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Abstract

Swimming cells and microorganisms must often move though complex fluids that contain an immersed

microstructure such as polymer molecules, or filaments. In many important biological processes, such as

mammalian reproduction and bacterial infection, the size of the immersed microstructure is comparable

to that of the swimming cells. This leads to discrete swimmer-microstructure interactions that alter the

swimmer’s path and speed. In this paper, we use a combination of detailed simulation and data-driven

stochastic models to examine the motion of a planar undulatory swimmer in an environment of spherical

obstacles tethered via linear springs to random points in the plane of locomotion. We find that depending on

environmental parameters, the interactions with the obstacles can both enhance swimming speeds, as well as

prevent the swimmer from moving at all. We also show how the discrete interactions produce translational

and angular velocity fluctuations that over time lead to diffusive behaviour primarily due to the coupling of

swimming and rotational diffusion. Our results demonstrate that direct swimmer-microstructure interactions

can produce changes in swimmer motion that may have important implications to the spreading of cell

populations in, or the trapping of harmful pathogens by complex fluids.
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1 Introduction

Whether they be polymer molecules and elastic filaments, rigid and deformable particles, or even other

cellular life, swimming cells and microorganisms must interact with objects immersed in the surrounding fluid

and negotiate the heterogeneity that they introduce. This situation arises in reproductive systems, such as

mammalian sperm swimming through the mucin filament networks that comprise cervical mucus [1, 2, 3], or

male gametes from the malaria parasite Plasmodium moving through dense suspensions of red blood cells in

the mosquito’s digestive tract [4, 5]. This situation is also encountered in the context of disease and infection

with examples including H. pylori bacteria penetrating mucus lining the stomach walls [6], or spirochetes

moving through polymer networks to exit the tick midgut and eventually enter the extracellular matrix of the

host’s skin [7]. In each of these examples, the composition and density of the immersed microstructure plays

a crucial role in either preventing, or allowing the cells to swim. In the case of cervical mucus, the mucin

network varies in density with the female cycle [8] and allows for the passage of the most viable sperm while

trapping those with abnormal flagellar waveforms or head shapes [8, 9, 10]. The filaments may even aid in

guiding the sperm, helping them to navigate the reproductive tract [3]. The trapping of small particles, cells,

and viruses by mucus plays a crucial role in disease prevention, but also presents a physical barrier in drug

delivery [11].

The immersed filaments or particles affect the rheological properties of the surrounding fluid, and/or create

a porous environment through which the fluid must flow. As a result, many modelling studies employ non-

Newtonian constitutive laws to capture effects such as viscoelasticity [12, 13, 14, 15, 16, 17], shear-thinning

[18, 19], or yield stress [20] and assess how rheology of the fluid affects swimmer motion. The resulting

changes can often be non-trivial and can depend strongly on the swimmer’s stroke, as well as its ability to

deform in response to stress. For undulatory swimmers propelled by small amplitude waves, viscoelasticity

hinders motion [12], while for larger amplitudes and certain waveforms, the swimming speed can increase

by a factor of about 20% [14]. Enhanced speeds occur when the undulation period matches the relaxation

time of the elastic stress [14, 21, 17] and further, only when the swimmer is sufficiently flexible and can be

deformed by the elastic stress built up within the fluid [17]. The effects of elasticity are even more pronounced

in gels [22] where the polymer elements are not mobile as in polymer solutions, and as a result, their elastic
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deformation is akin to that of an elastic solid. In this environment, the highest speeds, more than three

times greater than the free swimming value [22], are obtained in the stiff limit where the governing equations

reduce to those of a porous medium [23, 24], for which similarly large gains in speed are observed.

While studies using continuum models have provided key insights into how swimming speeds change with

fluid rheology, they implicitly assume that the lengthscales associated with the immersed filaments, polymers

or particles that produce the change in rheology are much smaller than those associated with the swimming

cells. Swimming sperm, for example, are of the same scale as the immersed filaments comprising the cervical

mucus through which they swim. The direct interactions between swimming cells and the fluid microstructure

can affect swimming in different, and even more dramatic ways than those seen using continuum models.

For undulatory swimmers in networks of viscoelastic springs [25], hydrodynamic interactions with the network

yield modest gains in speed, similar to those found with continuum models. In fluidic environments consisting

of posts arranged in a square arrays, or in wet granular media, both experiments [26, 27, 28] and simulations

[28, 29] demonstrate enhanced locomotion with speeds of up to ten times the free swimming value when an

undulatory swimmer is able to push and pull against the posts or grains through steric interactions. Similar

results are found in simulations of helically propelled swimmers interacting with polymer elements either solely

through hydrodynamic [30], or through both hydrodynamic and steric [31] interactions. Along with changing

the average swimming speed, direct interactions with immersed objects also introduce fluctuations, resulting

in random changes in swimming speed and direction [32, 28, 25]. At long times, these fluctuations could

lead to effective diffusion of the swimmers similar to that explored in the contexts of bacteria [33], or active

Brownian particles [34, 35].

In this paper, we explore how swimmer-microstructure interactions affect locomotion by performing nu-

merical simulations of an undulatory micro-swimmer through a planar, random arrangement of obstacles.

Compliance is introduced by tethering each obstacle to a point in the plane via a linear spring. This environ-

ment is intended to be a simple, planar representation of a filament network gel, with the tethers capturing

network elasticity. Our model, described in Section 2, allows for hydrodynamic and steric interactions be-

tween the obstacles and swimming body. It also accounts for swimmer deformability, thereby allowing the

swimmer to change shape in response to interactions with the obstacles. We examine in detail how obstacle
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density and tether strength affect swimmer motion. Along with quantifying changes in average swimmer

velocity, we also examine velocity and angular velocity fluctuations. These results are presented in Section 3.

We then examine how these fluctuations lead to diffusive behaviour at long times. To do this, we employ a

data-driven stochastic model presented in Section 4 to obtain expressions for the effective diffusion coefficient

and correlation times and show how they change with obstacle density and tether stiffness. Finally, in Section

5, we examine in detail swimmer trapping, quantifying the average trapping time and how it varies with

environmental parameters. Overall, our results suggest how microstructural variations, such as those found

to occur in cervical mucus during the female cycle, can allow swimming bodies to move more rapidly and

diffuse through their surroundings, or stop their motion entirely.

2 Mathematical model for the swimmer and environment

Our simulations are based on the mathematical model introduced in [28] for studying undulatory locomotion

through a two dimensional rigid pillar array. The swimmer is treated as an inextensible, flexible filament of

length L and bending modulus KB that moves through planar undulations driven internally by a preferred

curvature. It interacts with obstacles in the plane of locomotion through hydrodynamic and steric forces. We

introduce both randomness and compliance to the environment by tethering the obstacles with linear springs

to points uniformly distributed within the computational domain. We provide a description of the model here

and also refer the reader to [28], as well as [36] where it was adapted to simulate sperm suspensions.

The swimmer lies in the xy-plane and is parametrized by arclength s such that the position of a point

along the swimmer is Y (s) and the unit tangent at that point is t̂ = dY /ds. Bending waves propagated

along the length of the swimmer are driven by the moments per unit length, τD = KBκ0(s, t)ẑ, that arise

due to the preferred curvature,

κ0(s, t) = K0 sin

(
3π

2L
s− ωt

)
·


1, s ≤ L/2

2(L− s)/L, s > L/2,

(1)

where ω is the undulation frequency and K0 is the amplitude. The linear decay in the amplitude for s > L/2

is chosen to reproduce the waveform of the small nematode C. elegans [28] that is often used to study
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locomotion in complex fluids [21] and structured environments [26, 27, 28]. The swimmer is also subject

to externally applied forces, f , and torques, τ , per unit length that arise due to viscous stresses and steric

interactions with the obstacles. The resulting force and moment balances along the swimmer are given by

dΛ

ds
+ f = 0 (2)

dM

ds
+ τD + t̂×Λ + τ = 0. (3)

where Λ is the internal stress that enforces inextensibility and M = KB t̂× dt̂/ds is the bending moment.

To obtain a numerical solution to these equations, the swimmer is discretised into N segments of length

∆L = L/N with the position of segment n given by Yn, while the tangent at that point is denoted as t̂n.

Taking Λ and M at the midpoints between adjacent segments, and replacing the differential operator in Eqs.

(2) and (3) by central finite differences, we obtain the following discretised system

Λn+1/2 −Λn−1/2

∆L
+ fn = 0 (4)

Mn+1/2 −Mn−1/2

∆L
+

1

2
t̂n × (Λn+1/2 + Λn−1/2) + τDn + τn = 0, (5)

where Mn+1/2 = (KB/∆L)t̂n × t̂n+1. For this discrete system, Λn+1/2 is the Lagrange multiplier that

enforces the discrete version of the inextensibility constraints,

Yn+1 − Yn −
∆L

2
(t̂n+1 + t̂n) = 0. (6)

Multiplying Eqs. (4) and (5) through by ∆L, we obtain the force and moment balances for each of the

segments. For segment n, we have

FCn + FHn + F Sn = 0, (7)

TBn + TCn + TDn + THn = 0. (8)

where FCn = Λn+1/2 − Λn−1/2, TBn = Mn+1/2 −Mn−1/2, and TCn = (∆L/2)t̂n × (Λn+1/2 + Λn−1/2).

The hydrodynamic forces, FHn , and those due to steric interactions with the obstacles, F Sn , are the total

external force on the segment n such that FHn +F Sn = fn∆L, and the hydrodynamic torques THn = τn∆L

are the only external torques on the segments. Finally, TDn = τDn ∆L are the torques due to the preferred

curvature κ0, Eq. (1), and are given by TDn = KB(κ0(sn, t)− κ0(sn+1, t))ẑ, where sn = (n− 1/2)∆L.
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Each obstacle, n, is a sphere of radius A tethered to a point Xn by a linear spring, such that the tether

force is

F Tn = −k (Yn −Xn) , (9)

where now Yn denotes the position of the obstacle and k is the spring constant. In addition to this tether

force, each obstacle will experience hydrodynamic forces, FHn , due to the surrounding fluid, as well as steric

forces, F Sn , with the swimmer and/or other obstacles. The resulting force balance for obstacle n is then

FHn + F Tn + F Sn = 0. (10)

The obstacles are taken to be torque-free.

The obstacles and swimmer segments interact with each other through the steric and hydrodynamics forces

that appear in their respective force and torque balances. The steric forces between obstacles and swimmer

segments, as well as those between obstacles, are captured through a short-ranged, pair-wise repulsive barrier

force [37], though other force models could also be used. This particular model was used previously in

simulations of C. elegans in a structured environment [28], and we have retained it here for our simulations.

The force on obstacle or segment n due to obstacle or segment m is

F Snm = Fnm

(
(χRnm)2 − |Yn − Ym|2

(χRnm)2 −R2
nm

)4
(Yn − Ym)

Rnm
,

if |Yn − Ym| < χRnm, and zero otherwise. The parameter Fnm sets the strength of the force at contact

and χ controls the range over which force acts. Rnm is the centre-to-centre distance at contact between

obstacle/segment n and obstacle/segment m. For obstacle-obstacle interactions, Rnm = 2A and Fnm =

152KB/L
2, while for segment-obstacle interactions, Rnm = a+A and Fnm = 57KB/L

2 with the segment

radius being a = ∆L/2.2. For all interactions, we take χ = 1.1. The values of Fnm are chosen to prevent

overlap between the obstacles and/or segments. The value of χ is chosen so that the force only acts over

the short range of 10% of the mininum centre-to-centre separation distance. In choosing these parameters,

we have also aimed to ensure that force gradients are not so large as to restrict time-step sizes.

Hydrodynamic interactions between all segments and obstacles are incorporated by considering the coupled

low Reynolds number mobility problem established by the force and moment balances for the segments, Eqs.

(7) and (8), together with that for the obstacles, Eq. (10). As the environment is intended to represent
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a polymer network, we do not consider the no-slip condition on the obstacles surfaces and rely solely on

far-field approximations given by the force-coupling method (FCM) [38, 39, 40] to solve the mobility problem

and obtain the translational and angular motion of the segments and obstacles. The barrier force keeps

the segments and/or obstacles from overlapping each other as based on their respective hydrodynamic radii.

While relaxing the no-slip condition may be appropriate for polymer networks which are not rigid or smooth,

for larger grains or dense suspensions of truly rigid and smooth particles, the exact no-slip condition should

certainly be considered. We note that our model provided an accurate characterisation of the motion of C.

elegans when it interacted with arrays of rigid posts [28]. In FCM, the forces and torques that each segment

and obstacle exerts on the fluid are treated though a low-order finite-force multipole expansion in the Stokes

equations for which the δ-functions are replaced by smoothly varying Gaussians. Following [38, 39], the

lengthscales associated with the Gaussians are based on the hydrodynamic radii of the particles that they

represent. The hydrodynamic radius is A for the obstacles and a for the segments. The resulting fluid flow

is then averaged over the fluid volume using the same Gaussian functions to obtain the velocity, Un, and

angular velocity, Ωn, for each particle n.

After obtaining the motion of the obstacles and segments, we update their positions and orientations.

As swimmer deformation is restricted to a plane, we know Ωn = Ωnẑ and may introduce an angle θn for

each segment n, such that t̂n = (cos θn, sin θn). Therefore, to update particle positions and orientations, we

integrate in time

dYn
dt

= Un (11)

dθn
dt

= Ωn, (12)

while simultaneously obtaining the Lagrange multipliers to ensure the inextensibility constraints, Eq. (6), are

satisfied. To do this, we employ the second-order implicit backward differentiation scheme [41] to integrate

the differential equations, and Broyden’s method [42] to solve the resulting system of equations for the

updated values of Yn, θn, and the Lagrange multipliers.

In our simulations, as in [28], the swimmer is discretised into N = 15 segments and the preferred curvature

amplitude is K0 = 8.25/L. The frequency, ω, of the preferred curvature wave sets the dimensionless sperm

number to be, Sp = (4πωη/KB)1/4L ≈ 5.87, where η is the viscosity of the fluid. The sperm number
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[43, 44] provides a measure of the ratio of the viscous forces acting on the swimmer to those due to internal

bending. The corresponding waveform for the swimmer over a single undulation period, T = 2π/ω, is shown

in Fig. 1. The swimming speed in the absence of obstacles is found to be U0 = 0.01225ωL.

The simulations presented in the subsequent sections are performed in periodic domains of size LD ×

LD × Lz, where we have LD = 2.53L for short-time simulations described in Sections 3, and LD = 7.06L

for our longer-time simulations shown in Section 4. To reduce computation times while also ensuring that

the obstacles still fit within the domain, the out of plane thickness is set to be Lz = 0.29L. The obstacle

radius is set to A = 0.061L. This value is chosen so that the obstacle diameter is small compared to the

swimmer length, but larger than the segment size (2A = 1.83∆L).

To vary the tether stiffness, we adjust the non-dimensional parameter

ksp = kL3/KB (13)

which describes the strength of the tether spring constant relative to swimmer stiffness. The obstacle density

is controlled by the in-plane area fraction,

ϕ = NobsπA
2/L2

D, (14)

where Nobs is the number of obstacles.

Figure 1: Swimmer shape over for one period of undulation. The swimmer is moving to the left and

the gray level fades as time progresses. The swimmer’s tapered ends are for visualisation only. To

better see the waveform, the swimmer’s thickness at s = L/2 is reduced to 2a/3, one third of its

value in the simulation.
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3 Locomotion speed and induced velocity fluctuations vary with

the obstacle density and stiffness

Figure 2: Swimmer motion for 10 undulation periods in environments with obstacle densities ϕ =

0.15, 0.25 & 0.35 and tether stiffnesses ksp = 0.2 (a - c) and ksp = 2 (d - f). The figures show

the obstacles at their tether points and the swimmer is first shown after one period of undulation.

The swimmer’s tapered ends are for visualisation only. To show more clearly the waveform from

period to period, the swimmer’s thickness shown at s = L/2 is reduced to a, one half its value in

the simulation.

We begin by presenting results from short-time simulations performed for a range of obstacle densities

and tether stiffnesses. Each simulation is run for ten undulation periods, over which time swimmer motion is

recorded and analysed. Fig. 2 shows the obstacle rest configuration and the swimmer after each period from

representative simulations with ksp = 0.2 and 2, and for ϕ = 0.15, 0.25, and 0.35. Videos of the swimmer

moving through different environments are included in the electronic Supplementary Materials. We observe

that when the medium is relatively compliant (ksp = 0.2) and the obstacle density is low (ϕ = 0.15), the

swimmer moves in a straight line and its shape is nearly identical after each period. When the obstacle

density is increased to ϕ = 0.25, the swimmer moves, on average, in a line, but now covers more distance per
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period, and there are noticeable fluctuations in the swimmer position from period to period. These changes

become more pronounced when the density is increased to ϕ = 0.35. In the less compliant environment

(ksp = 2), we see that even for low obstacle densities, the swimming direction is affected by the presence of

the obstacles. We also observe now that the swimmer shape varies from period-to-period due to interactions

with the obstacles, and at higher obstacle densities, the swimmer moves significantly greater distances than

in the more compliant environment, approaching one swimmer length in one undulation period.

To quantify effects of obstacle density and tether stiffness on swimmer motion, we examine the means and

covariances of the swimmer’s period-averaged velocity and angular velocity obtained from 40 independent,

short-time simulations for different ksp and ϕ. By examining period-averaged quantities, we eliminate artificial

contributions to the covariances due to periodic variations in the swimmer’s velocity and angular velocity as a

result of its periodic change in shape. Specifically, at each time t, we determine the swimmer’s instantaneous

centre-of-mass velocity

V =
1

N

N∑
n=1

Un. (15)

and instantaneous orientation, q̂ = q/q, where

q = − 1

N

N∑
n=1

t̂n. (16)

and q = |q|. Defining the swimmer’s instantaneous angular velocity through dq̂/dt = Ωẑ× q̂, we obtain the

following relation between Ω and the angular velocity of each segment,

Ω = − 1

Nq

(
Nw∑
n=1

Ωn(q̂ · t̂n)

)
. (17)

From these instantaneous values, we determine their period-averaged counterparts, which for period i are

given by

Vi =
1

T

∫ iT

(i−1)T

V (t)dt, (18)

Ωi =
1

T

∫ iT

(i−1)T

Ω(t)dt, (19)

qi =
1

T

∫ iT

(i−1)T

q̂(t)dt, (20)

with the period-averaged swimmer orientation being p̂i = qi/|qi|. From these quantities, we obtain the

swimmer velocity in the body frame Vp,i = Vi · p̂i and Vn,i = Vi · n̂i, where n̂i = ẑ × p̂i. We then
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compute their averages, 〈Vp〉 and 〈Vn〉, respectively, as well as the average angular velocity, 〈Ω〉 and the 3×3

covariance matrix

C = 〈WW T 〉 − 〈W 〉〈W T 〉, (21)

where W = (Vp, Vn,Ω)T . In these expressions, the angular brackets, 〈·〉, denotes the expectation, which in

our case is computed by averaging the quantity over the final 8 undulation periods of the 40 independent

simulations for each value of ksp and ϕ.

3.1 Locomotion speed
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Figure 3: Average swimming speed, (a) 〈Vp〉, normal velocity, (b) 〈Vn〉, and angular velocity, (c)

〈Ω〉, versus ϕ for tether stiffness ksp = 0.01, 0.2, 2 & 8. Panel (d) shows 〈Vp〉 as a function of the

tether relaxation time, τR, for different ϕ.

Fig. 3 shows 〈Vp〉, 〈Vn〉, and 〈Ω〉 for tether stiffnesses ksp = 0.01, 0.2, 2, and 8 and for obstacle densities

ranging from ϕ = 0.025 to ϕ = 0.5. We see that for all ϕ and ksp, the swimmer moves, on average, in the

direction p̂ and there is no average swimmer rotation. When the tether stiffness is very low, ksp = 0.01,
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we find that the motion is slightly hindered by the presence of the obstacles, with the speed decreasing

monotonically with obstacle density to a value of 〈Vp〉 = 0.965U0 at ϕ = 0.5. Increasing the stiffness to

ksp = 0.2, we now observe that swimming is enhanced by the obstacles. The speed increases linearly with

obstacle density and reaches a value of nearly double its free-swimming speed at ϕ = 0.5.

For tether stiffnesses ksp = 2 and ksp = 8, the swimming speed can reach even larger values, as

well as exhibit a more complex, non-monotonic dependence on ϕ. The maximum swimming speeds we

observe are 〈Vp〉 = 3.72U0 for ksp = 2, and 〈Vp〉 = 3.2U0 for ksp = 8 and occur at ϕ = 0.25 and

ϕ = 0.175, respectively. These values are much larger than the modest increases of 20% observed for

undulatory swimming in viscoelastic fluids, both in experiments [21] involving nematodes and simulations

[14, 17] using a continuous description of a viscoelastic fluid. The values are also greater than those observed

in viscoelastic networks [25] when the swimmer propagates a smaller amplitude wave and only interacts with

network nodes through hydrodynamics. Our swimming speeds, however, are very close to the enhanced

speeds found using continuum descriptions of gel networks [22] and in Brinkman fluids [23, 24]. Our results

are also consistent with the trends found with these continuum models for which stiffer environments lead

to faster speeds, especially when the swimmer shape changes in response to the environment [17]. As in

structured environments [26, 28], the mechanism behind the increase in speed is that the swimming body is

able to push and pull against the obstacles to overcome the force-free constraint imposed by low Reynolds

number swimming.

At high obstacle densities, we observe a reduction in speed for these stiffer systems. We note that this

is not due to a uniform reduction across all independent simulations, but rather the result of the swimmer

becoming completely trapped by the environment in a subset of the simulations. In the most extreme case

where ksp = 8 and ϕ = 0.5, nearly all swimmers are trapped instantaneously and the average speed is

very close to zero. We have also performed averaging with the trapped cases excluded (see Supplementary

Material), and though we do still observe a decrease in the swimming speed at large ϕ, only for ksp = 8

and ϕ = 0.5 do we find that the speed is less than the free swimming value with 〈Vp〉 = 0.51U0. We note,

however, that this value arises from a single simulation, and even in that case, the swimmer became trapped

after two periods of measurement.

12



In addition to measuring tether stiffness relative to that of the swimming body through ksp, we may

instead examine how the swimming speed varies with the obstacle relaxation time, τR = 6πAη/k, given by

the ratio of the obstacle drag coefficient to the tether spring constant. Fig. 3d shows the swimming speed

as a function of τR for obstacle densities ranging from ϕ = 0.05 to 0.45. For low obstacle densities, we see

only modest increases in swimming speeds as the environment becomes stiffer (τR → 0). As ϕ increases,

the enhancement in the swimming speed becomes more dramatic, which for ϕ = 0.25, closely resembles the

dependence on τR obtained for swimming sheets in continuum models of gels [22]. At the highest obstacle

density, ϕ = 0.45, we observe enhanced speeds when the relaxation time is large, with the highest value

〈Vp〉 = 2.5U0 occurring τR/T = 0.054. Decreasing τR below this value, the speed drops substantially due

swimmer trapping.

3.2 Velocity fluctuations

Along with changes in the swimmer’s average motion, the discrete interactions with the obstacles lead to

fluctuations in the translational and angular velocities. Fig. 4 shows the entries of the covariance matrix, C

as a function of ϕ for ksp = 0.01, 0.2, 2, and 8. We find that in the body frame, the translational-translational

velocity covariance is diagonal as the entry Cnp is nearly zero for each value of ksp across the entire range of

ϕ. We see, however, that the velocity fluctuations are anisotropic as the maximum values of Cpp are more

than an order of magnitude greater than those of Cnn. As with the swimming speed, when ksp = 0.01, the

presence of the obstacles has little effect on swimmer motion and the entries of C remain very close to zero.

For ksp = 0.2, the entries Cpp and Cnn grow with ϕ, though for Cnn, this growth stops at approximately

ϕ = 0.3 and Cnn remains constant at higher ϕ. When the tether stiffness is high (ksp = 2 and ksp = 8),

Cpp and Cnn exhibit a non-monotonic dependence on ϕ due to swimmer trapping.

In addition to translational motion, we find significant angular velocity fluctuations due to interactions

with the obstacles. The values of CΩΩ are comparable in magnitude to the translational velocity fluctuations

and exhibit a similar dependence with ϕ as Cpp and Cnn. We also find that the off-diagonal entry, CnΩ and,

to a lesser extent CpΩ, which provide the covariance of the swimmer’s translational and rotational motion is,

in general, non-zero. Due to the higher wave amplitude at the front of the swimmer, the forces due to the
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Figure 4: Entries of the velocity covariance matrix, C, versus ϕ for ksp = 0.01, 0.2, 2 & 8. Panels

(a - c) show the translational velocity entries (a) Cpp, (b) Cnn, and (c) Cpn, while panels (d – f)

show the angular velocity covariance (d) CΩΩ and the translational-rotational velocity covariances

(e) CpΩ and (f) CnΩ.

obstacles are greater at the front as well. Thus, in addition to altering the swimmer’s velocity, the forces give

rise to an external torque that rotates the swimmer.

4 Diffusive behaviour at long times is characterised by rota-

tional diffusion and forward locomotion

The translational and angular velocity fluctuations due to collisions with the obstacles presented in the previous

section can, over longer times, result in the swimmer exhibiting a random walk that can be characterized by

an effective diffusion coefficient. This is a distinct difference from motion through continuous environments,

even non-Newtonian ones, for which, in the absence of boundaries, a swimming body undergoing symmetric,
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Figure 5: Swimmer trajectories for 200 undulation periods for (a) ksp = 0.01, (b) 0.2, (c) 2 and (d)

8 with obstacle density ϕ = 0.15. Six independent paths are displayed for each case. Asterisks in

panel (d) show the location where the swimmer was trapped by the obstacles.

periodic shape changes moves in a straight path. Trajectories from simulations run for 200 undulation periods

with ϕ = 0.15 and ksp = 0.01, 0.2, 2, and 8 are shown in Fig. 5. In each plot and for each trajectory, the

swimmer’s centre-of-mass is initially located at the origin and swimming to the left. To avoid the swimmer

exhibiting periodic, though complicated, trajectories, when performing these simulations we intermittently

reseed obstacles far away from the swimmer using the procedure described in the Supplementary Materials.

From Fig. 5, we see that increasing the stiffness of the tethers results in more frequent and sharper turns,

as well as an increase in trajectory length due to higher swimming speeds. For ksp = 0.01 and ksp = 0.2,

we observe gradual changes in the swimming direction, while for ksp = 2 the trajectories contain many loops

and sudden turns. For ksp = 8, the swimmer also changes direction quite often, however, it often becomes
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Figure 6: Swimmer trajectories for 200 undulation periods for (a) ϕ = 0.15, (b) 0.25, (c) 0.35, and

(d) 0.45 with obstacle density ksp = 0.2. Six independent paths are displayed for each case.

trapped by the obstacles long before it reaches 200 periods of undulation, resulting in short, terminated

trajectories.

We observe similar, but less dramatic changes in the trajectories when ksp is fixed and ϕ is increased.

Fig. 6 shows trajectories for ksp = 0.2 and ϕ = 0.15, 0.25, 0.35 and 0.45. As ϕ increases, we see that the

lengths of the 200T trajectories increase, as does the tendency for the swimmer to change direction. We,

however, do not see the very tortuous trajectories observed at the highest values of ksp, nor do we observe

the swimmer becoming trapped, even at high densities.
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4.1 Stochastic model

From the long time simulations presented above, we saw how tether stiffness and obstacle density affected the

trajectories exhibited by the swimmer due to changes in swimming speed and induced velocity fluctuations.

In order to better quantify long-time swimmer behaviour and how it varies with environmental parameters, we

employ a stochastic model that uses as input data from short-time simulations. In this model, the swimmer

centre-of-mass position, X = (X,Y ), and orientation, p̂ = (cos θ, sin θ), are described by the stochastic

differential equation

d


X

Y

θ

 = 〈Vp〉


cos θ

sin θ

0

 dt+
√

2τR(θ)C1/2dB, (22)

where

R(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , (23)

is the rotation matrix from the body to lab frames, C1/2 is the the Cholesky factorization of the covariance

matrix

C =


Cpp 0 CpΩ

0 Cnn CnΩ

CpΩ CnΩ CΩΩ

 , (24)

and dB is the increment of a vector of independent Wiener processes. The parameter τ describes the short

correlation time of the velocity fluctuations due to collisions with the obstacles. The effects of the obstacles

on swimmer motion are incorporated into the model by using the values of 〈Vp〉 and C computed from the

full simulations. We note that the stochastic model resembles that used to describe active Brownian particles

(ABPs) [34, 35] and bacteria subject to rotational diffusion [33], however, here, the covariance matrix is

both anisotropic (Cpp 6= Cnn) and the random velocities and angular velocities are correlated through the

non-zero entries CnΩ and CpΩ. Additionally, unlike ABPs and bacteria where the noise term can be attributed

to thermal fluctuations, or inherently random fluctuations in the bacteria’s flagellar movements, in our case,
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the fluctuations are due to collisions with the obstacles and, as a result, are accompanied by changes in the

swimming speed.

4.2 Autocorrelation functions and means-squared displacement
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Figure 7: Autocorrelation functions and time-dependent diffusion coefficient from long-time sim-

ulations (solid lines) and the stochastic model (dashed) for ϕ = 0.15 and ksp = 0.01, 0.2, 2 & 8.

The panels show the (a) Orientation autocorrelation function, 〈p̂(0) · p̂(t)〉, (b) Velocity autocor-

relation function, CV (t), and (c) the time-dependent diffusion coefficient, D(t). Panels (d) – (f)

show these same quantities from long-time simulations and the stochastic model for ksp = 0.2 and

ϕ = 0.15, 0.25, 0.35 & 0.45.

From the stochastic model, we can obtain expressions for the swimmer orientation and velocity autocor-

relation functions, as well as the mean squared displacement. We can then relate these quantities back to

the environmental parameters ksp and ϕ to assess how they affect swimmer motion at longer times. The
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orientation autocorrelation function (OACF) can be found by integrating the equation for θ to give

〈p̂(0) · p̂(t)〉 = e−CΩΩτt, . (25)

The details of this calculation are presented in the Supplementary Material. We see that the OACF decays

exponentially with a correlation time given by τc = (CΩΩτ)−1. We also observe that even though the matrix

C contains off-diagonal entries, only the diagonal entry CΩΩ affects the OACF.

In Fig. 7a we compare the OACF given by the stochastic model with that computed from full simulations

with ϕ = 0.15 and ksp = 0.01, 0.2, 2.0 and 8. In each case, the simulation data is well described by the

exponential OACF given by Eq. (25) with the correlation times decreasing with ksp, going from τc = 356.0T

for ksp = 0.01 down to τc = 22.3T for ksp = 8. This is consistent with our observations of the trajectories

where the swimming direction changes more often and more drastically at higher tether stiffnesses. Using

the values of τc and CΩΩ, we can obtain τ , the collision correlation time. For these four cases, we have

τ = 0.93T (ksp = 0.01), τ = 0.49T (ksp = 0.2), τ = 0.57T (ksp = 2), and τ = 0.53T (ksp = 8), indicating

that the correlation time associated with swimmer-obstacle collisions is on the order of a single period of

undulation. These values of τ are used for subsequent comparisons presented below.

Along with the OACF, from the stochastic model we can also compute the velocity autocorrelation function

(VACF)

CV (t) = 〈V (t) · V (0)〉 =
(
〈Vp〉2 + 2〈Vp〉τCnΩ

)
e−CΩΩτt + 2τ(Cpp + Cnn)δ(t)

+ τ2(C2
pΩ + C2

nΩ)1{t=0}, (26)

where, formally, V = dX/dt, δ(t) is the Dirac delta function, and 1{t=0} is the function that is 1 at t = 0

and 0 for t > 0. The details of this calculation may also be found in the Supplementary Materials. The VACF

from the stochastic model and long-time simulations are shown in Fig. 7b for ϕ = 0.15. As with the OACF,

the stochastic model predicts that the VACF decays exponentially with correlation time τc = (CΩΩτ)−1

and reproduces the VACF determined from the long-time simulations for each value of ksp. Along with the

exponential decay, we observe a sharp initial drop in the VACF corresponding to the additional short-time

correlations appearing in Eq. (26).

Finally, from the stochastic model, we compute the swimmer’s time-dependent diffusion coefficient,
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D(t) = 〈(X(t)−X(0))2〉/4t,

D(t) =
〈Vp〉2

2CΩΩτ

(
1− 1

CΩΩτt
(1− e−CΩΩτt)

)
+
τ

2
(Cpp + Cnn)

+
〈Vp〉CnΩ

CΩΩ

(
1− 1

CΩΩτt
(1− e−CΩΩτt)

)
.

(27)

Again, the details of the calculation can be found in the Supplementary Material. Fig. 7c shows D(t) for

ϕ = 0.15 given by both the long-time simulations and Eq. (27), and we again see close agreement between

the simulations and stochastic model. As the swimming speed increases with ksp, we observe a more rapid

initial growth of D(t) in stiffer environments. For higher values of ksp, we see the onset of diffusive behaviour

as D(t) approaches a constant value at t ≈ 300T . For lower ksp, D(t) grows linearly and, due to the very

long correlation times found for these environments, even after 500 undulation periods it has yet to even

begin leveling off.

Figs. 7d-f, show the OACF, VACF, and D(t), from the stochastic model and full simulations for ksp = 0.2

and ϕ = 0.15, 0.25, 0.35, and 0.45. Generally speaking, we find agreement between the stochastic model and

the full simulations for these environmental parameters, though for higher obstacle densities, we do see some

discrepancy at large times, where the correlations are found to decay rapidly and faster than the exponential

predicted by the model. From the OACF, we observe that as ϕ increases, the correlation time decreases

from τc = 159.6T at ϕ = 0.15 to τc = 68.9T when ϕ = 0.45. As a result, VACF decays more rapidly as ϕ

increases and D(t) reaches constant values sooner. We note that these changes are not as dramatic as those

seen when increasing ksp, and the notable initial drop in the VACF due to the δ-function is essentially absent

in these cases.

4.3 Effective diffusion coefficient and correlation times

From the stochastic model, we can obtain the effective swimmer diffusion coefficient

D = lim
t→∞

D(t) =
〈Vp〉2

2τCΩΩ
+
τ

2
(Cpp + Cnn) +

〈Vp〉CnΩ

CΩΩ
, (28)

which characterises the diffusive motion of a single swimmer at long-times, but also provides a measure of

how a dilute population of swimmers would spread with time. We see that the effective diffusion consists of

three terms that depend on 〈Vp〉 and the entries of C. The first term is the contribution that results from
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Figure 8: (a) Effective diffusion coefficient, D, and (b) correlation time, τc, given by the stochastic

model for ksp = 0.01, 0.2, 2 & 8. The error bars indicate the 95% confidence intervals computed

using a local sensitivity analysis [45] based on the expressions for D and τc and the confidence

intervals for the values of 〈Vp〉 and entries of C.

the coupling of rotational diffusion induced by collisions and forward locomotion [33, 35, 46]. The second

term arises due to the velocity fluctuations induced by collisions with the obstacles, while the third term is an

additional contribution due to the covariance between translational and rotational motion as a consequence

of CnΩ 6= 0.

Fig. 8a shows the effective diffusion coefficient as a function of ϕ for ksp = 0.01, 0.02, 2 and 8. Here,

the values for 〈Vp〉 and C are taken from the short-time simulations presented in Section 3 with the trapped

periods removed from the averaging (see Supplementary Materials). We also have assumed that τ = 0.6T

for all cases. For purposes of discussion, the correlation times, τc = (CΩΩτ)−1, corresponding to each case

are shown in Fig. 8b. We examine the contribution of each of the three terms appearing in Eq. (28) and find

that the overwhelming contribution to D for each case is the term 〈Vp〉2/(2CΩΩτ). It’s lowest contribution is

found for ksp = 8 and ϕ = 0.5, where it still accounts for 93.7% of D. Thus, the effective swimmer diffusion

is due primarily to a coupling between swimming and rotational diffusion.

At low obstacle densities, or low tether stiffnesses, we find that D can be quite large values due to the

lack fluctuations and long correlation times found for these environments. For moderate densities where
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fluctuations are more significant, we find that, that the value of D appears to be independent of the tether

stiffness. Thus, the increases in swimming speed that occur when ksp increases are balanced the accompanying

increases in rotational diffusion as to keep 〈Vp〉2/(2CΩΩτ) constant. We note, however, that the increase

in rotational diffusion does lead to large differences in correlation times with τc ≈ 100T for ksp = 0.2 and

τc ≈ 20T for ksp = 2 and 8. Thus, even though the diffusion coefficient may be the same, it will take longer

for the swimmer to exhibit diffusive behaviour in more compliant environments.

5 Swimmers are trapped by stiff, dense environments

Figure 9: Fraction of trapped swimmers c(ϕ, ksp) from short-time simulations over the ϕ − ksp

parameter space. At high ϕ and ksp, we see that the swimmer is both more likely to be trapped.

While we can characterise the diffusion coefficient using our short time data and the stochastic model,

it is important to recall that at high tether stiffness and obstacle density the swimmer becomes trapped by

the environment, perhaps even before the onset of diffusive behaviour. In our simulations, when trapping
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occurs (see video provided as electronic Supplementary Material), we find that though the swimmer continues

to undulate, it collides with the same set of obstacles without moving forward. Since our simulations are

deterministic, once the swimmer is trapped, it remains trapped indefinitely. Trapping in our simulations is

linked to obstacle interactions that modify the swimmer’s waveform and prevent it from making any forward

motion. This is in contrast with previous studies where trapping is instead linked to the swimmer moving in

closed, periodic trajectories around a particular set of obstacles [28, 29, 47, 48].

To quantify the likelihood of trapping, we compute for different values of ksp and ϕ the trapping fraction,

c(ϕ, ksp) = Ntrap(ϕ, ksp)/Nsim, where Ntrap(ϕ, ksp) is the number of simulations in which the swimmer

becomes trapped before 10T and Nsim is the number of simulations that are run for each case. For most

cases, Nsim = 50, however, for the cases where ksp = 2 and ksp = 8, we have Nsim = 90 as we also use our

simulation results from Section 3 to compute c(ϕ, ksp). Fig. 9 shows the trapping fraction over the ϕ-ksp

parameter space. We find that trapping only occurs when ksp & 1, or rather, when the tether stiffness is

greater than the stiffness of the swimmer. At high obstacle densities where ϕ = 0.45, we see a very sharp

transition at ksp ≈ 1 where the trapping fraction changes rapidly from c = 0 to c ≈ 1. For fixed ksp, the

trapping fraction increases with ϕ provided ksp & 1. For the highest tether stiffnesses, we found that the

swimmer can become trapped at obstacle densities as low as ϕ = 0.1. Additionally, trapping can occur at

times greater than 10T . In fact, from our long-time simulations with ϕ = 0.15 and ksp = 8, we found that

all swimmers would eventually become trapped by the environment.

To quantify trapping time, we compute using the short-time data presented in Section 3 the maximum

likelihood estimate [49] of the trapping time,

t̄trap =
1

Ntrap

Nsim∑
n=1

t?n, (29)

where Nsim is again the total number of simulations, Ntrap in the number of simulations where trapping

occurs before 8T , and t?n = min(ttrap,n, 8T ) with ttrap,n being the time the swimmer in simulation n is

trapped. In Eq. (29), it is assumed that for each ksp and ϕ the trapping times are distributed exponentially

with trapping rate λ = 1/t̄trap. This assumption is checked for consistency by comparing the average

mean squared distance travelled from full simulations with those obtained using the stochastic model and an

exponential distribution of trapping times (see Supplementary Material). Fig. 10a shows t̄trap, as a function
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Figure 10: The maximum likelihood estimate of the mean trapping time, t̄trap, as a function of (a)

ϕ for ksp = 2 and ksp = 8, and (b) ksp for ϕ = 0.25 and ϕ = 0.45.

of ϕ for fixed values of ksp. With ksp fixed, we find that the average trapping time decays exponentially with

obstacle density. Fitting the data with a function of the form c0 exp(−c1ϕ) yields c1 = 11.32 for ksp = 2

and c1 = 15.0 for ksp = 8, indicating that the decay rate does not depend strongly on tether stiffness. For

ksp = 8, the average trapping times decrease from approximately 100 undulations periods at lowest area

fractions to a just single period at ϕ = 0.45. In addition, we see that for these cases, the average trapping

times are comparable to the correlation time τc from Fig. 8. As a result, it is likely that swimmers moving

through these environments would be trapped before their spreading is described by diffusion alone. From

Fig. 10b, we see also that the trapping time decreases with tether stiffness when the obstacle density is fixed.

For ϕ = 0.25, there is a gradual exponential decay in the trapping time, while for ϕ = 0.45, the decay is more

rapid going from 100T at ksp ≈ 1 to just a single period at ksp ≈ 4, indicating that in dense environments,

swimmers will often be trapped instantaneously.

6 Discussion and conclusions

In this paper, we presented results from a series of simulations of an undulatory swimmer moving through

an environment consisting of fluid and a 2D arrangement of spherical obstacles that are connected by linear

springs to random points in space. Our results demonstrate how the discrete interactions between a swimming
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body and other microscopic structures, such as polymers or filaments, immersed in the surrounding fluid affect

swimmer motion. In particular, we show not only how the presence of the obstacles can often enhance the

swimming speed, but also how the discrete interactions lead to fluctuations in the swimmer’s translational

and angular velocities. We find enhanced speeds that are much greater that those seen in both experiments

[21] and numerical simulations [14, 17] using viscoelastic fluids, as well as simulations employing viscoelastic

networks [25]. Our enhanced speeds are on par with those predicted for gels [22] and porous media [23, 24].

In structured environments [28], the swimmer was able to constantly and regularly push and pull against

the obstacles such that the speed was given exactly by the lattice spacing and undulation frequency. Here,

enhanced speeds of nearly ten times the free swimming value were found. We see that randomness reduces

the enhancement, introduces large velocity and angular velocity fluctuations, and increases the likelihood

of the swimmer becoming trapped. The fluctuations, coupled with the swimming velocity, lead to diffusive

behaviour at long times, which we can quantify using a stochastic model. In particular, we find that as

the speed increases, so too do the fluctuations. These effects balance one another, resulting in a diffusion

coefficient that is nearly independent of the tether stiffness. We also show how obstacles can hinder motion,

leading to swimmer trapping, particularly in dense environments with tether stiffnesses greater than that of

the swimmer. Increasing obstacle density provides a simple mechanism for increasing trapping of swimmers

and is consistent with the observation of density variations of cervical mucus over the female cycle [8].

Additionally, our results indicate that a minimum stiffness of the environment is also required, and only then

can variations with density occur.

While we have studied here how phenomena such as trapping, enhanced locomotion, and effective diffusion

vary with environmental properties, it is also of interest to investigate further how these phenomena change

with swimmer’s gait, or propulsion strategy. It has been proposed [8, 9, 10] that sperm selection based on

gait by cervical mucus may play a role in allowing only the most genetically viable sperm to reach the egg.

Additionally, in continuum descriptions of viscoelastic fluids, it is known that rear versus front actuation

by undulatory swimmers leads to greater enhancement of swimming speed [17]. In our simulations, the

swimmer’s front-actuated gait is fixed and based on that of C. elegans. Understanding if and how our results

carry over to swimmers with different waveforms, including helical ones [30, 31], could give some indication
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of how the fluid microstructure can segregate populations of different swimmers based on how they move.

In fully 3D arrangements of filaments, filament alignment and anisotropy may play a role, potentially even to

guide the swimming cells in a particular direction [3], while in filament networks, connectivity and cross-linking

could lead to increased trapping.

Additionally, interactions between swimmers are modified as a result of the immersed microstructure.

It has been observed [50] that the inclusion of viscoelasticity leads to the formation of coherent groups of

moving sperm cells. In heterogeneous environments, the complexity of the interactions with the immersed

microstructure can introduce further effects, such as the local rearrangement of obstacles, hydrodynamic

screening of induced flows by the microstructure, or perhaps long distance propagation of elastic deformations

through obstacle collisions. These effects, as well as their coupling with biologically relevant phenomena, such

as chemotaxis, can provide further changes in swimmer behaviour as a result of their direct interactions with

immersed structures.
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