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A METHOD OF FINDING ALL EQUILIBRIUM SOLUTIONS

OF A 2-PERSON MATRIX GAME

H.P. Williams
Faculty of Mathematical Studies

University of Southampton, U.K.

Abstract
It is shown how all the equilibrium solutions of a 2 person
non-cooperative game can be derived from {;;.Q;rtices of two polytopes.
Such vertices must be orthogonal in a manner described. A numerical
example is used to illustrate the method. Two types of games, zero-sum
and evolutionary games are shown to be special cases with special

properties. Finally some further areas for investigation are

considered.
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1. INTRODUCTION

We consider a 2-person game in which person A has payoff

and person B has payoff

z = Y bU X Y, (2)
1€l

jeJ

if A and B play mixed strategies x and y respectively. The

vectors X and y are probability vectors where

Y x =1, ) y, = 1 (3)
1€1 jes

x 20,y =0 for iel, jel (4)

I and J are finite index sets

Such a game can be defined by presenting 2 mxn payoff
matrices. A specific numerical example is given, in section 3, of a
game which one player has 3 pure strategies and the other 4 pure
strategies. Both players can mix their strategies.

A Nash Equilibrium is defined as a solution

= * * * *
S [(§ » 2y, (y*, zB)] (5)
such that
* = * i% > *
zy Y y X JJ z ¥ aiJ X v} (6)
1€1 1€1
j€J jeJ
for all x =20, i€l such that } x =1
1€1
and



z* = Y b xr y*=2 ¥ b xf y (7)
B 1€1 I e
1€J jEJ

for all y 20, jeJ such that } y =1
] jed

The interpretation of (6) and (7) is that if A and B play
the mixture of strategies in S then A cannot do better by deviating
to another strategy (so long as B maintains his strategy) nor can B
do better by deviating to another strategy (so long as A maintains his
strategy).

The concept of a Nash equilibrium was defined by Nash [10] who
proved that, allowing mixed strategies, at least one such equilibrium
always exists. A discussion can be found in Luce and Raiffa [6] or the
more up-to-day references of, for example, Friedman [3] or Thomas [11].

In section 2 we define two polytopes, one corresponding to
each player. Then it is shown that if a vertex of one bears an
"orthonality" relationship to a vertex of the other these vertices
correspond to an equilibrium solution. We reference a number of methods
of generating all the vertices of a polytope which can be used. The
recognition that the equilibrium solutions of such games arise from the
extreme solutions of these polytopes is due to Kuhn [4]. He uses a
different method of devising them. A numerical example is given in
section 3, together with all the vertices of each of the associated
polytopes. The "orthogonal" pairs are then picked out and the
corresponding equilibrium solutions presented.

Two particular instances of 2-person games are taken in
section 4, as special cases which prove particularly interesting.
Firstly we consider the familiar zero-sum game. Secondly we consider
evolutionary games. In each case the associated polyhedra bear a

special relationship to each other leading to special properties of the

solutions.



Finally, in section 5, we give some discussion of other areas
of investigation and further references.

2. POLYTOPES ASSOCIATED WITH EACH PLAYER

We define a polytope PA associated with player A to be the

set of feasible solutions (y, z,) to the inequalities and equation

L a vy -z =0, all iel (8)
jes J 73
P
A
Y yj = 1 9)
j€J
y z0 all jelJ (10)

Similarly we define the polytope PB associated with player

B to be the set of feasible solutions (x, zA) to the inequalities and

equation
Y bij x -z, =0 all jelJ (11)
1€1
P:
&
Y X = 1 (12)
1€1
x =0 all iel (13)

Theorem 1. An equilibrium solution S 1is either a pair of vertex
solutions of PA and PB or a pair of solutions, either or both of,
which is a convex linear combination of other equilibrium solutions

which are vertex solutions and have the same value of z.

Proof. Suppose S given in (5) is an equilibrium solution then (6)
holds. Taking x = (0,0,...,0,1,0,...,0) with the 1 in column i we
have
* * .
z} =z Y iy Y] all i el (14)
j€J



Hence (y*, z,) is a feasible solution to P,

Also
- * % > * C -
zy Lx}zy = Y X} Y a v z, (15)
1€1 1€1 = j€J
Therefore
x*>0—> Y a  y* = z* for all i eI (16)
1 ey B A

We now construct an objective function for PA in order to
show that (y*, zA) is an optimal solution to P, with respect to

this objective function.

N = * 3 *
Define c, Y a Xy + oz if vy > 0 (17)
1€1
= * - i * =
c, L a xt+z-l if y 0 (18)

i
i€l ]

Consider the Linear Programme

Maximise Yy cy - z, (19)
jes J 73
LPA:
sub ject to (y, z,) € P, (20)

for which we have shown (y*, z:) is a feasible solution. The dual LP

is
Minimise ZB (21)
subject to Ya X +z zc all j e J (22)
. i1y 71 B j
ier
LPA’ :
Y x, =1 (23)
1€1
x =20 all iel (24)

(x*, zg) is a feasible solution to this dual model and also

*> 0 > a x* + z =
Y] 121 28 5 c, (25)

by virtue of the definition of c, in (19) and (20).



Therefore we have feasible solutions (y*, z:) and (x*, z;)
to LPA and LPA’ respectively which satisfy the orthogonality
(complementarily) conditions (16) and (25). By the duality theorem of
Linear Programming (see e.g. Dantzig [1]) this is sufficient to prove
the optimality of (y*, z:) for LP.

If there are no alternate optimal solutions then this solution
is a vertex solution of PA . Again this is a standard result which
applies to linear programmes where polytopes are pointed (as is PA).
Should there be alternate optimal solutions then there are alternate
optimal vertex solutions which are equilibrium solutions with the same
value of 2: . The non-vertex optimal solutions can each be expressed
as convex linear combinations of these vertex solutions.

Similarly we define

= * s *
d, Y blj v} + z, if x¥>0 (26)
j€I
= * - i * =
d, Y bij vy} vz, -1 if x¥ =0 (27)
j€J

and the linear programme associated with PB

Maximise Y d x -z (28)
1€1 !
LPB:
subject to: (x, ZB) € PB (29)

and its dual

Minimize z,
LPB’ :
subject to Y bij y+z zd all 1 eI (30)
j€J
Ly =1 (31)
j€I
y. =20 all jeJ



It can be shown, in the same manner as that above, that
(x*, zB) and (y*, zA) are feasible solutions to LPB and LPB’

respectively and that they satisfy the orthogonality relations

* [ - * .
yj >0 — ) bij X7 z} all jelJ (32)
1€1
X¥*>0—> Yb y*¥+2*¥ = d all i €I (33)
i 1e iy 71 A i

Therefore (x*, ZB) is either a vertex of PB or a convex
linear combination of vertex solutions which are also equilibrium

solutions. o

Theorem 2. If (y*, zA) and (x*, zB) are feasible solutions to PA

and PB respectively and the following orthogonality conditions hold

* * = * .
x¥ >0 — Y a vy zy all i eI (34)
J€I
* 5 * = % 3
and i 0 —eigl bij X} z} all jeJ (35)

then S = [(x*, z:), (y*, z;)] is an equilibrium solution.

Proof.
Lx*¥ ¥y a y* = 2z*¥ since x* >0 > Ya x* = z (36)
ter ' ogey Y7 A 1 jer M1 A
* * 3 3 *
jé; aij yj =z} for all i e I since (y*, zA) € PA (37)

Therefore taking any x such that x =2 0 for all i e€ I and

Y x =1
1€1

Lx Y a y* = z*¥ Yx = z*
1€l 1 jedJ 13 A i€l ! A

Hence condition (6) for an equilibrium solution is satisfied.

Similarly we prove that condition (7) is satisfied, and that therefore

S 1is an equilibrium solution. o



We can therefore search for vertex solutions (y¥*, z:) of PA
and (x*, z;) of PB which satisfy the orthogonality conditions (16)
and (32). Such solutions will therefore be equilibrium solutions. If
there are any other equilibrium solutions they will be convex
combinations of vertex equilibrium solutions which have been generated
having equal values of z.

Kuhn [4] evaluates the extreme solutions of the polytopes by a
method of submatrices. We prefer to view the result in a more general
context. There are a number of methods of generating all vertices of a
polytope defined by inequalities and equations. For the example in
section 3 we used the method described by Williams [12] which has been
programmed. Other methods are described by Dyer and Proll [2] and
Mattheiss and Rubin [7]. It should be pointed out that the number of
vertices of a polytope can become very large, even for a modest number
of variables and inequalities. McMullen [9] shows that a strict upper

bound on the number of vertices of a polytope defined by m

inequalities (including non-negativities) and n variables is

n+1 n+2
m- | — m- | -
[z ], |2 ] (38)
m-n m-n
P _ P(p-1)... (p-g+1)
Where [ ] ~ q(g-1)... 3.2.1

3. A NUMERICAL EXAMPLE

We consider a game in which A has 3 pure strategies and B

has 4 pure strategies. Mixtures of these strategies are allowed.

2 -1 -3 4 0 -1 3
[aij] = 0 -1 2 1 ) [biJ] = |-1 2 0
-2 3 0 2 4 -2



The associated polytopes are

2 3 4 A
- + - = 0
PA 2y1 + 3y2 y3 zA
vy, Yy, t vt Y, = 1

and
4 - X + 2X_ - z = 0
1 2 3 B
2X + X -z = 0
2 3 B
P - X + 4x - z = 0
B 1 B
33X + X -2X -z = 0
1 2 3 B
X + X + X = 1
1 2 3
X, x,x z0
1 3

It is convenient to express the vertices as 7-tuples. For P the

A

first 4 entries will give values for yl,...,y4, and the latter 3
entries values for the slacks in the first 3 constraints. For PB the
first 3 entries will give values for xl,...,xa, and the latter 4

entries values for the slacks in the first 5 constraints. It will then
be straightforward to check for orthogonality by comparing the first 4
entries in a vertex for PA with the latter 4 entries in the vertex for
PB and the latter 3 entries in the vertex for PA with the first 3

entries in that for PB. In each case the pairs of vectors must be

orthogonal for the condition to apply.
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It can be seen that the following are orthogonal pairs

(39) and (50)
(40) and (55)
(44) and (57)

(46) and (53)

Notice that (44) and (57) corresponds to A and B both playing their 15t
pure strategies. The other three equilibria arise from mixed
strategies.
With hindsight it is possible to construct objective functions
for P and P_ .
A B
Equilibrium solution (39), (50) arises from the following

objectives for PA and PB respectively

Maximise SV, t Y, Y, Y5y, 2, (59)
Maximise B+ lx +1lx-2 (60)
3271 272 273 b
Equilibrium solution (40), (55) arises from the following
objectives for PA and PB respectively
- 7 4 2
+ 7 4 2 -
Maximise 3y1 SY, tSY, Y3, "2, (61)
- 2 1
Maximise 4x + 2 x + -x_ -2 (62)
1 572 573 B
Equilibrium solution (44), (57) arises from the following
objectives for PA and PB respectively
Maximise Sy1 + 5y2 + 2y3 -z, (63)
Maximise 5x1 - 5x + 2% - z_ (64)

Equilibrium solution (46), (53) arises from the following

objectives for PA and PB respectively

11



1 11 16 11
imi - - + = + — + — -z (65)
Maxinmise 5 y1 5 yz 5 y3 5 y4 A
9 24
imi -Zx +2x +Z=x -2 (66)
Maximise 1 s %5 s X5 B

4. SPECIAL CASES

Zero-Sum Games

In this case

b = -a (67)
1] 1)

Constraints (11) of PB can then be written as

Yy a x +z =0 all jelJ (68)
1] 1 B
1€1
1f cJ is taken as 0O , PB then gives rise to the constraints (22),

(23) and (24) of LPA’. Hence equilibrium solutions will be obtained
from solutions to dual linear programming models. An objective function
for PA which generates these equilibrium solutions is (19), which,

with cJ = 0, 1is equivalent to
Minimise z, (69)

and the objective function for PB is (21) i.e. the objective which

produces equilibrium solutions is to minimise ones maximum, (minimax)

payoff. This is of course a well known result discussed in the
references [3], [6] and [11] already given. Orthogonality of A and

B’s solutions will be automatic as a result of the duality theorem.

Evolutionary Games

These originate with Maynard Smith [8] and the corresponding
polytopes derived by Williams [13]. From the discussion in these

references it can be seen that

bij = aji (70)

12



Such games can therefore only be defined for square payoff matrices where

m = n.

Constraints (11) of PB become

Y a X T S 0 all jelJ (71)
je1

If indices and variables are appropriately renamed these constraints
become identical with (8). Therefore PA and PB become the same
polytopes. We need only examine vertices of PA and consider those
which are "self orthogonal”.

A subset of these resultant equilibrium solutions are known as
evolutionary stable states and have a significance discussed in (7].

Their derivation is discussed in [13].

5. FURTHER CONSIDERATIONS

It was pointed out in section 2 that the number of vertices of
a polytope can grow rapidly with the number of variables and
constraints. Therefore the method of finding all equilibrium solutions
presented here may become expensive in time and space. It should be
observed, however, that the number of equilibrium solutions may itself
be very large making the generating of all of them intrinsically
expensive.

An alternative approach is to generate only some. This can be
done using the Linear Complementarity algorithm of Lemke [5]. The
disadvantage of this approach is that those equilibrium solutions which
are generated is arbitrary depending on ones starting points. Also
there is no way of knowing how many equilibrium solutions should be
sought.

It would be 1interesting to seek an interpretation of the
objective function (19) and the coefficients cj in general. For the

zero-sum case there is a clear interpretation.

13
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