spring constants are optimized as described in

Eq. (6.15) and the strength is represented by the thickness of the edges. c) In the optimized network, edge

displacement extends across the lattice, leading to the greatest output displacement at the target edge.

Using a simple example of a 5 × 5 2D hexagonal lattice, we see that compared to using a uniform spring

constant for all weights, contraction of the target edge is increased in magnitude from 0.005 to 0.209. The

spring constant of the target edge is unsurprisingly set to 0 during the optimization butmore interestingly a
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"soft" region ofweak springs is formed around the target spring, somewhat similar to previous simulations of

allosteric materials[245], where the "softness" represented a lower node connectivity around the target site.

When a uniform spring constant is used for all edges, the perturbation quickly decays radially away from the

source edge and a negligible effect is felt at the target edge (Fig. 6.4a). However, after optimizing the spring

constants, the target edge undergoes by far the largest displacement (other than the input edge itself) despite

being located on the other side of the lattice to the perturbation site.

1

0

Figure 6.5: The results for the 5 x 5 lattice with the node displacements also shown.

A trivial solution

Unfortunately, whilst the networks above are certainly valid and do show long rangemechanical transfer, the

actual attainment of the networks via the semidefinite program is due to the small error tolerance present in

all convex solvers. If we study Equation (6.13), we see that the condition our generalised inequality puts on

our value forA is:

K (BiBTj )† � 0 (6.17)

that isK (BiBTj )†must be positive semidefinite. The (pseudo-) inverse of a positive semidefinitematrixmust

also be positive semidefinite and so we have necessarily set the condition:

(BiBTj )K † � 0 (6.18)

Our objective function is Tr(BiBTj )K † and we are trying to make this as negative as possible. However, we

know that the trace of a matrix is equal to the sum of its eigenvalues, but we have just said all the eigenvalues
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must be greater than or equal to zero. Thus the optimal solution to our convex problem is actually zero,

negative values (corresponding to contraction of the output edge) only being obtained by an overshoot of

the solver. The issue is not rectified by instead trying to maximise the output edge displacement (a stretch

of the output edge) as we simply end up with the oppposite problem: our matrices then need to be negative

semidefinite and once again the maximum of the trace of a negative semidefinite matrix is zero.

In fact we can go further and see that the problem itself is not well framed. By aiming to maximise (or min-

imise) the edge displacement of a particular edge, we can actually trivially obtain an infinite displacement by

setting all of our edges to have zero spring constants (except, say one spring set to 1 so as to satisfy our con-

straint 1
T g = 1). Then we will have a set of floppy modes, that are just the rigid motions of each of the nodes.

Thus any solution to the equation eji = BTj K
†Bi must also include all contributions from the nullspace

of K † (which is just the same as the nullspace of K ). One such contribution is the linear combination of

the left node of edge eji moving to the right and the right node moving to the left (i.e. the edge contraction

we are trying to maximise. See Fig.6.6). Further, any scalar multiple of this vector is also a solution and we

can therefore scale this vector to be as large as we like. If we denote this node vector as unull then the edge

displacement Boutunull that we seek can be made infinitely large.

Figure 6.6: We can triviallymake the target displacement as large as possible by setting the spring constant of

one of the edges (say arbitrarily the source edge) to be 1 and all the rest to be 0. Then any solution to the stiff-

ness equation f = K †umust include the contributions from the nullspace, such as the linear combination

of two vectors in red and green representing rigid motions of the two target nodes.

6.4 Optimization of correlated motions

An alternative approach is to instead try and optimize the set of spring constants so as to achieve the cor-

related motion of the active and allosteric sites. Such a coupling is one of the suggested explanations of en-

tropically driven allostery[43, 159] and is mediated through the normal modes of the protein, as these global

motions can couple distant parts of the structure[198]. We therefore consider the eigenvalue problem:
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Kvi = λivi (6.19)

where K is our stiffness matrix, with λi and vi the ith eigenvalue and eigenvector of the matrix respectively.

Note we would usually also have the mass matrixM on the right hand side of the equation but here we set

M = I , the identity for simplicity. Given a fixed set of nodes and edges, determined as before by B, the

geometric incidence matrix, we can rewrite Eq. (6.20) as:

BTGBvi = λivi (6.20)

The constraint we wish to place on the system is that for the motion of one of the eigenvectors, the displace-

ment "allosteric site" edge should be coherent with that of the "active site" edge. More specifically, we impose

that the allosteric site edge should have an equal and opposite displacement to the active site edge, which we

can write as:

Bacv = −Balv

(Bac + Bal)v = 0 (6.21)

whereBac refers to the row ofB relating to the active site edge and likewiseBal for the allosteric site edge. Eq.

(6.21) says then that we must choose a set of node motions v that lies in the nullspace of the vector Bac +Bal .

We can obtain the set of vectors that lie in the nullspace by calculating the singular value decomposition of

(Bac +Bal) in a similar manner to the rigidity matrix of Chapter 5. We can arbitrarily select any of the vectors

v that lie in the nullspace and then find the spring constants g using the optimization:

minimise 1

subject to (BTGB − λI )v = 0, 1
T g = 1, g ≥ 0,

(6.22)

where G = diag(g). Here, we have used a common trick where we ’minimise’ a number (chosen arbitrarily
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to be 1) whilst building our objective function (from Eq. (6.20)) into the constraint to find the set of spring

constants g that give the chosen motion v, allowing free choice over the value of λ.

Figure 6.7: We optimize the set of springs so that the active and allosteric site edges (shown as grey dashed

lines) display correlated dynamics for one of the normal modes, such that the active site compresses as the

allosteric site extends and vice versa. The structure resembles the scissor molecule of Ref. ??, whereby the

active and allosteric sites regions are "soft", whilst the rest of the molecular is stiff, allowing for the necessary

hinge motion. In this case, either site could act as the active or allosteric site.

As seen in Fig. 6.7, the resulting structure resembles the "scissormolecule"[159, 158] that allows for correlated

motions of the allosteric and active site. Furthermore, by performing the eigendecompostion of the resulting

stiffness matrixK = BTGB, we see that the normal mode associated with the eigenvalue λ that was allowed

to freely vary in (6.22) is indeed one of the smallest eigenvalues (in this particular case the 4
th
smallest) and

thus corresponds to one of the slow, large amplitude, global modes. The result confirms (perhaps unsur-

prisingly) that interaction between two distant sites on the network structure must be mediated by global

modes, rather than the shorter ranged, high frequency modes.

We can easily extend our approach to 3-dimensional structures and again use the example of a hexagonal

lattice (here of dimensions 4 × 4 × 4). We select two edges on either side of the lattice to act as the allosteric

and active sites (it is arbitrary which site is which).

Shown in Figure 6.8 are the results for one of the motions that leads to correlated motion of the allosteric

and active edges. Analogously to the 2-dimensional case, we see the edges around the two sites are set to

nearly zero (the edges shown in dotted red have a spring constant of less than 10
−15

as compared to those in

green that all have values of 10
−3
, again resulting in a "scissor-like" shape to the lattice. Again, the eigenvalue

of the mode that leads to coherent motion is one of the small, low energy eigenvalues (in this case, the 10
th

smallest) such that the motion is global.

As for the 2-dimensional case, we apply the constraint that the allosteric and active edges have an equal and

opposite displacement for one of the normal modes of the lattice and then formulate the problem as a linear
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Allosteric and
active sites

Figure 6.8: For the 3-dimensional case, a 4 × 4/times4 hexagonal lattice was chosen and again the allosteric
and active sites (shown as dashed red lines) were selected to be on opposite sides of the lattice.

program to find the set of spring constants g that gives the correlated motion. The equations are thus have

exactly the same form as Eq. (6.21) and (6.22) except with B now referring to a geometric incidence matrix of

dimensionsM × 3N withM edges andN nodes.

6.5 Conclusions

Despite the realisation that the results of the semidefinite programwerenot in fact optimal, wehave serendip-

itously managed to design elastic networks that do exhibit allosteric-like properties, if we restrict ourselves

to the case where allostery might be explained by long range mechanical perturbation. What is particularly

interesting about the designed networks is that the displacement at the "active site" can be large, whilst the

displacement of the rest of the network is very small and this is achievablewithout any sort of complex topol-

ogy, but instead by simply setting the bonds around the active site to be weaker than the rest of the network.

If all that is required is some mutation that causes a "softening" of the interactions around the active site, in

addition to a pre-existing rigid pathway between the allosteric and active sites then the mechanism appears

much more plausible than if strain had to propagate through a specific set of residues.
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Edges set to
near zero Active site edge

Allosteric site edge

Figure 6.9: One of the vectors that satisfies the constraint in Eq. (6.21) is chosen and the spring constants

are optimized. Those edges marked as dotted red are those that are set to be near zero (< 10
−15

) whilst those

edges in green have spring constants between 10
−3
and10

−2
(where the sum of the spring constants is set to

1).

On the other hand, by optimizing the set of spring constants such that the edge displacements for the al-

losteric and active sites were (negatively) correlated for one of the normal modes of the lattice, we were able

to generate structures that resembled the "scissor molecule" of ?? and ??. The results support the idea that

long range communication in proteins ismediated via the globalmodes or in other words, the "violin"model

as opposed to the domino model of residue pathways[124].
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Conclusion

7.1 Summary of Thesis

In this thesis, we have primarily investigated the nature of the long range communication in proteins as a

means to understand a potential mechanism of allostery. In particular we have focused on networkmethods

in the edge space, which have particular relevance in the study of proteins, where it is ultimately changes in

bonding or residue-residue interactions that modulate function. Initial work used a previously developed

graph theoretical method bond-to-bond propensities to measure energetic coupling between functional sites

in a large multimeric protein ATCase. We found strong and exclusive coupling between the active and al-

losteric sites, which displayed an intriguing nonlinear behaviour whereby the effect of the perturbation at

the allosteric site had little effect on the bulk of the protein before reappearing strongly at the active site.

We then extended the ideas in bond-to-bond propensity to a three dimensional network description of pro-

teins in order to understand the physical process at work. In this framework, the allosteric perturbation is

modelled as the compression of the set of bonds between the ligand and the protein, and the mechanical re-

sponse over the set of bonds can be efficiently calculated by solving a sparse linear equation. The generality of

this approach also allowed us to design simple allosteric materials by using semidefinite programming to op-

timize the edge weights (here, spring constants) to maximise mechanical propagation in network. We found

that long range effects can be achieved without large structural change in the bulk of the network by simply

requiring that the "active site" of the network has much weaker springs relative to the rest of network, with-

out any sort of complex topology being necessary. We were also able to use the elastic network framework

to identify highly functional sites in proteins by considering where strain is localised at equilibrium.

103
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Finally, we take a somewhat different approach in the final chapterwherewe apply a dynamics based commu-

nity detectionmethod calledMarkov stability to coarse grain aMarkov statemodel of amodel protein. Here

our network is effectively a discrete approximation to the free energy landscape of the protein and we show

that Markov stability is a principled way of linking the short timescales of protein motion as determined by

Newton’s Laws of Motion to the biologist’s view of protein states.

7.2 Reflections

Can we say the results presented here provide strong evidence for the so called structural view of allostery?

On the basis of the elastic responsemodel of Chapter 5, the answer is: not particularly. In each case presented

(and others not included here), the effect of the perturbation of the allosteric source site was consistently

isotropic and decayed away exponentially, neither of which gives cause to believe long range perturbative

effects are what drives allostery.

However, the results in Chapter 6, along with previous work by Le Yan[245] and Rocks[197], at least show

that even within elastic networks, where only nearest neighbour interactions are present, long range struc-

tural changes can occur. Though in each case the networks are too small to resemble atomistic models, they

may be a plausible description for coarse grained residue representations of proteins. Furthermore, the re-

sults from our convex optimization method seem to show (serendipitously) that all that is required for long

range communication, that leaves the rest of the structure largely unchanged, is that the active site region is

made "soft". That is, the interactions at the active site should be weaker than the rest of the network, and

in fact this result is very similar to what was found by Le Yan in the context of optimizing the topology of

the network, where in that case it was the average degree of the nodes near the active site that was lower,

rather than the spring constants as it is here. Again, whilst we must be clear we are only dealing with toy

models in this instance, it does appear to lend a more credible evolutionary explanation of how long range

effects may have arisen. It is difficult to see how communication between a "future" allosteric site and the

active site could have arisen as a series of mutations, progressively increasing increasing the communication

between two distal sites. In contrast, if all that is required to form some sort of coupling to the active site is

a mutation or small number of mutations near the active site, such that the region is made "soft", then the

process appears far more plausible.

Even this insight however does not give much credence to the idea of pathways within proteins. Instead

long range perturbations appear to bemediated by bulk effects, rather than specific paths of residues linking
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sites together. Whilst a common approach in the literature has been to identify pathway residues via graph

theoretical techniques such as measures of residue centrality based on shortest paths, it is not entirely clear

what physicalmeaning this has in a protein. In contrast, the centralitymeasure embeddedness, introduced by

Schaub et al[206] and applied here in Chapter 5 was shown to be equivalent in the case of elastic networks

to the edges in the network that have the highest average strain, given the network sits in a heat bath at

equilibrium. When applied to ATCase, it was the allosteric sites that showed the highest average strain (or

alternatively, the lowest embeddedness). These results seem more supportive of the idea that allosteric sites

are those that are sensitive to energy changes (and can thus significantly remodel the energy landscape), rather

than necessarily having a particularly strong link to the active site. It has already been suggested the allostery

is a property of all dynamic proteins[86]with "allosteric ligands" simply being a special case ofmolecules that

lead to particularly large conformational changes. It would thus seem unlikely that a multitude of energetic

pathways exist in proteins from various surface pockets to the active site; instead small changes at various

regions on the protein surface that lead to favourable changes in the energy landscape appears more realistic

from an evolutionary perspective.

7.3 Future Work

Markov state models

Markov state models (MSMs) offer a powerful means of characterising changes in the energy landscape as

a result of ligand binding. MSMs are a discrete approximation to the energy landscape of a protein, such

that theMarkovmatrix corresponding to the generated network of microstates contains all the information

about the dynamics of the system, when considering a statistical ensemble of the protein at thermodynamic

equilibrium[209]. Indeed, the fundamental approach is not especially new, being suggested by Zwanzig

over 30 years ago[249] but a number of advances since have made MSMs a powerful modern technique

for analysing protein function. As a result of the formulation of MSMs in terms of a variational approxi-

mation to the true propagator for the dynamical system[176], increases in computing power will allow for

more and more accurate models for the energy landscape, whilst concomitantly producing better sampled

MD simulations for larger systems. An obvious experiment then would be to simply simulate a particular

allosteric protein both with and without allosteric ligands bound and assess the change in the populations

of the various states. Traditionally, thermodynamicmodels of allostery have tended to be explained in terms

of just two states: the active and inactive state and the relative adjustment between them. In the very high
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dimensional space of a protein, this mental model is clearly inadequate; for example studies of c-src tyrosine

kinase showed a potential allostetic site in an intermediate state of the protein[217], which would not seen

by only observing end states in the form of crystal structures.

Recently,more sophisticatedmethods for generatingMSMshavebeendeveloped that leveragedeep learning[93,

150]. Rather than employ a pipeline involving selection of features, dimensionality reduction and cluster-

ing to generate the MSM, the entire procedure is encoded in a single model that outputs the MSM directly

from theMD trajectory. Furthermore, whilst methods such as tICA are easily interpretable, they are still ul-

timately linear decompositions of a highly dimensional, complex time series data and these newer, nonlinear

methods have the potential to extract more meaningful information. Such approaches should simplify the

use of MSMs even further.

Markov stability was introduced by Delvenne et al[55] as a general method for community detection on

graphs, using the framework of a random walk on the network[130]. Qualitatively, Markov stability says

that a partition of a network into a set of communities is "good", when a random walker placed on the net-

work tends to stay within its starting community for a givenMarkov time. Thus we expect that for short

Markov times, a large number of small communitieswill be found and aswemove towards longer and longer

times, larger communities will be favoured by the algorithm. Markov stability is a measure of the clustered

autocovariance of the Markov process on the network: cov [Xt , Xt+τ] = E [Xt , Xt+τ] − E [Xt]E [Xt+τ],

which can be written in matrix form as:

R(t) = HT
[
ΠTτ − πTπ

]
H (7.1)

where Π = diag (π), π being the stationary distribution of the random walk. H is an N × c indicator

matrix that possesses an entry 1 at entryHij if node i is in community j and 0 otherwise with c the number

of communities. AsMarkov stability is defined in terms of the dynamics of probability flow on a network, it

wouldmake an idealmethod for clumping, which is the termusually used in theMSMliterature for grouping

together microstates into larger macrostates[175], thus allowing a full mapping of the various resolutions of

the free energy landscape.
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Allostery through perturbation of charge

One aspect of allostery thatwe did not focus on in this report is the role of charge. Elasticmodels in particular

are not well equipped to handle electrostatics but recent evidence suggests that charge redistribution as a

result of ligand binding alters internal dynamics of proteins[141, 129]. Whilst here we extended the ideas of

bond-to-bond propensity to a three dimensional mechanical model, the original motivation for the method

came from electrical networks[206] and it is possible that in fact propensity captures some element of charge

redistribution.

The equations are indeed similar to those ofChen andMartinez[34, 35]who studied fluctuating chargemod-

els. Here, a set of atoms eachhas an electronegativity valueχi (playing the role of potential in the equilibrium

equations for circuits) and each pair of atoms has a Coulomb interaction Jij (analogous to the conductance

in a circuit). When these atoms are brought together, such that there is a non-negligible Coulombic force

between them, charge will transfer between the atoms according to the values of Jij so as to make the sum of

the pairwise differences in electronegativity 0 (which is simply the corresponding form of Kirchoff’s Voltage

Law for the system). The equation that is being solved is:

χ = Jq (7.2)

where J is analogous to the LaplacianL in bond-to-bond propensity or the stiffnessmatrixK in elastic response

and as with those methods, the equation is actually formulated in the bond space. It seems possible that

there is some relationship between bond-to-bond propensity and charge transfer and this seems worthy of

future investigation. The Coulombic interactions falls off as
1

r and thus is very long ranged, in contrast to

the two-centreHooke springs onChapter 5 and thus electrostatic perturbationsmay bemore likely to induce

changes distal to the allosteric site. Indeed ATP itself, the allosteric ligand of interest in Chapter 4 has been

posited tomediate long range allosteric effects inmyosin as a result of anistropic charge redistribution[204].

One of the difficulties of studying this approach thus far has been that MD simulations have tended to use

non-polarizable force fields, where each atom acts as a fixed point charge throughout the simulation. With

increasing computational power and specialised hardware[214], it is now becoming possible to implement

polarizable force fields[216, 144] and this is offers a clear future direction for research into allostery.
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Machine learning approaches

The popularity ofmachine learning has taken off in the last few years, aided by increases in computing power

(particularly highly parallelisable GPU set ups) and the explosion in the quantity of available data. How-

ever, statistical approaches have a long history in the study of protein dynamics, particularly in the field of

protein folding[199, 115, 6]. Machine learning offers an orthogonal, top down alternative to physical mod-

ellingmethods such asMDor elastic networkmodels. Recently, a number of deep learning approaches have

appeared[106, 219], made possible a now reasonably large crystal structure dataset courtesy of the Protein

Data Bank, which now has around 100,000 entries[152].

Another method that has gained popularity is the representation of molecules as graphs, where similarly

to our approach in Chapter 4, 3-dimensional information is neglected in favour of a more simplistic, con-

nectivity focused representation of the molecule that allows application of modern convolutional neural net

methods[113, 60]. Suchmethods could be extended to the protein graphs we have used in this thesis, though

labelling of allosteric sites would still likely need to be a time consuming manual task. It could in fact also

be more powerful still to combine both the bottom up approach of MD with machine learning methods

by providing both dynamical information and the far larger data sets that result from what is effectively a

"video" of a protein. Currently, MD analysis is still largely confined to one protein at a time, but a robust

statistical approach may allow more powerful generalisations to be made in the future.
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Appendix A

Further details of graph construction

The weights of the edges in the protein graphs of Chapter 4 are determined by the interaction energy of

the bond. We include four different types of interaction: covalent bonds, hydrogen bonds, electrostatic

interactions and hydrophobic interactions.

A.1 Covalent bonds

Theactual presenceof covalentbonds is determinedby the softwareFIRST,basedon simpledistance cutoffs.

Then standard chemical bond energies are used to weight the edges:

Bond Energy (kJ/mol) Bond Energy (kJ/mol) Bond Energy (kJ/mol)

C-C 346 C=O 799 O-H 459

C=C 602 C-S 272 S-H 363

C-N 305 H-H 432 Se-H 276

C=N 615 C-H 411 P-O 335

C-P 264 N-H 386 P=O 544

C-O 358 P-H 322

A.2 Hydrogen bonds

In the case of hydrogen bonds, both the position and the bond energies are calculated by FIRST, using the

formula presented byMayo et al[48]:
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with V0 = 8 kcal/mol, R0 = 2.80 Å as the equilibrium donor-acceptor distance, and R the actual distance.

Angles θ, ϕ and ψ are shown in Fig. A.2 and F (·) is a function of the three angles that depends on the

hybridization of the donor - acceptor atoms.

A.3 Electrostatic interactions

Electrostatic interactions are included in the graph on the basis of the LINK entries in the protein structure’s

PDB file and the bond energies are calculated according to Coulomb’s Law:

Eelectrostatic =
332

ε
q1q2

r
(A.2)

where ε = 4 is the dielectric constant, q1 and q2 are the charges on the atoms and r the distance between

them. Atom charges are obtained from the OPLS-AA force field[108].

A.4 Hydrophobic interactions

C-C and C-S bonds may also have hydrophobic interactions between them: again FIRST identifies those

pairs of atoms that are within a distance cutoff (2Å) but does not assign a specific energy. Instead the double

well potential developed by Head-Gordon et al[137] is used.



Appendix B

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN)[65] is a clustering algorithm that

groups together data points in space according to how closely spaced they are. Regions of densely packed

points will be grouped together and in contrast to many clustering methods, DBSCAN is able to find non-

linear groupings of the points, rather than simply drawing separating hyperplanes.

DBSCAN was performed on the data points in Fig. 5.7 to test whether there were two distinct clusters

of points (here the absolute bond displacements) which may suggestive of certain bonds having a greater

connection to the allosteric site. However, the two "bands" of points that are somewhat discernible by eye

are not recovered by DBSCAN, instead an uninformative linear separation of the data points is seen.

DBSCAN GaussianMixture

Figure B.1: On the left, DBSCAN is capable of clustering the points nonlinearly whilst many other standard

methods, such as GaussianMixture Models on the right, are only able to linearly separate groups of points.
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Appendix C

Quantile Regression

C.1 Generalising the median

Quantile regression is the generalisation of the idea of ranking 1-dimensional data. Themost commonly used

special case of quantile regression is themedian, which is defined as the data point greater than (or equivalent

less than) half of the total set of data points. The median for even numbers of data points is therefore not

unique, though is usually assigned to be halfway between the point above and below the "midpoint". The

value of themedian (andquantile regressionmore generally) is therefore robust to extreme values, in contrast

to the mean.

We can extend the idea of median using the following optimization problem for a set of points x:

min

β

n∑
i=1

ρp(xi − β), p ∈ [0, 1]

ρp(ξ) =
��ξ(p − 1ξ<0

)
��

(C.1)

where we can now find any quantile for the data, with the median being the special case where p = 0.5. The

indicator function 1ξ<0
is equal to 1 when the term inside the function ρp(·) is less than 0 and is 0 otherwise.

The effect is to weight the penalty of having data points above and below the optimum point we wish to

find β. So if we wish to find the 70
th
quantile, we would penalise points below by a weighting of 0.7 and
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those above by 0.3. Note that because the objective function (C.1) is non-differentiable, there is no analytical

solution and instead linear programming is used to find an optimal solution. As an example:

Let Y be a discrete random variable that takes the values 1, 2, ..., 9 with equal probabilities. Find the value of

Y so that p = 0.7.

L(β) = (p − 1)
∑
xi<β

(xi − β) + p
∑
xi>β

(xi − β) (C.2)

Trying different values:

L(6) = −0.3 × (−5 − 4 − 3 − 2 − 1) + 0.7 × (0 + 1 + 2 + 3) = 8.7

L(7) = −0.3 × (−6 − 5 − 4 − 3 − 2 − 1) + 0.7 × (0 + 1 + 2) = 8.4

L(8) = −0.3 × (−7 − 6 − 5 − 4 − 3 − 2 − 1) + 0.7 × (0 + 1) = 9.1

so we can see the value of our data that lies at the 70
th
quantile can be anywhere between 7 and 8.

C.2 Conditional quantile regression

In the same way the mean can be extended to the conditional mean, we can define condition quantile regres-

sion as:

min

β

n∑
i=1

ρp(yi − Q(xi, β)), p ∈ [0, 1]

where Q(xi, β) is some assumed distribution, parameterised by β. In the special case where we suppose a

linear relationship between the variables, we have:
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min

β

n∑
i=1

ρp(yi − (β0 + βT1 xi)), p ∈ [0, 1]

Again, the objective function has no analytical solution but can be efficiently minimised via linear program-

ming. We can now find a specific quantile for the data given the values of the variables xi.


