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Abstract

In this paper, we investigate an approach to program synthesis that
is based on crowd-sourcing. With the help of crowd-sourcing, we
aim to capture the “wisdom of the crowds” to find good if not per-
fect solutions to inherently tricky programming tasks, which elude
even expert developers and lack an easy-to-formalize specification.

We propose an approach we call program boosting, which in-
volves crowd-sourcing imperfect solutions to a difficult program-
ming problem from developers and then blending these programs
together in a way that improves their correctness.

We implement this approach in a system called CROWDBOOST

and show in our experiments that interesting and highly non-trivial
tasks such as writing regular expressions for URLs or email ad-
dresses can be effectively crowd-sourced. We demonstrate that
carefully blending the crowd-sourced results together consistently
produces a boost, yielding results that are better than any of the
starting programs. Our experiments on 465 program pairs show
consistent boosts in accuracy and demonstrate that program boost-
ing can be performed at a relatively modest monetary cost.

Categories and Subject Descriptors F.4.3 [Theory of Computa-
tion]: Formal languages; H.5.3 [Information Systems]: Collabo-
rative Computing; D.1.2 [Programming Techniques]: Automatic
Programming
Keywords Program Synthesis; Crowd-sourcing; Symbolic Au-
tomata; Regular Expressions

1. Introduction

Everyday programming involves solving numerous small but nec-
essary tasks. Some of these tasks are fairly routine; others are
surprisingly challenging. Examples of challenging self-contained
tasks include coming up with a regular expression to recognize
email addresses or sanitizing an input string to avoid SQL injec-
tion attacks. Both of these tasks are easy to describe to most devel-
opers succinctly, yet both are surprisingly difficult to “get right,”
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i.e., to implement while properly addressing all the tricky corner
cases. Furthermore, there is plenty of room for ambiguity in both
tasks: for example, even seasoned developers can disagree as to
whether john+doe@acm.org or john..doe.@acm.com are valid
email addresses or whether removing all characters outside of the
[a− zA− Z] set is a valid sanitization strategy for preventing SQL
injection attacks. These tasks are under-specified; there may not be
absolute consensus on what solution is correct; moreover, different
people may get different parts of the solution wrong.

What if we could pose these tricky programming tasks as a
crowd-sourcing challenge? Ideally, we would be able to describe
the task in question in English, admittedly, a very loose form of
specification, with all its inherent ambiguities and under-specified
corner cases. We would subsequently use the “wisdom of the
crowds” to arrive at a solution, without having a precise specifi-
cation a priori, but perhaps armed with some positive and negative
examples, giving us a partial specification. This paper explores this
deceptively simple idea and expands on previous investigations into
the use of crowd-sourcing to help with technically challenging pro-
gramming problems. Our implementation, CROWDBOOST, shares
some of the high-level goals with systems such as TurkIt [27],
Deco [33], and Collabode [13].

1.1 In Search of Perfect URL Validation

In December 2010, Mathias Bynens, a freelance web developer
from Belgium, set up a page to collect possible regular expressions
for matching URLs. URL matching turns out to be a surprisingly
challenging problem. While RFCs may define formal grammars for
URLs, it is non-trivial to construct a regular expression that can be
used in practice from these specifications. To help with testing the
regular expressions, Mathias posted a collection of both positive
and negatives examples, that is, strings that should be accepted
as proper URLs or rejected. While some example URLs are as
simple as http://foo.com/blah_blah, others are considerably
more complex and require the knowledge of allowed protocols
(ftps://foo.bar/ should be rejected) or the range of numbers
in IP addresses (which is why http://123.123.123 should be
rejected).

Mathias posted this challenge to his followers on Twitter. Soon,
a total of 12 responses were collected, as summarized in Figure 1.
Note that the majority of responses were incorrect at least in part:
while all regular expressions correctly captured simple URLs such
as http://www.cnn.com, they often would disagree on some of
the more subtle inputs. Only one participant with a Twitter handle



of @diegoperini managed to get all the answers right1. Twitter
user @stephenhay came close, getting all positive inputs right,
but missing some of the negative inputs. Notably, this experiment
performed by Mathias was a specific form of program crowd-
sourcing.

1.2 Key Observations

While a detailed analysis of this experiment is available at http:
//mathiasbynens.be/demo/url-regex, a few things are clear:

• The problem posed by Mathias is surprisingly complex; more-
over, it is a problem where it is easy to get started and get to a
certain level or accuracy, but getting to perfect precision on the
example set is very difficult;

• potential answers provided by developers range in length (38–
1,347) and accuracy (.56–1), a great deal, as measured on a set
of examples. Note that the most accurate answer provided by
@diegoperini is in this case not the longest;

• developers get different portions of the answer wrong; while a
particular developer may forget the ftp:// URL scheme but
remember to include optional port numbers that follow the host
name, another developer may do exactly the opposite;

• cleverly combining (or blending) partially incorrect answers
may yield a correct one.

Inspired by these observations, program boosting is a technique
that combines crowd-sourced programs using the technique of ge-
netic programming to yield a solution of higher quality. A way
of combining individual classifiers to improve the accuracy is re-
ferred to as classifier boosting in machine learning [37], hence of
our choice of the term program boosting. This technique is espe-
cially helpful for problems that elude a precise specification.

1.3 Other Domains for Program Boosting

The experimental results in this paper focus heavily on the regu-
lar expression domain; regular expressions represent a limited but
very important class of programming tasks, which maintain decid-
ability of many important properties, unlike programs written in
general-purpose languages like C or Java. However, we feel that
a wide range of problems are captured by the mental model out-
lined above. Just like with other general techniques, we cannot re-
ally foresee all domains in which boosting may be valuable, but we
give several examples below.

Security sanitizers: Security sanitizers are short, self-contained
string-manipulation routines that are crucial in preventing cross-
site scripting attacks in web applications, yet programming these
sanitizers is widely-recognized to be a difficult task [17]. Sanitizers
written in domain specific languages have properties that allow for
automated manipulation and reasoning about program behavior,
but human intervention is still required when a specification is not
precise. Reasoning about sanitizers amounts to reasoning about
transducers; we feel that algorithms similar to those presented
in this paper can be developed for transducers as well. Program
boosting can incorporate powerful new techniques for program
analysis with the on-demand efforts of both expert and non-expert
human insight.

Merging code patches: We envision the application of program
boosting in other domains as well. For example, while it would be
difficult to mix the code from several Java program directly, we can
imagine how the space of possible combinations of code patches
written by different developers could be explored to find an optimal
result as judged by the crowd.

1The full regex from @diegoperini can be obtained from the address
https://gist.github.com/dperini/729294.

Regex Regex True True Overall

source length positive negative accuracy

@krijnhoetmer 115 .78 .41 .59
@gruber 71 .97 .36 .65
@gruber v2 218 1.00 .33 .65
@cowboy 1,241 1.00 .15 .56
@mattfarina 287 .72 .44 .57
@stephenhay 38 1.00 .64 .81
@scottgonzales 1,347 1.00 .15 .56
@rodneyrehm 109 .83 .36 .59
@imme emosol 54 .97 .74 .85
@diegoperini⋆ 502 1.00 1.00 1.00

Figure 1: Representative regular expressions for URLs obtained from
http://mathiasbynens.be/demo/url-regex. For every possible solution we
show its length, true and false positive rates, and the overall accuracy. The
last row is the winner.

Combining static analysis checkers: The precision of static anal-
ysis checkers or bug finding tools can be improved via cleverly
blending them together. One scheme could be to have multiple
checkers for NULL dereferences vote on a particular potential vi-
olation. Another would be to blend machine learning and pro-
gram analysis by training a decision tree which determines which
checker to apply in response to a range of local static features.

Web site layout: In web site design, A/B testing is often used to
measure design changes and their observable influence on behav-
ior [20]. Building on the idea that the customer is always right,
program boosting could be used to construct a layout engine that
renders results which are most pleasing to the user.

The key thread linking these application areas together is that
a problem exists where the overall specification and how it should
be implemented are difficult to pin down, but it is easy to indicate
whether a given solution is correctly operating on a single input.
Defining effective blending operations for each of these domains
remains a separate research challenge, which we only address for
regular expressions.

1.4 Contributions

Our paper makes these contributions:

• We propose a technique we dub program boosting. Program
boosting is a semi-automatic program generation or synthesis
technique that uses a set of initial crowd-sourced programs and
combines (or blends) them to provide a better result, according
to a fitness function.

• We show how to implement program boosting for regular ex-
pressions. We propose a genetic programming technique [2, 21,
35] with custom-designed crossover and mutation operations.
We propose a new genetic programming paradigm in which the
fitness function is evolved along with the candidate programs.

• We implement our program boosting technique in a tool,
CROWDBOOST, to generate complex regular expressions.
We represent regular expressions using Symbolic Finite Au-
tomata (SFAs), which enable succinct representation, while
supporting large alphabets. We adapt classic algorithms, such
as string-to-language edit distance, to the symbolic setting. To
the best of our knowledge, ours is also the first work that uses
genetic programming on automata over complex alphabets such
as UTF-16.

• We evaluate program boosting techniques on four case studies.
In our experiments on a set of 465 pairs of regular expression
programs, we observe an average boost in accuracy of 16.25%,
which is a significant improvement on already high-quality





1: Input: Programs σ, examples φ, crossover function β, mutation function µ,
example generator δ, fitness function η, budget θ

2: Output: Boosted program

3: function Boost(〈σ, φ〉, β, µ, δ, η, θ)
4: while (η̂ < 1.0 ∧ θ > 0) do ⊲ Until perfect or no money
5: ϕ = ∅ ⊲ New examples for this generation
6: for all 〈σi, σj〉 ∈ FindCrossoverCandidates(σ) do

7: for all σ′ ∈ β(〈σi, σj〉) do ⊲ Crossover σi and σj

8: ϕ = ϕ ∪ δ(σ′, φ) ⊲ Generate new examples

9: σ = σ ∪ {σ′} ⊲ Add this candidate to σ
10: end for

11: end for

12: for all 〈σi〉 ∈ FindMutationCandidates(σ) do

13: for all σ′ = µ(σi) do ⊲ Mutate σi

14: ϕ = ϕ ∪ δ(σ′, φ) ⊲ Generate new examples

15: σ = σ ∪ {σ′} ⊲ Add this candidate to σ
16: end for

17: end for

⊲ Get consensus on these new examples via mturk
18: 〈φϕ, θ〉 = GetConsensus(ϕ, θ) ⊲ and update budget
19: φ = φ ∪ φϕ ⊲ Add the newly acquired examples
20: σ = Filter(σ) ⊲ Update candidates
21: 〈σ̂, η̂〉 = GetBestFitness(σ, η)
22: end while

23: return σ̂ ⊲ Return program with best fitness
24: end function

Figure 3: Program boosting implemented as an iterative genetic program-
ming algorithm.

Given a set of initial crowd-sourced programs, the program
boosting algorithm proceeds in generations. In the context of our
phone number example, these initial programs may be the two ini-
tial regular expressions. At every generation, it performs a com-
bination of crossover and mutation operations. (In our example,
this may tweak individual parts of the regular expression to han-
dle phone number separators like - and .) As a form of refinement,
new examples are added to the training set. As an example, in our
regular expression implementation the goal of refinement is to at-
tain 100% state coverage by considering non-obvious cases such as
212.555-1212 or 1-)212) 555-1212 as either valid or invalid
phone numbers to be added to the evolving training set. Finally,
the candidates with the highest fitness are chosen to continue to the
next generation.

Crowd-sourcing initial programs and continuous refinement of
the training set are key differeniators of program boosting and more
standard genetic programming [2, 21, 35].

2.4 Program Boosting Algorithm

Figure 3 shows our program boosting algorithm as pseudo-code.
Let Σ be the set of all programs and Φ be the set of all inputs.
In every generation, we update the set of currently considered
programs σ ⊂ Σ and the set of current examples φ ⊂ Φ.

Note that the algorithm is iterative in nature: the process of
boosting proceeds in generations, similar to the way genetic pro-
gramming is typically implemented. The overall goal is to find a
program with the best fitness in Σ. At each generation, new exam-
ples in Φ are produced and sent to the crowd to obtain consensus.
The algorithm is parametrized as follows:

• σ ⊂ Σ is the initial set of programs;
• φ ⊂ Φ is the initial set of positive and negative examples;
• β : Σ × Σ → 2Σ is the crossover function that takes two

programs and produces a set of possible crossovers;
• µ : Σ → 2Σ is the mutation function that given a program

produces a set of possible mutated programs;
• δ : Σ × 2Φ → 2Φ given a program and a set of examples

generates a new set of training examples;
• η : Σ → N is the fitness function;
• θ ∈ N is the budget for Mechanical Turk crowd-sourcing.

Later we show how to implement operations that correspond to
functions β, µ, δ, and η for regular expressions using SFAs. Note
that in practice in the interest of completing faster we usually limit
the number of iterations to a set limit such as 10.

Our implementation, CROWDBOOST, benefits greatly from par-
allelism. In particular, we make the two loops on lines 6 and 12 of
the algorithm parallel. While we need to be careful in our imple-
mentation to avoid shared state, this relatively simple change ul-
timately leads to near-full utilization on a machine with 8 or 16
cores.

Unfortunately, our call-outs to the crowd on line 16 to get the
consensus are in-line. This does lead to an end-to-end slowdown in
practice, as crowd workers tend to have a latency associated with
finding and starting new tasks, even if their throughput is quite high.
In the future, we envision a slightly more streamlined architecture
where allowing speculative exploration of the space of programs
may allow us to invoke crowd calls asynchronously.

3. Boosting Regular Expressions

In this section we instantiate the different parts of the program
boosting algorithm for the regular expression domain. We first
describe Symbolic Finite Automata and show how they are used
to represent regular expressions in our implementation, CROWD-
BOOST. Next, we present algorithms for crossover, mutation, and
example generation, used by the algorithm in Figure 3.

3.1 Symbolic Finite Automata

While regular expressions are succinct and relatively easy to under-
stand, they are not easy to manipulate algebraically. In particular,
there is algorithm for complementing or intersecting them directly.
We therefore opt for finite automata. Classic deterministic finite
automata (DFAs) enjoy many closure properties and friendly com-
plexities, however each DFA transition can only carry one charac-
ter, causing the number of transitions in the DFA to be proportional
to the size of the alphabet. When the alphabet is large (UTF-16 has
216 elements) this representation becomes impractical.

Symbolic Finite Automata (SFAs) [41] extend classic automata
with symbolic alphabets. In an SFA, each edge is labeled with a
predicate rather than a single input character and this allows the
automaton to represent multiple concrete transitions succinctly. For
example, in the SFA of Figure 7 the transition from state 10 to
state 11 is labeled with the predicate [^#--\/?\s]. Because of the
size of the UTF-16 set, this transition in classic automata would be
represented by thousands of concrete transitions.

Before defining SFAs we first need to introduce several pre-
liminary concepts. Since the guards of SFA transitions are pred-
icates, operations such as automata intersection need to “manip-
ulate” such predicates. Let’s consider the problem of intersecting
two DFAs. In classic automata intersection, if the two DFAs respec-
tively have transitions (p, a, p′) and (q, a, q′) the intersected DFA
(also called the product) will have a transition (〈p, q〉, a, 〈p′, q′〉).
Now if we want to intersect two SFAs this simple synchroniza-
tion would not work. If two SFAs respectively have transitions
(p, ϕ, p′) and (q, ψ, q′) (where ϕ and ψ are predicates), the inter-
sected SFA will need to synchronize the two transitions only on the
values that are both in ϕ and ψ, therefore the new transition will be
(〈p, q〉, ϕ ∧ ψ, 〈p′, q′〉) where the guard is the conjunction of the
two predicates ϕ and ψ. Moreover if the predicate ϕ ∧ ψ defines
an empty set of characters, this transition should be removed. This
example shows how the set of predicates used in the SFA should
at least be closed under ∧ (conjunction), and the underlying the-
ory should be decidable (we can check for satisfiability). It can be
shown that in general in order to achieve the classic closure prop-
erties of regular language the set of predicates must also be closed
under negation.
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Figure 4: Fitness computation for an SFA A. The dashed regions represent
the strings on which A is correct.

Definition 1. A Boolean algebra B has components
(DB , PB , f,⊥,⊤,∧,¬). DB is a set of domain elements,
and PB is a set of predicates closed under Boolean connectives
∧,¬, and ⊥,⊤ ∈ PB . The denotation function f : PB 7→ 2DB

is such that f(⊤) = DB , f(⊥) = ∅, f(ϕ ∧ ψ) = f(ϕ) ∩ f(ψ),
and f(¬ϕ) = DB \ f(ϕ). For ϕ ∈ PB , we write IsSat(ϕ) when
f(ϕ) 6= ∅, and say that ϕ is satisfiable. We say that B is decidable
if IsSat is decidable.

We can now define Symbolic Finite Automata.

Definition 2. A Symbolic Finite Automaton, SFA, A is a tuple
(B,Q, q0, F, δ) where B is a decidable Boolean algebra, called
the alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δ ⊆ Q × PB × Q is a finite
set of moves or transitions.

In the following definitions we refer to a generic SFA A. We
say that A is deterministic if for every state q ∈ Q there do not
exist two distinct transitions (q, ϕ, q1), and (q, ψ, q2) in δ, such that
IsSat(ϕ ∧ ψ). We say that A is complete if for every state q ∈ Q
and every symbol a ∈ DB there exists a transition (q1, ϕ, q2) such
that a ∈ f(ϕ). In this paper we only consider deterministic and
complete SFAs, and for this class of SFAs we can then define the
reflexive-transitive closure of δ as, δ∗(q, ε) = q, and for all a ∈ D
and s ∈ D∗, δ∗(q, as) = δ(q′, s), if ∃(q, ϕ, q′) ∈ δ such that
a ∈ f(ϕ). The language accepted byA isL(A) = {s | δ∗(q0, s) ∈
F}.

BDD algebra: We describe the Boolean algebra of binary decision
diagrams (BDDs), which is used in this paper to model sets of
UTF-16 characters that are used in regular expressions. A BDD
algebra 2bvk is the powerset algebra whose domain is the finite
set bvk, for some k > 0, consisting of all non-negative integers
less than 2k, or equivalently, all k-bit bit-vectors. A predicate is
represented by a BDD [40] of depth k. The variable order of the
BDD is the reverse bit order of the binary representation of a
number, in particular, the most significant bit has the lowest ordinal.
The Boolean operations correspond directly to the BDD operations,
⊥ is the BDD representing the empty set. The denotation f(ϕ) of a
BDD ϕ is the set of all integers n such that a binary representation
of n corresponds to a solution of ϕ. For example, in the case of
URLs over the alphabet UTF-16, we use the BDD algebra 2bv16

to naturally represent sets of UTF-16 characters (bit-vectors). We
consider the SFA and BDD implementations from the symbolic
automata toolkit [41].

3.2 Fitness Computation

Recall that as part of the genetic programming approach employed
in program boosting we need to be able to assess the fitness of a
particular program. For regular expressions this amounts to cal-
culating the accuracy on a training set. The process of fitness
calculation can by itself be quite time-consuming. This is be-
cause running a large set of examples and counting how many
of them are accepted correctly by each produced SFA is a pro-
cess that scales quite poorly when we consider thousands of SFAs
and hundreds of examples. Instead, we construct SFAs P and N ,
which represent the languages of all positive and all negative ex-

1: Input: SFAs A1 = (Q1, q
1

0
, F1, δ1), A2 = (Q2, q

2

0
, F2, δ2)

2: Output: All crossovers of A1 and A2

3: function CROSSOVERS(A1, A2)
4: C1 := COMPONENTS(A1)
5: C2 := COMPONENTS(A2)
6: for all c1 ∈ C1 do

7: C′
1
:= {c′

1
| c1 ≺A1

c′
1
}

8: for all t→ = (p1, ϕ, p2) ∈ EXIT MOVES(c1, A1) do

9: for all c2 ∈ C2 do

10: for all i2 ∈ ENTRY STATES(c2, A2) do

11: C′
2
:= {c′

2
| c2 �A2

c′
2
}

12: for all c′
2
∈ C′

2
do

13: for all t← = (q1, ϕ, q2) ∈ EXIT MOVES(c′
2
, A2) do

14: for all c′
1
∈ C′

1
do

15: for all i1 ∈ ENTRY STATES(c′
1
, A1) do

16: t′
→

:= (p1, ϕ, i2), t′
←

:= (q1, ϕ, i1)

17: δnew := δ1 ∪ δ2 \ {t→, t←} ∪ {t′
→

, t′
←

}

18: yield return (Q1 ∪ Q2, q
1

0
, F1 ∪ F2, δnew)

19: end function

20: function EXIT MOVES(c, A)
21: return {(p, ϕ, q) ∈ δA | p ∈ c ∧ q 6∈ c}
22: end function

23: function ENTRY STATES(c, A)

24: return {q ∈ QA |
(

∃(p, ϕ, q) ∈ δA.p 6∈ c ∧ q ∈ c
)

∨
(

q = qA
0

)

}
25: end function

Figure 5: Crossover algorithm.

amples, respectively. For any SFA A, we then compute the car-
dinality of the intersection sets L(A) ∩ L(P ) and L(N) \ L(A)
(see dashed regions in Figure 4), both of which can be computed
fast using SFA operations. The accuracy can be then computed as
(|L(A ∩ P )| + |L(N \ A)|)/|L(P ∪ N)| and will range from 0
to 1. A challenge inherent with our refinement technique is that
our evolved example set can greatly deviate from the initial golden
set. While imperfect, we still want to treat the golden set as a more
reliable source of truth; to this end, we use weighting to give the
golden set a higher weight in the overall fitness calculation. In
our experimental evaluation, we get reliably good results if we set
golden:evolved weights to 9:1.

3.3 Crossover

A crossover operation interleaves two SFAs into a
single SFA that “combines” their behaviors. An ex-
ample of this operation is illustrated in Figure 6.
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Figure 6: Crossover.

Given two SFAs A and B, the
crossover algorithm creates a new
SFA by redirecting two transi-
tions, one from A to B, and one
from B to A. The goal of such
an operation is that of using a
component of B inside A. The
crossover algorithm is shown in
Figure 5. In all of the following al-
gorithms we assume the SFAs to
be minimal [8].

An SFA can have many tran-
sitions and trying all the possible
crossovers can be impractical. Concretely, if A has n1 states and
m1 transitions, and B has n2 states and m2 transitions, there will
be O(n1n2m1m2) possible crossovers, and checking fitness for
this many SFAs would not scale.

We devise several heuristics that try to mitigate such blowup by
limiting the number of possible crossovers. The first technique we
use is to guarantee that: 1) if we leave A by redirecting a transition
(q, ϕ, q1) to B, and come back to A from B with a transition
that reaches a state q2 in A, then q2 is reachable from q1, but
different from it (we write q1 ≺ q2), and 2) if we reach B in a
state p1, and leave it by redirecting a transition (p2, ϕ, p), then p2



is reachable from p1 (we write p1 � p2). Following these rules, we
only generate crossover automata for which there always exists an
accepted string that traverses both the redirected transitions.

The next heuristics limit the number of “interesting” edges and
states to be used in the algorithm by grouping multiple states into
single component and only considering those edges that travel from
one component to another one. In the algorithm in Figure 5, the
reachability relation ≺ is naturally extended to components (set of
states). The function COMPONENTS returns the set of state com-
ponents computed using one or more of the heuristics described
below.

Strongly-connected components: Our first strategy collapses
states that belong to a single strongly connected component
(SCCs). SCCs are easy to compute and often capture interesting
blocks of the SFA.

Collapsing stretches: In several cases SCCs do not collapse
enough states. Consider the SFA in Figure 7. In this example, the
only SCC with more than one state is the set {11–12}. Moreover,
most of the phone number regexes are represented by acyclic SFAs
causing the SCCs to be completely ineffective. To address this lim-
itation we introduce a collapsing strategy for “stretches”. A stretch
is a maximal connected acyclic sub-graph where every node has
degree smaller or equal than 2. In the SFA in Figure 7, {1, 3, 5},
{2, 4}, and {9, 10} are stretches.
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Figure 7: Identifying com-
ponents.

Single-entry, single-exit com-
ponents: Even using stretches
the collapsing is often ineffec-
tive. Consider again the SFA
in Figure 7. The set of nodes
{0, 1, 2, 3, 4, 5, 6, 7, 8} looks like
it should be treated as a single
component, since it has a single
entry point, and a single exit point,
however it is not a stretch. This
component clearly captures an
independent part of the regex
which accepts the correct proto-
cols of a URL. Such a component
is characterized by the following
features:

1. it is a connected direct acyclic
sub-graph,

2. it has a single entry and exit
point,

3. it does not start or end with a
stretch, and

4. it is maximal: it is not con-
tained in a bigger component
with properties 1–3.

Such components can be com-
puted in linear time by using a
variation of depth-first search start-
ing in each node with in-degree
smaller or equal than 1. The requirement 4) is achieved by consider-
ing the nodes in topological sort (since SCCs are already collapsed
the induced graph is acyclic). Since this technique is generally more
effective than stretches, we use it before the stretch collapsing.

In the SFA in Figure 7, the final components will then
be: {0, 1, 2, 3, 4, 5, 6, 7, 8}, {9, 10}, {11, 12}, and {13}. Finally,
if A has c1 components and t1 transitions between different
components, and B has c2 components and t2 transitions be-
tween different components, then there will be O(c1c2t1t2) pos-

1: Input: SFA A = (Q, q, F, δ) and “seed” string w
2: Output: Set of new training strings

3: function COVER(A,w)
4: C := Q
5: while C 6= ∅ do

6: q := REMOVE FIRST(C)
7: A′ := SFA PASSING(A, q)
8: s := CLOSEST STRING(A′, w)
9: C := C \ STATES COVERED(s, A)

10: yield return s
11: end while

12: end function

13: // Language of all strings in A passing through state q
14: function SFA PASSING(A, q)
15: return CONCATENATE((Q, q0, {q}, δ), (Q, q, F, δ))
16: end function

Figure 8: Example generation.

sible crossovers. In practice this number is much smaller than
O(n1n2m1m2).

One-way crossovers: One way crossovers are a variant of those
described above in which we redirect one edge fromA toB but we
do not come back toA on any edge. IfA has t1 transitions between
different components, and B has c2 components, then there will be
O(c2t1) possible one-way crossovers.

3.4 Mutation

In its classic definition a mutation operator alters one or more val-
ues of the input program and produces a mutated one. SFAs have
too many values to be altered (every transition can carry 216 ele-
ments), and a “blind” approach would produce too many mutations.
Instead we consider a guided approach, in which mutations take as
input an SFA A and a counterexample s, such that s is incorrectly
classified by A (s is a positive example but it doesn’t belong to
L(A), or s is a negative example but it belongs toL(A)). Using this
extra bit of information we mutate A only in those ways that will
cause s to be correctly classified. The intuition behind such opera-
tions is to perform a minimal syntactic change in order to correctly
classify the counterexample.

Diminishing mutations: Given a negative example and an SFA A
such that s ∈ L(A) generate an SFA A′, such that L(A′) ⊆ L(A)
and s 6∈ L(A′). Given a string s = a1 . . . an that is accepted
by A, the algorithm finds a transition (q, ϕ, q′) that is traversed
using the input character ai (for some i) when reading s and
either removes the whole transition, or simply shrinks the guard
to ϕ ∧ ¬ai disallowing the symbol ai. Given a string of length
k, this mutation can generate at most 2k mutated SFAs. Given the
state q ∈ F such that δ∗(q0, s) = q, we also output The SFA
A′ = (q0, Q, F \ {q}, δ), in which the input SFA is mutated by
removing a final state.

Augmenting mutations: Given a positive example and an SFA
A such that s 6∈ L(A) generate an SFA A′, such that L(A) ⊆
L(A′) and s ∈ L(A′). Given a string s = a1 . . . an that is not
accepted by A, the algorithm finds a state q such that, for some
i, δ∗(q0, a1 . . . ai) = q, and a state q′ such that, for some j > i,
δ∗(q′, aj . . . an) ∈ F . Next, it adds a path from q to q′ on the string
amid = ai+1 . . . aj−1. This is done by adding |amid| − 1 extra
states. It is easy to show that the string s is now accepted by the
mutated SFA A′. Given a string of length k and an SFA A with n
states this mutation can generate at most nk2 mutated SFAs. When
there exists a state q such that δ∗(q0, s) = q we also output the
SFA A′ = (q0, Q, F ∪ {q}, δ), in which the input SFA is mutated
by adding a new final state.

3.5 Example Generation

Generating one string is often not enough to “characterize” the
language of an SFA. In generating examples, we aim to follow



https://f.o/..Q/ https://f68.ug.dk.it.no.fm
ftp://1.bd:9/:44ZW1 ftp://hz8.bh8.fzpd85.frn7..
http://h:68576/:X ftp://i4.ncm2.lkxp.r9..:5811
http://n.ytnsw.yt.ee8 ftp://bi.mt..:349/

(a) Examples generated randomly

Whttp://youtu:e.com http://y_:outube.com
0.http//youtu:e.com ht:tpWWW://youtube.com
h_ttp://youtu:e.com ht:tpWWW0://youtube.com
WWW000http://youtu:e.com http://youtube.com/

(b) Examples generated with the edit distance approach starting with the
string http://youtube.com.

Figure 9: Two approaches to examples generation compared.

the following invariant: we attain full state coverage for the SFAs
we allow to proceed to the next generation. For each SFA A =
(Q, q0, F, δ), we generate a set of strings S ⊆ L(A), such that for
every state q ∈ Q, there exists a string a1 . . . an ∈ S, such that for
some i, δ∗(q0, a1 . . . ai) = q. The example generation algorithm
is described in Figure 8; given an SFA with k state it terminates in
at most k iterations. The algorithm simply generates a new string
at every iteration, which is forced to cover at least one state which
hasn’t yet been covered.

Unfortunately, this naı̈ve approach tends to generate strings
that look “random”, causing untrained crowd workers to be overly
conservative by classifying virtually all of the generated strings as
negative examples, even when they are not. For example, we have
observed a strong negativity bias towards strings that use non-Latin
characters. In the case of URLs, we often get strings containing
upper Unicode elements such as Chinese characters, which look
unfamiliar to US-based workers. Ideally, we would like to generate
strings that look as close to normal URLs as possible.

Edit distance: We solve this problem by using the knowledge en-
coded in our training set of inputs. We choose to look for strings
in A that are close to some example string e in the training set. We
can formalize this notion of closeness by using the classic metric
of string edit distance. The edit distance between two strings s and
s′, ED(s, s′), is the minimum number of edits (insertion, deletion,
and character replacement) that transforms s into s′. Given an SFA
A and a string s 6∈ L(A), we want to find a string s′ ∈ A such
that ED(s, s′) is minimal. In the case of DFAs there exists an al-
gorithm that given a string s and a DFA A computes the metric
min{ED(s, s′)|s′ ∈ L(A)}, representing the minimum edit dis-
tance between s and all the strings in L(A) [42]. We symbolically
extend the algorithm in [42] to compute the minimum string-to-
language edit distance for SFAs, and we modify it to actually gen-
erate the witness string.2 The algorithm has complexity O(|s|n2),
where n is the number of states in the SFA.

As an illustration, Figure 9a shows some examples of randomly
generated strings, and Figure 9b several strings generated using the
edit distance technique. Clearly, the second set looks less “random”
and less intimidating to an average Mechanical Turk worker.

4. Experimental Evaluation

To evaluate CROWDBOOST, our implementation of program boost-
ing, we face a fundamental challenge; there is no easy definition of
correctness because the problems we are attempting to solve do
not have a clearly defined specification. Recall that our framework
is designed to evolve a notion of correctness as the crowd provides

2The algorithm in [42] actually has a mistake in the base case of the
dynamic program. When computing the value of V (T, S, c) in page 3, the
“otherwise” case does not take into account the case in which T = S and T
has a self loop on character c. We fix the definition in our implementation.

Examples

Task Specification + –

Phone numbers https://bountify.co/5b 5 4
Dates https://bountify.co/5v 9 9
Emails https://bountify.co/5c 10 7
URLs https://bountify.co/5f 14 9

Figure 10: Specifications provided to Bountify workers. The last two
columns capture the number of positive and negative examples (a subset
of the golden set) given to workers in the task specifications.

Time iurisilvio vmas 7aRPnjkn alixaxel shobhit

Wed 7:32 PM posted
solution

Wed 7:32 PM updated
solution

Wed 8:15 PM posted
solution

Wed 8:15 PM updated
solution

Wed 8:17 PM updated
solution

Wed 9:04 PM posted
solution

Wed 9:13 PM updated
solution

Wed 11:00 PM asked
question

Wed 11:01 PM asked
question

Wed 11:36 PM posted
solution

Thu 10:03 AM updated
solution

Thu 10:03 AM posted
solution

Fri 1:02 AM posted
solution

Mon 7:00 PM left
comment

Mon 7:01 PM updated

solution

Mon 7:08 PM left
comment

Mon 7:10 PM updated
solution

Mon 7:12 PM left
comment

Mon 7:12 PM left
comment

Figure 11: Illustrating the experience of crowd-sourcing initial regexes for
URLs at https : //bountify.co/5f.

more feedback, which is then incorporated into the solution. There-
fore, our goal in this section is to describe the experiments on four
different regular expression tasks and demonstrate that our tech-
nique can both refine an initial specification and construct a so-
lution that performs well (on the both evolved and initial specifi-
cation). Before we describe our experiments, we first outline our
crowd-sourcing setup.

Bountify: In addition to sourcing regular expressions from an on-
line library of user-submitted regexes (Regexlib.com) and other
sources (blogs, StackOverflow, etc.), we crowd-sourced the cre-
ation of initial regular expressions using Bountify, a service that
allows users to post a coding task or technical question to the site,
along with a monetary reward starting at as little as $1. Typical re-
wards on Bountify are $5–10. We posted four separate “bounties”





Regex character length SFA state count

25% 50% 75% Max 25% 50% 75% Max

Phone numbers 44.75 54 67.75 96 14.75 27 28 30
Dates 154 288 352.25 434 19 39.5 72 78
Emails 33.5 68.5 86.75 357 7.25 8.5 10 20
URLs 70 115 240 973 12 25 30 80

Figure 15: Summarized size and complexity of the candidate regexes in our
case studies.
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Figure 16: Fitness of candidate regular expressions.

EVALUATED ON... GOLDEN SET EVOLVED SET

Boosted Boosted

Task initial no crowd crowd initial no crowd crowd

Phone numbers 0.80 0.90 0.90 0.79 0.88 0.91
Dates 0.85 0.99 0.97 0.78 0.78 0.95
Emails 0.71 0.86 0.86 0.79 0.72 0.90
URLs 0.67 0.91 0.88 0.64 0.75 0.89

Figure 17: In each task category, boosting results are shown via fitness
values measured on either the golden set or the evolved set for three separate
regexes; initial, “no crowd” and “crowd”.

Figure 16 shows the distribution of initial accuracy (fitness)
values by source. Somewhat surprisingly, the initial values obtained
through Bountify are higher than those obtained from RegexLib, a
widely-used library of regular expression specifically designed to
be reused by a variety of developers. Overall, initial fitness values
hover between .5 and .75, with none of the regexes being either “too
good” or “too bad”. Of course, starting with higher-quality initial
regular expressions creates less room for growth.

4.2 Boosting Results

Our experiments center around pairwise boosting for the four cho-
sen tasks: Phone numbers, Emails, Dates, URLs. We test the quality
of the regular expressions obtained through boosting by measuring
the accuracy on both positive and negative examples. Our mea-
surements are performed both the golden set and the evolved set.
We consider the measurements on the evolved set to be more rep-
resentative, because the golden set is entirely under our control and
could be manipulated by adding and removing examples to influ-
ence accuracy measurements. The evolved set, on the other hand,
evolves “naturally”, through refinement and obtained Mechanical

Turk consensus.
Figure 17 captures our high-level results obtained from the

boosting process. We display the the mean values for the exper-

Generations Generated strings Consensus

Task 25% 50% 75% Max 25% 50% 75% Max 25% 50% 75% Max

Phone numbers 7 8 10 10 0 6.5 20.25 83 1 1 1 1
Dates 10 10 10 10 29 45 136 207 1 1 1 1
Emails 5 5 6.5 10 2 7 17 117 1 1 1 1
URLs 10 10 10 10 54 72 107 198 0.99 1 1 1

Figure 18: Characterizing the boosting process. The Generated Strings col-
umn, demonstrates that the size of the evolved set varies for each experiment
pair, depending on the number of strings created to cover the generated
regexes.

iments on each task. We show results as measured both on the
golden set of examples and the evolved, expanded set. We see that
our process consistently results in boosting across the board. Sig-
nificant improvements can be observed by comparing columns 5
and 7. The average boost across all the tasks is 16.25%. It is
worth pointing out that having a stable technique that produces
consistent boosting for a range of programs is both very diffi-
cult and tremendously important to make our approach predictable.
Note also that on the larger evolved set the advantage of having a
crowd (columns 4 and 7) is more pronounced than on the smaller
golden set.

4.3 Boosting Process

Figure 18 characterizes the boosting process in three dimensions:
the number of generations, the number of generated strings, and
the measured consensus for classification tasks. For each of these
dimensions, we provide 25%, 50%, 75%, and Max numbers in lieu
of a histogram.

Note that we artificially limit the number of generations to 10.
However, about half the pairs for the Emails task finish in 5 gener-
ations only. For URLs, there are always 10 generations required —
none of the results converge prematurely. The number of generated
strings is relatively modest, peaking at 207 for Dates. This suggests
that the total crowd-sourcing costs for Mechanical Turk should not
be very high. Lastly, the classification consensus is very high over-
all. This is largely due to the our candidate string generation tech-
nique . By making strings look “nice” it prevents a wide spread of
opinions.

Figure 19 provides additional statistics for the crossover and
mutation process across the tasks in the 25%, 50%, 75%, and Max
format used before. Across the board, the number of crossovers
produced during boosting is in tens of thousands. Yet only a very
small percentage of them succeed, i.e survive to the next genera-
tion. This is because for the vast majority, the fitness is too small to
warrant keeping them around. The number of mutations is smaller,
only in single thousands, and their survival rate is somewhat higher.
This can be explained by the fact that mutations are relatively lo-
cal transformations and are not nearly as drastic as crossovers. The
overall experience is not uncommon in genetic algorithms.

Running times: Figure 20a shows the overall running time for pair-
wise boosting for each task. The means vary from about 4 minutes
per pair and 37 minutes per pair. Predictably, Phone numbers com-
pletes quicker than URLs. Note that for Emails, the times are rela-
tively low. This correlates well with the low number of generated
strings in Figure 18. Making the boosting process run faster may in-
volve having low-latency Mechanical Turk workers on retainer and
is the subject of future work.

Boosting costs: Figure 20b shows the costs of performing program
boosting across the range of four tasks. The overall costs are quite
modest, ranging between 41¢ and $3 per pair. We do see occasional
outlets on the high end costing about $12. Some pairs do not require
Mechanical Turk call-outs at all, resulting in zero cost.



Crossovers (thousands) % Successful crossovers Mutations (thousands) % Successful mutations

Task 25% 50% 75% Max 25% 50% 75 Max% 25% 50% 75% Max 25% 50% 75% Max

Phone numbers 73 98 113 140 0.002 0.071 1.888 17.854 5 6 8 13 3.8 5.5 11.6 34.0
Dates 14 108 162 171 0.21 1.51 7.22 38.92 8 12 17 37 16 31 35 53
Emails 3 8 22 165 0.45 1.62 5.11 15.04 0 0 2 15 41 54 78 100
URLs 116 178 180 180 0.88 6.62 34.29 50.15 9 20 52 114 30 35 41 64

Figure 19: Successful propagation of candidates.
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(a) Running times for each task.
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(b) Costs for Mechanical Turk.

Figure 20: Running times and costs.

5. Discussion

We see the following main challenges with the program boosting
approach. In this paper, we aim to provide solutions to only some
of these challenges. Addressing all of them in a comprehensive
manner will undoubtedly require much subsequent research.

Low quality of responses: Just like with other crowd-sourcing
tasks, our approach suffers from response quality challenges, both
because the crowd participant is honestly mistaken (American Me-

chanical Turk workers think that Unicode characters are not allowed
within URLs) or because they are trying to game the system by pro-
viding an answer that is either random or obviously too broad (such
as /.∗/ for regular expression sourcing tasks).

Everyone makes the same mistake: If every developer gets the
same corner case incorrect, voting and consensus-based approaches
are not going to be very helpful: everyone will incorrectly vote for
the same outcome, falsely raising our confidence in the wrong so-
lution. Analysis of security sanitizers in [17] illustrates that some-
times that may be the case.

Over-fitting on the training data: Just like with any other learning
tasks, over-fitting the answer (model) to the data is a potential
problem. One way to mitigate this is to force generalization, either
explicitly or through limiting the size (length or number of states
or another similar metric) of the selected program. For instance, we
could favor smaller regular expressions in our selection.

Program complexity is too high: While it is possible to blend
programs together to achieve good results on training and testing
data, it is desirable to produce resulting programs that are too
complex to be understood. In some cases, since these programs will
be used as black boxes, this is fine; in others, this is not the case.

Knowing when to stop: In the context of crowd-sourcing, know-
ing when to stop soliciting answers is difficult: even if you have
absolute agreement among existing workers, it is not clear that ask-
ing more questions may not eventually yield disagreement about a
non-obvious corner case. The current approach in this paper does
not use a more flexible approach to getting the desired level of con-
fidence, although several techniques have been proposed.

Monetization and payment: It is not clear how to properly com-
pensate the workers whose (programming) efforts become blended

into the end-product. There are thorny intellectual property issues
to grapple with. There is the question of whether the workers should
be compensated beyond their initial payment, as the software to
which they have contributed becomes successful.

Crowd latency: The time it takes to gather solutions from the
crowd is a major issue in getting program boosting results faster.
In the future, it may be possible to have a set of workers on
retainer with faster response times. Another option is to design a
more asynchronous approach that would speculatively explore the
program space.

Sub-optimality: Because we are evolving the training set, it is pos-
sible that in earlier generations we abandoned programs that in later
generations would appear to be more fit. One way to compensate
for this kind of sub-optimality is to either revisit the evaluation once
the evolved set has been finalized, or to inject some of the previ-
ously rejected programs from past generations into the mix at later
stages.

6. Related Work

Crowd-sourcing: Recent work has investigated the incorporation
of human computation into programming systems. Several plat-
forms have been proposed to abstract the details of crowd-sourcing
services away for the programmer, making the issues of latency,
quality control, and cost easier to manage [3, 33, 36]. TurkIt [27]
and Collabode [13] take different approaches to the problem of
making programming easier; the former enabling usage of non-
experts to solve tasks well suited for humans and the latter enabling
collaboration between programmers. Another approach to using
crowd-sourcing is to break large programming tasks into small in-
dependent “microtasks” [25]. Our work furthers progress towards
the goal of solving difficult programming problems by leveraging
a crowd of mixed skill levels and using formal methods to combine
efforts from these multiple workers.

Genetic algorithms: In general, genetic algorithms alter structures
that represent members of a population to produce a result that is
better according to fitness or optimality conditions. Early work [9]
evolved finite state machines to predict symbol sequences. Others
have extended these techniques to build modular systems that in-
corporate independent FSMs to solve maze and grid exploration
problems [5] or to predict note sequences in musical composi-
tions [18]. In software engineering, genetic algorithms have been
applied to fixing software bugs [10] and software optimization [6].
Genetic programming is a sub-area of genetic algorithms focused
on evolving programs [2, 21, 35]. An evolutionary approach has
also been applied to crowd-sourcing creative design, where work-
ers iteratively improved and blended design sketches of a chairs
and alarm clocks [31]. Our work introduces a novel use of crowd-
sourcing to both crowd-source initial programs and to automati-
cally refine the training set and the fitness function through crowd-
sourcing.

Program analysis and synthesis: In the theory of abstract inter-
pretation, widening operators are used to compute a valid abstrac-
tion for some function [7]. Our use of the mutation and crossover
operations to refine or blend SFAs follows the spirit of this ap-



proach and may be one path towards applying program boosting
to domains where abstract interpretation has seen much success,
e.g., static analysis. Recent work has investigated automatic syn-
thesis of program fragments from formal and example based spec-
ifications [15, 16, 38, 39]. A specification which defines program
behavior can be viewed as a search problem for which constraint
solvers or customized strategies can be applied. These approaches
use formal methods to aid in the construction of the low-level im-
plementation of a specification. In our technique, the initial speci-
fication may be open to interpretation or not fully defined. We take
advantage of the crowd to refine our specification and improve the
correctness of a collection of implementations.

Learning regular expressions: Automatic generation of regular
expressions from examples has been explored in the literature for
information extraction. In the context of DNA analysis, events can
be extracted from DNA sequences by learning simple regular ex-
pressions that anchor the relevant strings [11]. Others use transfor-
mations on regular expressions themselves, rather than a DFA rep-
resentation [4, 14, 26]. In contrast, our approach uses the power of
symbolic automata to manipulate complex expressions containing
large alphabets. We are not aware of traditional learning approaches
suitable for learning regular expressions that contain Unicode, due
to the large alphabet size.

Learning DFAs: Grammatical inference is the study of learning a
grammar by observing examples of an unknown language. It has
been shown that a learning algorithm can produce a new gram-
mar that can generate all of the examples seen so far in polyno-
mial time [12]. Many variants of this problem have been studied,
including different language classes and different learning models.
Relevant to this paper is the study of producing a regular language
from labeled strings, where the learning algorithm is given a set
of positive and negative examples. This problem has been shown
to be hard in the worst case [19, 34], but many techniques have
been demonstrated to be practical in the average case. The L-star
algorithm [1] can infer a minimally accepting DFA but assumes
that the target language is known and that hypothesized grammars
can be checked for equivalence with the target language. Recent re-
sults [30] extend to large alphabets but still require strong assump-
tions about the oracle. State merging algorithms [23] relax the re-
quirement for a minimal output, and work by building a prefix-tree
acceptor for the training examples and then merge states together
that map to the same suffixes. A number of extensions to this tech-
nique have been proposed [22, 24, 32]. Evolutionary approaches to
learning a DFA from positive and negative examples have also been
proposed [28, 29].

7. Conclusions

This paper presents a novel crowd-sourcing approach to program
synthesis called program boosting. Our focus is difficult program-
ming tasks, which even the most expert of developers have trouble
with. Our insight is that the wisdom of the crowds can be brought
to bear on these challenging tasks. In this paper we show how to
use two crowds, a crowd of skilled developers and a crowd of un-
trained computer workers to successfully produce solutions to com-
plex tasks that involve crafting regular expressions.

We have implemented program boosting in a tool called
CROWDBOOST and have tested it on four complex tasks, we have
crowd-sourced 33 regular expressions from Bountify and several
other sources, and performed pairwise boosting on them. We find
that our program boosting technique is stable: it produces consis-
tent boosts in accuracy when tested on 465 pairs of crowd-sourced
programs. Even when starting with initial programs of high quality
(fitness), crowd-sourced from qualified developers, we are consis-
tently able to achieve boosts in accuracy, averaging 16.25%.
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A. Appendix

To provide intuition on the type of results produced by our tech-
nique we present two examples. These are not necessarily the the
highest fitness results; some of these are sampled after several gen-
erations. The complexity of the evolved results is due to two fac-
tors: the regular expressions are obtained using the classical trans-
formation from automata which in general produces large results,
and the classifiers have to take into account many corner cases.

Task: Email
Fitness: 0.935714285714286
Result:
^(([+-0-9A-Z\_a-z](([+-0-9A-Z_a-z]|\(\)*[+-0-9A-Z_a-z]))*
(@[-0-9A-Za-z]([-0-9A-Za-z])*.[A-Za-z][A-Za-z]|\(\)*@[-0-
9A-Za-z]([-0-9A-Za-z])*@[-0-9A-Za-z]([-0-9A-Za-z])*.[A-Za
-z][A-Za-z])(([A-Za-z]|))*|[+-0-9A-Z\_a-z](([+-0-9A-Z_a-z
]|\(\)*[+-0-9A-Z_a-z]))*(.[^\x0A][-0-9A-Z_a-z]|\(\)*(([\0
-\x09\x0B-*,./:-?[]^‘{-\uFFFF][-0-9A-Z_a-z]|@_)|@[-0-9A-Z
a-z]([-0-9A-Za-z])*_))(([-0-9A-Z_a-z]|\[^\x0A][-0-9A-Z_a-
z]))*@[-0-9A-Za-z]([-0-9A-Za-z])*.[A-Za-z][A-Za-z](([A-Za
-z]|))*))$

Task: Phone numbers
Fitness: 0.897959183673469
Result:
^((((((([02-9]|+1([0-9]|[\x20-.][0-9]))|((|+1((|[\x20-.](
))[0-9])([0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0
-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|(([0
2-9]|+1([0-9]|[\x20-.][0-9]))|((|+1((|[\x20-.]())[0-9])[0
-9][0-9][\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9
][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([02-9]|+1([0-
9]|[\x20-.][0-9]))|((|+1((|[\x20-.]())[0-9])[0-9][0-9])((
[0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-
.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9
][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))
)|1(_)*((([0-9][0-9][0-9]([0-9][0-9][0-9][0-9][0-9][0-9](
[0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[0-9]
[0-9][0-9][0-9])|([0-9]([0-9][0-9][0-9][0-9][0-9][0-9][0-
9][0-9][0-9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][
0-9][0-9]))|(([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])
|([0-9][0-9][0-9][\x20-.])([0-9][0-9][0-9][0-9][0-9][0-9]
[0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))|(([0-
9][0-9])|[0-9][0-9][0-9]))|([0-9][0-9][0-9]))(([0-9][0-9]
[0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-
9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9
]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9]))))|1(_)*[\
x20-.](1_)*(((((((([0-9][0-9]([0-9][0-9][0-9][0-9][0-9][0
-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])[
0-9][0-9][0-9][0-9])|(([0-9][\x20-.]|([0-9][0-9][\x20-.])
([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20
-.][0-9][0-9][0-9][0-9]))|1[0-9][0-9][0-9]([0-9][0-9][0-9
][0-9][0-9][0-9]([0-9])?|([0-9][0-9][\x20-.]|[0-9][0-9][0
-9][\x20-.])[0-9][0-9][0-9][0-9]))|(([02-9]|+1([0-9]|([0-
9]))|1([0-9])([0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-
9]|[0-9][0-9][0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])
)|(1([0-9][0-9][\x20-.]|[0-9][0-9][0-9][\x20-.])|(([02-9]
|+1([0-9]|([0-9]))|1([0-9])[0-9][0-9][\x20-.])([0-9][0-9]
[0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-
9][0-9][0-9]))|(+1[\x20-.]|1[\x20-.])(([0-9]|([0-9])([0-9
][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9]
[0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|([0-9]|([0-9])[0-
9][0-9][\x20-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9]
[0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])))|(([0-9])|([0-9]
[0-9]))(([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0
-9][\x20-.][0-9][0-9][0-9][0-9])|[\x20-.]([0-9][0-9][0-9]
[0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-
9][0-9])))|((1([0-9][0-9])|[0-9][0-9][0-9]))|(([02-9]|+1(
[0-9]|([0-9]))|1([0-9])[0-9][0-9]))|(+1[\x20-.]|1[\x20-.]
)([0-9]|([0-9])[0-9][0-9]))(([0-9][0-9][0-9][0-9][0-9][0-
9][0-9]|[0-9][0-9][0-9][\x20-.][0-9][0-9][0-9][0-9])|[\x2
0-.]([0-9][0-9][0-9][0-9][0-9][0-9][0-9]|[0-9][0-9][0-9][
\x20-.][0-9][0-9][0-9][0-9])))))$


