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Families of Bianchi modular symbols: critical base-change

p-adic L-functions and p-adic Artin formalism

Daniel Barrera Salazar and Chris Williams
with an appendix by Carl Wang-Erickson

Abstract

Let K be an imaginary quadratic field. In this article, we study the eigenvariety for
GL2/K, proving an étaleness result for the weight map at non-critical classical points and a
smoothness result at base-change classical points. We give three main applications of this.
(1) We construct three-variable p-adic L-functions over the eigenvariety interpolating the
(two-variable) p-adic L-functions of classical Bianchi cusp forms in families. (2) Let f be a
p-stabilised newform of weight k at least 2 without CM by K. We construct a two-variable
p-adic L-function attached to the base-change of f to K under assumptions on f that we
conjecture always hold, in particular making no assumption on the slope of f . (3) We prove
that these base-change p-adic L-functions satisfy a p-adic Artin formalism result, that is,
they factorise in the same way as the classical L-function under Artin formalism.

1. Introduction

The study of p-adic L-functions has proved invaluable for approaching many important prob-
lems in arithmetic number theory, playing a major role in the proof of cases of the Birch and
Swinnerton-Dyer and Bloch–Kato conjectures and the non-vanishing of certain central L-values
(see [JSW17], [Cas17], [DR17], [BDR15], [BC04], [BC09], [DJR18]). Another common theme in
the above papers is the notion of varying automorphic representations in p-adic families. Such
families are captured geometrically in the theory of eigenvarieties. Eigenvarieties and p-adic
L-functions are very closely related, and indeed their constructions often use the same tools,
such as p-adic automorphic forms, completed cohomology or overconvergent cohomology. It is
also natural to try to construct ‘many variabled’ p-adic L-functions varying in p-adic families
over eigenvarieties; such functions are ubiquitous in the works above. In this paper, we study
the eigenvariety parametrising automorphic forms for GL2 over an imaginary quadratic field
K and give a number of applications, including an extension of known constructions of p-adic
L-functions in this setting and a construction of (three-variable) p-adic L-functions in families.

In general, for every complex L-function attached to a cohomological automorphic representation
of a reductive group G, we expect there to be a p-adic analogue. In practice, p-adic L-functions
can be very hard to construct, and we are far from achieving this goal. Even in cases where
constructions are well-established – such as for classical modular forms, when G = GL2/Q –
there are subtleties; for example, when the modular form is ‘critical’ at p, the usual conditions a
p-adic L-function satisfies do not determine it uniquely. In this case, the study of eigenvarieties
has provided a much more complete picture; for example, the Coleman–Mazur eigencurve is
pivotal in [Bel12], where Bellaïche constructs canonical ‘analytic’ p-adic L-functions for critical
slope modular forms, and in [Han16], where (under a non-vanishing hypothesis) Hansen shows
that these are equal to ‘algebraic’ critical p-adic L-functions constructed by Kato using Euler
systems (see [Kat04]). Bellaïche’s construction of analytic critical p-adic L-functions has since
been generalised by Bergdall and Hansen, using the Hilbert eigenvariety, to the case of Hilbert
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modular forms (see [BH17]).

In light of this, to obtain a more complete theory of p-adic L-functions attached to automorphic
representations of G we should:

(a) get a good understanding of the local behaviour (at classical points) of the eigenvariety
attached to G, and

(b) find a generic construction of p-adic L-functions (at single points of the eigenvariety) that
is well-adapted for variation in families.

In the setting that interests us – the Bianchi case, where G = GL2/K – the generic construction
of (two-variable) p-adic L-functions for single points was done by the second author in [Wil17],
using overconvergent modular symbols (the first degree compactly supported overconvergent co-
homology of the relevant locally symmetric space). The eigenvariety in question was constructed
by Hansen in [Han17], also using overconvergent cohomology. Its further study, however, is chal-
lenging; GL2(C) does not admit discrete series representations, and consequently many nice
properties of the Coleman–Mazur eigencurve (and, more generally, Hilbert eigenvarieties) fail to
hold in the Bianchi setting. Strikingly, the classical points are not dense, and there exist classical
Bianchi cusp forms that do not vary in classical families. In fact, in [CM09], Calegari and Mazur
conjectured that ordinary classical families arise only through cases of Langlands functoriality;
in particular, such a family should be a (twist) of a base-change family from GL2/Q or a CM
family from GL1/L, where L/K is a quadratic extension. The situation is further complicated
as Bianchi modular forms appear in more than one cohomological degree, unlike in (for example)
the case of Hilbert modular forms. Our understanding of eigenvarieties in this so-called ‘ℓ > 0’
case1 is significantly less developed than when ℓ = 0.

Many of the methods used in the literature (for example, in [Bel12], [BSDJ17] and [BH17]) for
constructing p-adic L-functions over eigenvarieties make essential use of properties that do not
hold for the Bianchi eigenvariety. Accordingly, to prove the technical results we need in the
construction – namely, an étaleness result at non-critical points and a smoothness result for
base-change points – we develop new arguments for working in the ℓ > 0 case. We hope these
methods can be more easily adapted to eigenvarieties for more general reductive groups, such as
those for GLn with n ≥ 3, where we get similar ‘bad’ behaviour.

1.1. Main Results

Let K be an imaginary quadratic number field, let OK be its ring of integers, and fix p a rational
prime. Let F be a cuspidal Bianchi eigenform of weight λ ..= (k, k) and level n ⊂ OK , where n

is divisible by all of the primes of K above p; throughout, we will assume that F is either2 new
at p or the stabilisation of a newform at primes above p. Suppose that F either:

(NC) is non-critical in the sense of Definition 2.7, or

(BC) has finite slope at p, and is the base-change of a p-stabilised decent3 classical newform
f of weight k + 2 ≥ 2 and level prime to p, or a twist of such a base-change by a finite
order Hecke character of K of conductor prime to p.

If F is in case (BC), and p is split in K, then it automatically also satisfies condition (NC) if
vp(ap(f)) < k + 1, where ap(f) is the Up-eigenvalue of f . We say such forms have small slope.
If p is inert or ramified, however, the small slope condition becomes vp(ap(f)) < (k + 1)/2. In
particular, in the latter case, the ‘critical slope region’ covers fully half of the possible range,
and classical forms of non-critical slope can base-change to have critical slope over K. There
were previously no proven constructions of p-adic L-functions in this substantial case.

1Here ℓ denotes the difference between the top and bottom cohomological degrees in which forms appear.
2For uniformity, we will call forms satisfying either condition p-stabilised newforms; see Definition 2.16.
3See Definition 5.4. Conjecturally, every modular form is decent.
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We also assume F satisfies a (mild) multiplicity one result4 (Definition 4.6). In [Wil17] the author
constructs a p-adic L-function Lp(F) for F in case (NC). This is a distribution on ClK(p∞),
the ray class group of K of level p∞, and is constructed as follows. For L a sufficiently large
finite extension of Qp, one can realise F in the classical cohomology H1

c(Y1(n),Vλ(L)∗), where
Y1(n) is the relevant Bianchi locally symmetric space of level n and V ∗

λ is the local system
attached to the algebraic representation of highest weight λ. One can then exhibit a canonical
class ΨF ∈ H1

c(Y1(n),Dλ(L)) in the overconvergent cohomology lifting this classical class, where
Dλ(L) is the local system of L-valued locally analytic distributions on OK ⊗ZZp. We then define
Lp(F) to be the Mellin transform (see §2.7) of this canonical class. It is shown op. cit. that this
distribution interpolates the critical L-values of F .

1.1.1. Critical base-change p-adic L-functions

The first main result of this paper is an extension of this construction to case (BC), allowing
critical slope forms. To prove strong analogues of the results of [Wil17], constructing a canonical
class ΨF in the overconvergent cohomology, we require the following hypothesis.

Hypothesis 1.1. Suppose F in case (BC) is critical. Then there is precisely one Bianchi family
through F (the base-change of the Coleman family through f) that admits a Zariski-dense set of
classical points. If F satisfies this condition, we say it is Σ-smooth.

Theorem 1.2. Let F in case (BC) be Σ-smooth. Then the F-eigenspace H1
c(Y1(n),Dλ(L))[F ]

(that is, the eigenspace in H1
c(Y1(n),Dλ(L)) where the Hecke operators act with the same eigen-

values as on F) is one-dimensional over L.

Choosing ΨF to be a generator, and taking the Mellin transform, this result allows us to define
the p-adic L-function Lp(F) ∈ D(ClK(p∞), L) as a locally analytic distribution on ClK(p∞) for
each base-change F as above. Moreover, we prove that Lp(F) satisfies the expected growth and
interpolation5 properties.

We conjecture that Hypothesis 1.1 always holds, but if we do not assume it, then we can still
construct a canonical candidate for Lp(F); see §1.1.3 for more details.

1.1.2. Three-variable p-adic L-functions

Our second main result is that the p-adic L-functions above naturally live in p-adic families. Let
WK be the null Bianchi weight space, which is a rigid space of dimension 2 (see Definition 3.1).
Let E be the Bianchi eigenvariety, together with the weight map w : E → WK , as constructed
in [Han17]. The points of E above a weight λ are in bijection with systems of eigenvalues that
appear in the (total) weight λ overconvergent cohomology of Y1(n). Hansen’s work also gives
a finite ‘base-change p-adic functoriality’ map BC : C → E , where C is the Coleman–Mazur
eigencurve, interpolating the base-change lifts on classical points.

Assume first that F is in case (NC) or in case (BC) and Σ-smooth; in this case, we prove the
stronger result that the canonical overconvergent classes vary in families over E . Let xF be the
point in E(L) attached to F . Any irreducible component of E containing xF is one-dimensional
(see Theorem 3.9). In case (NC), we choose E ′ to be any such irreducible component, and in case
(BC), we choose it to be a (twist of a) base-change component, which is possible by Theorem
3.5. Let V be a neighbourhood of xF inside E ′, with Σ = w(V ) an affinoid curve inside WK .
We define DΣ to be the space of O(Σ)-valued locally analytic distributions on OK ⊗ Zp. This
gives rise to a local system DΣ on Y1(n), and for any h ≥ 0, it is possible to shrink V and Σ
so that the overconvergent cohomology H1

c(Y1(n),DΣ) admits a slope ≤ h decomposition with
respect to Up. At any point y ∈ V (L), there exists a specialisation map spy : O(V ) → L given
by evaluation at y. We prove (see Proposition 7.5):

4In practice, this involves the standard assumption that roots of Hecke polynomials at p are distinct.
5In the critical case, the interpolation property is that every critical value vanishes.
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Theorem 1.3. After possibly further shrinking V , there exists a Hecke eigenclass

ΦV ∈ H1
c(Y1(n),DΣ)≤h ⊗TΣ,h

O(V )

such that:

(i) spxF (ΦV ) = ΨF , and

(ii) for any classical point y ∈ V (L), with w(y) = κ, the specialisation spy(ΦV ) is a generator of
the (one-dimensional) L-vector eigenspace H1

c(Y1(n),Dκ(L))[Fy] (where Fy is the Bianchi
form corresponding to y).

Here TΣ,h denotes the submodule of EndO(Σ)(H
1
c(Y1(n),DΣ)≤h) generated by the Hecke op-

erators away from n and the Hecke operators at p. The class ΦV is canonical up to an ele-
ment of O(V )×. Taking the Mellin transform of this class we obtain a distribution Lp(V ) ∈
D(ClK(p∞),O(V )). This distribution is the three-variable p-adic L-function, characterised by
the following interpolation property.

Corollary 1.4. For each classical point y ∈ V (L) we have

Lp(y) .

.= spy(Lp(V ))

= cyLp(Fy) ∈ D(ClK(p∞), L),

where cy ∈ L×.

The numbers cy ∈ L× are p-adic periods analogous to those obtained in [GS93]. In case (BC),
the corollary can be phrased more explicitly. Let X (ClK(p∞)) denote the rigid space of p-adic
characters on ClK(p∞) (see [BH17, Defn. 5.1.4]); functions on this space are naturally two-
variabled, so the following also explains the terminology ‘three-variable p-adic L-function’, since
we add a single weight variable.

Corollary 1.5. Let f be a decent cuspidal eigenform (for GL2/Q) of weight k+ 2 ≥ 2 and level
N = Mp, let φ be a finite-order Hecke character of K that has conductor prime to pOK, and let
V be a neighbourhood of f in the Coleman–Mazur eigencurve that is étale over the weight space.
Suppose that f does not have CM by K, and that f is either a newform or the p-stabilisation
of a newform at level M prime to p. If f is critical, suppose further that its base-change F is
Σ-smooth. Then there exists a unique rigid-analytic function

Lp : V × X (ClK(p∞)) −→ Cp

such that, for any classical point y ∈ V and any Hecke character ϕ of K of conductor f|(p∞)
and infinity type 0 ≤ (q, r) ≤ (k, k), we have

Lp(y, ϕp−fin) =





cy

( ∏
p|p Zp(ϕ)

)
A(Fy, ϕ) · Λ(Fy, ϕφ) : y is non-critical

0 : y is critical
,

where Fy is the base-change of the classical modular form corresponding to y, ϕp−fin is the p-adic
avatar of ϕ, Zp(ϕ) is an exceptional factor, A(Fy, ϕ) is an explicit non-zero scalar, and Λ(Fy, ∗)
is the (completed) L-function of Fy, all of which are defined in §2.7.

Note that we make no assumption on the splitting behaviour of p in K or the slope of f . The
proof of this corollary can be deduced after taking the Amice transform (see [BH17, §5.1]) of
the distribution in Corollary 1.4; the interpolation property then follows from Theorem 2.14,
Proposition 6.7 and Corollaries 6.9 and 8.12. This interpolation property ensures that the
specialisations of Lp at a Zariski-dense set of classical non-critical points in V are determined
uniquely by a growth condition, which gives the required uniqueness property for Lp.
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1.1.3. The Σ-smoothness condition

We conjecture that the Σ-smoothness condition always holds. In particular, it would follow from
the natural generalisation of the conjecture of Calegari and Mazur, in [CM09], mentioned above.
In the non-ordinary case, there are no CM families, so the analogous statement becomes the
following, which we make more precise in the sequel (Conjecture 5.14).

Conjecture 1.6. The only non-ordinary families of Bianchi modular forms which admit a
Zariski-dense set of classical points arise from base-change.

Combined with our later results – namely, a smoothness result in the ‘base-change eigenvariety’
– this is enough to prove that classical base-change points are Σ-smooth.

We can prove slightly weaker analogues of the results above without assuming this, however.
Suppose F is in case (BC) but is not Σ-smooth. By making a non-canonical choice, we construct
an analogue of the function Lp on V ×X (ClK(p∞)) in Corollary 1.5 even in this case, and show
that it satisfies the same interpolation property at all non-critical points. In this case, we define
the p-adic L-function of F to be the specialisation of Lp at x. Since the interpolation at non-
critical points gives good control on Lp, we show that for all possible choices made, the resulting
distributions in D(ClK(p∞), L) lie in (at most) a one-dimensional L-vector space, showing that
as usual Lp(F) is well-defined up to scalar multiple. By general results of Stevens, it has the
expected growth property, and by construction, it varies in a canonical three-variable p-adic
L-function. We also prove a partial interpolation result (see below).

1.1.4. P -adic Artin formalism

Our third main result uses the three-variable p-adic L-function to prove a p-adic analogue of
Artin formalism for complex L-functions. Let f be as above, let F denote its base-change to K,
and let χK/Q be the quadratic character associated to K. We do not assume F is Σ-smooth.

Artin formalism says that L(F , s) = L(f, s)L(f, χK/Q, s). Now let Cl+Q (p∞) ∼= Z×
p be the narrow

ray class group at (p∞) over Q, and let Lp(f) and L
χK/Q

p (f) be the p-adic L-functions attached
to f and its quadratic twist by χK/Q respectively, which are both distributions on Cl+Q (p∞). We
denote by Lcyc

p (F) the restriction of Lp(F) to the cyclotomic line, which is again a distribution

on Cl+Q (p∞). Using the three-variable p-adic L-function we obtain the following p-adic Artin
formalism result.

Theorem 1.7. Suppose Lcyc
p (F) and Lp(f)L

χK/Q

p (f) are both non-zero. Then we have Lcyc
p (F) =

Lp(f)L
χK/Q

p (f) as distributions on Cl+Q (p∞).

We remark that the non-vanishing condition is automatically satisfied when f and F are non-
critical. A conjecture of Greenberg, which says that all critical elliptic modular forms are CM,
would imply that Lp(f) and L

χK/Q

p (f) are always non-zero by work of Bellaïche (see [Bel]), and
we conjecture that Lcyc

p (F) is similarly never zero.

A case of particular interest where this theorem applies is the following. Let E/Q be an elliptic
curve with good supersingular reduction at p, let f be the corresponding weight 2 classical
modular form, and let fα denote a p-stabilisation of f . Suppose p splits in K. Then the base-
change Fα has slope 1/2 at each of the primes above p. Since the L-function of Fα corresponds
to a p-depleted L-function for E/K, in this case we get a factorisation formula

Lcyc
p,α(E/K, ∗) = Lp,α(E/Q, ∗)Lp,α(EχK/Q/Q, ∗)

of the p-adic L-function of E/K in terms of the p-adic L-functions of E and its quadratic twist
by χK/Q. In the ordinary case, such a factorisation plays a role in Skinner and Urban’s proof of
the Iwasawa main conjecture (see [SU14]). We hope our results can have applications to more
general cases of the conjecture.

5
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Another interesting consequence of this result comes when F is not Σ-smooth. In this case, the
theorem allows us to prove an interpolation property for Lp(F) at critical Hecke characters of
K which factor through the norm to Q. We are, however, unable to prove the interpolation
property at more general characters.

1.2. Other results

Anticyclotomic p-adic Artin formalism: Modulo the existence of anticyclotomic p-adic L-
functions in families, the same methods can be applied to the restriction to the anticyclotomic
line as well. In this case, under the same non-vanishing hypothesis, the result we obtain is that
Lanti

p (F) = Lanti
p (f)2 (where the anticyclotomic p-adic L-function exists). We leave the details in

this case to the interested reader. Note that anticyclotomic p-adic L-functions do not yet exist
in the case where f is critical. The above suggests that a good candidate for (the square of) an
anticyclotomic p-adic L-function in this case is the restriction to the anticyclotomic line of the
p-adic L-function attached to F in this paper.

Base-change respecting criticality: The work that goes into proving the above allows two
further results as soft consequences. Let f be a decent classical cusp form without CM by K,
let F be its base-change to K, and assume F is Σ-smooth. Our results on the eigenvariety give
Corollaries 6.9 and 8.12, which say that F is itself critical if and only if f is. This is not a priori
obvious (for our definition) without assuming further conjectures on equivalent definitions of
critical points.

Secondary critical p-adic L-functions: Finally, following Bellaïche, we also construct sec-
ondary p-adic L-functions for such forms that non-trivially interpolate the classical special L-
values. When Lp(f) and Lp(F) are both non-zero, we explicitly relate the secondary p-adic
L-functions of F to those of f constructed by Bellaïche.

1.3. Proofs: local structure of the eigenvariety

The proofs of all of the above results rest on the local properties of the Bianchi eigenvariety.
We recall Hansen’s construction of the local pieces. For a (two-dimensional) affinoid Ω ⊂ WK ,
we define DΩ to be the space of O(Ω)-valued locally analytic distributions on OK ⊗ Zp. We
say Ω is h-slope adapted if the corresponding cohomology groups H∗

c(Y1(n),DΩ) admit slope
≤ h decompositions. For such a pair (Ω, h), we define TΩ,h to be the image of the Hecke
operators in EndO(Ω)(H

∗
c(Y1(n),DΩ)). The local piece of the eigenvariety is then the rigid space

EΩ,h
..= SpTΩ,h, together with a weight map induced from the algebra map O(Ω) → TΩ,h. Such

local pieces can be patched into the global eigenvariety E .

The construction uses the total cohomology. Since the construction of p-adic L-functions in this
setting uses H1

c , it is important to pin down families in the first degree. As mentioned above, this
is complicated by the fact that a classical Bianchi cusp form F contributes to the cohomology
in two degrees, namely 1 and 2. An argument due to Hansen, using the spectral sequences
introduced in [Han17], shows that in fact the only degree for which the system of eigenvalues
attached to our classical Bianchi cusp form F arises in Hi

c(Y1(n),DΩ)≤h is i = 2. We show,
however, that if Σ ⊂ Ω is a one-dimensional affinoid over which F varies in a family6, then
H1

c(Y1(n),DΣ)≤h is non-zero at F . We define TΣ,h to be the image of the Hecke operators in
EndO(Σ)(H

1
c(Y1(n),DΣ)≤h). Note that now we restrict to the degree one cohomology. We show

that there is a maximal ideal mF ⊂ TΣ,h corresponding to xF , and localising the TΣ,h-module
H1

c(Y1(n),DΣ)≤h at this ideal gives the generalised eigenspace at F . Writing mλ ⊂ O(Σ) for the
corresponding maximal ideal for the weight space, we then prove:

Theorem 1.8. If F is critical, assume it is Σ-smooth. The module H1
c(Y1(n),DΣ)≤h

mF is free of
rank one over (TΣ,h)mF , which (possibly after a finite extension of the base field) is itself free of
finite rank e over O(Σ)mλ

. If F is non-critical, then e = 1.

6That is, there is a connected component of EΩ,h containing xF and mapping to Σ under the weight map.
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We first prove this theorem in case (NC). The first important step in the proof, showing that
the space is non-zero, was mentioned above. By assumption we have a multiplicity one con-
dition for the generalised eigenspace of F in classical cohomology, and then the non-criticality
condition ensures that the space H1

c(Y1(n),Dλ)≤h
mF is itself one-dimensional. Two applications

of Nakayama’s lemma allow us to prove that H1
c(Y1(n),DΣ)≤h

mF is generated by one element.
We conclude by using the concrete description of H1

c as modular symbols to prove the space is
torsion-free, hence free of rank one. In case (NC), after possibly shrinking Σ, this theorem allows
the construction of the canonical class ΦV and the three-variable p-adic L-function.

In case (BC), the proofs are more involved. We introduce the parallel weight eigenvariety Epar,
built out of only the groups H1

c(Y1(n),DΣ) for Σ a subset of the one-dimensional parallel weight
line in WK . We prove that this eigenvariety has a Zariski-dense set of classical points and con-
tains the image of the p-adic base-change functoriality map. Let Ebc denote this image as a
closed subspace of Epar. The key geometric input is:

Proposition 1.9. Let F be in case (BC). Then Ebc is smooth and reduced at xF .

We prove this using deformation theory. In particular, in an appendix to this paper, Carl
Wang-Erickson develops a precise ‘base-change’ deformation condition that makes this argument
possible. It is important to note that these methods work in this case (but not, at present, in the
general Bianchi setting) as we can ‘port’ the necessary properties of Ebc – notably, a Zariski-dense
set of crystalline points – from the analogous properties for the Coleman–Mazur eigencurve. If
we have Σ-smoothness, xF is also smooth and reduced in Epar. Using a strategy of Bellaïche
from [Bel12], this is enough to show Theorem 1.8 in case (BC), assuming Σ-smoothness, and
ultimately to prove Theorems 1.2 and 1.3 in this case too.

When we do not have Σ-smoothness, we at least still have smoothness in Ebc. This is enough
to prove a non-canonical analogue of Theorem 1.8 in this case, giving the partial results stated
above at such points.

Finally, we turn to the proof of p-adic Artin formalism (Theorem 1.7). For sufficiently small slope,
the product Lp(f)L

χK/Q

p (f) is uniquely determined by its critical values, and thus we show that
– after normalising the periods appropriately – the result follows from classical Artin formalism.
In the general finite slope case, we can take a neighbourhood VQ of f in the Coleman–Mazur
eigencurve, and attach two-variable p-adic L-functions Lp(VQ),LχK/Q

p (VQ) to f over V . Let VK

be the image of VQ in the Bianchi eigenvariety under the base-change map; we can restrict the
resulting three-variable p-adic L-function of Corollary 1.5 to a two-variable p-adic L-function
Lcyc

p (VK) over the cyclotomic line. The slope of such a family is constant, so factorisation
holds (up to scalars) at a Zariski-dense set of points. We can control the scalars under the
non-vanishing hypothesis of Theorem 1.7.

Proposition 1.10. Suppose Lp(f)L
χK/Q

p (f) and Lcyc
p (F) are both non-zero. After possibly

shrinking VQ and VK , there is a factorisation (of two-variable p-adic L-functions)

Lcyc
p (VK) = Lp(VQ)LχK/Q

p (VQ),

the equality up to multiplication by an element of O(VQ)×.

(Note that this indeterminacy is expected, since the two-variable p-adic L-functions in question
are themselves only well-defined up to scalar multiplication by O(VQ)×). To prove Theorem
1.7, we now specialise to f . Similarly, if a two-variable anticyclotomic p-adic L-function exists
in Coleman families, under the same hypotheses the same arguments show that necessarily we
have Lanti

p (VK) = Lanti
p (VQ)2, where we have restricted the three-variable base-change p-adic

L-function to the anticyclotomic line.

7
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1.4. Further remarks

For immediate applications, Theorem 1.3 and Corollary 1.4 are of most interest when Σ is
contained in the parallel weight line in WK . In this case, classical non-critical points are Zariski-
dense in V , and we have shown that the p-adic L-functions of such forms vary analytically over
neighbourhoods in the eigenvariety. When Σ is not contained in this line, then it is possible that
xF is the only classical point in V . In this case, we have shown instead that the overconvergent
eigensymbol ΨF varies in a family of eigensymbols parametrised by points of V , in the sense
that at any point y ∈ V (L) with w(y) = κ, the class

spy(ΦV ) =.. Ψy ∈ H1
c(Y1(n),Dκ(L))≤h

is an eigensymbol for the Hecke operators. By analogy with classical points, one might define the
p-adic L-function Lp(Ψy, ∗) of this symbol to be the Mellin transform of Ψy, which obviously
agrees with the previous construction when Ψy is associated to a classical form. Outside of
classical points, these ‘p-adic L-functions’ have no obvious link to L-values, but the above does
show that they vary in families over the eigencurve.

The following is a possible arithmetic application of these non-parallel families. Suppose F is
new at a prime p of K above p. In [BSW17] we showed the existence of an L-invariant Lp

attached to F , depending only on p, arising from exceptional zeros of the p-adic L-function of
F . The Hecke eigenvalue of ΨV at p is an analytic function ap on V . If V is smooth at xF ,
or equivalently if Σ is smooth at w(xF ), then one can differentiate ap (along the curve V ) and
evaluate at xF . We expect that, at least in the ordinary case, this gives the Benois–Greenberg
L-invariant of F at p (see [Ben11]). Using methods introduced by Greenberg–Stevens in [GS93]
(see also [BSDJ17]), one should be able to show that the Benois–Greenberg L-invariant is equal
to Lp.

1.5. Structure of the paper

In §2, we recall some aspects of the construction of p-adic L-functions attached to non-critical
Bianchi cusp forms. In §3, we introduce the Bianchi eigenvariety E constructed by Hansen, and
state some of its basic properties, including its dimension and the base-change map. In §4, we
prove Theorem 1.8 in the case (NC). In §5, we introduce the parallel weight eigenvariety and its
properties, proving smoothness of the base-change eigenvariety at classical points. In §6, we use
the parallel weight eigenvariety to complete the proof of Theorem 1.8 and to prove Theorem 1.2.
In §7, we construct families of p-adic L-functions, proving Theorem 1.3. Finally, §8 is devoted to
proving Theorem 1.7 and developing the phenomenon of secondary p-adic L-functions for critical
base-change Bianchi cusp forms. An appendix, by Carl Wang-Erickson, provides the technical
footing for the deformation theory arguments in §5.
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2. The p-adic L-function of a Bianchi modular form

In this section, we fix notation and briefly recap the results of [Wil17], which will be used heavily
in the sequel. Fix, once and for all, embeddings Q →֒ C and Q →֒ Qℓ for each prime ℓ.

2.1. Basic notation

Let K be an imaginary quadratic field with ring of integers OK , different d and discriminant
−d. Let p be a rational prime.

Denote the adele ring of K by AK = C× Af
K , where Af

K denotes the finite adeles. Throughout,
we work at level n ⊂ OK divisible by each prime of K above p. For an ideal f ⊂ OK , let ClK(f)
denote the ray class group of K modulo f. We write U1(n) for the standard open compact

subgroup of GL2(OK ⊗Z Ẑ) of matrices congruent to ( ∗ ∗
0 1 ) modulo n, and K∞ = SU2(C)C×, and

we define the associated locally symmetric space by

Y1(n) ..= GL2(K)\GL2(AK)/K∞U1(n).

We define H3
..= C×R>0; the space Y1(n) can be written as a finite disjoint union of quotients of

H3. Let j ≥ 0 be an integer, and for any ring R, let Vj(R) denote the ring of polynomials over R
of degree at most j. Throughout, we will denote modules of rigid analytic distributions by D0(∗)
and locally analytic distributions by D(∗). These spaces will be equipped with a group action,
and the corresponding local systems on Y1(n) will be denoted by D0(∗) and D(∗) respectively.

We will typically reserve f to mean a classical modular form and F a Bianchi modular form
when we work at a fixed weight. If V is an affinoid in a rigid space, we will write O(V ) for the
ring of rigid functions on V , so that V = Sp(O(V )). We will decorate V with a subscript Q or
K to clarify that we are working with spaces defined for GL2 over Q and K respectively, unless
this is clear from context. If y is a classical point in an eigenvariety, we will write fy or Fy for
the corresponding modular form (if it is classical or Bianchi respectively).

2.2. Bianchi modular forms and L-functions

A Bianchi modular form is an automorphic form for GL2 over an imaginary quadratic field. The
conventions we follow are those of see [Wil17, §1], and we refer the reader there for the precise
definitions.

Let λ = (k,v) be a weight, where k = (k1, k2) and v = (v1, v2) are two elements of Z[ΣK ].
There is a finite-dimensional C-vector space Sλ(U1(n)) of Bianchi cusp forms of weight λ and
level U1(n), which are functions

F : GL2(K)\GL2(AK)/U1(n) −→ V2k+2(C)

transforming appropriately under the subgroup K∞, and satisfying suitable harmonicity and
growth conditions.

Remark 2.1: If k1 6= k2, then Sλ(U1(n)) = 0 (see [Har87]), so henceforth when talking about
classical cusp forms we will set k1 = k2 = k. In this case, we can always twist the central
character by a power of the norm to assume that v1 = v2 = 0 as well. For the rest of this
section, we fix λ = [(k, k), (0, 0)], and we will write this as λ = (k, k) without further comment.

There is a good theory of Hecke operators (indexed by ideals of OK) on Bianchi modular forms.
Let F be a cuspidal Bianchi modular form that is an eigenform for all of the Hecke operators,
and for any non-zero ideal I ⊂ OK , write F|TI = αIf.

Definition 2.2. Let Λ denote the (completed) L-function of F , normalised so that if ϕ is a
Hecke character of infinity type (q, r), where q, r ≫ 0, then

Λ(F , ϕ) =
Γ(q + 1)Γ(r + 1)

(2πi)q+r+2

∑

I⊂OK ,I 6=0

αIϕ(I)N(I)−1.
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This admits an analytic continuation to all such characters.

The ‘critical’ values of this L-function can be controlled; in particular, by [Hid94, Thm. 8.1], we
see that there exists a period ΩF ∈ C× and a number field E such that, if ϕ is a Hecke character
of infinity type 0 ≤ (q, r) ≤ (k, k), with q, r ∈ Z, we have

Λ(F , ϕ)

ΩF
∈ E(ϕ), (2.1)

where E(ϕ) is the number field over E generated by the values of ϕ.

2.3. The cohomology class attached to F
The Bianchi modular forms we consider in this paper are cohomological in the following sense.

Definition 2.3. For a ring R, let Vλ = Vk,k(R) ..= Vk(R) ⊗R Vk(R). (We think of Vλ as
polynomials on OK ⊗ZZp that have degree at most k in each variable). This space has a natural
left action of GL2(R)2 induced by the action of GL2(R) on each factor by

(
a b
c d

)
· P (z) = (a+ cz)kP

(
b+ dz

a+ cz

)
,

inducing a right action on the dual space Vλ(R)∗ ..= Hom(Vλ(R), R). When R is an K-algebra,
this then gives rise to a local system, which we denote by Vλ(R)∗, on the locally symmetric space
Y1(n).

Theorem 2.4. There is an isomorphism

Sλ(U1(n)) ∼= H1
c(Y1(n),Vλ(C)∗)

that is equivariant with respect to the Hecke operators. Let F ∈ Sλ(U1(n)) be a newform or the
p-stabilisation of a newform which has distinct Hecke eigenvalues at each prime above p. Then
the generalised eigenspace H1

c(Y1(n),Vλ(C)∗)(F) for the Hecke operators is one dimensional, and
φF/ΩF has coefficients in Vλ(E)∗, where ΩF ∈ C× and E are as in equation (2.1.)

Proof. See [Hid94, §3] for the isomorphism, which was initially due to Eichler–Shimura–Harder,
and [Hid94, §8] for the dimension result and algebraicity.

2.4. Overconvergent cohomology

Throughout the following, R will denote an (OK ⊗ZZp)-algebra, whilst L will be a finite extension
of Qp. We also assume that the level n is divisible by every prime of K above p.

Definition 2.5. Let A(R) (resp. A0(R)) denote the space of locally analytic (resp. rigid analytic)
functions OK ⊗Z Zp → R. When R = L is a finite extension of Qp, we equip these spaces with
a weight λ-action of the semigroup

Σ0(p) ..=

{(
a b
c d

)
∈ M2(OK ⊗Z Zp) : vp(c) > 0 ∀p|p, a ∈ (OK ⊗Z Zp)×, ad− bc 6= 0

}

by setting
(

a b
c d

)
· ζ(z) = (a+ cz)kζ

(
b+dz
a+cz

)
. Since n is divisible by each prime above p, this gives

an action of U1(n) by projection to the components at p.

Definition 2.6. Let D(R) ..= Homcts(A(R), R) denote the space of R-valued locally analytic
distributions on OK ⊗Z Zp. When R = L as above, we write Dλ(L) for this space equipped with
the weight λ right action of Σ0(p) given by µ|γ(ζ) = µ(γ · ζ). The spaces D0(R) and D0

λ(L) of
rigid analytic distributions are defined similarly to be the continuous duals of A0(R) and A0(L),
the latter with the dual weight λ action of Σ0(p). Both Dλ(L) and D0

λ(L) give rise to local
systems on Y1(n) via their actions of Σ0(p), which we denote by Dλ(L) and D0

λ(L) respectively.
Define the overconvergent cohomology of weight λ and level U1(n) to be the cohomology group
H1

c(Y1(n),Dλ(L)).

10
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There is a natural map Dλ(L) → Vλ(L)∗ given by dualising the inclusion of Vλ(L) into A(L).
This induces a specialisation map

ρλ : H1
c(Y1(n),Dλ(L)) −→ H1

c(Y1(n),Vλ(L)∗).

Definition 2.7. Let F ∈ Sλ(U1(n)) be an eigenform. We say F is non-critical if ρλ becomes an
isomorphism upon restriction to the generalised eigenspaces of the Hecke operators at F .

The following gives a large supply of non-critical forms (see [BSW16, Theorem 8.7]). First, we
need a further definition.

Definition 2.8. There are natural valuations on K, considered as a subset of L, corresponding
to the primes above p; if p is inert or ramified, then the valuation at p|p is simply the p-adic
valuation on L, normalised so that v(p) = 1. If p is split, then note our fixed choice of embedding
Q →֒ Qp singles out a choice of prime p|p, and we denote the other prime by p. Given α ∈ K,
the valuation at p is vp(α) ..= vp(α) (the usual p-adic valuation), and the valuation at p is
vp(α) ..= vp(αc), where c is conjugation.

Theorem 2.9 (Control theorem). For each prime p above p, let αp ∈ K×. If vp(αp) < (k+1)/ep
for all p|p, then the restriction of the specialisation map

ρλ : H1
c(Y1(n),Dλ(L)){Up=αp:p|p} ∼−→ H1

c(Y1(n),Vλ(L)∗){Up=αp:p|p}

to the simultaneous αp-eigenspaces of the Up operators is an isomorphism. Here recall that ep
is the ramification index of p|p.

Definition 2.10. If F ∈ Sλ(U1(n)) is an eigenform with eigenvalues αI , we say F has small
slope if vp(αp) < (k + 1)/ep for all p|p. (Such a form is non-critical by the control theorem).

Thus to a non-critical form F , we can associate a class ΨF ∈ H1
c(Y1(n),Dλ(L)) by lifting the

corresponding classical class.

2.5. Bianchi modular symbols

Whilst the definitions and results above go through for more general number fields (see, for
example, [BSW16]), in the Bianchi setting the first degree compactly supported cohomology
admits a considerably more explicit definition in terms of modular symbols. To describe this,
let ∆0

..= Div0(P1(K)) denote the space of ‘paths between cusps’ in H3, and let V be any right
SL2(K)-module. For a subgroup Γ ⊂ SL2(K), define the space of V -valued modular symbols for
Γ to be the space

SymbΓ(V ) ..= HomΓ(∆0, V )

of functions satisfying the Γ-invariance property that

(φ|γ)(δ) ..= φ(γδ)|γ = φ(δ) ∀δ ∈ ∆0, γ ∈ Γ,

where Γ acts on the cusps by
(

a b
c d

)
· r = (ar + b)/(cr + d).

Now let Γ be a discrete subgroup of GL2(K). This Γ also acts naturally on H3, and we have
(see [BSW17, Prop. 8.2]):

Proposition 2.11. Let V be a right Γ-module, giving rise to a local system V on Γ\H3. There
is an isomorphism H1

c(Γ\H3,V ) ∼= SymbΓ(V ).

Via strong approximation, the locally symmetric space Y1(n) decomposes as a disjoint union
of spaces Γi\H3, for Γi ⊂ GL2(K) discrete subgroups indexed by ClK (for further details,
see [BSW16, §3.2.2]). This induces a decomposition

H1
c(Y1(n),V ) ∼=

⊕

i∈ClK

SymbΓi
(V ),

using Proposition 2.11. This decomposition is non-canonical, depending on the choice of class
group representatives. When V is Vλ(R)∗ or Dλ(L), there is a natural Hecke action on the direct
sum, and the isomorphism is equivariant with respect to this action.
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2.6. Ray class groups, distributions and Mellin transforms

In this section we explain how to canonically associate a ray class distribution to an overconver-
gent cohomology class in H1

c(Y1(n),Dλ). The class group in question is the ray class group of K
of level p∞, defined by

ClK(p∞) ..= K×\A×
K/C

×
∏

v∤p

O×
v =

⊔

i∈ClK

(OK ⊗Z Zp)×/O×
K ,

where the decomposition is non-canonical, depending once more on our choice of class group
representatives.

Let R be an (OK ⊗Z Zp)-algebra such that D(R) carries a right action of U1(n), hence giving
rise to a local system on Y1(n).

Definition 2.12. Let Ψ ∈ H1
c(Y1(n),D(R)), and write

Ψ = (Ψ1, ...,Ψh) ∈
⊕

i∈ClK

SymbΓi
(D(R)) ∼= H1

c(Y1(n),D(R)).

Define, for each i, a distribution

µi(Ψ) ..= Ψi({0} − {∞})|(OK⊗ZZp)×

on (OK ⊗Z Zp)×, which also gives rise to a distribution on the quotient of this space by O×
K .

Then define the Mellin transform of Ψ to be the (R-valued) locally analytic distribution on
ClK(p∞) given by

Mel(Ψ) ..=

h∑

i=1

µi(Ψ)1i ∈ D(ClK(p∞), R),

where here 1i is the indicator function for the component of ClK(p∞) corresponding to Ii. A
simple check identical to the arguments given in [BSW16, Prop. 9.7] shows that the distribution
Mel(Ψ) is independent of the choice of class group representatives.

2.7. The p-adic L-function of a Bianchi modular form

Let F be a non-critical Bianchi modular form of level U1(n) and weight λ = (k, k), where (p)|n,
and let ΨF ∈ H1

c(Y1(n),Dλ(L))≤h be the associated overconvergent class.

Definition 2.13. Define the p-adic L-function of F to be the Mellin transform Lp(F , ∗) ..=
Mel(ΨF ).

We describe the interpolation property satisfied by Lp(F , ∗). Given an algebraic Hecke character
ϕ of K whose conductor divides (p∞), there is a natural associated character ϕp−fin of ClK(p∞)
associated to ϕ (see [Wil17, §7.3]). The main theorem of [Wil17] is the following (Theorem 7.4
op. cit.):

Theorem 2.14. For any Hecke character ϕ of K of conductor f|(p∞) and infinity type 0 ≤
(q, r) ≤ (k, k), we have

Lp(F , ϕp−fin) =


∏

p|p

Zp(ϕ)


A(F , ϕ)Λ(F , ϕ),

for

A(F , ϕ) .

.=

[
ϕ(xf)dτ̃ (ϕ−1)#O×

K

(−1)k+q+r2ϕf(xf)αfΩF

]
,

12
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where xf is an explicit idele representing f, ϕf is the restriction of ϕ to
∏

v|fK
×
v , τ̃(ϕ−1) is a

Gauss sum, αf is the eigenvalue of F at f and

Zp(ϕ) .

.=

{
1 − α−1

p ψ(p)−1 : p ∤ f,
1 : otherwise.

Writing hp = vp(αp), the distribution Lp(F , ∗) is (hp)p|p-admissible in the sense of [Wil17, Defns.
5.10,6.14]. When f has small slope, this ensures it is unique with this interpolation property.

2.8. Stabilisations at p

Suppose now one starts with a form F of level n, and that n is not divisible by one or more
primes p above p. To define a p-adic L-function, one must take p-stabilisations (or p-refinements)
until all primes above p divide n.

Definition 2.15. Let ap(F) denote the Tp eigenvalue of F , and let αp and βp denote the roots
of the Hecke polynomial X2 − ap(F)X + N(p)k+1. Let πp denote an idelic representative of p.
We define the p-stabilisations of F to be

Fαp

..= F(g) − βpF
((

πp 0
0 1

)
g
)
,

Fβp

..= F(g) − αpF
((

πp 0
0 1

)
g
)
.

The form Fαp
(resp. Fβp

) is an eigenform of level U1(np) with Up-eigenvalue αp (resp. βp).

For each prime p above p not dividing n, suppose we can choose a root αp of the Hecke polynomial
at p such that vp(αp) < (k + 1)/ep. Then we can attach a p-adic L-function to the form Fα

obtained by taking the αp-stabilisation at each of these primes, which thus has level divisible by
each of the primes above p.

Examples: (i) Suppose p splits in K as pp. Let F have weight λ = (k, k) and level N prime
to p with ap(F) = ap(F) = 0. Then the Hecke polynomials at p and p coincide, and their
roots α, β both have p-adic valuation (k + 1)/2. Assuming α 6= β, there are four choices
of stabilisations to level Np, and each is small slope, giving rise to four p-adic L-functions
attached to F . In the case where k = 0, these are precisely the p-adic L-functions seen
in [Loe14, §5].

(ii) Suppose instead that p is inert in K and again that ap(F) = 0. Then both roots α, β of the
Hecke polynomial have p-adic valuation k + 1, and hence neither p-stabilisation has small
slope, and the methods of [Wil17] do not necessarily allow the construction of a p-adic
L-function attached to F .

We introduce some notation. Forms satisfying the conditions below, and a mild additional
regularity condition, satisfy a multiplicity one condition for the Hecke algebra Hn,p defined in
the sequel.

Definition 2.16. Let F be a Bianchi modular form of level n divisible by each prime above p.
We say F is a p-stabilised newform if there exists a subset S of primes above p and a newform
F ′ of level N, with N prime to S and n = N

∏
p∈S p, such that F can be obtained from F ′ by

successively stabilising at each prime in S. (Note newforms of level n themselves satisfy this
with S = ∅).

3. The Bianchi eigenvariety

In this section, we summarise some of the relevant results from David Hansen’s beautiful pa-
per [Han17] and show that if F is a cuspidal Bianchi modular form that is either non-critical
or base-change, then the system of eigenvalues attached to F varies in a one-dimensional family
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of overconvergent modular symbols. Hansen uses overconvergent cohomology to construct uni-
versal eigenvarieties in very wide generality. Whilst his results are stated mainly for singular
cohomology, he also gives the tools to produce (essentially identical) proofs in the case of coho-
mology with compact support, which is the setting that interests us. We will use his results for
compactly supported cohomology with little further comment.

The key idea in Hansen’s work is the construction of spectral sequences converging to the coho-
mology groups H∗

c(Y1(n),Dλ)≤h that moreover behave well under the action of the Hecke oper-
ators. The general theory of spectral sequences then gives a filtration on each of these groups
as well as explicit descriptions of the graded pieces in terms of overconvergent cohomology in
families.

3.1. Distributions over the weight space

3.1.1. Bianchi weight space and null weights

Definition 3.1. Let T (Zp) = {( a 0
0 d ) : a, d ∈ (OK ⊗Z Zp)×} . Define the (full) Bianchi weight

space to be the rigid analytic space whose L-points, for L ⊂ Cp any sufficiently large extension
of Qp, are given by

WK(L) = Homcts(T (Zp), L×).

We will typically restrict to a smaller space of weights. In particular, we can ‘twist away’
some of this space; for any λ ∈ WK(L), write λ = diag(λ1, λ2), where each λi is a character
(OK ⊗Z Zp)× → L×. Then

λ = diag(λ1λ
−1
2 , 1) · (λ2 ◦ det).

Variation in this determinant factor is well-understood in the sense that any Bianchi modular
form varies in a family in this direction via twisting. As such, we will, without loss of generality,
henceforth assume that λ2 is trivial and focus only on the smaller space cut out by this condition.
We make one further restriction; since we only care about weights which give rise to non-trivial
local systems on Y1(n), we demand that our weights are trivial on the subgroup

E(n) ..= K× ∩ U1(n) = {ǫ ∈ O×
K : ǫ ≡ 1 (mod n)}.

With this in mind, we define:

Definition 3.2. Define the (null) Bianchi weight space of level n to be the rigid analytic space
whose L-points, for L ⊂ Cp any sufficiently large extension of Qp, are given by

WK,n(L) = Homcts((OK ⊗Z Zp)×/E(n), L×).

Since the level will typically be clear from context, we will usually drop the superscript n from
the notation.

The (null) Bianchi weight space is then a 2-dimensional space analogous to the 1-dimensional
(null) weight space for GL2/Q, whose L-points are given by WQ(L) = Homcts(Z

×
p , L

×). By
passing to this smaller space of weights, we hope that later comparison with the Coleman–
Mazur eigencurve is more clear (compare [Han17, §4.6]). From now on, we will refer to WK

simply as the Bianchi weight space (without specifying that it is null).

We say a weight λ ∈ WK(L) is classical if it can be written in the form ǫλalg, where ǫ is a finite
order character and λalg(z) = zk, where k = (k1, k2) is a pair of integers. Such a λ represents
the weight of a Bianchi modular form of weight (k,0) with nebentypus character ǫ.

3.1.2. Distributions in families

For each weight λ ∈ WK(L), one can define a weight λ action of Σ0(p) on the space of locally
analytic functions on OK ⊗Z Zp → L by

γ ·λ f(z) = λ(a+ cz)f

(
b+ dz

a+ cz

)
,
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and hence a dual action on D(L). We can vary these action in families over WK . In particular,
let Ω ⊂ WK be an affinoid, giving rise to a universal character

χΩ : (OK ⊗Z Zp)× −→ O(Ω)×,

which has the property that for any λ ∈ Ω(L), the corresponding homomorphism (OK ⊗ZZp)× →
L× factors as

(OK ⊗Z Zp)×
χΩ

−−−−−→ O(Ω)×
eval. at λ
−−−−−→ L×.

We can thus equip AΩ
..= A(O(Ω)) with a ‘weight Ω’ action of Σ0(p) given by

γ ·Ω f(z) = χΩ(a+ cz)f

(
b+ dz

a+ cz

)
,

and dually we get an action on DΩ
..= D(O(Ω)).

Remark 3.3: From the remarks at the end of [Han17, §2.2], we can identify

DΩ
..= D(Qp)⊗̂QpO(Ω),

where ⊗̂ denotes completed tensor product. In this formulation, it is easier to see that if Σ ⊂ Ω
is some closed subset, then we have an isomorphism DΩ ⊗O(Ω) O(Σ) ∼= DΣ. In particular,
if λ ∈ Ω(L) is some weight corresponding to a maximal ideal mλ ⊂ O(Ω), then DΩ ⊗O(Ω)

O(Ω)/mλ
∼= Dλ(L).

As Σ0(p)-modules, these spaces give rise to associated local systems on Y1(n). For more details
on these spaces of distributions, see [Han17, §2].

3.2. Hansen’s universal eigenvariety for GL2/K

One of the main results of [Han17] specialises, in our setting, to the following.

Theorem 3.4 (Hansen). There exists a separated rigid analytic space En, together with a mor-
phism w : En → WK , with the property that for each finite extension L of Qp, the L-points of En

lying above a weight λ in WK(L) are in bijection with finite slope eigenclasses in H∗
c(Y1(n),Dλ(L)).

We call this space the (full) Bianchi eigenvariety. For singular cohomology, this is [Han17, §4.3].
We need a compactly supported version, but this goes through using identical arguments with
Hansen’s compactly supported spectral sequence. The level n will usually be clear from context,
so we usually drop the subscript in the sequel.

We define E ..= E ∩ w−1(WK) to be the subspace lying over the smaller 2-dimensional weight
space defined above. Any point of E (L) lying above a weight diag(λ1, λ2) corresponds to a unique
point of E(L) lying above λ1λ

−1
2 , and the two points differ by twisting their central characters.

On classical points, this corresponds to the same operation discussed in Remark 2.1, where we
forced v1 = v2 = 0.

3.3. Base-change functoriality

Recall classical base-change functoriality; let f be a classical cuspidal eigenform, and let π
denote the automorphic representation of GL2(AQ) it generates. Then there is an automorphic
representation BC(π) of GL2(AK) with the property that there is an equality ρBC(π) = ρπ|GK

of the associated Galois representations (as representations of GK
..= Gal(K/K)). If f is a

newform, we will define its base-change to K to be a new vector in BC(π). Note that if f has
level N , the level of its base-change F is an ideal n with (N/d)|n, where −d is the discriminant of
K, and n|(N) as ideals of OK (see [Fri83, §2.1]). More generally, if f is a p-stabilised newform,
we define its base-change to be the p-stabilisation of the corresponding base-changed newform
with the ‘correct’ eigenvalues (see §8.2). In our applications, such a choice will be unique.
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Let WQ denote the (null) weight space for GL2/Q, that is, the rigid analytic space whose L-points
are

WQ(L) = Homcts(Z
×
p , L

×)

for L/Qp inside Cp. The space WQ has no level dependence. There is (for any level n) a closed
immersion WQ →֒ WK,n induced by the norm map (OK ⊗Z Zp)× → Z×

p .

Recall that the Coleman–Mazur eigencurve (of level N , with p|N) is a separated reduced rigid
analytic curve C = CN , together with a morphism w : C → WQ, such that the points x of C(L)
with w(x) = λ are in bijection with finite slope systems of Hecke eigenvalues arising in the
overconvergent cohomology7 at level N of weight λ. The level N will be implicit and we usually
drop it from the notation. The classical points, corresponding to systems of Hecke eigenvalues
attached to classical modular forms, are Zariski-dense in C.

Theorem 3.5. There is a finite morphism BCN : CN −→ ENOK of rigid spaces interpolating
base-change functoriality on classical points. More precisely, if x ∈ C(L) corresponds to a classi-
cal modular form f , then BCN (x) ∈ E(L) corresponds to the (stabilisation to level NOK of the)
system of eigenvalues attached to the base-change of f to GL2/K.

Proof. This is a special case of [Han17, Theorem 5.1.6]. The conditions given op. cit. are shown
to hold in the case of cyclic base-change from Q in [JN16a].

In particular, if F is a classical Coleman family over an affinoid ΣQ ⊂ WQ, then the base-changes
of the classical specialisations Fk vary in a ‘base-change family’ FK over the image of ΣQ in
WK .

We actually require a more refined version of this result, defined locally, that gives more precise
control over the level. It may be true that if x corresponds to a p-stabilised point in CN , then
BCN (x) ∈ ENOK corresponds to a Bianchi form that has been further stabilised, and is thus
not itself a p-stabilised newform. It is, however, always possible to force a Zariski-dense set of
classical p-stabilised points to remain p-stabilised by passing to a lower level in K.

Proposition 3.6. Let x ∈ C correspond to a p-stabilised newform of level Np. There exists
an ideal n′ ⊂ OK such that nd−1|n′|n, a neighbourhood VQ of x in CN , and a finite morphism
BC′ : VQ −→ En′ interpolating base-change functoriality on classical points and such that the
p-stabilised classical points in BC′(VQ) are Zariski-dense.

Proof. By [Bel12, Lem. 2.7], there exists a neighbourhood VQ of x in which every classical point is
a p-stabilised newform. By definition, the base-change of a p-stabilised newform is a p-stabilised
newform (of some level). There exists a minimal n′ such that a Zariski-dense set of classical
points in VQ base-change directly to level n′, and the theorem follows by applying [Han17, Thm.
5.1.6] to interpolate base-change on these points.

Remark 3.7: For clarity of argument, in the remainder of the paper, we will assume that if
x ∈ CN corresponds to a classical p-stabilised newform, then there is a neighbourhood VQ of x
in CN such that BCN (VQ) contains a Zariski-dense set of classical points corresponding to p-
stabilised newforms. This is always the case, for example, if N is coprime to d. Since the proofs
in the sequel are all local in nature, all of the results can be proved without this assumption by
working in En′ for some n′|NOK and using Proposition 3.6.

3.4. The dimensions of irreducible components

Let F be a finite slope cuspidal Bianchi modular form that is an eigenform for the Hecke
operators.

7More typically, the Coleman–Mazur eigencurve is constructed using overconvergent modular forms. In [PS13,
Thm. 7.1] and [Bel12, Thm. 3.30], however, the eigencurve of modular symbols is shown to be essentially the
same as the one of modular forms.
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Proposition 3.8. There is a point xF ∈ E(L) corresponding to F .

Proof. If F is non-critical, then by definition there exists an overconvergent eigenclass Ψ ∈
Hi

c(Y1(n),Dλ(L)) with the same Hecke eigenvalues as F (for i = 1, 2 and some sufficiently
large L/Qp). Necessarily Ψ also has finite slope, and by Theorem 3.4, there is a point xF ∈
E(L) corresponding to F . If F is critical, then we instead study the long exact sequence of
cohomology attached to specialisation Dλ → Vλ. The cokernel of the map H2

c(Y1(n),Dλ(L)) →
H2

c(Y1(n),Vλ(L)) can be identified as a subspace of a degree 3 overconvergent cohomology group
(see [BSW16, §9.3]); but an analysis as in [Bel12, Lem. 3.9] shows that cuspidal eigenpackets do
not appear in such spaces. In particular, after restricting to the generalised eigenspace at F , the
specialisation map is surjective in degree 2.

For our purposes, if F is critical it suffices to assume F is base-change, whence the existence of
the point xF ∈ E(L) follows much more simply, as such a point arises in the image of BC.

Theorem 3.9 (Hansen–Newton). Suppose F is non-critical. Any irreducible component E ′ of
E passing through xF has dimension 1.

Proof. Newton proves that the component has dimension at least 1 in Proposition B.1 of the
appendix of [Han17], noting that l(xF ) = 1 since F is non-critical.

The following beautiful proof that the component is at most 1-dimensional was communicated
to us by David Hansen. Let Z be any 2-dimensional irreducible component passing through
xF , and let Ω = w(Z). In [JN16b], Johansson and Newton construct a two-dimensional Galois
determinant (or pseudocharacter) ρZ over Z. Let Z be the set of classical points y of Z such
that:

(i) w(y) is non-parallel in Ω, and

(ii) y has small slope.

This set is Zariski-dense in Z. Each point y ∈ Z necessarily corresponds to a classical form by
the appropriate analogue of Stevens’ control theorem (see, for example, [BSW16, Thm. 8.7]), and
this classical form must be Eisenstein, since classical cuspidal forms exist only at parallel weights.
Hence the specialisation of ρZ at y is reducible. But reducibility on a Zariski-dense set of points
forces reducibility everywhere, and hence the specialisation of ρZ at xF is reducible. But as F
is cuspidal, the Galois representation attached to xF is irreducible, which is a contradiction.

Remark 3.10: This is a slightly stronger formulation than can be obtained by specialising the
(very general) results of [Han17], where the analogous result is proved for non-critical classical
points that are strongly interior, that is, that satisfy a vanishing condition on their overconvergent
boundary cohomology. In this case, however, Hansen has shown considerably more. Indeed, an
analysis of the Tor spectral sequence constructed op. cit. shows that the Bianchi eigenvariety
is naturally the union Epunc ∪ Ecusp ∪ EEis, where Epunc is zero-dimensional and supported only
above the trivial weight, Ecusp is equidimensional of dimension 1, and EEis is finite flat over WK .
Such a result was proved in an unpublished preprint [Han12] that eventually became [Han17].
We do not require this stronger formulation for our purposes.

4. Families of modular symbols

The above results can be described explicitly in terms of modular symbols in families, which
allows a more concrete link to the p-adic L-functions of [Wil17]. Hansen’s construction of
eigenvarieties uses the total cohomology, but in this section we refine his results to show that
p-adic families can be realised as families of modular symbols (that is, in H1

c). We then study
the structure of the space of modular symbols over the eigenvariety, and show that – in a
neighbourhood of any p-stabilised non-critical classical cuspidal point – such symbols are free of
rank one over a Hecke algebra, which is key to our later applications.
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4.1. Families in H1
c(Y1(n), DΣ)

The eigenvariety is ‘glued’ together from a collection of local pieces, each given by the spectrum
of a Hecke algebra acting on overconvergent cohomology. Indeed, one can start from a covering
of the weight space WK by ‘slope-adapted affinoids,’ indexed by pairs (Ω, h), where Ω = Sp(R) ⊂
WK is a two-dimensional affinoid in weight space and h ≥ 0 is some real number such that there
exists a slope decomposition (with respect to the Hecke operator Up)

H∗
c(Y1(n),DΩ) ∼= H∗

c(Y1(n),DΩ)≤h ⊕ H∗
c(Y1(n),DΩ)>h.

Definition 4.1. Let Hn,p denote the (abstract) Hecke algebra, that is, the free Zp-algebra gen-
erated by the Hecke operators {TI : (I, n) = 1}, {Up : p|p} and {〈v〉 : v|n}.

The algebra Hn,p acts in the usual way on overconvergent cohomology groups, and this action
preserves slope decompositions. For a slope-adapted affinoid (Ω, h), we define

TΩ,h
..= Image of Hn,p in EndO(Ω)(H

∗
c(Y1(n),DΩ)≤h)

to be the corresponding Hecke algebra. The local piece of the eigenvariety is then defined as

EΩ,h
..= Sp(TΩ,h)

with the natural rigid structure. We can naturally view EΩ,h as an affinoid subspace of E , and
analogously to the global eigenvariety, we have a bijection between L-points of EΩ,h lying above
a weight λ ∈ Ω(L) and systems of Hecke eigenvalues arising in H∗

c(Y,Dλ(L))≤h.

We fix the following notation and terminology.

Definition 4.2. Let (Ω, h) be a slope adapted pair, let x ∈ EΩ,h(L) be any point, and write mx

for the corresponding maximal ideal in TΩ,h. Let Px be a minimal prime of TΩ,h contained in
mx, and write Pλ for the contraction of Px to O(Ω). Define Λ = O(Ω)/Pλ and let Σ = Sp(Λ)
be the corresponding closed subset inside Ω, which is a rigid curve by Theorem 3.9. If such a
curve Σ ⊂ Ω arises in this way, say that x varies in a family over Σ.

Whilst in the above we worked with the total cohomology, the following result allows us to pin
down families in H1

c .

Proposition 4.3. Let x be a non-critical cuspidal classical point of EΩ,h(L) that varies in a
family over Σ. Then, after possibly shrinking Σ,

H1
c(Y1(n),DΣ)≤h

mx
6= 0.

We need a lemma.

Lemma 4.4. (i) The spaces H0
c(Y1(n),D0

λ) and H0
c(Y1(n),D0

Ω) are both 0.

(ii) The spaces H0
c(Y1(n),Dλ)≤h and H0

c(Y1(n),DΩ)≤h are both 0.

(iii) Let x be a cuspidal classical point of EΩ,h. The system of eigenvalues for x occurs in
Hi

c(Y1(n),DΩ)≤h if and only if i = 2.

Proof. Write D0 = Homcts(A0, L) for either D0
λ or D0

Ω. For part (i), first note that in the case of
singular cohomology, we have H0(Y1(n),D0) = H0(U1(n),D0) = (D0)U1(n). For b ∈ OK ⊗Z Zp,
the matrix γb

..= ( 1 b
0 1 ) acts on A0 by sending f(z) to f(z + b). Let µ ∈ (D0)U1(n); then

µ(z 7→ z) = µ|γb(z 7→ z) = µ(z 7→ z + b) = µ(z 7→ z) + µ(z 7→ b),

so that µ is zero on the constant functions. Suppose µ is zero on functions that are polynomial
of degree less than r − 1. Then

µ(z 7→ zr+1) = µ(z 7→ (z + b)r+1) = µ(z 7→ zr+1) + b(r + 1)µ(z 7→ zr)
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for all b, where the lower terms vanish by assumption, so µ(zr) = 0 and we conclude that µ = 0
by induction. The case with compact support follows since the excision exact sequence for the
Borel–Serre compactification of Y1(n) starts 0 → H0

c → H0, so H0
c injects into a trivial module.

To see part (ii), it is enough to note that after passing to the small slope parts, overconvergent
cohomology with coefficients in rigid and locally analytic distributions agree, whence the result
by part (i).

For part (iii), we first claim that x does not appear as an eigenpacket in H3
c , for which we

follow an argument of Pollack–Stevens (see [PS13, Lem. 5.2], and also [Bel12, Lem. 3.9]). We
identify H3

c(Y1(n),DΩ) ∼= H0(Y1(n),DΩ) using Poincaré duality. This decomposes into a direct
sum ⊕i∈ClK H0(Γi,DΩ) using the same techniques as in §2.5. Each of these factors is then
identified with the coinvariants DΩ/ΓiDΩ. An analysis as op. cit. shows that this is non-zero
only when Ω contains the trivial weight (0, 0), and the spectrum of any Hecke algebra on this
space is supported at this trivial weight. Further analysis, as in [Bel12], then gives an explicit
description of the corresponding systems of eigenvalues, and shows that they are attached to
critical (overconvergent) weight (0, 0) Eisenstein series. They are thus not cuspidal, and x does
not appear in H3

c . (See also the remark following this proof).

In light of part (ii), it now suffices to prove that it does not appear in H1
c . We exploit Hansen’s

Tor spectral sequence

Ei,j
2 = Tor

O(Ω)
−i (Hj

c(Y1(n),DΩ)≤h, kλ) =⇒ Hi+j
c (Y1(n),Dλ)≤h,

where mλ is any maximal ideal of O(Ω) and kλ denotes its residue field. Since O(Ω) is regular

of dimension 2, the Tor
O(Ω)
i groups vanish for i ≥ 3, so that E−3,2

2 = 0. As E1,0
2 = 0 as well, we

see that
E−1,1

3 = ker(E−1,1
2 → 0)/Image(0 → E−1,1

2 ) = E−1,1
2 ,

and continuing, that E−1,1
∞ = Tor

O(Ω)
1 (H1

c(Y1(n),DΩ)≤h, kλ). This contributes to the grading on
H0

c(Y1(n),Dλ)≤h, which is zero by the above; hence this Tor term vanishes. A similar analysis,
using that E0,0

2 = E−4,2
2 = 0, shows that

E−2,1
∞ = E−2,1

2 = Tor
O(Ω)
2 (H1

c(Y1(n),DΩ)≤h, kλ) = 0

as well. We then have vanishing of Tor
Ω(m)
i (H1

c(Y1(n),DΩ)≤h, kλ) for this module for all i > 0,
and for any maximal ideal mλ, so by [Han17, Prop. A.3], the O(Ω)-module H1

c(Y1(n),DΩ)≤h is
either zero or projective. As it is torsion by [Han17, Thm. 4.4.1], it cannot be projective, so it
vanishes, as required.

Remark 4.5: For singular cohomology, Lemma 4.4 is an unpublished result of David Hansen
(see also Remark 3.10), and we thank him sincerely for allowing us to reproduce his proof here.
We have provided the statement in the cleanest setting, but actually all we really need is the fact
that if x varies in a one-dimensional family, then the minimal degree x appears in is i = 2. This
is simpler to prove, as one only needs to check that the modules H3

c(Y1(n),DΩ) are supported
only over the trivial weight. For x to appear in a family, then, it has to appear in a lower degree.

Proof. (Proposition 4.3) We defined Pλ to be the contraction of Px to O(Ω); it has height one,
and still has height one in the localisation O(Ω)mλ

. This localisation is a regular local ring, and
hence a unique factorisation domain, so all height one primes are principal, and we can take
some generator r of PλO(Ω)mλ

. After possibly shrinking Ω, and scaling by a unit in O(Ω)mλ
,

we may assume r ∈ O(Ω). We obtain a short exact sequence 0 → DΩ → DΩ → DΣ → 0, where
the first map is multiplication by r. By truncating the associated long exact sequence at the
first degree 2 term, and localising at x, we obtain a short exact sequence

H1
c(Y1(n),DΩ)≤h

mx
→ H1

c(Y1(n),DΣ)≤h
mx

→ H2
c(Y1(n),DΩ)≤h

mx
[r] → 0.

By Lemma 4.4, the first term is trivial; and as the system of eigenvalues corresponding to x is
r-torsion in H2

c , this shows that the second map is an isomorphism of non-trivial modules, from
which we conclude.
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In the above, we considered mx as a maximal ideal in TΩ,h, which acted on H1
c(Y1(n),DΣ)≤h via

its image in TΩ,h ⊗O(Ω) Λ. The proof shows slightly more, however; define

TΣ,h
..= image of Hn,p in EndΛ(H1

c(Y1(n),DΣ)≤h).

Then from the isomorphism obtained in the proof, we deduce that there is a maximal ideal of
TΣ,h corresponding to x, which we continue to call mx in a slight abuse of notation. It is the
image of the corresponding maximal ideal in TΩ,h under the natural map TΩ,h → TΣ,h. As a

(TΣ,h)mx-module, we then have H1
c(Y1(n),DΣ)≤h

mx 6= 0.

4.2. Structure of overconvergent cohomology over the weight space

Let x ∈ EΩ,h(L) correspond to a cuspidal non-critical classical Bianchi eigenform F , varying in
a family over the curve Σ ⊂ Ω, and let λ = w(x). We use the notation of Definition 4.2. In
Proposition 4.3 and the remark following it, we showed that x also gives rise to a maximal ideal,
denoted mx, in TΣ,h, and that the (TΣ,h)mx-module H1

c(Y1(n),DΣ)≤h
mx

is non-trivial.

Definition 4.6. Let F be a Bianchi eigenform of level n, with (p)|n. We say F satisfies multi-
plicity one for Hn,p if the Hn,p-eigenspace H1

c(Y1(n),Vλ(L)∗)[F ], that is the eigenspace on which
Hn,p acts with the same eigenvalues as on F , is one-dimensional, recalling that Hn,p is generated
by the Hecke operators away from n and the Hecke operators at primes above p. This is satisfied,
for example, when F is a newform, or the p-stabilisation of a newform whose Hecke polynomials
at primes above p have distinct roots8.

The main result of this section is the following.

Theorem 4.7. Let F be non-critical with multiplicity one for Hn,p. Then H1
c(Y1(n),DΣ)≤h

mx is
free of rank 1 over (TΣ,h)mx , which (after a finite extension of the base field9of Λ) is itself free
of rank 1 over Λmλ

.

The first step is the following proposition10.

Proposition 4.8. (i) There is an isomorphism

H1
c(Y1(n),DΣ)≤h

mx
⊗Λmλ

Λmλ
/mλ

∼= H1
c(Y1(n),Dλ)≤h

mx
.

(ii) The module H1
c(Y1(n),DΣ)≤h

mx is generated by one element over Λmλ
.

Proof. Write T ..= TΣ,h for ease of notation. By general facts about slope decompositions, the
module H1

c(Y1(n),DΣ)≤h is a finite Λ-module. We localise at mx, obtaining a Tmx module

H1
c(Y1(n),DΣ)≤h

mx

..= H1
c(Y1(n),DΣ)≤h ⊗TΣ,h

Tmx . (4.1)

As mλ is the contraction of mx to Λ, the module Tmx has a natural Λmλ
-module structure. Hence

H1
c(Y1(n),DΣ)≤h

mx inherits a Λmλ
-module structure from the second factor of the tensor product

in (4.1). Since H1
c(Y1(n),DΣ)≤h has finite type over T, and T has finite type over Λ, this implies

that H1
c(Y1(n),DΣ)≤h

mx is a Λmλ
-module of finite type.

From the short exact sequence of distribution spaces given by the natural surjection spλ : DΣ →
Dλ, we obtain a long exact sequence of cohomology, which we truncate to a short exact sequence

0 → H1
c(Y1(n),DΣ)≤h ⊗Λ Λ/mλ → H1

c(Y1(n),Dλ)≤h → H2
c(Y1(n), D)[mλ] → 0.

8This is conjectured to always be the case when p is split; in any case, it can happen only if both roots have
valuation vp(N(p)k+1)/2, where F has weight (k, k), and in particular, only at isolated cuspidal points of the
eigenvariety.

9Precisely, we replace Λ with Λ ⊗Qp L. Without this base change, (TΣ,h)mx is an étale Λmλ -algebra.
10We are grateful to Adel Betina for his contribution to the proof of this proposition.
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where D is the kernel of spλ in DΣ and the last term is the mλ-torsion. Since localising preserves
short exact sequences, we deduce the existence of a short exact sequence

0 → H1
c(Y1(n),DΣ)≤h

mx
⊗Λmλ

Λmλ
/mλ → H1

c(Y1(n),Dλ)≤h
mx

→ H2
c(Y1(n), D)[mλ]mx → 0.

The middle term is the generalised eigenspace corresponding to the system of eigenvalues at-
tached to x. (At this point, we are assuming that we have extended the base field of Λ so that
x is defined over Λ/mλ). As x is non-critical, this is isomorphic to the generalised eigenspace of
F for Hn,p in the classical cohomology, and by assumption, this is one-dimensional. Thus either
the first or last term is 0. Suppose that the first term is 0; then by Nakayama’s lemma, we must
have H1

c(Y1(n),DΣ)≤h
mx = 0, which contradicts Proposition 4.3. Hence the last term is 0, and we

find that
H1

c(Y1(n),DΣ)≤h
mx

⊗Λmλ
Λmλ

/mλ
∼= H1

c(Y1(n),Dλ)≤h
mx

as one-dimensional Λmλ
/mλ-vector spaces, proving (i).

Now we use Nakayama again. A generator of H1
c(Y1(n),DΣ)≤h

mx
⊗Λmλ

Λmλ
/mλ lifts to a generator

of H1
c(Y1(n),DΣ)≤h

mx
over Λmλ

, which completes the proof.

Lemma 4.9. The space H1
c(Y,DΣ)≤h

mx is torsion-free as a Λmλ
-module.

Proof. We use the identification with modular symbols. For fixed i, let {δj : j ∈ J} be a finite
set of generators for ∆0 as a Z[Γi]-module (see [Wil17, Lem. 3.8]). Then for any R, the map
SymbΓi

(D(R)) →֒ D(R)J is an injective R-module map. By passing to the direct sum over all
i in the class group, we see that there is a Λ-module embedding of H1

c(Y1(n),DΣ) into a finite
direct sum of copies of DΣ. But DΣ is a torsion-free Λ-module since Λ is a domain. The result
follows after localising.

This is enough to complete the proof of Theorem 4.7. Proposition 4.8 and Lemma 4.9 imply
that H1

c(Y1(n),DΣ)≤h
mx

is free of rank 1 over Λmλ
. Then as

Tmx ⊂ EndΛmλ

(
H1

c(Y1(n),DΣ)≤h
mx

) ∼= Λmλ

is non-zero by our assumption on Σ, we must have Tmx
∼= Λmλ

, and since the actions of T and

Λ on overconvergent cohomology are compatible, we see that H1
c(Y1(n),DΣ)≤h

mx is free of rank 1
over Tmx , as required.

4.3. Freeness in families

Let F be a cuspidal non-critical Bianchi eigenform with multiplicity one for Hn,p, as above,
varying in a family over Σ, and write x = xF for the corresponding point in E . By Theorem 4.7,
we have that H1

c(Y1(n),DΣ)≤h
mx

is free of rank one over (TΣ,h)mx , which is free of rank one over
Λmλ

after a finite base extension of Λ.

Proposition 4.10. After possibly shrinking Σ, there exists a connected component V = SpT ⊂
Sp(TΣ,h) containing x such that H1

c(Y1(n),DΣ)≤h ⊗TΣ,h
T is free of rank one over T , which is

free of rank one over Λ. In particular, the weight map is étale on V .

Proof. (Compare [BSDJ17, 2.19]). The localisations are defined by

Λmλ
= lim−→

λ∈U⊂Σ

O(U),

(TΣ,h)mx = lim−→
x∈V ⊂Sp(TΣ,h)

O(V ),

H1
c(Y1(n),DΣ)≤h

mx
= lim−→

x∈V ⊂Sp(TΣ,h)

H1
c(Y1(n),DΣ)≤h ⊗TΣ,h

O(V ).
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Comparing the first two equations, we find we are exactly in the situation of [BSDJ17, Lem.
2.13] (working over the rigid space Σ), so that – possibly replacing Σ with some smaller affinoid
subset – we may choose some V ⊂ Sp(TΣ,h) such that T = O(V ) is free of rank one over
Λ = O(Σ). A second application of the same lemma to the second and third equations, over
the rigid space Sp(TΣ,h), now shows that, after potentially shrinking Σ and V again, we have
H1

c(Y1(n),DΣ)≤h ⊗TΣ,h
T free of rank one over T , as required.

Remark 4.11: This proposition shows in particular that if x is a classical non-critical point of
Sp(TΣ,h), corresponding to a form with multiplicity one for Hn,p, then the natural weight map
w : Sp(TΣ,h) → Σ is étale in a neighbourhood of x. We cannot conclude that Sp(TΣ,h) is smooth
at x without further work, however, as it is not at all clear that Σ is smooth at w(x).

5. The parallel weight eigenvariety

In this section, we describe a closed subspace Epar of E lying over the parallel weight line that
is much better behaved than the whole space E . This ‘parallel-weight eigenvariety’ bears com-
parison with the ‘middle-degree eigenvariety’ of [BH17], which plays a similar role in the Hilbert
case. We also show that there is a base-change map from the Coleman–Mazur eigencurve into
Epar and use it to show smoothness of (suitably well-behaved, but possibly critical) classical
points in the image.

5.1. Definition and basic properties

Recall: Hansen’s eigenvariety E is built from an eigenvariety datum D = (WK ,L ,M ,Hn,p, ψ),
where WK and Hn,p are as before, L is a Fredholm hypersurface in WK × A1 cut out by the
Up operator, M is a coherent sheaf on L given by (total) overconvergent cohomology, and
ψ : Hn,p → EndO(L )(M ) is the natural map. Define now another eigenvariety datum

Dpar
..= (WK,par,Lpar,M

1
par,Hn,p, ψpar),

where:

(i) WK,par is the parallel weight line in WK , or equivalently the image of WQ under the natural
closed immersion;

(ii) L par is the union of the irreducible components of L that lie above WK,par, which is itself
a Fredholm hypersurface;

(iii) M 1
par is the coherent sheaf on L par such that for any slope adapted affinoid L

par
Σ,h lying

above Σ ⊂ WK,par, we have M 1
par(L

par
Σ,h ) = H1

c(Y1(n),DΣ)≤h;

(iv) Hn,p is as before, and ψpar is the map obtained by gluing the natural map given by the
action of Hecke operators.

That this does give a well-defined eigenvariety datum is a simple check using the machinery
developed in [Han17, §3,§4].

Proposition 5.1. The eigenvariety Epar attached to the datum Dpar contains a Zariski-dense
set of classical points, and its nilreduction admits a closed immersion into E.

Proof. First we prove the statement about classical points. It is clear that classical weights, which
correspond to classical weights for the weight space of GL2/Q, are Zariski-dense in WK,par. Now
let (Σ, h) be a slope adapted affinoid in WK,par; we see that in the local piece Sp(TΣ,h), each
point lying above a weight λ induces an eigenpacket in H1

c(Y1(n),Dλ)≤h, and all but finitely
many of the points lying above classical weights correspond to small slope eigenpackets. Such
points are classical by the control theorem. It follows that the classical points are dense in
Sp(TΣ,h) and hence in Epar.
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That there exists a closed immersion Ered
par →֒ E is a consequence of [Han17, Thm. 5.1.2], which

essentially says that it suffices to check an inclusion of a Zariski-dense set of points. Since every
classical point x ∈ Epar corresponds to a system of eigenvalues that appears in H1

c(Y1(n),Dλ) for
some λ ∈ WK,par, the conditions of the theorem – namely, divisibility of characteristic power
series of the Up operator – are satisfied, and we get the required closed immersion, completing
the proof.

5.2. The base-change eigenvariety and smoothness

Recall the finite morphism BC : C → E introduced in Theorem 3.5. By using [Han17, Thm.
5.1.6] again, we see that BC factors through

C
BC

−−−−−→ Epar.

Definition 5.2. Let Ebc denote the image of C in Epar under BC. It is a rigid curve that admits
a closed immersion into Epar.

Importantly, Ebc is reduced at the points we are interested in.

Proposition 5.3. Let f ∈ Sk+2(Γ1(N)) be a p-stabilised newform that does not have CM by K.
Let xf ∈ C(L) be the corresponding point in the eigencurve (for some sufficiently large L/Qp).
There exists a neighbourhood Vbc of BC(xf ) in Ebc that is reduced.

Proof. Let VQ be a neighbourhood of xf in C, lying above Σ, such that Vbc
..= BC(VQ) contains

a Zariski-dense set of points corresponding to p-stabilised newforms (see Remark 3.7). We claim
that O(Vbc) is reduced. We appeal to [BH17, Lem. 6.4.7], which shows that this reducedness is
equivalent to O(Vbc) being generically étale over Λ = O(Σ), in the sense that there exists an
open dense subset V of Vbc such that the map Vbc ×Σ V → Σ is finite étale. Let x be a classical
non-critical point of Vbc with multiplicity one for Hn,p (Definition 4.6); then by Proposition 4.10,
we can pick some open affinoid neighbourhod Vx ⊂ Vbc lying over Ux ⊂ Σ such that O(Vx) is
free of rank one over O(Ux), and hence the weight map is étale on Vx. Now define V = ∪xVx,
where the union is over all classical non-critical x that satisfy multiplicity one for Hn,p, which
form a Zariski-dense set in Vbc (footnote 8 and Remark 3.7). By construction, V is open and
dense, and the weight map is étale on V . But it is finite on Vbc, so we are done.

Definition 5.4. Let f ∈ Sk+2(Γ1(N)), recalling p|N . We say that f is p-regular if the roots of
the Hecke polynomial X2 −ap(f)X+pk+1 are distinct. We say that f is decent, following [Bel12,
§1.4], if it is p-regular and:

(i) f is new (hence non-critical),

(ii) or f is the p-stabilisation of a newform g of level prime to p that either:

(a) is non-critical,

(b) or has vanishing adjoint Selmer group H1
f (Q, adρf ) = 0, where ρf : GQ → GL2(L) is

the Galois representation attached to f (using the choices of field embeddings at the
start of §2) and L is some sufficiently large finite subextension of Qp/Qp.

The roots of the Hecke polynomial are conjecturally always distinct. All CM forms are decent
(see [Bel12, §2.2.4]), and it is conjectured that all cuspidal non-CM forms satisfy (i/iia) and (iib)
independently. In the critical case, we make one further definition.

Definition 5.5. Let f be critical and decent. Then necessarily f is the p-stabilisation of a
newform g, of level prime to p, corresponding to a choice of root of the Hecke polynomial at p
for g. We will henceforth denote this root by αp (noting that vp(αp) = k+ 1). The base-change
F of f has Up-eigenvalue αp depending explicitly on αp for each p|p.

Most of the remainder of this section will be dedicated to proving the following result.
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Proposition 5.6. Let f ∈ Sk+2(Γ1(N)) be decent, and suppose f does not have CM by K. Let
xf ∈ C(L) be the corresponding point in the eigencurve. Then BC(xf ) is smooth in Ebc.

First, we treat the case where f is non-critical by looking more closely at the construction of
BC.

Proposition 5.6, f non-critical. The Coleman–Mazur eigencurve arises from an eigenvariety da-
tum (WQ,LQ,MQ,HQ,N,p, ψQ) (specialising [Han17]). There is a natural map φ : Hn,p → HQ,N,p

(see [JN16a, §4.3]). We define a new eigenvariety datum (WQ,LQ,MQ,Hn,p, ψQ ◦φ), giving rise
to an intermediate eigenvariety CK . Let Σ = Sp(Λ) be an affinoid in WQ which is slope-h adapted
for MQ; then there is a map BC′ : CΣ,h → CK

Σ,h arising from the inclusion φ(Hn,p) ⊂ HQ,N,p,

which induces an inclusion of the local rings O(CK
Σ,h) ⊂ O(CΣ,h). By [Han17, Thm. 5.1.2], there

is a closed immersion CK →֒ Epar, and the map BC is the composition C → CK →֒ Epar. It
suffices, then, to show that CK is smooth at BC′(xf ).

Since f is non-critical, after localising and base-extending Λ, by [Bel12] we know that O(CΣ,h)mx

is free of rank one over Λmλ
. Since O(CK

Σ,h)mBC′(x)
is a Λmλ

-subalgebra containing 1, it must

be isomorphic to O(CΣ,h)mx , and BC′ is locally an isomorphism at xf . As C is smooth at xf

(see [Bel12, Thm. 2.16]), we deduce that CK is smooth at BC′(xf ), as required.

Proposition 5.6, f critical. Suppose f is critical. Let x ..= BC(xf ) and denote by tx the tangent
space of Ebc at x. As Ebc is a curve, we know dimL tx ≥ 1, so to prove the proposition we need
to show dimL tx ≤ 1.

In order to prove this inequality we use deformations of Galois representations. First we specify
the Galois groups involved.

Definition 5.7. Let S be the union of the infinite place with the set of places of Q supporting
N and SK the set of places of K lying over S. We let GQ,S and GK,SK be the Galois groups of
the maximal algebraic extension of Q (resp. the imaginary quadratic field K) ramified only at
the places S (resp. SK).

Note that ρf factors through GQ,S ; from now on we consider ρf as defined on GQ,S . Let ρx =
ρf |GK,SK

, the Galois representation attached to x. Here and throughout, we use decomposition
groups

GKq
→ GK,SK , GQq → GQ,S (5.1)

and complex conjugation c ∈ GQ,S arising from the choices of embeddings at the beginning of
§2. Likewise, Iq ⊂ GKq

denotes an inertia subgroup; similarly, we use Iq over Q.

We adapt the argument used in [Bel12, Thm. 2.16]. By [Bel12, Prop. 2.11], the restriction of ρf

to GQp decomposes as a direct sum of two characters χ1 and χ2. Moreover, both are crystalline,
and we order them so that the Hodge–Tate weights of χ1 and χ2 are 0 and k + 1 respectively.
(By convention, the cyclotomic character has Hodge–Tate weight −1). Moreover as f is decent,
we have H1

f (Q, ad ρf ) = 0. For each p | p, write ρx|GKp
= χ1,p ⊕ χ2,p where χi,p = χi|GKp

for
i = 1, 2. We consider the following deformation problems.

Definition 5.8. Let AL denote the category of Artinian local L-algebras A with residue field
L, and for each A ∈ AL, let Xref(A) be the set of deformations (under strict equivalence) ρA of
ρx to A satisfying the following.

(i) If q is a prime of K dividing n but coprime to p, then ρA|Iq is constant.

(ii) For each p | p in K, we have:

(1) (null weights) for each embedding τ : Kp →֒ L, one of the τ -Hodge–Sen–Tate weights
of ρA|GKp

is 0;
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(2) (crystalline periods/weakly refined) there exists α̃p ∈ A such that the Kp ⊗Qp A-

module Dcrys(ρA|GKp
)ϕfp=α̃p is free of rank 1 and (α̃p mod mA) = αp, where fp is

the inertia degree of p.

Define also Xref,bc(A) to be the set of deformations ρA ∈ Xref(A) also satisfying:

(iii) (base-change) ρA admits an extension to GQ,S deforming ρf .

Write tref ..= Xref(L[ε]) and tref,bc ..= Xref,bc(L[ε]) for the corresponding tangent spaces where,
as usual, L[ε] = L[X ]/(X2).

We can evaluate ρf at complex conjugation c, and note that the operation

ι : ρA 7−→
[

adρf (c) · ρc
A : g 7→ ρf (c)ρA(cgc)ρf (c)

]

is a functorial involution on Xref . We thank Carl Wang-Erickson for explaining the utility of
this involution, and for supplying the appendix that proves the following.

Proposition 5.9. (i) The fixed point functor (Xref)ι is canonically isomorphic to Xref,bc.

(ii) The deformation problems Xref,bc, Xref on AL are pro-represented by complete Noetherian
local rings Rref,bc, Rref ∈ AL. The involution ι induces an automorphism ι∗ : Rref → Rref,
and there is a natural surjection

Rref
։

Rref

((1 − ι∗)(Rref))
∼= Rref,bc.

(iii) There is a canonical injection tref,bc →֒ tref of tangent spaces. The image of this injection
is the subspace (tref)ι fixed by the involution ι∗ : tref → tref induced by ι.

We now construct examples of such deformations over the eigenvariety. Let Ox be the local ring
of Ebc at x. Firstly, we observe the following.

Lemma 5.10. There exists a neighborhood V of x in Ebc and a Galois representation ρV :
GK,SK → GL2(O(V )) such that for each classical point z ∈ V , the specialisation ρV,z of ρV at z
is the Galois representation attached to z.

Indeed, by a theorem of Rouquier and Nyssen (see [Rou96] or [Nys96]), one obtains such a
representation from the Galois pseudorepresentation on Ebc ⊂ E constructed in [JN16b]. One
can check that if VQ is a suitable neighbourhood of xf in C, then ρV is the restriction of ρVQ

to
GK,SK , where ρVQ

: GQ,S → GL2(O(VQ)) lifts ρf . (This restriction can be seen to take values in
the subring O(V ) ⊂ O(VQ) by using the explicit description of this inclusion in [JN16a]).

After localising ρV at x, we obtain a representation ρV,x : GK,SK → GL2(Ox). Now if I is a
cofinite length ideal of Ox, then from the interpolation property of ρV and [Liu15, Prop. 4.1.13]
we deduce that ρV,x ⊗ Ox/I satisfies condition (ii,2) defining Xref,bc, with α̃p the image of the
Up operator in Ox/I (see also Lemma A.4 of the appendix). Using the same argument as in the
proof of [Bel12, Thm. 2.16], or using the fact that ρV = ρVQ

|GK,SK
, we deduce conditions (i) and

(ii,1). We have a given extension to GQ,S , giving (iii). Thus the strict class of ρV,x ⊗ Ox/I is an
element of Xref,bc(Ox/I). Considering the universal property, and taking the limit with respect

to I, we obtain a morphism Rref,bc → Ôx, the target being the completed local ring at x. A
standard argument (see [Ber17, Prop. 4.5]) shows that this morphism is surjective. It follows
that dimL tx ≤ dimL tref,bc. Hence it suffices to bound the dimension of tref,bc.

We reduce the argument to a result of Bellaïche. Indeed, in [Bel12, Thm. 2.16], he defines a
deformation functor D on GQ representations deforming ρf , satisfying the GQ analogues of the
conditions defining Xref . Using the hypothesis that H1

f (Q, ad ρf ) = 0, he bounds the dimension
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of the Zariski tangent space of D, which he denotes tD, by 1. We will show there exists an iso-
morphism tD ∼= tref,bc. Indeed, by ignoring all the deformation conditions, we can view tref,bc as
a subspace of the tangent space without conditions, which we identify with H1(K, ad ρx). Using
condition (iii) and Proposition 5.9 it is moreover a subspace of H1(K, ad ρx)ι ∼= H1(Q, adρf ).

Claim 5.11. Under the isomorphism φ : H1(K, adρx)ι ∼−→ H1(Q, adρf ), the tangent space
tref,bc is mapped isomorphically onto the tangent space tD considered in [Bel12, Thm. 2.16].

Proof of claim: If ρε
x ∈ tref,bc, then it admits an extension ρε

f to GQ deforming ρf . By Lemma A.4
of the appendix, ρε

f satisfies precisely the conditions required to be in tD = D(L[ε]) in [Bel12].

Hence φ(tref,bc) ⊂ tD. If conversely we take a deformation ρε
f ∈ tD, then again by Lemma A.4

we have ρε
f |GK ∈ Xref(L[ε]). But by definition this restriction also lies in Xbc(L[ε]), so in fact

in tref,bc. This is enough to show that tD ⊂ φ(tref,bc), completing the proof of the claim and, by
Bellaïche’s result, the proof of Proposition 5.6 in the critical case.

Finally, there is another class of Bianchi families – that arise from base-change, but are not
themselves base-change – living in the parallel weight eigenvariety. Let f be as above, let F be
its base-change to K, and let ϕ be any finite order Hecke character of K with conductor prime
to p. Let C′ be the unique irreducible component of the Coleman–Mazur eigencurve through xf .
Then there exists an ideal N ⊂ OK and a Zariski-dense set Y of points y ∈ C′ such that Fy ⊗ ϕ
has level N, where Fy is the base-change of fy. By applying [Han17, Thm. 5.1.2] to the BC(Y ),
we obtain a closed immersion

[ϕ] : BC(C′) →֒ Epar,N

interpolating the twist by ϕ on classical points. Combining with the smoothness and reducedness
results above, we’ve shown the following.

Proposition 5.12. If x = xF⊗ϕ is the point corresponding to F ⊗ ϕ, then there exists an
irreducible component E ′

N of Epar,N through x and a smooth reduced neighbourhood V of x in E ′
n′ .

5.3. The Σ-smoothness condition

We would like to conclude that Epar is smooth at base-change points (or twists thereof). However,
without additional work we are unable to rule out the possibility that there exist other irreducible
components of Epar, not contained in Ebc, that meet Ebc at such points. With this in mind, we
make the following definition.

Definition 5.13. Let x ∈ Ebc be as above. We say that x is Σ-smooth if it is smooth in Epar

or, equivalently, if there does not exist another component of Epar not contained in Ebc that
intersects Ebc at x.

We conjecture that every classical base-change point is Σ-smooth. At non-critical points, this
holds by Proposition 4.10, which shows that Epar is étale over Σ at x. In general, this is implied
by the following more precise version of Conjecture 1.6.

Conjecture 5.14. Let E ′ be an irreducible component of Epar. There exists an integer M, an
irreducible component C′

M of CM , and a finite order Hecke character ϕ of K, with conductor
prime to p, such that E ′ = [ϕ] ◦ BC(C′

M ).

Proof. (Conjecture 5.14 implies Σ-smoothness). Assume this conjecture, let xF ∈ Epar be a
classical point, and suppose that there exist components E ′, E ′′ passing through xF . After
twisting, we can without loss of generality assume that xF ∈ Ebc, and write F = BC(f), with
xf ∈ C′

N ⊂ CN and E ′ = BC(C′
N ). By the conjecture, there exists some M , an irreducible

component C′
M ⊂ CM and a Hecke character ϕ of K such that E ′′ = [ϕ]BC(C′

M ). In particular,
there exists some classical modular form g such that [ϕ]BC(xg) = BC(xf ), and we have an
equality of Galois representations ρf |GK = ϕ ⊗ ρg|GK , identifying ϕ with the Galois character
associated to it via class field theory. Define an extension ϕQ of ϕ to GQ by setting ϕ(cg) = ϕ(g)
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for any g ∈ GK , where c is any choice of lift of the generator of Gal(K/Q) to GQ. Then one can
check that ρf = ϕQ ⊗ ρg as GQ-representations, and there is a map [ϕQ] : C′

M → CN making the
diagram

C′
M

[ϕQ]
> CN

BC(C′
M )

BC
∨ [ϕ]

> EN,par

BC
∨

commute (since it commutes on classical points). In particular, [ϕQ](xg) = xf . Since xf is
smooth in CN (see [Bel12, Thm. 2.16]), we must have [ϕQ](C′

M ) = C′
N , and hence E ′′ = E ′. It

follows that xF is Σ-smooth.

6. Critical slope base-change p-adic L-functions

We now extend the above results to define (two-variable) p-adic L-functions for critical base-
change Bianchi modular forms. Throughout this section we will assume Σ-smoothness, as in
Definition 5.13, where we can prove stronger results11. We closely follow the methods of Bellaïche
from [Bel12]. The key, as above, is to show that the space of overconvergent Bianchi modular
symbols in a family through the critical slope point is one-dimensional over the corresponding
Hecke algebra. Bellaïche’s arguments require a density of classical points in the family and
as such, there is a fundamental barrier to generalising this method to arbitrary critical slope
Bianchi modular forms, where we need not have such density results.

We work with the following set-up. Let f be a decent p-stabilised newform of weight k ≥ 2
without CM by K. Let F be its base-change12 to K, which has weight λ = (k, k). Assume F
is critical. Let x = xF denote the corresponding point of Ebc, the base-change eigenvariety of
the previous section, with w(x) = λ, and let (Σ, h) be a slope-adapted affinoid with λ ∈ Σ =
Sp(Λ) ⊂ WK,par such that we have mx ⊂ TΣ,h. Assume x is Σ-smooth.

There is some connected component V of Sp(TΣ,h) containing x. We shrink Σ and V multiple
times to obtain a freeness condition. Following Bellaïche, we say an affinoid Σ = Sp(Λ) ⊂ WK,par

is nice if Λ is a principal ideal domain. Every classical weight has a basis of nice affinoid
neighbourhoods (see the discussion following [Bel12, Defn. 3.5]), so we now shrink Σ and V so
that Σ is nice. We then shrink further so that we have the following, which is key to the whole
construction.

Proposition 6.1. Suppose Σ is a nice affinoid neighbourhood of λ.

(i) The localisation H1
c(Y1(n),DΣ)≤h

mx is free of finite rank over (TΣ,h)mx .

(ii) After possibly shrinking Σ to a smaller nice affinoid, there exists a connected component
V = SpT ⊂ Sp(TΣ,h) of x such that H1

c(Y1(n),DΣ)≤h ⊗TΣ,h
T is free of rank one over T .

Proof. To prove part (i), we use a lemma of commutative algebra due to Bellaïche (see [Bel12,
Lem. 4.1]). This says that if R and T are discrete valuation rings, with T a finite free R-algebra
and M a finitely generated T -module that is free as an R-module, then M is finite free over T .
We will use this with R, T and M the localisations of Λ, TΣ,h and H1

c(Y1(n),DΣ)≤h respectively.

The module H1
c(Y1(n),DΣ)≤h is finite over Λ (by general properties of slope decompositions)

and torsion-free (by Lemma 4.9). As Λ is a principal ideal domain, by the structure theory for
such modules H1

c(Y1(n),DΣ)≤h is a finite free Λ-module. It follows that TΣ,h is also finite and
torsion-free over Λ, and hence also a finite free Λ-module. Since WK,par and Epar are reduced
rigid curves that are smooth at λ and x respectively, the local rings Λmλ

and (TΣ,h)mx are

11Whilst we conjecture that this always holds, we will give partial results in the general case in the next section.
12Everything we say will also hold without modification in the case of (Σ-smooth) twists of F by a finite order

Hecke character of K of conductor prime to p.
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discrete valuation rings. Thus we are exactly in the situation of Bellaïche’s lemma, giving (i).

An identical argument to that used in the proof of Proposition 4.10 now shows that we can
shrink Σ to a nice affinoid and find V = SpT over Σ such that H1

c(Y1(n),DΣ)≤h ⊗TΣ,h
T is free

of finite rank over T . This rank is preserved by localising at any point of V , so to evaluate it we
check at a suitably nice point. Let y ∈ V (L) be a non-critical classical cuspidal point satisfying
multiplicity one for Hn,p, which must exist as such points are Zariski-dense. Then by Theorem

4.7, H1
c(Y1(n),DΣ)≤h

my
is free of rank one over Tmy , which completes the proof.

With this local freeness condition in hand, we have the essential results that make Bellaïche’s
construction possible. The proofs of the following statements follow in an identical way to those
in [Bel12] with the appropriate substitutions, so we give only the statements.

Proposition 6.2. (See [Bel12, Cor. 4.4]). There is an isomorphism

(TΣ,h)mx ⊗Λmλ
,λ L ∼= (Tλ,h)mx ,

where Tλ,h is the image of H in EndL(H1
c(Y1(n),Dλ)≤h) and we again write mx for the maximal

ideal of this space corresponding to x.

Proposition 6.3. (See [Bel12, Prop. 4.6]). After a finite base extension of Λ, there exists a
uniformiser u of Λmλ

such that there is an isomorphism of Λmλ
-algebras

Λmλ
[X ]/(Xe − u) ∼= (TΣ,v)mx

that sends X to a uniformiser of (TΣ,v)mx , where e is the ramification index of the weight map
w : Epar → WK,par at x.

Theorem 6.4. (See [Bel12, Thm. 4.7]). The generalised eigenspace H1
c(Y1(n),Dλ(L))(F) =

H1
c(Y1(n),Dλ(L))mx has dimension e over L and is free of rank one over the algebra

(Tλ,h)mx
∼= L[X ]/(Xe). (6.1)

Corollary 6.5. (See [Bel12, Cor. 4.8]). Under the isomorphism (6.1), we have an equality of
H-eigenspaces

H1
c(Y1(n),Dλ(L))[F ] = Xe−1H1

c(Y1(n),Dλ(L))(F),

which is one-dimensional over L. Its image under the specialisation map ρλ is 0.

Note that this corollary says that, if F is the base-change of a decent form, then the eigenspace
in H1

c(Y1(n),Dλ) cut out by F is always one-dimensional. If ΨF is any generator, then under the
specialisation map ΨF maps to the classical cohomology class associated to F if F is non-critical
and to 0 if F is critical.

Now let ΨF be a generator as above.

Definition 6.6. We define the p-adic L-function of F to be the Mellin transform

Lp(F , ∗) ..= Mel(ΨF) ∈ D(ClK(p∞)).

Proposition 6.7. The distribution Lp(F , ∗) is admissible of order h = (vp(αp))p|p in the sense
of [Wil17, Defns. 5.10,6.14]. It satisfies the interpolation property that for any Hecke character
ϕ of K of conductor F|(p∞) and infinity type 0 ≤ (q, r) ≤ (k, k), we have

Lp(F , ϕp−fin) = 0.

Proof. The proof of admissibility exactly follows that in [Wil17]. The interpolation property is
an immediate consequence of the fact that ρλ(ΨF ) = 0.
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Remarks 6.8: (i) Unlike in the non-critical case, this admissibility and interpolation property
is not sufficient to determine Lp(F , ∗) uniquely.

(ii) One should see the vanishing of the distribution as an exceptional zero phenomenon. We
will show that one can obtain ‘secondary p-adic L-functions’, that is, distributions with
a non-trivial interpolation property, by constructing a three-variable p-adic L-function
through Lp(F , ∗), differentiating in the weight variable, and then evaluating at λ. This
bears comparison with the results of [BSW17], where exceptional zeros are removed by
differentiating in the cyclotomic variable, up to the introduction of an L-invariant.

We end this section with a soft application of the above. From the definition, it is not clear that
base-change respects non-criticality. For example, suppose p is inert in K and f of weight k+ 2
has slope (k + 1)/2 at p; then the slope of F is k + 1, which is not small in the sense of the
control theorem.

Corollary 6.9. Let f be a decent non-critical p-stabilised classical newform of weight k+ 2 that
does not have CM by K, and let F be its base-change to K. Suppose the point xF is Σ-smooth
in Epar. Then F is non-critical.

Proof. In [Bel12], it is shown that f is critical if and only if the weight map C → WQ is ramified
at xf . In this section, we have shown similarly that (if it is Σ-smooth) F is critical if and only
if the weight map Epar → WK,par

∼= WQ is ramified at xF . In the proof of Proposition 5.6 in the
non-critical case, we showed that if f is non-critical, then the map BC is locally an isomorphism
over WQ at xf . Hence as the weight map is unramified at xf , the weight map Ebc → WK must
also be unramified at xF . By Σ-smoothness, the inclusion Ebc ⊂ Epar is locally an equality at
xF . The result follows.

7. Three-variable p-adic L-functions

In this section, we show that (where they exist) the p-adic L-functions attached to classical
Bianchi modular forms can be varied in canonical analytic families over neighbourhoods in the
eigenvariety. Let F be a cuspidal Bianchi eigenform of weight λ satisfying multiplicity one for
Hn,p in the sense of Definition 4.6, and suppose either:

(1) F is non-critical and varies in a family V = SpT ⊂ E over Σ = Sp Λ ⊂ WK , or

(2) F is (a twist of) the base-change of a p-stabilised decent classical newform of level prime
to p, and varies in a family V = SpT ⊂ Epar over Σ = Sp Λ ⊂ WK,par, with V smooth at
xF .

Recall that the Mellin transform gives a map Mel : H1
c(Y1(n),DΣ)≤h −→ D(ClK(p∞),Λ). The

target of this map can be viewed as a space of analytic functions in three variables – two variables
coming from functions on ClK(p∞), and one variable on Σ. We want the third variable instead
to be on V . Following Bellaïche, we add additional T structure by tensoring by T . The following
should be viewed as a specialisation map on the space of modular symbols varying over V , rather
than Σ.

Definition 7.1. Let y ∈ V (L) with w(y) = κ. Define a map

spy : H1
c(Y1(n),DΣ)≤h ⊗Λ T −→ H1

c(Y1(n),DΣ)≤h ⊗Λ T/my

⊂ H1
c(Y1(n),Dκ(L))≤h.

(Note that this is equivariant for the action of the Hecke operators on the cohomology).

Similarly, we can define a specialisation map at the level of distributions.
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Definition 7.2. With y and κ as above, define sp′
y to be the map

sp′
y : D(ClK(p∞),Λ) ⊗Λ T −→ D(ClK(p∞),Λ) ⊗Λ T/my

= D(ClK(p∞),Λ) ⊗Λ L ∼= D(ClK(p∞), L),

where the last isomorphism is [Han17, Prop. 2.2.1].

We can define the Mellin transform over V to be MelV ..= Mel ⊗ id. A simple check shows that
the following diagram commutes:

H1
c(Y1(n),DΣ)≤h ⊗Λ T

MelV
> D(ClK(p∞),Λ) ⊗Λ T

H1
c(Y1(n),Dκ)≤h

spy∨
Mel

> D(ClK(p∞),Λ)

sp′
y∨

. (7.1)

To construct the 3-variable p-adic L-function, our strategy will be to exhibit an element of
H1

c(Y1(n),DΣ)≤h ⊗Λ T interpolating eigensymbols in H1
c(Y1(n),Dκ)[my] as y varies in V .

7.1. The case F non-critical or Σ-smooth

Suppose now that either F is non-critical or critical (base-change) and Σ-smooth. Let MV
..=

H1
c(Y1(n),DΣ)≤h⊗TΣ,h

T. By Σ-smoothness, after possibly shrinking Σ and V , we can choose V to

be a connected compoment of Sp(TΣ,h), and then MV is a direct summand of H1
c(Y1(n),DΣ)≤h.

Possibly shrinking further, we know MV is free of rank one over T by Propositions 4.10 and
6.1; let ΨV denote a generator. In the non-critical case, since T is free of rank one over Λ, the
element ΨV ⊗ 1 provides the element we desire, and MelV (ΨV ⊗ 1) gives the required three-
variable p-adic L-function. The critical case is a little more involved. Firstly, we lift Proposition
6.3 to a neighbourhood.

Proposition 7.3. After possibly shrinking Σ = Sp Λ and V = SpT , and after a finite base
extension of Λ, there is an element t ∈ T with t(xF ) 6= 0, an element u ∈ Λ with u(λ) 6= 0, and
an isomorphism

Λ[X ](Xe − u) ∼= T

that sends X to t.

Definition 7.4. Let

ΦV
..=

e−1∑

i=0

tiΨV ⊗ te−1−i ∈ MV ⊗Λ T.

This depends on the choices made only up to multiplication by an element of T× on the first
factor.

The module MV ⊗Λ T carries the structure of a T -module in two ways (one from each factor).
An easy calculation, via a telescoping sum, shows that (t ⊗ 1 − 1 ⊗ t) annihilates ΦV , that is,
T acts on ΦV the same way for both of these T -structures, and consequently ΦV is well-defined
up to multiplication by an element of T× on the second factor (compare [Bel12, Lem. 4.13]).

Proposition 7.5. (See [Bel12, Prop. 4.14]). Let y be any classical point in V (L) that is non-
critical (in case (1)) or base-change (in case (2)), and let κ = w(y). Then spy(ΦV ) is a generator
of the (one-dimensional) L-vector eigenspace H1

c(Y1(n),Dκ(L))[my] where the Hecke operators
act with the same eigenvalues as y.

Proof. The proof is identical to that op. cit..

Definition 7.6. Recall we can realise MV as a direct summand of H1
c(Y1(n),DΣ)≤h. By restric-

tion, MelV descends to MV ⊗Λ T , and we define

Lp(V ) = MelV (ΦV ) ∈ D(ClK(p∞),Λ) ⊗Λ T ∼= D(ClK(p∞), T ).
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Theorem 7.7. Let y ∈ V (L) be a non-critical classical point corresponding to a Bianchi modular
form Fy. Then as elements of D(ClK(p∞), L), we have

Lp(y, ∗) .

.= sp′
y(Lp(V ))(∗) = cyLp(Fy, ∗),

where cy ∈ L× is as above.

7.2. Removing the Σ-smoothness condition

Let F be in case (BC) be critical. We now give a construction of a p-adic L-function attached to F
when we do not assume Σ-smoothness. In this case we can still construct a canonical admissible
distribution Lp(F), and in the next section we prove it satisfies a partial interpolation property.

In this case, there is a unique connected component V = Sp(T ) of Sp(TΣ,h) passing through x
and contained in Ebc (by smoothness). We can restrict the natural closed immersion Ebc →֒ Epar

to obtain a closed immersion ι : V →֒ Sp(TΣ,h), cut out by a sheaf of ideals I. We define
analogues of overconvergent cohomology over V ; note that the eigenvariety machine gives us a
coherent sheaf Mpar on Epar with the property that

Mpar(Sp(TΣ,h)) = H1
c(Y1(n),DΣ)≤h.

By coherence, ι∗ι
∗Mpar

∼= Mpar/IMpar as sheaves on Epar, and hence – from the definition of
Mpar/IMpar – we have

ι∗Mpar(V ) =
[
Mpar/IMpar

](
Sp(TΣ,h)

)
= H1

c(Y1(n),DΣ)≤h ⊗TΣ,h
T. (7.2)

Using smoothness of Ebc at x, we can shrink V so that it is smooth and intersects Epar only
(possibly) at x.

Proposition 7.8. It is always possible to shrink Σ to a nice affinoid such that there is a canonical
locally free rank one coherent quotient N of ι∗Mpar|V with an equality of stalks

[ι∗Mpar]y = Ny

at all p-stabilised non-critical classical points of V .

Proof. Since V is a smooth curve, all the local rings are discrete valuation rings. Using the
structure theorem for finitely generated modules over such rings, we can exhibit a torsion co-
herent sheaf T on V , supported on a finite set of points (possibly including x). We define
N ..= ι∗Mpar/T , which is then locally free on V .
At non-critical classical points other than x, we have

[ι∗Mpar]y = [Mpar]y = H1
c(Y1(n),DΣ)my ,

since no other component of Epar intersects Ebc at y. If further y corresponds to a non-critical
p-stabilised newform with multiplicity one, then by Theorem 4.7, this module is free of rank one
over Ty. As this stalk has no torsion part, y is not in the support of T , which shows that this
stalk is equal to Ny.

Finally, it remains to determine the rank of N . This rank is preserved after localising at any
point in V ; by doing so at any classical non-critical point y as above, which is possible by
Zariski-density, we conclude that the rank is one.

Hence we have a canonical quotient MV of H1
c(Y1(n),DΣ) ⊗TΣ,h

T that is free of rank one over
T . Let ΦV be any generator. As T is Λ-flat, the natural map

spV : H1
c(Y1(n),DΣ)≤h ⊗Λ T → MV ⊗Λ T

is surjective; let Φ̃V be any lift of ΦV under this map. At any classical point y of V , the fibres
of N and Mpar are equal at y, and hence the specialisation map spy to H1

c(Y1(n),Dκ)≤h factors

through spV . Consequently, Proposition 7.5 shows that at such classical points, spy(Φ̃V ) is a
generator of H1

c(Y,Dκ)[my].
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Definition 7.9. Let Lp(V ) = MelV (Φ̃V ) ∈ D(ClK(p∞),Λ) ⊗Λ T ∼= D(ClK(p∞), T ).

Whilst the lift might not be canonical, the resulting function Lp(V ) is. Indeed, from the above it
follows that Lp(V ) satisfies the interpolation property of Corollary 1.4 at all non-critical classical
points, and as explained in the introduction, this is enough to determine Lp(V ) uniquely; in

particular, it is independent of the choice of lift Φ̃V .

Definition 7.10. Let Lp(F) ∈ D(ClK(p∞), L) be the distribution spx(Lp(V )).

Proposition 7.11. The distribution Lp(F , ∗) is well-defined up to scalar multiple by L. It is
admissible of order h = (vp(αp))p|p.

Proof. The function Lp(V ) can be defined as the Mellin transform of a cohomology class in the
slope ≤ h cohomology, hence is h-admissible. Let Lp and L′

p be any two analytic functions
on V × X (ClK(p∞)) satisfying the interpolation property of Corollary 1.4 at all non-critical
classical points, and let Lp(F) and L′

p(F) denote their specialisations to x. If either is zero, then
obviously they differ by scaling by L; so assume both are non-zero. Consider, then, the quotient

C(y, φ) ..=
L′

p(V )(y, φ)

Lp(V )(y, φ)
∈ Frac

(
O(V × X (ClK(p∞))

)
.

We claim that this is well-defined. Indeed, there exists a Zariski-dense set of classical non-
critical points y in V of weight (k, k), where k > 2. For any Dirichlet character ϕ of conductor
pr, r ≥ 1, the quantity L(Fy, ϕ, k − 1) converges absolutely to a non-zero number; it follows
that Lp(Fy, ϕ| · |k−1) 6= 0, since the p-adic L-function does not have an exceptional zero there.
As every connected component of O(X (ClK(p∞))) contains a character of the form ϕ(z)zk−1,
it follows that Lp(Fy, ∗) is not a zero-divisor in O(X (Z×

p )). Now suppose Lp(V ) is is a zero-
divisor; then there exists some D ∈ D(ClK(p∞),Λ) such that DLp(V ) = 0. After specialising at
any y as above, we see that D = 0, as spy(Lp(V )) is not a zero-divisor. As this equality holds
at a Zariski-dense set of points, it must hold everywhere, and we see that D = 0.

At the specialisation to each classical point y 6= xF in V (L), we have C(y, φ) ∈ L× using the
interpolation at non-critical points. Again, using the fact that such points are Zariski-dense, we
deduce that C(z, φ) is constant in φ for any z, that is, C ∈ Frac(O(V )). Since (by assumption)
neither Lp(F) nor L′

p(F) is zero, C does not have a zero or pole at xF . Such zeros and poles
occur at isolated points, as V is a rigid curve, and hence we may shrink V further so that C has
no zeros or poles, that is, C ∈ O(V )×. After specialising to xF , we see that Lp(F) and L′

p(F)
differ by scalar multiplication by L×, hence the result.

8. Factorisation of base-change p-adic L-functions

In this section, we provide an application of the existence of families of p-adic L-functions of
Bianchi modular forms. In particular, we prove an ‘Artin formalism’ style result for p-adic
L-functions of cuspidal Bianchi modular forms that are the base-change of a classical modular
form. Such a result follows from admissibility in the case where the slope is sufficiently small,
and can be extended to arbitrary slope using the three-variable p-adic L-function defined above.

8.1. p-adic L-functions attached to classical eigenforms

We recall the relevant existence of p-adic L-functions for classical modular forms. Let f ∈
Sk+2(Γ1(N)) be a decent finite slope classical p-stabilised newform with L-function Λ(f, ϕ),
normalised to include the Euler factors at infinity, and where ϕ ranges over Hecke characters of
Q. Denote the eigenvalue of f at p by αp(f) and the periods of f by Ω±

f , which are well-defined
up to algebraic numbers. Let h ..= vp(αp), and let η be a Dirichlet character of conductor C
prime to p. For any Dirichlet character χ, let τ(χ) ..=

∑
a (mod N) χ(a)e2πia/N be the usual Gauss

sum.
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Theorem 8.1. There exists a canonical locally analytic distribution Lη
p(f, ∗) on Z×

p such that,

for any Hecke character ϕ = χ| · |j, where χ is finite order of conductor pn > 1 and 0 ≤ j ≤ k,
we have

Lη
p(f, ϕp−fin) =

{
(Cpn)j+1

τ((χη)−1)Ω±
f

αn
p

Λ(f, ϕη) : f is non-critical,

0 : f is critical.

The sign of the period is given by the sign of χη(−1)(−1)j. The distribution is admissible of
order h, and if h < k + 1, it is uniquely determined by this interpolation property.

If η is the trivial character, we drop the superscript and write Lp for this distribution.

Proof. First suppose η is the trivial character. When h < k + 1, this has been proved using
different constructions by a number of people (see, for example, [PS11]). Note that in our
normalisations, Λ(f, ϕ) = Λ(f, χ, j + 1). In the case where h = k + 1, the most comprehensive
version of this result is due to Bellaïche (see [Bel12]). If η is non-trivial, this distribution can
be defined via a slight variation of the methods of [PS11] and [Bel12]. In both papers, Lp(f, ∗)
is defined by associating to f a canonical overconvergent modular symbol Ψf , then setting
Lp(f, ∗) ..= Ψf {0 − ∞}|Z×

p
. To obtain this twisted version, suppose a ∈ (Z/CZ)×; then one

defines a distribution La
p(f, ∗) on Z×

p by

La
p(f, ∗) ..= [Ψf | ( 1 a

0 C )]{0 − ∞},

then extends to Lη
p(f, ∗) =

∑
a∈(Z/CZ)× η(a)La

p(f, ∗). Proving the interpolation result is then

a formal calculation. This process is described more thoroughly (in the small slope Bianchi
setting) in [BSW17, §3.4].

It will be important to also vary these p-adic L-functions in families over the Coleman–Mazur
eigencurve C. For this, we follow the account of Bellaïche from [Bel12], though in the small slope
setting this was known previously. The notation used here is directly analogous to that used
above in the Bianchi setting.

Theorem 8.2 (Mazur–Kitagawa, Stevens, Bellaïche). Let xf be the point of the Coleman–Mazur
eigencurve corresponding to f . There exists an affinoid neighbourhood V of xf and a locally
analytic distribution

Lp(V) ∈ D(Z×
p ,O(V))

such that at any classical point y ∈ V, corresponding to a modular form fy, we have

Lp(y, φ) .

.= sp′
y(Lp(V ))(φ) = cyLp(fy, φ),

where φ is any locally analytic function on Z×
p and cy is a non-zero scalar depending only on y.

This distribution is well-defined up to multiplication by elements of O(V). Similarly, there exists
a distribution Lη

p(V ) interpolating the twisted p-adic L-functions Lη
p at classical points.

Implicit in this theorem is a choice of period at each classical point, and the indeterminacy in
these choices is measured by multiplication by elements of O(V). The construction of Lp(V) uses
overconvergent modular symbols in families, and the interpolation follows from a commutative
diagram analogous to equation (7.1).

8.2. Statement of p-adic Artin formalism

We assume that the base-change of f remains cuspidal, and denote it by F ∈ Sλ(U1(NOK))
(where λ = (k, k), viewing f as an adelic automorphic form for GL2/Q of weight k+ 2 and level

U1(N) ⊂ GL2(Ẑ)). We see that F is an eigenform and the eigenvalues can be described simply
in terms of the eigenvalues of f ; in particular, we see that

(i) When p splits as pp in K, we have αp(F) = αp(F) = αp(f).
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(ii) When p is inert in K, we have αpOK (F) = αp(f)2.

(iii) when p is ramified as p2 in K, we have αp(F) = αp(f).

We see that F has small slope if and only if

vp(αp(f)) <

{
k + 1 : p split,
k+1

2 : p inert or ramified.

As above, write Lp(F , ∗) for the p-adic L-function of F (as a distribution on ClK(p∞)).

Definition 8.3. We define the restriction of Lp(F , ∗) to the cyclotomic line, denoted by Lcyc
p (F , ∗),

to be the locally analytic distribution on Z×
p given by

Lcyc
p (F , φ) ..= Lp(F , φ ◦NK/Q),

where φ is any locally analytic function on Z×
p

∼= Cl+Q (p∞).

We will prove the following p-adic version of Artin formalism:

Theorem 8.4. Let φ be any locally analytic function on Z×
p . Choose the periods ΩF and Ω±

f

such that

ΩF = (−1)k #O×
K

2
Ω+

f Ω−
f τ(χK/Q),

where τ denotes the usual Gauss sum of Dirichlet characters, and χK/Q is the quadratic character
associated to K. (This convention on the sign is possible since χK/Q is odd). If f is critical,

suppose that Lcyc
p (F) and Lp(f)L

χK/Q

p (f) are both non-zero. Then we have

Lcyc
p (F , φ) = Lp(f, φ)L

χK/Q

p (f, φ),

In other words, we have Lcyc
p (F) = Lp(f)L

χK/Q

p (f) as distributions on Z×
p .

8.3. The case of slope < (k + 1)/2

First we show the result for forms of sufficiently small slope. Suppose f ∈ Sk+2(Γ1(N)) has slope
h < (k+1)/2 at p, with base-change F to K. In this case, both the restriction of Lp(F , ∗) and the
product Lp(f, ∗)L

χK/Q

p (f, ∗) are distributions on Z×
p that are admissible of order 2h < k+ 1, and

hence it suffices to prove that they agree at the critical Hecke characters, as then the admissibility
condition ensures that any two distributions that agree on this set are equal. At the level of
classical L-values, Artin formalism says that for any rational Hecke character ϕ, we have

Λ(F , ϕ ◦NK/Q) = Λ(f, ϕ)Λ(f, χK/Qϕ),

so it suffices to check that the constants in the interpolation formulae agree. In this situation,
the interpolating constant of the Bianchi p-adic L-function can be simplified to:

Proposition 8.5. Let φ = χ| · |j with cond(χ) = pn > 1 and 0 ≤ j ≤ k, and define ϕ = φ◦NK/Q.
We have

Lcyc
p (F , φ) = Lp(F , ϕ) =

[
dj+1p2n(j+1)#O×

K

(−1)k2αp(F)nτK((χ ◦NK/Q)−1)ΩF

]
Λ(F , ϕ),

where for a character η : (OK/p
n)× → C×, we define τK(η) by

τK(η) .

.=
∑

a (mod pnOK)

η(a)e
2πiTrK/Q

(
a

pn
√

d

)
. (8.1)
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Proof. This is an exercise in book-keeping, made confusing only by an unfortunate plethora
of differing normalisations, which we highlight here. Firstly, by demanding that p|cond(ϕ),
we see that the exceptional factors Zp of Theorem 2.14 are equal to 1; the infinity type is
(j, j), which simplifies the sign; and the terms ϕ(xf) and ϕf(xf), as defined in [Wil17], cancel
since the conductor is principal. Finally, the remaining discrepancies between the formulae can
be described by renormalisations of Gauss sums. Indeed, the Gauss sums τ̃ (ϕ ◦ NK/Q) and

τ̃ (χ ◦ NK/Q) differ by NK/Q(pn
√

−d)j = djp2nj (see, for example, [Wil17, §2.6]), whilst the
Gauss sum τK above (for Dirichlet characters) is naturally inverse to the Gauss sum τ̃ used in
[Wil17] (for Hecke characters). We have also made use of the standard identity τK(ϕ)τK(ϕ−1) =
NK/Q(cond(ϕ)) to move the Gauss sum to the denominator, in line with Theorem 8.1.

Recall now that we normalised the periods ΩF and Ω±
f such that ΩF = (−1)k #O×

K

2 Ω+
f Ω−

f τ(χK/Q).
From this, and the descriptions of αp(F) in terms of αp(f) above, it is immediate that

dj+1p2n(j+1)#O×
K

(−1)k2αp(F)nΩF
· τ(χK/Q) =

(pn)j+1

αp(f)nΩ±
f

· (dpn)j+1

αp(f)Ω∓
f

.

To complete the proof in the slope < (k + 1)/2 case, it remains only to check the identity

τK((χ ◦NK/Q))τ(χK/Q) = τ(χ)τ(χχK/Q)

of Gauss sums. This is a characteristic 0 version of the classical Hasse–Davenport identity. A
simple check shows that it suffices to check this identity locally. In the case p unramified in K,
it is [Mar72, §6, Cor. 1]. We’ve shown:

Corollary 8.6. Suppose f has slope vp(αp(f)) < k+1
2 . Then Theorem 8.4 holds.

8.4. The general case

Now suppose f has slope k+1
2 ≤ h. The product Lp(f, ∗)L

χK/Q

p (f, ∗) and the restriction of
Lp(F , ∗) to the cyclotomic line are both admissible of order 2h ≥ k + 1, so we cannot use the
methods of §8.3 to prove Theorem 8.4 in this case. To get around this, we use the three variable
p-adic L-function through F over the base-change component of the eigenvariety.

Notation 8.7: Let VQ be a neighbourhood of xf in the Coleman–Mazur eigencurve lying over
some subset ΣQ ⊂ WQ. Let VK denote the image of VQ under the p-adic base-change map.

We see that VK is a neighbourhood of xF = BC(xf ) in the Bianchi eigenvariety, containing a
Zariski-dense subset of classical points. For any such classical point y ∈ VQ, write fy for the
corresponding modular form, and write Fy for its base-change to K (corresponding to BC(y) ∈
VK).

Since the slope of a Coleman family is constant, we see that along VK , the slope at p is also
constant, equal to vp(αp(F)) = 2vp(αp(f)) = 2h. Possibly shrinking VQ if necessary, we can
assume that any classical weight ℓ ∈ ΣQ\{k} satisfies ℓ > 2(k+ 1). Suppose y is a classical point
in VQ above such a weight ℓ; then we have vp(αp(fy)) < ℓ+1

2 , so that

Lcyc
p (Fy, ∗) = Lp(fy, ∗)L

χK/Q

p (fy, ∗),

where again we normalise the periods appropriately.

After possibly shrinking VK , let Lp(VK) denote the three-variable p-adic L-function over VK .
Again by restricting to functions that factor through the norm to Q, we can restrict this three-
variable function to the cyclotomic line, yielding a two-variable function Lcyc

p (VK). This two-
variable p-adic L-function is only well-defined up to multiplication by elements of O(VK ), cor-
responding to renormalising the periods. By composing with the map BC∗ : O(VK) → O(VQ),
we can view the second variable as being over VQ, meaning Lcyc

p (VK) lies in the same space

as Lp(VQ) and LχK/Q

p (VQ), the two-variable p-adic L-functions over VQ interpolating the p-adic
L-functions of the classical family.
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Proposition 8.8. Suppose that Lcyc
p (F , ∗) and Lp(f, ∗)L

χK/Q

p (f, ∗) are both non-zero. For each
classical point y ∈ VQ(L), normalise the period of the base-change Fy so that

ΩFy = (−1)ℓ #O×
K

2
Ω+

fy
Ω−

fy
τ(χK/Q).

Under these normalisations, and after possibly renormalising Lcyc
p (VK) by an element of O(VQ)×,

the restriction of Lp(VK) to the cyclotomic line factors as

Lcyc
p (VK) = Lp(VQ)LχK/Q

p (VQ).

In the general case, Theorem 8.4 follows by specialising this identity at f .

Proof. After taking the Amice transform, we may consider the functions in question as analytic
functions on the two-dimensional rigid space VQ × X (Z×

p ), where, as in the introduction, we
write X (Z×

p ) for the rigid character space of Z×
p . Consider, then, the quotient

C(z, φ) ..=
Lcyc

p (VK)

Lp(VQ)LχK/Q

p (VQ)
∈ Frac

(
O(VQ × X (Z×

p )
)
.

This is well-defined by a similar argument to that in Proposition 7.11. At the specialisation to
each classical point y 6= xf in VQ(L), we have C(y, φ) = cy ∈ L× using the factorisation at very
small slope points. Again, using the fact that such points are Zariski-dense, we deduce that
C(z, φ) is constant in φ for any z, that is, C ∈ Frac(O(VQ)). Since (by assumption) neither
Lcyc

p (Fx, ∗) nor Lp(f, ∗)L
χK.Q
p (f, ∗) is zero, C does not have a zero or pole at xF . Such zeros

and poles occur at isolated points, as VQ is a rigid curve, and hence we may shrink VQ further
so that C has no zeros or poles, that is, C ∈ O(VQ)×. But this completes the proof.

In the general case, Theorem 8.4 follows from specialising this result at f .

Remark 8.9: The function Lcyc
p (V ) is, of course, itself only well-defined up to multiplication

by elements of O(V )×, so this indeterminancy is expected. We note that the non-vanishing
condition is always satisfied if f and F are non-critical by the arguments in the proof (or, in the
case of weight 2, by a theorem of Rohrlich; see [Roh84]). When f is critical, it is conjectured
that f is CM, and in this case, Bellaïche has shown this non-vanishing property by relating the
p-adic L-function to a Katz p-adic L-function (see [Bel]). In light of this, it seems natural to
conjecture that when F is critical, Lp(F , ∗) is non-zero.

Remark 8.10: Note this result requires only the existence of p-adic L-functions in families,
which we constructed under no Σ-smoothness condition. In particular, this implies that in the
case where F is the critical base-change of f and we do not have Σ-smoothness, the p-adic
L-function Lp(F) satisfies an interpolation property at all Hecke characters ϕ that factor as
ϕ′ ◦ NK/Q for a rational Hecke character ϕ′. If f is non-critical, this interpolation property is
the same as that in Theorem 2.14; if f is critical, the interpolation property is that the p-adic
L-function vanishes at such characters.

Remark 8.11: Suppose p is split, and that we start with a small slope classical form f of level N
prime to p. Let α and β denote the roots of the Hecke polynomialRp(X), and assume that α 6= β.
There are two possible p-stabilisations fα, fβ of f to level pN . The base-change F of f to K,
however, has four possible p-stabilisations to level pNOK ; we have Rp(X) = Rp(X) = Rp(X),
so we can consider Fαα,Fαβ ,Fβα and Fββ. The forms Fαα and Fββ are the base-changes of
fα and fβ respectively, but the other specialisations cannot be base-change themselves, as they
have distinct eigenvalues at p and p. In this case, Loeffler and Zerbes have recently shown that
Lcyc

p (Fαβ, φ) can be expressed as a linear combination of the two products Lp(fα, φ)L
χK/Q

p (fβ , φ)

and Lp(fβ , φ)L
χK/Q

p (fα, φ).

We can now prove a converse to Corollary 6.9, which said that (in the Σ-smooth case) the
base-change of a non-critical form is non-critical.
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Corollary 8.12. Let f be a decent classical modular form of weight k + 2 that does not have
CM by K, and let F be its base-change to K. Suppose F is Σ-smooth. Then F is non-critical
if and only if f is non-critical.

Proof. We saw that F is non-critical if f is non-critical in Corollary 6.9. So suppose f is critical.
If F is not Σ-smooth, then it is critical; hence we may assume F is Σ-smooth without loss of gen-
erality. To f , we attach a generator Ψf of the one-dimensional eigenspace H1

c(Y1(N),Dλ(L))[f ]
in the overconvergent cohomology (over Q). Recall from [Bel12, §4] that f is critical if and
only if Ψf is mapped to zero under the specialisation map to classical cohomology. Let φ be
any critical Hecke character; then Lp(f, φ) = Mel(Ψf )(φ) = Mel(ρλ(Ψf ))(φ), that is, evaluation
at φ commutes with the specialisation map. Thus if we have non-vanishing of a critical p-adic
L-value of f , then ρλ(Ψf ) 6= 0, that is, f is non-critical.

We claim that there exists a non-trivial Dirichlet character ϕ of p-power conductor such that

L(F , ϕ ◦NK/Q, k + 1) = L(f, ϕ, k + 1)L(f, ϕχK/Q, k + 1) 6= 0.

Indeed, if k > 0, then for any Dirichlet character ϕ, the Euler product expressions for L(f, ϕ, k+
1) and L(f, ϕχK/Q, k + 1) converge to non-zero complex numbers (as we are in the range of
absolute convergence). If k = 0, then this is an easy consequence of the main result of [Roh84].

Since ϕ has p-power conductor, the p-adic L-functions Lp(f, ∗), L
χK/Q

p (f, ∗) and Lp(F , ∗) do
not have exceptional zeros at the character φ = ϕ| · |k. Now suppose F is non-critical. By the
interpolation property, the non-vanishing condition on ϕ, and the fact that F is non-critical, we
then have

0 6= Lp(F , φ ◦NK/Q) = Lp(f, φ)L
χK/Q

p (f, φ),

the last equality following from p-adic Artin formalism. From the remarks above, we conclude
that f is non-critical, which is a contradiction.

If f is critical, then F is always critical, since if it were non-critical it would be Σ-smooth. So
the only remaining possibility we have not ruled out is f non-critical but F critical and not
Σ-smooth.

8.5. Restriction to the anticyclotomic line

The methods of this section apply in another related case13, the details of which we leave to the
interested reader. Class field theory provides us with an isomorphism ClK(p∞) ∼= Gal(K∞/K),
where K∞ is the maximal abelian extension of K unramified outside p. Restriction to the
cyclotomic line in ClK(p∞) is equivalent to looking only at the cyclotomic subextension inside
K∞. We can also naturally restrict to the anticyclotomic subextension Kanti

∞ /K; a character χ of
Gal(K∞/K) is anticyclotomic if χ(σgσ−1) = χ(g)−1 for all g ∈ Gal(K∞/K), where σ is the non-
trivial element in Gal(K/Q). In this setting, anticyclotomic p-adic L-functions were introduced
by Bertolini and Darmon in [BD96] for ordinary elliptic curves, and since then the construction
has been generalised significantly; see, for example, [Kim17]. In the notation of above, the
anticyclotomic p-adic L-function of f over K is a distribution Lanti

p (f, ∗) on Gal(Kanti
∞ /K), of

order h, that satisfies the interpolation property that at a critical anticyclotomic character χ of
K, we have (

Lanti
p (f, χ)

)2
= (∗)Λ(F , χ),

for a suitable explicit interpolation factor (∗). In the case where h < k+1
2 , this interpolation

property, together with admissibility, is enough to show that (after normalising the periods
correctly) we have

Lanti
p (f)2 = Lanti

p (F), (8.2)

where Lanti
p (F) is the restriction of Lp(F) to the anticyclotomic line. (See, for example, [Geh17]

for this result in the ordinary case). It is widely expected that anticyclotomic p-adic L-functions

13We thank Lennart Gehrmann for pointing this out to us.
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can be varied in Coleman families; suppose there exists such a two-variable function Lanti
p (VQ),

over a neighbourhood VQ in the Coleman–Mazur eigencurve, interpolating the p-adic L-functions
at classical weights. Then the methods of this section show that, under an analogous non-
vanishing condition and up to multiplication by an element of O(VQ)×, we have

Lanti
p (VQ)2 = Lanti

p (VK).

If h ≥ k+1
2 , we can then specialise this two-variable formula to obtain the identity (8.2) in this

case too.

8.6. Secondary p-adic L-functions at critical base-change points

Recall that the p-adic L-function of a critical (Σ-smooth) base-change point vanishes at every
special value. Previously, we noted that this could be viewed as an exceptional zero phenonenon
in the weight. Indeed, let F be a critical (Σ-smooth) Bianchi modular form that is the base-
change of a decent classical modular form f , and let VK be some neighbourhood of xF in Ebc(L)
such that a three-variable p-adic L-function Lp(VK) exists over VK . For y ∈ VK(L) and φ a
locally analytic function on ClK(p∞), write

Lp(y, φ) ..= sp′
y(Lp(VK))(φ),

which is rigid analytic in y. The neighbourhood VK is a rigid curve that is smooth at xF , so fol-

lowing Bellaïche, we can define the ith secondary p-adic L-function L
(i)
p (F , ∗) ∈ D(ClK(p∞), L)

by

L(i)
p (F , φ) ..=

∂i

∂yi
Lp(y, φ)

∣∣∣∣
y=xF

,

where 0 ≤ i ≤ eF − 1, for eF the ramification degree of w at xF . An identical argument to that
given in [Bel12, §4.4] shows that:

Proposition 8.13. Let ϕ be a Hecke character of K of conductor f|(p∞) and infinity type
0 ≤ (q, r) ≤ (k, k), where (k, k) is the weight of F .

(i) If 0 ≤ i ≤ eF − 2, then
L(i)

p (F , ϕp−fin) = 0.

(ii) If i = eF − 1, then (compare Theorem 2.14)

L(eF −1)
p (F , ϕp−fin) = (eF − 1)!


∏

p|p

Zp(ϕ)




[
ϕ(xf)dτ̃ (ϕ−1)#O×

K

(−1)k+q+r2ϕf(xf)αfΩF

]
Λ(F , ϕ).

Remarks 8.14: (i) As Lp(y, φ) is defined only up to multiplication by an element in O(V )×,
we get additional indeterminancy for the secondary p-adic L-functions. In particular,

L
(i)
p (F , y) is only well-defined up to scalar multiplication by L× and additional of an

element of the L-span of {Lp(F , φ), ..., L
(i−1)
p (f, φ)}. As in [Bel12, §1.4], however, we see

that this gives a well-defined flag F0 ⊂ F1 ⊂ · · · ⊂ Fe in the space of L-valued locally
analytic distributions on ClK(p∞), with dimL Fi = i+ 1.

(ii) Since differentiating in y and restricting the distribution to the cyclotomic line are inde-
pendent operations, taking the ith derivative of the identity in Proposition 8.8 (under the
same non-vanishing condition) and evaluating at xf shows that the ith secondary p-adic
L-function factors as

L(i),cyc
p (F , ∗) =

i∑

j=0

(
i
j

)
L(j)

p (f, ∗)L
(i−j),χK/Q

p (f, ∗),

where L
(0)
p is just Lp.
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Appendix: A base-change deformation functor

by Carl Wang-Erickson14

The point of this appendix is to supply the proof of Proposition 5.9, regarding deformations of
Galois representations. The main idea we will apply here applies under the following running
assumptions:

(A) there is an index 2 subgroup H ⊂ G and a chosen element c ∈ GrH of order 2. Equiva-
lently, G is expressed as a semi-direct product H ⋊ 〈c〉.

(B) The characteristic of the base coefficient field L of the deformed representation is not 2.

In the first section we set up the theory of the base change deformation functor. In the second
section, we verify that this theory is compatible with arithmetic conditions imposed when G is
a Galois group over Q.

A.1. The base change deformation functor

We work under assumptions (A)-(B) above. Let ρ : G → GLd(L) be a representation that
is absolutely irreducible after restriction to H . Let AL be the category of Artinian local L-
algebras (A,mA) with residue field L. We denote by X the deformation functor for ρ|H . This is
the functor from AL to the category of sets given by

A 7→ {ρ̃A : H → GLd(A) | (ρ̃A mod mA) = ρ|H}/ ∼, (A.1)

where ∼ is the equivalence relation of “strict equivalence,” that is, conjugation by 1+Md(mA) ⊂
GLd(A). We will let ρA ∈ X(A) denote a deformation of ρ|H with coefficients in A. This is
in contrast to the notation ρ̃A, which we reserve for a lift of ρ|H to A, i.e. a homomorphism
ρ̃A ∈ ρA as in (A.1).

Let Xbc denote the subfunctor of X cut out by the condition that some (equivalently, all)
ρ̃A ∈ ρA admits an extension to a homomorphism ρ̃G

A : G → GLd(A) such that ρ̃G
A|H = ρ̃A. In

this case, we say that ρA admits an extension to an A-valued deformation ρG
A of ρ.

For h ∈ H , we write hc := chc ∈ H for twisting by c. Likewise, for a group homomorphism η
with domain H , let ηc(h) := η(hc).

Lemma A.1. Let A ∈ AL and ρA ∈ X(L). Then ρA admits an extension to G deforming ρ if
and only if there exists ρ̃A ∈ ρA such that

adρ(c) · ρ̃c
A = ρ̃A. (A.2)

Proof. Assume that there exists ρ̃A ∈ ρA and ρ̃G
A : G → GLd(A) such that ρ̃G

A|H = ρ̃A. Because
the characteristic of L is not 2, the deformation functor for ρ|〈c〉 is trivial; compare the proof
of [CWE18, Prop. 5.3.2]. Equivalently, there exists some x ∈ 1 + Md(mA) ⊂ GLd(A) such that
adx · ρ̃G

A(c) = ρ(c). Then one readily observes that adx · ρ̃A is a solution to (A.2).

Next we prove the converse. Assume that we have ρ̃A solving (A.2). Then we define ρ̃G
A : G →

GLd(A) by

ρ̃G
A(g) :=

{
ρ̃A(g) for g ∈ H,
ρ(c)ρ̃A(h) for g = ch, h ∈ H.

It is then straightforward to calculate that ρ̃G
A is a group homomorphism such that ρ̃G

A|H =
ρ̃A.

14C.W.E. was supported by Engineering and Physical Sciences Research Council grant EP/L025485/1.
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Notice that the map of lifts ρ̃A of ρ|H to A sending

ι̃ : ρ̃A 7→ adρ(c) · ρ̃c
A

is an involution on lifts of ρ|H . Its fixed points are exactly those lifts satisfying (A.2). This
involution descends to an functorial involution of deformations

ι : X(A) → X(A).

To justify this claim, we calculate that for any x ∈ GLd(A),

ι̃(adx · ρ̃A) = adρ(c) · adx · ρ̃c
A = ad y · (ι̃(ρ̃A)),

where y = ad ρ(c) · x.

Let Xι denote the ι-fixed subfunctor of X , and let t (resp. tbc) denote the tangent space
X(L[ε]/(ε2)) (resp. Xbc(L[ε]/(ε2)).

Proposition A.2. (i) There is a canonical isomorphism Xι ∼= Xbc.

(ii) The deformation problems Xbc, X on AL are pro-represented by pro-objects Rbc, R ∈ ÂL.
The involution ι induces an automorphism ι∗ : R → R, and there is a natural surjection

R ։ Rbc :=
R

((1 − ι∗)(R))
.

(iii) There is a canonical injection tbc →֒ t of tangent spaces. The image of this injection is the
subspace tι ⊂ t fixed by the involution ι∗ : t → t induced by ι.

Proof. Part (i) follows directly from Lemma A.1.

For Part (ii), it is well-known that X is pro-representable; see e.g. [Maz89]. It is a brief exercise
that a homomorphism R → A kills (1 − ι∗)(R) if and only if the corresponding deformation of
ρ|H is ι-fixed. Then the pro-representability of Xbc by Rbc follows from (i).

Part (iii) follows from Part (ii) and the perfect L-linear duality of mR/m
2
R and X(L[ε]/(ε2)).

A.2. Galois-theoretic conditions

Using the notation of Definition 5.7, we let G = GQ,S and H = GK,SK . We also use the de-
composition groups and complex conjugation c ∈ G given in (5.1). The data (G,H, c) satisfy
assumption (A), as K/Q is imaginary quadratic.

Because the level of the modular form f of Proposition 5.6 is supported by S, and because
p,∞ ∈ S, the representation ρf of the absolute Galois group of Q factors through GQ,S . We let
ρ ..= ρf : G → GL2(L), as in Definition 5.4, with its critical refinement with eigenvalue αp. It is
an L-linear representation, where L is a p-adic field; thus we have satisfied assumption (B).

Deformation theory as in §A.1 can be carried out for continuous representations of G and H ,
using the p-adic topology of L, and the arguments therein make good sense in this setting. This
is standard; see e.g. [Kis03, §9]. From now on, we impose continuity without further comment.

Because G and H satisfy the finiteness condition Φp of [Maz89, §1.1], it follows that the defor-
mation rings R,Rbc of Proposition A.2 representing X,Xbc are Noetherian and (equivalently)
t, tbc have finite L-dimension.

Lemma A.3. Conditions (i) and (ii) of Definition 5.8 determine a subfunctor Xref ⊂ X that
is Zariski-closed, hence representable by a quotient ring R ։ Rref.
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Proof. This is standard – see e.g. [Ber17, p. 26] and [Kis03, Prop. 8.13]. In particular, the
important assumption [Kis03, (8.8.1)] is satisfied because f has been critically refined.

We now prove Proposition 5.9.

Proof of Proposition 5.9. Because both the “ref” and “bc” conditions have been shown to be
Zariski-closed conditions on X , their intersection functor Xref,bc is representable by a quotient
Rref

։ Rref,bc. Then apply Proposition A.2 and its proof.

To make Proposition 5.9 useful, we check that the properties of a G-deformation ρG
A of ρf

guaranteeing that ρG
A|H determines a point of Xref (and, consequently, a point of Xref,bc) are

what we would naturally expect them to be.

Lemma A.4. Let ρG
A be a deformation of ρf : G → GL2(L) to A ∈ AL. Then ρG

A|H ∈ Xref(A)
if and only if ρG

A satisfies

(i) For primes q | N such that q 6= p, ρG
A|Iq ≃ ρ|Iq ⊗L A.

(ii) The restriction ρG
A|Gp has

(1) one Hodge–Sen–Tate weight is constant and equal to 0, and

(2) there exists α̃p ∈ A such that the A-module Dcrys(ρ
G
A|Gp)ϕ=α̃p is free of rank 1 and

(α̃p mod mA) = αp.

Proof. It is a straightforward exercise about representations and the corresponding Frobenius
isocrystals to verify that the statements of (i)-(ii) of Lemma A.4 are equivalent to (i)-(ii) of
Definition 5.8 under both extension and restriction.
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