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We analyze the security and the efficiency of interactive protocols where a client
wants to delegate the computation of an RSA signature given a public key, a pub-
lic message and the secret signing exponent. We consider several protocols where
the secret exponent is splitted using some algebraic decomposition. We first
provide an exhaustive analysis of the delegation protocols in which the client out-
sources a single RSA exponentiation to the server. We then revisit the security of
the protocols RSA-S1 and RSA-S2 that were proposed by Matsumoto, Kato and
Imai in 1988. We present an improved lattice-based attack on RSA-S1 and we pro-
pose a simple variant of this protocol that provides better efficiency for the same
security level. Eventually, we present the first attacks on the protocol RSA-S2
that employs the Chinese Remainder Theorem to speed up the client’s compu-
tation. The efficiency of our (heuristic) attacks has been validated experimentally.

Keywords: RSA; Exponentiation outsourcing; Lattice-based cryptanalysis; Coppersmith’s
methods; RSA-S1; RSA-S2.

1. INTRODUCTION

Cryptographic operations are performed everywhere,
from standard laptop to smart cards. The compu-
tational resources can be very limited on certain de-
vices (like radio-frequency identification tags), and it
becomes very natural, as most of the devices are online
or directly connected to a powerful device (like a SIM
card in a smart phone) to securely delegate some sensi-
tive and costly operations to a device capable of carry-
ing out cryptographic algorithms. Outsourcing crypto-
graphic computations is a classical problem which was
formalized in [1] (with protocols to outsource the com-
putation of group exponentiation for instance).

Recently, Chevalier, Laguillaumie and Vergnaud [2]
provided simple constructions for outsourcing group
exponentiations in different settings (e.g. public/secret,
fixed/variable bases and public/secret exponents) in
groups of known prime order. They showed that
their constructions are essentially optimal in terms of
operations in the underlying group. Their constructions
can be used in unknown order groups but it is not
clear whether they are optimal in this context. In
this paper, we analyze the security and the efficiency
of delegation protocols for RSA exponentiations when
the secret exponent is splitted using some algebraic
decomposition.

1.1. Related Work

In the last 30 years, the question of how a
computationally limited device may outsource group
exponentiation to another, potentially malicious, but
much more computationally powerful device has been
a very active research topic (e.g. [3, 4, 5, 6, 7, 8,
9, 2]). Many solutions have been proposed and then
cryptanalyzed in follow-up papers (e.g. [10, 11, 12, 13,
14, 2]).

In 2005, Hohenberger and Lysyanskaya [1] proposed
a formal security definition for securely outsourcing
computations. They showed how to securely outsource
group exponentiation to two, possibly dishonest,
servers that are physically separated (and do not
communicate). Their protocol achieves security as long
as one of them is honest (even if the computationally
limited device does not know which one). In this paper,
since this separation of the two servers is actually a
strong assumption, we consider delegation to a single
computationally stronger server.

In [2], Chevalier et al. proposed a taxonomy of
exponentiation delegation protocols that covers all the
practical situations : the group elements can be secret
or public, variable or fixed, the exponents can be secret
or public, and the result of the exponentiation can also
be either public or secret. In this paper, we consider the
main use case in the setting of RSA exponentiation: a
client wants to delegate the computation of a signature
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given a public key (N, e), a public message (or hash
value of a message) m and the secret signing exponent
d. By outsourcing some exponentiations to a server,
the delegation protocol outputs a (public) signature
σ = md mod N .

In all the proposed protocols, the basic idea is to let
the server perform the main part of the computation,
without giving it enough information to reconstruct
the secret exponent d. Most proposed protocols are
variants of two protocols (named RSA-S1 and RSA-
S2) that were proposed by Matsumoto, Kato and
Imai in 1988 [3]. Both schemes use a random linear
decomposition of the RSA private exponent d. The goal
of the present paper is to present attacks against these
protocols for RSA exponentiations.

1.2. Our Contributions

Our contributions are manyfold:

• Analysis of protocols outsourcing a single
exponentiation. As a first contribution, we
analyze the delegation protocols in which the client
outsources a single RSA exponentiation to the
server. Such schemes generically decompose the
secret exponent d among one of the following three
sharing schemes: additive splitting, multiplicative
splitting or mixed splitting. The security of the
first scheme is closely related to the well-known
partial-key exposure (e.g. see [15, 16, 17, 18]).
We propose attacks for the two other paradigms
that makes use of ideas proposed by Boneh
and Durfee in their seminal paper on the small
secret exponent cryptanalysis of RSA [19]. To
counter active attacks against delegation protocols,
Pfitzmann and Waidner [12] suggested to renew the
decomposition of the secret key after each signature
generation in Server-Aided RSA protocols. We
also present improved attacks against these server-
aided protocols when the adversary is allowed to
observe several executions of the protocol (with
independent random decomposition).

• Cryptanalysis of RSA-S1. In 2000, Merkle
proposed an efficient lattice-based multi-round
passive attack against RSA-S1. Merkle’s attack is
probabilistic and its success probability decreases
rapidly if the linear decomposition of the secret
exponent is limited to small dimensions. Nguyen
and Shparlinski [10] proposed one year later a
single-round passive attack on the RSA-S1 Server-
Aided protocol which recovers the factorization of
the RSA modulus when a small public exponent e
is used (namely e < N1/2). We combine these two
approaches and we propose a (heuristic) lattice-
based attack that works even if the public exponent
is large and the linear decomposition of d is limited
to small dimensions. We also propose and analyze a
variant of the protocol RSA-S1 which is interesting
for clients with limited memory. In this setting,

the variant achieves better efficiency for the same
security level.

• Cryptanalysis of RSA-S2. The protocol RSA-
S2 employs the Chinese Remainder Theorem to
speed up the client’s computation. Castelluccia,
Mykletun and Tsudik [7] revisited in 2006 the RSA-
S2 protocol to propose a technique for re-balancing
RSA-based client/server handshakes. They
mentioned a meet-in-the-middle attack against
RSA-S1 but claimed that “〈 this 〉 attack 〈. . . 〉
does not apply to the 〈 RSA-S2 〉 protocol”. They
proposed several security parameters for RSA-S2.
We propose a simple exponential-time algorithm
that break all these security parameters using
multi-evaluation of polynomials.
In [10], Nguyen and Shparlinski stated in their
paper that: “Interestingly, it seems that the
〈 lattice-based 〉 attacks 〈. . . 〉 do not apply to the
RSA-S2 protocol.” We also present two lattice-
based attacks against RSA-S2 that break most
parameters proposed by Castelluccia et al. (even if
one updates them in order to prevent our meet-in-
the-middle attack).

The efficiency of our (heuristic) attacks has been
validated experimentally.

2. PRELIMINARIES

2.1. Lattices

A lattice L is a discrete additive subgroup of a
Euclidean space. If L is a lattice in the n-dimensional
space Rn, then we can also define L as the set of
all linear integer combinations of linearly independent
vectors b1, . . . , bk ∈ Rn and:

L = {
k∑
j=1

ajbj : aj ∈ Z}.

The set B = {b1, . . . , bk} is called a basis of the lattice
L and the integer k its dimension or rank. A lattice
L ⊂ Rn has full rank if its dimension equals n. If
B = {b1, . . . , bk} ⊂ Rn is a basis of a lattice L,
then B can be represented by the matrix M with k
rows and n columns having the basis vectors as rows
and its determinant denoted det(L) is defined to be
det(MMT )1/2, where MT is the transpose matrix of
M . If L is full rank, then its determinant is simply
|det(M)|. The following lemma [20] relates the norm of
the shortest vector in a lattice to its determinant.

Lemma 2.1. (Minkowski) Let L be a lattice of
dimension ω. there exists a non-zero vector v with
Euclidean norm:

‖v‖ 6
√
ω det(L)1/ω.

In 1982, Lenstra, Lenstra and Lovász introduced the
famous LLL algorithm [21] which on input an arbitrary
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basis of a lattice L outputs in polynomial time a so-
called reduced basis of L made of “short” vectors.
The basis vectors of an LLL-reduced basis satisfies the
following property.

Lemma 2.2. ([21]) Let L be an integer lattice of
dimension ω generated by k vectors with Euclidean
norm at most B . In polynomial time in ω, k and logB,
the LLL algorithm given as input this basis of L outputs
a reduced basis of L formed by vectors vi, 1 6 i 6 ω
that satisfy:

‖v1‖ 6 ‖v2‖ 6 . . . 6 ‖vi‖ 6 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i .

In particular, for i = 1, the LLL algorithm outputs

a vector v1 with norm ‖v1‖ 6 2
ω−1

4 det(L)
1
ω . This

approximation factor for the shortest vector of the
reduced basis is exponentially large in the lattice
dimension ω compared to the bound given by Lemma
2.1. However, in the following, we will often use the
LLL algorithm as a “short vector oracle” (since this
approximation factor translates in a constant factor for
the upper-bound on the size of the roots in Coppersmith
methods).

The Gaussian heuristic predicts the number of lattice
points (for a random lattice) inside a measurable body
and applied to Euclidean balls, it leads to the prediction
that the length of the shortest vector in random lattice
is equal to the bound given by Lemma 2.1 (up to some
constant multiplicative factor). In the following, we
will use the heuristic that if the norm of a specific
vector is significantly smaller than the bound given by
Lemma 2.1, then it is likely the shortest vector in L
and that we can recover it (in polynomial time) using
the LLL algorithm. We will apply this heuristic even if
our constructed lattices are not random but it will be
validated experimentally.

2.2. Coppersmith’s Methods

In this section, we provide a short description of the
classical Coppersmith method [22, 23] for finding small
roots of a multivariate modular polynomial system of
equations modulo an integer K. We refer the reader to
[24] for details and proofs.

2.2.1. Problem definition.

Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) with indetermi-
nates yi, for i ∈ {1, . . . , n} be irreducible multivariate
polynomials defined over Z, having a root (x1, . . . , xn)
modulo an integer K namely fi(x1, . . . , xn) ≡ 0
mod K. Our goal is to recover the desired root
(x1, . . . , xn) in polynomial time.

To do so, we create n polynomials (see below)
h̃i(y1, . . . , yn), i ∈ {1, . . . , n} having as root (x1, . . . , xn)
over the integers. We hope that the n created
polynomials define an algebraic variety of dimension
0 in order to recover the desired root in polynomial

time. This problem is generally intractable but
becomes solvable in polynomial time (under some
conditions) if the absolute value of each component of
the root (x1, . . . , xn) is upper-bounded by some values
(X1, . . . , Xn) that depends on K and the degree of the
polynomials f1, . . . , fs.

2.2.2. Polynomials collection.
In a first step, one generates a larger collection P of
polynomials {f̃1, . . . , f̃r} linearly independent having
(x1, . . . , xn) as a root modulo Km, for some positive
integer m. Usually, the technique consists in taking
product of powers of the moduli K, the polynomials fi
for i ∈ {1, . . . , s} and some well-chosen monomials, such
as

f̃` = pm−
∑s
j=1 kj,`y

α1,`

1 · · · yαn,`n f
k1,`
1 · · · fks,`s

for some positive integers α1,`, . . . , αn,`, k1,`, ks,`. Such

polynomials satisfy the relation f̃`(x1, . . . , xn) ≡ 0
mod Km.

2.2.3. Lattice construction.
In a second step, one denotes as M the set of monomials
appearing in collection of polynomials P, and one writes
the polynomials f̃i(y1X1, . . . , ynXn) for i ∈ {1, . . . , r}
as a vector bi ∈ (Z)ω, where ω = ]M. Namely
If we put M = {m1, . . . ,mω}, where mi < mi+1

for a defined order < on M, for i ∈ {1, . . . , r} we
can write f̃i(y1X1, . . . , ynXn) =

∑ω
j=1 cijmj for some

coefficients cij ∈ Z and then bi = (ci1, . . . , ciω) ∈ (Z)ω.
Conversely, one can write a vector v ∈ (Z)ω as a
polynomial f̃(y1X1, . . . , ynXn) ∈ Q[y1, . . . , yn] . One
then constructs a lattice L generated by the vectors
b1, . . . , br and computes its reduced basis using the LLL
algorithm.

2.2.4. Generating new polynomials.
In a third step, one combines Lemma 2.3 be-
low [25] and the Lemma 2.2 to get n polynomials
g1(y1, . . . , yn),. . . ,gn(y1, . . . , yn) having (x1, . . . , xn) as
a root over the integers.

Lemma 2.3. (Howgrave-Graham) Let W be some
positive integer. Let h(y1, . . . , yn) be a polynomial over
Z having at most ω monomials. Suppose that:

1. h(x1, . . . , xn) = 0 mod W for some |x1| <
X1, . . . , |xn| < Xn and,

2. ‖h(X1y1, . . . , Xnyn)‖ 6 W√
ω

.

Then h(x1, . . . , xn) = 0 holds over the integers.

The LLL algorithm run on the lattice L to obtain
n reduced vectors vi, i ∈ {1, . . . , n} that we see as
some polynomials h̃i(y1X1, . . . , ynXn), i ∈ {1, . . . , n}.
One can see that for i ∈ {1, . . . , n}, h̃i(x1, . . . , xn) = 0
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mod Km, since h̃i is a linear combination of f̃1, . . . , f̃r.
Then if the following condition holds:

2
r(r−1)

4(r+1−n) det(L)
1

r+1−n <
Km

√
ω
,

by Lemmas 2.2 and 2.3, h̃i(x1, . . . , xn) = 0, i ∈
{1, . . . , n} holds over the integers and we then obtain
n polynomials having (x1, . . . , xn) as a root over the
integers.

2.2.5. Success Condition.
In our attacks, the number of polynomials in the first
step is equal to the number of monomials that appears
in the collection, so r = ω = ]M. In the analysis, we
let (as usual in this setting) small terms contribute to
an error term ε, and the simplified condition becomes:

det(L) < Kmω.

We have no assurance that the n created polynomials
are algebraically independent. Under the (heuristic)
assumption that they define an algebraic variety of
dimension 0, the previous system can be solved (e.g.,
using elimination techniques such as Gröbner basis)
and the desired root recovered in polynomial time. In
this paper, we assume that these polynomials define
an algebraic variety of dimension 0 and we justify the
validity of our attacks by computer experiments even
when the dimension is non-zero.

2.3. Multi-exponentiation

Algorithm 1 computes the multi-exponentiation

t∏
i=1

gxii ∈ G,

for g1, . . . , gt ∈ G and x1, . . . , xt ∈ N (see [26, 27] for
details of different multi-exponentiation techniques).

Complexity: The precomputed table contains 2t −
t − 1 non-trivial entries that require one general
multiplication each. The total cost is for the
precomputation phase 2t − t − 1 multiplications and
`(2t − 1)/2t 6 ` multiplications on average and `
squarings. Although many time/memory tradeoffs are
possible (e.g. using windows), for efficiency analysis, we
consider in the following only delegation protocols that
use this algorithm for client exponentiation.

3. DELEGATION OF A SINGLE MODULAR
EXPONENTIATION

We focus in this section on protocols for outsourcing
modular exponentiation (in groups of secret order) in
which the client outsources only one exponentiation to
the server.

More precisely, we consider the setting where the
client’s public key is an RSA modulus N = pq where

Algorithm 1 Multi-Exponentiation Algorithm

Require: g1, . . . , gt ∈ G, x1, . . . , xt ∈ N with ` =
maxi∈{1,...,t}dlog xie and

xj =
∑`−1
i=0 ei,j2

i ∈ N and ei,j ∈ {0, 1} for i ∈
{0, . . . , `− 1} and j ∈ {1, . . . , t}

Ensure: gx1
1 · · · g

xt
t ∈ G

for all non-zero t-tuples E = (E1, . . . , Et) ∈ {0, 1}t
do
gE ←

∏
16i6t ag

Ei
i � Precomputation stage

end for
h← 1G
for i from `− 1 to 0 do
h← h2

E ← (ei,1, ei,2, . . . , ei,t)
h← h · gE � Multiply h by table entry
gE =

∏
16k6t g

ei,k
i

end for
return h

p and q are primes which are “balanced” (i.e. p and q
are the same bit-size and p, q ' N1/2) together with a
public exponent e such that e ' Nα for some α > 0. In
the rest of the paper, p and q have approximately the
same sizes and p, q ' N1/2 simply means that p and q
are the same bit-size. Most standard implementations
of RSA use very small public exponent such as e ∈
{3, 5, 17, 257, 65537} and the case α ' 0 is of very strong
practical importance. The client’s secret key is defined
by d = e−1 mod ϕ(N) where ϕ(N) = (p − 1)(q − 1) is
the Euler totient function.

The client has to compute c = md mod N for some
variable m ∈ Z∗N (which is assumed to be public) and it
is allowed to query the server on a single triple (m, r,N)
to get c′ = mr mod N . Using its knowledge of d and
c′, the client eventually outputs c. Using only the
multiplicative structure of ZN , the client can compute
c in essentially three different ways:

• c = md1 · c′ mod N , which corresponds to an
additive splitting of the secret key as d = d1 +
r mod ϕ(N);

• c = c′d1 mod N , which corresponds to a
multiplicative splitting of the secret key as d =
r · d1 mod ϕ(N);

• c = md1c′d2 mod N , which corresponds to a mixed
splitting of the secret key as d = d1 + r · d2 mod
ϕ(N).

In order to be computationally efficient for the client,
these protocols should use small d1 and d2. However, it
is worth noting that the value r can be picked arbitrarily
(and in particular it may be larger than ϕ(N)). We
present attacks on these three protocols when d1 and
d2 are too small.
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3.1. Server-Aided Protocol with Additive
Splitting

In the server-aided protocol with additive splitting (see
Fig. 1), the secret d is decomposed as d = d1 +
r mod ϕ(N), where d1 ' Nδ is kept secret by the client
and

r = [(d− d1) mod ϕ(N)] + kϕ(N)

is known where k is some unknown integer with k '
Nβ1 .

Putting d? = d1 +r, then d = d? mod ϕ(N) and d? '
Nβ , with β = 1+β1. The adversary knows r ' Nβ that
is an approximation of d? ' Nβ and d1 has to be found.
This problem is actually very close to the so-called
partial key exposure attacks which have been widely
studied (e.g. see for instance [15, 16, 17, 18, 28, 29]).
We can simply apply the following result due to Joye
and Lepoint [15] which is the best known attack for the
partial key exposure with exponent blinding :

Theorem 3.1 (Joye-Lepoint). Let N = pq be a
product of two primes, e ' Nα be an integer, d = e−1

mod ϕ(N) and d? = d + `ϕ(N) ' Nβ be an integer.
If d? = d̃ + d0 with d̃ known, d0 ' Nδ unknown,
then for sufficiently large N , there exists a (heuristic)
polynomial-time algorithm that can computes all of d?

provided that:

δ <

{
α+ β − 1 for 1 < α+ β < 3/2
α+β−

√
4(α+β)2−6(α+β)

3 for 3/2 < α+ β < 2

Applying Theorem 3.1 with d? = d1 + r ' Nβ ,
β = β1+1, and d1 ' Nδ, we obtain readily the following
result (see also Figure 2):

Corollary 3.1. There exists a (heuristic)
polynomial-time passive adversary against the server-
aided protocol with additive splitting that can recover
the client secret d (for sufficiently large RSA modulus)
provided that:

δ <

{
β1 + α for 0 < α+ β1 < 1/2
α+β1+1−

√
4(α+β1)2+2(α+β1)−2

3 for 1/2 < α+ β1 < 1

3.2. Server-Aided Protocol with Multiplicative
Splitting

In the server-aided protocol with multiplicative splitting
(see Fig. 3), the secret d is decomposed as

d = d1 · r mod ϕ(N),

where d1 ' Nδ is kept secret by the client and

r = (d/d1) mod ϕ(N) + kϕ(N)

is known where k is some unknown integer with k '
Nβ1 .

The goal of the adversary is to recover d1. There
exists k? ' Nα+β1+δ such that:

e · r · d1 = 1 + k? · (N + (1− p− q)).

In the following, we present two lattice-based attacks
using this equation for the two settings when the public
exponent e is “small” (i.e. α < 1) or arbitrary.

3.2.1. Case where e is “small” (α < 1)
We put e′ = er ' N1+α+β1 and we have:

1 + k?(N + (1− p− q)) = 0 mod e′.

The polynomial f(x, y) = 1+x(N+y) has as root X0 =
(k?, 1−p−q) modulo e′, with |k?| 6 X = Nα+β1+δ and
|1−p−q| 6 Y with Y ' N1/2 (for large N). We use the
linearization u = xy + 1 as in the attack on RSA with
small secret exponent proposed by Boneh and Durfee
[19] and simplified by Herrmann and May [30]. We thus
obtain the linear polynomial f̄(u, x) = u+Nx. We use
the same collection of polynomials as in [30]:{

xif̄ j(e′)m−j for i, j > 0, i+ j 6 m
yj f̄ i(e′)m−i for 1 6 j 6 t, bmt cj 6 i 6 m

With t = τm, τ 6 1 (for some parameter τ to be
optimized) having as root X0 = (k?, 1 − p − q, k?(1 −
p − q) + 1) modulo (e′)m, with |k?(1 − p − q) + 1| 6
U = Nα+β1+δ+1/2. Thus we define a lattice L generated
the coefficient vector of each polynomial f̃(Xx, Y y, Uu),
for f̃ in the collection of polynomials P. One can put
an appropriate order on the set P (see [30]) for details
and obtain a lower triangular matrix with the diagonal
elements

XiU j(e′)m−j (for i, j > 0 and i+ j 6 m) and

U iY j(e′)m−i (for 1 6 j 6 t and
⌊m
t

⌋
j 6 i 6 m).

The lattice L is of dimension

ω =

m∑
i=0

m−i∑
j=0

1 +

τm∑
j=1

m∑
i=m

t j

1 =

(
1

2
+
τ

2

)
m2 + o(m2)

and has determinant

det(L) = XsxY syUsu(e′)se′ ,

where

sx =

m∑
i=0

m−i∑
j=0

i =
1

6
m3 + o(m3),

sy =

τm∑
j=1

m∑
i=bmt cj

j =
τ2

6
m3 + o(m3),

su =

m∑
i=0

m−i∑
j=0

j +

τm∑
j=1

m∑
i=bmt cj

i =

(
1

6
+
τ

3

)
m3 + o(m3),
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Client Server
pk = (N, e), sk = (d, ϕ(N))

d1
R←− {0, . . . , N δ}; k R←− {0, . . . , Nβ1}

r ← d− d1 + k · ϕ(N)
m, r,N−−−−−−−−−−→

c′←−−−−−−−−−− c′ ← mr mod N
c← c ·md1 mod N

Output c

FIGURE 1. Server-Aided RSA Protocol with Additive Splitting

δ

α+ β1
0 1

0

1/2

FIGURE 2. Cryptanalysis of Server-Aided RSA Protocol
with Additive Splitting

se′ =

m∑
i=0

m−i∑
j=0

(m− j) +

τm∑
j=1

m∑
i=bmt cj

(m− i)

=

(
1

3
+
τ

6

)
m3 + o(m3).

For large m, we can find all the solutions of the modular
equation f(x, y) = 0 mod e′ if the following condition
holds:

det(L) < ((e′)m)ω,

that is(
1

3
+
τ

3

)
(α+ β1 + δ) +

1

2

(
1

6
+
τ

3
+
τ2

6

)
<

(
1

6
+
τ

3

)
(1 + β1 + α).

To maximize δ, we choose τmax = 1−2δ and obtain the
inequality

2δ2 − 4δ + 1− α− β1 > 0

and the following result:

Theorem 3.2. There exists a (heuristic) polynomial-
time passive adversary against the server-aided protocol
with multiplicative splitting that can recover the client
secret d (for sufficiently large RSA modulus) provided
that:

δ < 1−
√

1 + α+ β1

2

Remark 1. In our result, we used as usual in
the setting of Coppersmith’s methods the simplified
success condition rather than the original condition for

sufficiently large modulus N . For N of bit-length larger
than 256, the bound of Theorem 3.2 can be reached for
m > 6. For N of bit-length respectively 128, the bound
can be reached for m > 8. Thus by sufficiently large
modulus, we mean that the bit-length of the modulus
is at least 128, which is always the case in practical
applications of cryptography.

Remark 2. We do not have a passive attack against
the protocol with multiplicative splitting if α + β1 > 1
(in particular if e is of the same size as N).

3.2.2. Case where e is arbitrary.
In order to attack the protocol for arbitrary public
exponent e, we have to consider a stronger attack
scenario. As mentioned in the introduction, it has been
suggested several times to renew the decomposition of
the secret exponent for each invocation of the protocol.
In this paragraph, we present an attack against the
server-aided protocol with multiplicative splitting when
the adversary is allowed to observe k > 2 different
executions of the protocol (with independent random
values).

We thus suppose that d is decomposed k times as
d = di · ri with di ' U = Nδ for i ∈ {1, . . . , k},
with ri = (d/di mod ϕ(N)) + kiϕ(N) ' N1+β1 where
ki ' Nβ1 . For j ∈ {2, . . . , k}, we have:

djrj − d1r1 = 0 mod ϕ(N),

thus for j ∈ {2, . . . , k}, there exists k?j ' Nβ1+δ such
that:

djrj − d1r1 + k?j (p+ q − 1) = 0 mod N.

Then for j ∈ {2, . . . , k}, we obtain a polyno-
mial fj(y1, . . . , yk, z2, . . . , zk) having as root X =
(d1, . . . , dk, k

?
2(p+ q − 1), . . . , k?k(p+ q − 1)) modulo N

with:

fj = rjyj − y1r1 + zj mod N

We put f ′j = fj − zj for j ∈ {2, . . . , k}, K =

bN1/2+β1c and ω = 2k − 1 and we define the ω-
dimensional lattice L spanned by the rows of the
following matrix:

6



Client Server
pk = (N, e), sk = (d, ϕ(N))

d1
R←− {0, . . . , N δ}; k R←− {0, . . . , Nβ1}

r ← (d/d1 mod ϕ(N)) + k · ϕ(N)
m, r,N−−−−−−−−−−→

c′←−−−−−−−−−− c′ ← mr mod N
c← c′d1 mod N

Output c

FIGURE 3. Server-Aided RSA Protocol with Multiplicative Splitting

A =



K
K

. . .

K

0

f ′2 . . . f ′k
↓ ↓ ↓

N

. . .

N



y1
y2
...
yk

The right-hand side is formed by all vectors coming
from the set of polynomials {f ′2, . . . , f ′k}. We have
det(L) = KkNk−1. The lattice L contains the vector

v = (Kd1, . . . ,Kdk, k
?
2(p+ q − 1), . . . , k?k(p+ q − 1))

with the Euclidean norm ‖v‖ = O(
√
ωUK). If we can

find the vector v, then we will be able to recover the
unknowns dj for j ∈ {1, . . . , k}. By Lemma 2.1 and
our heuristic from Section 2.1, the vector v is likely to
be the shortest vector in the lattice L if the following
condition holds:

‖v‖ 6
√
ω det(L)ω,

which is equivalent to

U 6 N
(k−1)(1/2−β1)

2k−1

Therefore, by using the LLL algorithm (the LLL
algorithm is also used in the forthcoming results) we
can heuristically recover (d1, . . . , dk) with di < Nδ as
long as:

δ <
(k − 1)(1/2− β1)

2k − 1
.

Theorem 3.3. There exists a (heuristic) polynomial-
time passive adversary against the server-aided protocol
with multiplicative splitting that can recover the client
secret d (for sufficiently large RSA modulus) after
eavesdropping k > 2 different executions of the protocol
provided that:

δ <
(k − 1)(1/2− β1)

2k − 1
.

The results from Theorems 3.2 and 3.3 are illustrated
on Figure 4 (where the red zones indicate the values δ
for which the protocol with multiplicative splitting is
insecure).

δ

α+ β1
0 1

0

1/4
0.292

k = 8

k = 4

k = 2

δ

β1
0 1

0

1/4

FIGURE 4. Cryptanalysis of Server-Aided RSA Protocol
with Multiplicative Splitting (left: small e ' Nα; right:
arbitrary e, k ∈ {2, 4, 8} rounds)

3.3. Server-Aided Protocol with Mixed Split-
ting

In the server-aided protocol with mixed splitting (see
Fig. 5), the secret d is decomposed as

d = d1 + d2 · r mod ϕ(N),

where d1 ' Nδ1 , d2 ' Nδ2 are kept secret unknown and

r = (d− d1)/d2 mod ϕ(N) + k · ϕ(N)

is known where k is some unknown integer with k '
Nβ1 . The goal of the adversary is to recover d1 and d2.
There exists k? ' Nα+β1+δ2 such that:

e(d1 + d2r) = 1 + k?(N + (1− p− q)).

In the following, we present two lattice-based attacks
using this equation for the two setting when the public
exponent e is “small” (i.e. α < 1) or arbitrary.

3.3.1. Case where e is “small” (α < 1)
We put e′ = e · r ' N1+α+β1 and we have:

1 + k?(N + (1− p− q))− ed1 = 0 mod e′.

7



Client Server
pk = (N, e), sk = (d, ϕ(N))

d1
R←− {0, . . . , N δ1}; d2

R←− {0, . . . , N δ2}
k

R←− {0, . . . , Nβ1}

r ← ((d− d1)/d2 mod ϕ(N)) + k · ϕ(N)
m, r,N−−−−−−−−−−→

c′←−−−−−−−−−− c′ ← mr mod N

c← c′
d2 ·md1 mod N

Output c

FIGURE 5. Server-Aided RSA Protocol with Mixed Splitting

The trivariate polynomial f(x, y, z) = 1+x(N +y)−ez
has as root X0 = (k?, 1 − p − q, d1) modulo e′, with
|k?| 6 X = Nα+β1+δ2 , |1 − p − q| 6 Y = N1/2 and
|d1| 6 Z = Nδ1 . We consider the following collection of
polynomials:

{
xizkf j(e′)m−j for i, j, k > 0, i+ j + k 6 m
yjzkf i(e′)m−i for i, k > 0, i+ k 6 m; 1 6 j 6 t

With t = τm (for some parameter τ to be optimized).
If we proceed as in the previous section (by putting an
appropriate order an the set of monomials and the set
of polynomials), we obtain a lattice L of dimension

ω =
∑

i+j+k6m

1 +
∑

i+k6m;16j6t

1 =

(
1

6
+
τ

2

)
m3 + o(m3)

and det(L) = XsxY syZsz (e′)se′ , where:

sx =
∑

i+j+k6m

i+ j +
∑

i+k6m;16j6t

i

=

(
1

12
+
τ

6

)
m4 + o(m4),

sy =
∑

i+j+k6m

j +
∑

i+k6m;16j6t

i+ j

=

(
1

24
+
τ2

4
+
τ

6

)
m4 + o(m4),

sz =
∑

i+j+k6m

k +
∑

i+k6m;16j6t

k

=

(
1

24
+
τ

6

)
m4 + o(m4),

and

se′ =
∑

i+j+k6m

m− i+
∑

i+k6m;16j6t

m− i

=

(
1

8
+
τ

3

)
m4 + o(m4).

We can thus find all the solutions of the modular
equation f(x, y, z) = 0 mod e′ if det(L) < ((e′)m)ω, i.e.(

1

12
+
τ

6

)
(α+ β1 + δ2) +

1

2

(
1

24
+
τ

6
+
τ2

4

)
+δ1

(
1

24
+
τ

6

)
<

(
1

24
+
τ

6

)
(1 + β1 + α).

To maximize δ1 and δ2, we choose τmax = 1−2(δ1+δ2)
3

and obtain the inequality

−24(δ2
1 +δ2

2)−48δ1δ2+42δ1+60δ2−15+18(α+β1) < 0.

Theorem 3.4. There exists a (heuristic) polynomial-
time passive adversary against the server-aided protocol
with mixed splitting that can recover the client secret d
(for sufficiently large RSA modulus) provided that:

−24(δ2
1 +δ2

2)−48δ1δ2+42δ1+60δ2−15+18(α+β1) < 0.

Furthermore if δ1 = δ2 = δ, we obtain the following
corollary:

Corollary 3.2. There exists a (heuristic)
polynomial-time passive adversary against the server-
aided protocol with mixed splitting (with δ1 = δ2 = δ)
that can recover the client secret d (for sufficiently
large RSA modulus) provided that:

δ <
17−

√
129 + 192(α+ β1)

32
.

Theorem 3.4 can be slightly improved by following
the technique of [31] for attacking the dual RSA. If
δ1 = δ2 = δ, we show that there exists a (heuristic)
polynomial-time passive adversary that can recover the
client secret d (for sufficiently large RSA modulus)
provided that:

δ < (6−
√

15 + 24(α+ β1))/12.

We put the linearization u = xy + 1 as in the
cryptanalysis of the dual RSA [31] and we obtain the
linear polynomial f̄(u, x, z) = u+Nx− ez. We use the
same collection of polynomials as in [31]:

8



 xizkf̄ j(e′)m−j for i, j, k > 0, i+ j + k 6 m
yjzk−if̄ i(e′)m−i for 1 6 j 6 t, bmt cj 6 k 6 m,

0 6 i 6 k.

With t = τm, τ 6 1 (for some parameter τ to be
optimized) having as root X0 = (k?(1 − p − q) +
1, k?, 1 − p − q, d1) modulo (e′)m, with |k?| 6 X =
Nα+β1+δ2 , |1 − p − q| 6 Y = N1/2, |d1| 6 Z = Nδ1

and |k?(1 − p − q) + 1| 6 U = XY . If we put an
appropriate order on the set of monomials and on the
set of polynomials, we obtain a lattice L whose matrix
is a lower triangular matrix with diagonal elements:

XiZkU j(e′)m−j for i, j, k > 0, i+ j + k 6 m,

Y jZk−iU i(e′)m−i for 1 6 j 6 t,
⌊m
t

⌋
j 6 k 6 m,

0 6 i 6 k.

The lattice L is of dimension

ω =
∑

i+j+k6m

1+

t∑
j=1

m∑
k=b 1

τ cj

k∑
i=0

1 =

(
1

6
+
τ

3

)
m3+o(m3)

and has determinant det(L) = UsuXsxY syZsz (e′)se′ ,
where:

su =
∑

i+j+k6m

j+

t∑
j=1

m∑
k=b 1

τ cj

k∑
i=0

i =

(
1

24
+
τ

8

)
m4+o(m4),

sx =
∑

i+j+k6m

i =
1

24
m4 + o(m4),

sy =

t∑
j=1

m∑
k=b 1

τ cj

k∑
i=0

j =
τ2

8
m4 + o(m4),

sz =
∑

i+j+k6m

k +

t∑
j=1

m∑
k=b 1

τ cj

k∑
i=0

k − i

=

(
1

24
+
τ

8

)
m4 + o(m4),

se′ =
∑

i+j+k6m

m− i+

t∑
j=1

m∑
k= 1

τ j

k∑
i=0

m− i

=

(
1

8
+

5τ

24

)
m4 + o(m4).

We can thus find all the solutions of the modular
equation f̄(u, x, y, z) = 0 mod e′ if the following
condition holds:

det(L) < ((e′)m)ω,

that is(
1

12
+
τ

8

)
(α+ β1 + δ2) +

1

2

(
1

24
+
τ

8
+
τ2

8

)
+δ1

(
1

24
+
τ

8

)
<

(
1

24
+
τ

8

)
(1 + β1 + α).

To maximize δ1 and δ2, we choose τmax = 1−2(δ1+δ2)
2

and obtain the inequality

−24(δ2
1 +δ2

2)−48δ1δ2+40δ1+56δ2−14+16(α+β1) < 0.

Theorem 3.5. There exists a (heuristic) polynomial-
time passive adversary against the server-aided protocol
with mixed splitting that can recover the client secret d
(for sufficiently large RSA modulus) provided that:

−24(δ2
1 +δ2

2)−48δ1δ2+40δ1+56δ2−14+16(α+β1) < 0.

Furthermore if δ1 = δ2 = δ, we obtain the following
corollary:

Corollary 3.3. There exists a (heuristic)
polynomial-time passive adversary against the server-
aided protocol with mixed splitting (with δ1 = δ2 = δ)
that can recover the client secret d (for sufficiently
large RSA modulus) provided that:

δ <
6−

√
15 + 24(α+ β1)

12
.

Theorem 3.5 slightly improved Theorem 3.4 but the
improvement is mainly theoretical and in the following
we have only implemented the attack corresponding to
Theorem 3.4.

3.3.2. Experimental Results
We have implemented the attack in Sage 7.6 on a
MacBook Air laptop computer (2,2 GHz Intel Core
i7, 4 Gb RAM 1600 MHz DDR3, Mac OSX 10.10.5)
for a 2048-bit modulus N and for e = 3 (α ' 0).
We ran experiments for several values of β1, namely
β1 ∈ {0.002, 0.25, 0.5}. We suppose that d1, d2 < Nδ

and the table below lists the theoretical bound

δtheo =
17−

√
129 + 192β1

32

and the experimental bound δexp. The size of
the manipulated integers grows with β1. After the
Gröbner basis computations, we obtained a system of
polynomials of dimension 1 but were always able to
find the desired root (by factoring the first polynomial
of the Gröbner with gives p + q − 1 and thus N ’s
factorization). We run 27 experiments for each choice of
parameters and Table 1 gives the average running times
(in seconds) of the LLL algorithm and the Gröbner basis
computation.
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β1 δtheo δexp m dimension LLL time(s) Gröbner basis time(s)

0.002 0.175 0.17 5 77 8.89 0.026

0.25 0.115 0.115 4 50 1.51 0.011

0.5 0.062 0.06 4 65 24.07 14.97

TABLE 1. Experimental Results (Theorem 3.4) – Average running times (in seconds) of the LLL algorithm and the Gröbner
basis computation

3.3.3. Case where e is arbitrary.
In order to attack the protocol for arbitrary public
exponent e, we consider again the stronger attack
scenario where the adversary is allowed to observe k > 2
different executions of the protocol (with independent
random values). We suppose that d is decomposed k

times as d = d
(i)
1 + rid

(i)
2 mod ϕ(N) with d

(i)
1 ' Nδ1 ,

d
(i)
2 ' Nδ2 unknown for i ∈ {1, . . . , k}, and ri =

(d − d
(i)
1 )/d

(i)
2 mod ϕ(N) + kiϕ(N) ' N1+β1 where

ki ' Nβ1 is unknown. For i ∈ {2, . . . , k}, we have:

d
(i)
1 + rid

(i)
2 − d

(1)
1 + r1d

(1)
2 = 0 mod ϕ(N),

thus for i ∈ {2, . . . , k}, there exists k?i ' Nβ1+δ2 such
that:

d
(i)
1 + rid

(i)
2 − d

(1)
1 + r1d

(1)
2 + k?i (p+ q − 1) = 0 mod N.

Then using the same technique as for e arbi-
trary in the multiplicative splitting, we can recover

(d
(1)
1 , d

(1)
2 . . . , d

(k)
1 , d

(k)
2 ) as long as:

k(δ1 + δ2) + (1/2 + β1 + δ2)(k − 1) < k − 1,

that is:

kδ1 + (2k − 1)δ2 < (k − 1)(1/2− β1).

Theorem 3.6. There exists a (heuristic) polynomial-
time passive adversary against the server-aided protocol
with mixed splitting that can recover the client secret d
(for sufficiently large RSA modulus) after eavesdropping
k > 2 different executions of the protocol provided that:

kδ1 + (2k − 1)δ2 < (k − 1)(1/2− β1).

Corollary 3.4. There exists a (heuristic)
polynomial-time passive adversary against the server-
aided protocol with mixed splitting (with δ1 = δ2 = δ)
that can recover the client secret d (for sufficiently
large RSA modulus) after eavesdropping k > 2 different
executions of the protocol provided that:

δ <
k − 1

3k − 1
(1/2− β1).

Our results are illustrated on Figure 6 (where the red
zones indicate the values δ for which the protocol with
multiplicative splitting is insecure).

δ

α+ β1
0 1

0

1/4

0.176

k = 8

k = 4

k = 2

δ

β1
0 1

0

1/4

FIGURE 6. Cryptanalysis of Server-Aided RSA Protocol
with Mixed Splitting (left: small e ' Nα; right: arbitrary
e, k ∈ {2, 4, 8} rounds)

4. CRYPTANALYSIS OF RSA-S1 PROTO-
COL

4.1. Description of a RSA-S1

In 1988, Matsumoto, Kato and Imai [3] proposed the
following protocol, known as RSA-S1, in which a client
computes an RSA exponentiation with secret exponent
(e.g. a signature), with the help of an untrusted
powerful server. In the following, we assume that
the server is honest-but-curious (i.e. we consider only
passive adversaries).

• Step 1. The client picks uniformly at random
n > 1 “small” integers di ∈ Z, for i ∈ {1, . . . , n}
with di ∈ {0, . . . , U} for some integer U .

• Step 2. The client picks uniformly at random n
elements ri ∈ ZN , for i ∈ {1, . . . , n} from the set
of vectors satisfying the congruence:

d1 · r1 + · · ·+ dn · rn = d mod ϕ(N).

• Step 3. The client sends the (n + 2)-tuple
(m, r1, . . . , rn, N) to the server.

• Step 4. The server computes and sends to the
client zi = mri mod N , for i ∈ {1, . . . , n}.
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• Step 5.. The client computes

n∏
i=1

zdii = zd11 . . . zdnn mod N

which is equal to md mod N .

Remark 3. Depending on the memory capacity of
the client, the final exponentiation performed by the
client in Step 5. may be done by multivariate
exponentiation with multiplication complexity 2 ·
log2(U) + 2n + O(1) and memory complexity 2n or by
independent single exponentiation with multiplication
complexity 2 · n · log2(U) + n + O(1) and memory
complexity n. Obviously, many tradeoffs are possible,
but we consider only these two settings in the following
for efficiency comparison.

4.2. Previous Cryptanalysis of RSA-S1.

In this section, we briefly recall the two main attacks
known on the RSA-S1 Protocol (more details are given
in [10]).

4.2.1. Meet-in-the-Middle Attack.
Since me(d1r1+···dnrn) = med = m mod N for all
m ∈ Z∗N , a meet-in-the-middle attack against RSA-S1
consists, assuming for simplicity n even, in computing
and storing in a hash table

me(d1r1+···dn/2rn/2) mod N

for all (d1, . . . , dn/2) ∈ {0, . . . , U}n/2 and searching

m1−e(dn/2+1rn/2+1+···dnrn)

for (dn/2+1, . . . , dn) ∈ {0, . . . , U}n/2 in this hash table.
This simple approach allows to recover the secret
exponent d in time complexity O(Un/2) and memory
complexity O(Un/2).

4.2.2. Lattice-based Attack.
Nguyen and Shparlinski [10] proposed a lattice-based
attack on the (one-round) RSA-S1 protocol when a
small public exponent e ' Nα is used, for some α > 0.
They showed that one can recover the secret d as long as
the sizes of each unknown di, for i ∈ {1, . . . , n} satisfies:

U < N
1−2α
2(n+1) .

In particular, their attack can be successful only for
α < 1/2.

4.3. New Attack against RSA-S1 for Large e

In this section we propose a k-rounds lattice attack
(with k > 2) on the RSA-S1 Server-Aided protocol
which works for any public exponent e.

When the RSA-S1 Server-Aided protocol is per-
formed in k-rounds, the passive adversary knows k de-
compositions of the secret d (namely, we have d =

∑n
i=1 r

(j)
i d

(j)
i mod (p−1)(q−1), for j ∈ {1, . . . , k} where

the integers r
(j)
i are known to the server and the inte-

gers d
(j)
i are kept secret by the client and d

(j)
i < U , for

some integer U). The goal is to recover the integers

d
(j)
i , for i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. We suppose

that e ' Nα, r
(j)
i ' N and that p and q have the same

size (p, q ' N 1
2 ). Then for j ∈ {2, . . . , k}, we have:

n∑
i=1

r
(j)
i d

(j)
i −

n∑
i=1

r
(1)
i d

(1)
i = kj(p− 1)(q − 1),

for some integer kj ' U . Then for j ∈ {2, . . . , k}, we
obtain a polynomial

fj(z1,1, . . . , z1,n, . . . , zk,1, . . . , zk,n, z2, . . . , zk)

having as root

X = (d
(1)
1 , . . . , d(1)

n , . . . , d
(k)
1 , . . . , d(k)

n , k2(p+ q − 1), . . . ,

kk(p+ q − 1))

modulo N with:

fj = zj +

n∑
i=1

r
(j)
i zj,i −

n∑
i=1

r
(1)
i z1,i mod N (1)

We put f ′j = fj − zj for j ∈ {2, . . . , k}, K = bN1/2c
and ω = nk + k − 1,

M1 = {z1,1, . . . , z1,n, . . . , zk,1, . . . , zk,n} = {m1, . . . ,mω1
}

with ω1 = ]M1 = nk and m1 = z1,1, . . . ,mn =
z1,n, . . . ,mω1

= zk,n. Each polynomial f ′j can be
expressed as a vector with respect to the order < on
M1 (with mi < mi+1). We define the ω-dimensional
lattice L spanned by the rows of the following matrix:

A =



K
K

. . .

K

0

f ′2 . . . f ′k
↓ ↓ ↓

N

. . .

N



m1

m2

...
mω1

The right-hand side is formed by all vectors coming
from the set of polynomials {f ′2, . . . , f ′k}. We have
det(L) = KnkNk−1. The lattice L contains the vector

v = (Kd
(1)
1 , . . . ,Kd(1)

n , . . . ,Kd
(k)
1 , . . . ,Kd(k)

n ,

−k2(p+ q − 1), . . . ,−kk(p+ q − 1))

with the Euclidean norm ‖v‖ = O(
√
ωUK). If we can

find find the vector v, then we will be able to recover

the unknowns d
(j)
i for j ∈ {1, . . . , k} and i ∈ {1, . . . , n}.

By Lemma 2.1 and our heuristic from Section 2.1, the
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n k δtheo δexp dimension LLL time(s)

2 2 0.1 0.098 5 0.00159

2 3 0.125 0.123 8 0.01282

2 4 0.136 0.134 11 0.04001

3 2 0.071 0.07 7 0.00303

3 3 0.09 0.088 11 0.02870

3 4 0.1 0.098 15 0.09851

TABLE 2. Experimental Results (RSA-S1) – Average
running times (in seconds) of the LLL algorithm and the
Gröbner basis computation

vector v is likely to be the shortest vector in the lattice
L if the following condition holds:

‖v‖ 6
√
ω det(L)ω,

which is equivalent to U 6 N
k−1

2(nk+k−1) .
Therefore, we can recover the secret d as long as

the sizes of each unknown d
(j)
i for j ∈ {1, . . . , k} and

i ∈ {1, . . . , n} satisfies:

U < N
k−1

2(nk+k−1) →
k→∞

N
1

2(n+1) .

Remark 4. For fixed k and for α > 1/2, our attack is
successful while the one of Nguyen and Shparlinski does
not work. For fixed k and for 1/4 6 α < 1/2, our bound
is better than the one of Nguyen and Shparlinski. For
0 < α < 1/4, our asymptotic bound is better than the
bound of Nguyen and Shparlinski. And for α = 0, our
asymptotic bound is the same as the bound of Nguyen
and Shparlinski.

4.3.1. Experimental Results
The table below lists the theoretical bound δtheo =

k−1
2(nk+k−1) (U < Nδ) and the experimental bound δexp

for a 2048-bit modulus N and for e ' N1/2 with a few
number of rounds (2 6 k 6 4) and a few number of
unknown blocks in each decomposition of the secret d
(n ∈ {2, 3}). We run 27 experiments for each choice
of parameters and Table 2 gives the average running
times (in seconds) of the LLL algorithm (using the same
configuration as above).

5. ANALYSIS OF A VARIANT OF RSA-S1
SERVER-AIDED PROTOCOL

In this section, we describe and analyze a variant of the
server-aided protocol RSA-S1 which might be useful in
cases where the client has strong memory constraints
and cannot use multi-exponentiation techniques. In
this setting, the final exponentiation in the protocol
RSA-S1 is simply done by performing independently n
multiplications with exponents of size U .

5.1. Description of a New Server-Aided Proto-
col

Our variant of the RSA-S1 protocol works as follows:

• Step 1. The client picks uniformly at random
n > 1 “small” integers di ∈ Z, for i ∈ {1, . . . , n}
with di ∈ {0, . . . , U} for some integer U .

• Step 2. The client picks uniformly at random n
elements ri ∈ ZN , for i ∈ {1, . . . , n} from the set
of vectors satisfying the congruence:

d = r1·d1+r2·(d1d2)+· · ·+rn·(d1d2 . . . dn) mod ϕ(N),

• Step 3. The client sends the (n + 2)-tuple
(m, r1, . . . , rn, N) to the server.

• Step 4. The server computes and sends to the
client zi = mri mod N , for i ∈ {1, . . . , n}.

• Step 5.. The client computes(
z1 ·

(
z2 ·

(
z3

(
z4 · · · (zdnn ) · · ·

)d4)d3)d2)d1
mod N.

which is equal to md mod N .

In this protocol, the final operation performed by the
client is inherently sequential and it is not possible
to use multi-exponentiation techniques. The linear
random decomposition is replaces by a degree n
multi-variate polynomial, one can evaluate using n
multiplications using Horner rule. The client final
operation consists therefore in n independent single
exponentiation (that cannot be parallelized) with
multiplication complexity 2 · n · log2(U) + n + O(1)
and memory complexity n. Its efficiency for fixed U
is similar to the one of the protocol RSA-S1 but we will
see that this protocol (we call RSA-S1H) seems more
resistant to cryptanalysis.

It is worth noting that a meet-in-the-middle attack
against RSA-S1H can be mounted even if the group
order is unknown to the adversary (see [32] for
instance). It allows to recover the secret exponent d
in time complexity O(Un/2) and memory complexity
O(Un/2).

5.2. A One-Round Attack on RSA-S1H Server-
Aided Protocol

In this section, we propose a one-round passive attack
on RSA-S1H protocol when a small public exponent e
is used (for instance e = 3).

5.2.1. Description of the Attack
The secret d is decomposed once as d = r1d1 +r2d1d2 +
· · ·+rnd1d2 . . . dn mod (p−1)(q−1), where the integers
r1, . . . , rn ' N are known and the integers di 6 U , for
i ∈ {1, . . . , n} are kept secret by the client. We suppose
that e ' Nα with 0 < α < 1/2 very small and that

p and q have the same size (p, q ' N
1
2 ) . In order to

recover the secret d, the goal is to recover the integers
di, for i ∈ {1, . . . , n}. We have

e(r1d1+r2d1d2+· · ·+rnd1d2 . . . dn) = 1 mod (p−1)(q−1),
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then there exists an integer k ' eUn such that:

e(r1d1+· · ·+rnd1d2 . . . dn)+k(p+q−1)−1 = 0 mod N.

Thus we obtain a linear polynomial f(x1, . . . , xn+1)
having as root

X = (d1, d1d2, . . . , d1d2 . . . dn, k(p+ q − 1)− 1)

modulo N with :

f = er1x1 + · · ·+ ernxn + xn+1 mod N.

Putting f =
∑n+1
i=1 dixi (with di = eri for i ∈ {1, . . . , n}

and dn+1 = 1) and f =
∑n+1
i=1 d

′
ixi (with d′i =

diU
i−n mod N for i ∈ {1, . . . , n} and d′n+1 = 1), one

can easily verify that f ′ has as root

X ′ = (Un−1d1, U
n−2d1d2, . . . , U

1d1d2 . . . dn−1,

d1d2 . . . dn, k(p+ q − 1)− 1)

modulo N . We define the n + 1-dimensional lattice L
spanned by the rows of the following matrix:

A =


N 0 0 · · · 0
d′1 eK 0 · · · 0
d′2 0 eK 0 · · · 0
...

...
. . .

. . .
. . . 0

d′n 0 · · · 0 eK


with K = bN1/2c. We have det(L) = NenKn and the
lattice L contains the vector

v =(−k(p+ q − 1) + 1, eKUn−1d1, eKU
n−2d1d2, . . . ,

eKUd1d2 . . . dn−1, eKd1d2 . . . dn)

with the Euclidean norm ‖v‖ = O(
√
n+ 1UnK). If we

can find find the vector v, then we will be able to recover
the unknowns di for i ∈ {1, . . . , n}. By Lemma 2.1 and
the Gaussian heuristic, the vector v is likely to be the
shortest vector in the lattice L if the following condition
holds:

‖v‖ 6
√
n+ 1 det(L)n+1,

which is equivalent to U 6 N
1−2α

2n(n+1) .
Therefore, we can recover the secret d as long as the

sizes of each unknown di for i ∈ {1, . . . , n} satisfies:

U < N
1−2α

2n(n+1) .

If e is very small (namely α ' 0), we can thus
heuristically recover the secret d as long as the sizes
of each unknown di for i ∈ {1, . . . , n} satisfies:

U < N
1

2n(n+1) .

Furthermore, from θ = −k(p+ q − 1) + 1, and the di’s
for i ∈ {1, . . . , n}, one may compute k as k = ed?−θ

N ,
where d? = r1d1 + r2d1d2 + · · ·+ rnd1d2 . . . dn and then
compute ϕ(N) and p + q − 1 as ϕ(N) = ed?−1

k and

p + q − 1 = θ−1
−k and yield the factorization of N in

polynomial time.

5.2.2. Efficiency comparisons.
Table 3 gives for a 2048-bit and a 3072-bit RSA modulus
and for a very small public exponent e (α ' 0), the
theoretical lower bound ntheo = b b

2(n+1)c (resp. ntheo =

b b
2n(n+1)c) on the number of bits of each secret di,

i ∈ {1, . . . , n} in the decomposition of the secret d in the
RSA-S1 protocol with linear polynomial (resp. RSA-
S1H) to prevent our lattice-based attacks (for n 6 10).

To prevent meet-in-the-middle attacks, it is necessary
to use parameters U and n such that Un/2 > 2κ where
κ is the security parameter. For instance, to achieve
128-bits security with log2(N) = 3072, one can use for
n = 4 a value U ' 276 = 2max(76,256/4) for RSA-S1H
(instead of U ' 2256 for RSA-S1) and for n = 10 a
value U ' 225.6 = 2max(13,256/10) for RSA-S1H (instead
of U ' 2139 for RSA-S1).

5.2.3. Experimental Results.
The table below lists the theoretical bound δtheo =

1
2n(n+1) (U < Nδ) and the experimental bound δexp

for a 1024-bit modulus N and for e = 3 a few number
of unknown blocks in each decomposition of the secret d
(n ∈ {2, 3, 4}). We run 27 experiments for each choice
of parameters and Table 4 gives the average running
times (in seconds) of the LLL algorithm (using the same
configuration as above).

5.3. A k-Round Attack on RSA-S1H Server-
Aided Protocol

In this section, we propose a k-round attack on RSA-
S1H protocol which works for any public exponent e.

5.3.1. Description of the Attack

The secret d is decomposed k > 2 times as d = r
(j)
1 d

(j)
1 +

r
(j)
2 d

(j)
1 d

(j)
2 + · · ·+ r

(j)
n d

(j)
1 d

(j)
2 . . . d

(j)
n mod (p− 1)(q− 1)

for j ∈ {1, . . . , k}, where the integers r
(j)
1 , . . . , r

(j)
n ' N

are known and the integers d
(j)
i 6 U , for i ∈ {1, . . . , n}

are kept secret by the client. For j ∈ {1, . . . , k}, we

put Pj(x1, . . . , xn) =
∑n
i=1 r

(j)
i

∏i
t=1 xt and we suppose

that e ' Nα with 0 < α. In order to recover the
secret d, the goal is to recover the integers d

(j)
i , for

some j ∈ {1, . . . , n} and for all i ∈ {1, . . . , n}. For
j ∈ {2, . . . , k}, we have

P1(d
(1)
1 , . . . , d(1)

n )−Pj(d(j)
1 , . . . , d(j)

n ) = 0 mod (p−1)(q−1),

then there exists an integer k(j) ' Un such that:

P1(d
(1)
1 , . . . , d(1)

n )−Pj(d(j)
1 , . . . , d(j)

n )+k(j)(p+q−1) = 0 mod N.

For each j ∈ {2, . . . , k}, we thus obtain a linear multi-
variate polynomial over ZN

fj(z1,1, . . . , z1,n, . . . , zk,1, . . . , zk,n, z2, . . . , zk)

having as root the (nk + k − 1)-tuple

X = (d
(1)
1 , . . . , d

(1)
1 . . . d(1)

n , . . . , d
(k)
1 , . . . , d

(k)
1 . . . d(k)

n ,

k(2)s, . . . , k(k)s)
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log2(N) 1 2 3 4 5 6 7 8 9 10

RSA-S1 2048 512 341 256 204 170 146 128 113 102 93

RSA-S1H 2048 512 170 85 51 34 24 18 14 11 9

RSA-S1 3072 768 512 384 307 256 219 192 170 153 139

RSA-S1H 3072 768 256 128 76 51 36 27 21 17 13

TABLE 3. Efficiency comparisons (RSA-S1 and RSA-S1H)

n δtheo δexp dimension LLL time(s)

2 0.083 0.082 3 0.002205

3 0.0416 0.0414 4 0.001315

4 0.025 0.024 5 0.001572

TABLE 4. Experimental Results (RSA-S1H) – Average
running times (in seconds) of the LLL algorithm and the
Gröbner basis computation

modulo N with s = p+ q − 1 and :

fj = zj +

n∑
i=1

r
(1)
i z1,i −

n∑
i=1

r
(j)
i zj,i mod N

Putting

gj = zj +

n∑
i=1

r
(1)
i U i−nz1,i −

n∑
i=1

r
(j)
i U i−nzj,i mod N,

one can easily verify that gj has as root

X ′ = (Un−1d
(1)
1 , . . . , d

(1)
1 . . . d(1)

n , . . . , Un−1d
(k)
1 , . . . ,

d
(k)
1 . . . d(k)

n , k(2)s, . . . , k(k)s)

modulo N . We put f ′j = gj − zj for j ∈ {2, . . . , k},
K = bN1/2c and ω = nk + k − 1, M1 =
{z1,1, . . . , z1,n, . . . , zk,1, . . . , zk,n} = {m1, . . . ,mω1

}
with ω1 = ]M1 = nk and m1 = z1,1, . . . ,mn =
z1,n, . . . ,mω1 = zk,n. Each polynomial f ′j can be
expressed as a vector with respect to the order < onM1

(with mi < mi+1). Then we define the ω-dimensional
lattice L spanned by the rows of the following matrix:

A =



K
K

. . .

K

0

f ′2 . . . f ′k
↓ ↓ ↓

N

. . .

N



m1

m2

.

..
mω1

The right-hand side is formed by all vectors coming
from the set of polynomials {f ′2, . . . , f ′k}. We have
det(L) = KnkNk−1. The lattice L contains the vector

v =(KUn−1d
(1)
1 , . . . ,Kd

(1)
1 . . . d(1)

n , . . . ,KUn−1d
(k)
1 , . . . ,

Kd
(k)
1 . . . d(k)

n ,−k(2)s, . . . ,−k(k)s)

with the Euclidean norm ‖v‖ = O(
√
ωUnK). If we can

find find the vector v, then we will be able to recover

the unknowns d
(j)
i for j ∈ {1, . . . , k} and i ∈ {1, . . . , n}.

By Lemma 2.1 and the Gaussian heuristic, the vector v
is likely to be the shortest vector in the lattice L if the
following condition holds:

‖v‖ 6
√
ω det(L)ω,

which is equivalent to

U 6 N
k−1

2n(nk+k−1)

Therefore, we can recover the secret d as long as

the sizes of each unknown d
(j)
i for j ∈ {1, . . . , k} and

i ∈ {1, . . . , n} satisfies:

U < N
k−1

2n(nk+k−1) →
k→∞

N
1

2n(n+1) .

6. CRYPTANALYSIS OF RSA-S2 PROTO-
COL

6.1. Description of RSA-S2

Matsumoto, Kato and Imai [3] also proposed another
protocol, known as RSA-S2 which employs the
Chinese Remainder Theorem to speed up the client’s
computation.

• Step 0. The client computes integers dp < p
and dq < q such that dp = d mod p − 1 and
dq = d mod q − 1.

• Step 1. The client picks uniformly at random
n > 1 pairs of “small” integers (di, d

′
i) ∈ Z2, for

i ∈ {1, . . . , n} with di, d
′
i ∈ {0, . . . , U} for some

integer U .
• Step 2. The client picks uniformly at random n

elements ri ∈ {0, . . . , V } (for some integer V ), for
i ∈ {1, . . . , n} from the set of vectors satisfying the
congruence:

d1 · r1 + · · ·+ dn · rn = dp mod p− 1.

d′1 · r1 + · · ·+ d′n · rn = dq mod q − 1.

• Step 3. The client sends the (n + 2)-tuple
(m, r1, . . . , rn, N) to the server.

• Step 4. The server computes and sends to the
client zi = mri mod N , for i ∈ {1, . . . , n}.

• Step 5.. The client computes

n∏
i=1

zdii = zd11 . . . zdnn mod p
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and
n∏
i=1

z
d′i
i = z

d′1
1 . . . z

d′n
n mod q

and uses the Chinese Remainder Theorem to
recover3 σ = md mod N satisfying σp = mdp mod
p and σq = mdq mod q.

6.2. Time/Memory Tradeoff Attack using
Multi-Evaluation of Polynomials

Let P (x) ∈ ZN [x] be a polynomial of degree less than
∆ = 2d. The multipoint evaluation problem is the task
of evaluating P at ∆ distinct points α0, . . . , α∆−1 ∈ ZN .
Using Horner’s evaluation rule, it is easy to propose a
solution that uses O(∆2) addition and multiplication in
ZN but it is well-known that there exists an algorithm
with quasi-linear complexity O(∆ log2 ∆) = Õ(∆)
operations in ZN using a divide-and-conquer approach
[33, 34].

The multipoint evaluation of univariate polynomials
has found numerous application in cryptanalysis (e.g.
[35, 36]). In this paragraph, we show that this technique
allows to break the RSA-S2 Protocol in time Õ(Un/2).

For simplicity, we assume that n is even (but the
attack can readily be extended to odd n). Let m
be some random element of Z∗N . We have me·dp =
m mod p (since dp is the inverse of e modulo p − 1).
With high probability, we have me·dp 6= m mod q (for
dp 6= dq). Therefore, we have with overwhelming
probability gcd(me·dp − m,N) = p. In the setting of
RSA-S2, a passive adversary knows integers r1, . . . , rn
such that

dp = d1r1 + · · ·+ dnrn mod (p− 1)

and di 6 U for i ∈ {1, . . . , n}. A naive idea to factor
N is thus to compute gcd(me·(d1r1+···+dnrn)−m,N) for
all vectors (d1, . . . , dn) ∈ {0, . . . , U}n.

In order to apply a meet-in-the-middle ap-
proach, one may be tempted to first compute
me·(d1r1+···+dn/2rn/2) for all vectors (d1, . . . , dn/2) ∈
{0, . . . , U}n/2 in time Õ(Un/2) and then compute
me·(dn/2+1rn/2+1+···+dnrn) for all vectors of integers
(dn/2+1, . . . , dn) ∈ {0, . . . , U}n/2 in time Õ(Un/2).
However, in order to compute all possible gcd’s, we have
to consider all the pairs and the overall time complexity
is Õ(Un).

Using multi-evaluation of polynomials, one can
simply consider the polynomial

P (X) =
∏

(d1,...,dn/2)∈{0,...,U}n/2
(me·(d1r1+···+dn/2rn/2)X−m)

3Given the (precomputed) values αp = q · (q−1 mod p) and
αq = p · (p−1 mod q), we have σ = σpαp + σqαq mod N .

defined over ZN [X]. The degree of P is ∆ =
Un/2 and one can compute its evaluation at the ∆
points me·(dn/2+1rn/2+1+···+dnrn) for (dn/2+1, . . . , dn) ∈
{0, . . . , U}n/2 in time Õ(∆) = Õ(Un/2).

We can then simply compute

gcd(P (me·(dn/2+1rn/2+1+···+dnrn), N)

for each vector (dn/2+1, . . . , dn) ∈ {0, . . . , U}n/2 and
with high probability we will obtain one non-trivial4

factor of N .

Remark 5. As mentioned above, Castelluccia,
Mykletun and Tsudik [7] revisited in 2006 the RSA-S2
protocol. They proposed several security parameters
for RSA moduli of bit-size 1024, 1536 and 2048. For
these parameters the time and memory complexity term
Un/2 of our attack are only equal to 236, 240 and
244 (respectively) and these parameters are therefore
broken.

6.3. A One-Round Attack using Herrmann-
May Technique

In this section, we propose a one-round attack on RSA-
S2 protocol using Herrmann-May technique that is a
Coppermith’s technique to find small solutions of a
linear polynomial modulo an unknown prime number,
where a multiple of that prime is known. In our attack,
we suppose that a very small public exponent e (for
instance e = 3) is used and that small random elements
ri’s are used (V < p).

6.3.1. Description of the Attack
The secrets dp and dq are decomposed once as dp =
r1d1 + r2d2 + · · ·+ rndn mod (p−1), dq = r1d

′
1 + r2d2 +

· · ·+rnd′n mod (q−1), where the integers r1, . . . , rn ' p
are known and the integers di, d

′
i 6 U = Nγ , for

i ∈ {1, . . . , n} are kept secret by the client. We suppose
that e ' Nα with α ' 0 and that p and q have the same
size (p, q ' N

1
2 ) . The goal is to recover the integers

di, d
′
i, for i ∈ {1, . . . , n}. In the following, we show

how to recover the integers di, for i ∈ {1, . . . , n} and
the same technique can be used to recover the others
integers d′i, for i ∈ {1, . . . , n}. We have

e(r1d1 + r2d2 + · · ·+ rndn) = 1 mod (p− 1),

then there exists an integer k ' eU such that e(r1d1 +
r2d2 + · · ·+ rndn)− 1 = k(p− 1). Thus we have:

e(r1d1 + r2d2 + · · ·+ rndn) + k − 1 = 0 mod p,

where the prime p is unknown, we only know the
modulus N which is a multiple of p. We obtain a

4If one of this gcd’s is actually equal to N for
some (dn/2+1, . . . , dn) ∈ {0, . . . , U}n/2 and one can ob-

tain a prime divisor of N by looking (in time Õ(Un/2))
for the vector (d1, . . . , dn/2) ∈ {0, . . . , U}n/2 for which

gcd(me·(d1r1+···+dnrn) −m,N) is non-trivial.
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linear polynomial f(x1, . . . , xn+1) having as root X =
(d1, d2, . . . , dn, k) modulo p with :

f = er1x1 + · · ·+ ernxn + xn+1 − 1.

We use the following theorem proved by Herrmann and
May in [37] to find the root X = (d1, d2, . . . , dn, k):

Theorem 6.1. Let ε > 0 and let N = pq be a
sufficiently large composite integer with a divisor p >
Nβ. Let g(x1, . . . , x`) ∈ Z[x1, . . . , x`] be a monic
polynomial in ` variables. We can find heuristically
all solutions (y1, . . . , y`) of the equation f(x1, . . . , x`) =
0 mod p with |y1| 6 Nγ1 , . . . , |y`| 6 Nγ` if

∑̀
i=1

γi 6 1− (1−β)
`+1
` − (`+ 1)(1−

√̀
1− β)(1−β)−ε.

The time and space complexity of the algorithm is
polynomial in log2N and ( c0ε )`, where c0 is Euler’s
constant.

Applying Theorem 6.1 with β = 1
2 and a very

small ε > 0, we can heuristically find the root X =
(d1, d2, . . . , dn, k) with d1 6 U = Nγ , . . . , dn 6 U =
Nγ , |k| 6 eU = Nγ+α if:

(n+ 1)γ + α < 1− 2−
n+2
n+1 − n+ 2

2
(1− 2−

1
n+1 )− ε,

Therefore, if N sufficiently large and e is very small
(namely α ' 0), for a very small ε > 0 we can
heuristically recover the secret di, d

′
i, for i ∈ {1, . . . , n}

as long as the sizes of each unknown di, d
′
i for i ∈

{1, . . . , n} satisfies:

U < N
1−2
−n+2
n+1 −n+2

2
(1−2

− 1
n+1 )−ε

(n+1) .

Remark 6.

•We can find the roots in polynomial time
whenever n+ 1 6 O(log2(log2N)).
• In the proof of Theorem 6.1, Herrmann and
May used Coppermith’s method with the following
collection of polynomials which share a common
root modulo pt:

gi2,...,i`,j = xi22 . . . xi`` g
jNmax(t−j,0),

where i2, . . . , i` ∈ {0, . . . ,m} such that∑n
b=2 ib + j 6 m, g is monic in x1,

m = d `(
1
π (1−β)−0.278465−β ln(1−β))

ε e and
t = d(1−

√̀
1− β)me.

• In the previous theorem, the bounds of the
unknowns di, d

′
i, for i ∈ {1, . . . , n} are identical

and there is no condition on the bound U of the
unknowns. In particular, the results from [38]
cannot be applied in this setting.

6.3.2. Experimental Results
The table below lists the theoretical bound δtheo =

1−2
−n+2
n+1−n+2

2 (1−2
− 1
n+1 )−ε

(n+1) (U < N δtheo) and the

experimental bound δexp for a 1024-bit modulus N = pq
and p, q ' N1/2, for e = 3 and with a few number of
unknown blocks in each decomposition of the secrets dp
and dq (n 6 5). In our experiments, we obtained after
the LLL reduction and the Gröbner basis computations,
a system of polynomials of dimension 1 but were always
able to find the desired root. We run 24 experiments
for each choice of parameters and Table 5 gives the
average running times (in seconds) of the LLL algorithm
and the Gröbner basis computation (using the same
configuration as above).

Remark 7. Castelluccia et al. proposed parameters
in [7] for n = 2. Even if one doubles the bit-size of the
proposed U in order to prevent the meet-in-the-middle
attack from the previous section, we obtain for RSA
moduli of bit-size 1024, 1536 and 2048, U equal to 272,
280 and 288 , i.e. U ' N0.070, U ' N0.052 an U ' N0.044

(respectively). Our attack works for U 6 N0.0635 and
the last two (updated) parameters are therefore broken
in practice.

6.4. A Two-Round Attack using Herrmann-
May technique

In this section, we give a description of a Two-
Round attack on RSA-S2 protocol using Herrmann-
May technique when an arbitrary public exponent e
is used. The secrets dp and dq are decomposed twice
as dp = r1

1d
1
1 + r1

2d
1
2 + · · · + r1

nd
1
n mod (p − 1), dp =

r2
1d

2
1 + · · ·+ r2

nd
2
n mod (p− 1), dq = r1

1c
1
1 + r1

2c
1
2 + · · ·+

r1
nc

1
n mod (q−1) and dq = r2

1c
2
1 + · · ·+r2

nc
2
n mod (q−1),

where the integers r1
i , r

2
i ' p for i ∈ {1, . . . , n} are

known and the integers d1
i , d

2
i , c

1
i , c

2
i 6 U = Nγ , for

i ∈ {1, . . . , n} are kept secret by the client. We suppose
that e ' Nα with α > 0 arbitrary and that p and q
have the same size (p, q ' N 1

2 ) . The goal is to recover
the integers d1

i , d
2
i , c

1
i , c

2
i , for i ∈ {1, . . . , n}. We have

n∑
i=1

(r2
i d

2
i − r1

i d
1
i ) = 0 mod (p− 1),

then there exists an integer k ' U such that

n∑
i=1

(r2
i d

2
i − r1

i d
1
i ) + k = 0 mod p,

where the prime p is unknown. If we proceed as in
the previous section, for a very small ε > 0, we can
heuristically find X = (d1

1, . . . , d
1
n, d

2
1, . . . , d

2
n, k) if:

U < N
1−2
− 2n+2

2n+1 − 2n+2
2

(1−2
− 1

2n+1 )−ε
(2n+1) .

If we use the same technique with the decompositions
of dq, then for an arbitrary e we can heuristically
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n ε m δtheo δexp dimension LLL time(s) Gröbner basis time(s)

1 0.010 8 0.098 0.107 45 7.06 0.047

1 0.007 12 0.100 0.110 91 164.68 0.321

2 0.020 6 0.057 0.047 84 69.61 15.113

2 0.017 7 0.058 0.051 120 383.53 58.107

3 0.040 4 0.035 0.017 70 29.46 15.79

3 0.035 5 0.037 0.018 126 422.67 174.97

TABLE 5. Experimental Results (RSA-S2) – Average running times (in seconds) of the LLL algorithm and the Gröbner
basis computation

recover the secret d as long as the sizes of each unknown
d1
i , d

2
i , c

1
i , c

2
i , for i ∈ {1, . . . , n} satisfies:

U < N
1−2
− 2n+2

2n+1 − 2n+2
2

(1−2
− 1

2n+1 )−ε
(2n+1) .

7. EFFICIENCY OF SERVER-AIDED RSA
PROTOCOLS

In this section, we compare the efficiency of the
protocols studied in the previous sections. We
consider 3072-bit RSA moduli and different values for
n ∈ {1, 2, 4, 8}. Since our two families of attacks
(for small and arbitrary public exponents), succeed
asymptotically (when k goes to ∞) for the same bound
U , we do not distinguish them in the comparison.
For RSA-S1 and RSA-S2, we distinguish two settings
depending on whether the client has enough memory to
perform multi-exponentiation in Step 5. of these two
protocols.
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