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Abstract :
The introduction of the bicausality concept in the bond graph
language has allowed new analytical methodologies of a
system, for instance in the context of model inversion,
mechatronic system sizing and control. The causality
assignment generally imposes the way these constitutive
relations have to be used. In the case of linear multi-port
elements, derivative causality or of bicausality is not
necessarily possible. The conditions for the existence of a
causal configuration are related to the form of the
constitutive relation of the multi-port element. In this paper,
we propose to inspect this condition and then to focus on the
use of the causality applied to the linear multi-port elements.
We show that the constitutive relations of any linear multi-
port element may be used to determine quickly what kind of
causality assignment does exist and what could be
determined using different schemes of calculus. It clearly
appears that this approach may be applied in other contexts
and may have interesting applications on system sizing,
identification and control.
1 - INTRODUCTION
The bicausality concept introduced implicitly by Cornet and
Lorenz [Cornet and Lorenz 88] and more formally by
Gawthrop [Gawthrop 95, Gawthrop 97], has initiated a new
philosophy in regards to a bond graph model. It allows to
force the value of the power by imposing effort and flow on
a bond or the value of one power variable on a junction (the
other being zero). This approach has to be related to a
mathematical research in an oriented graph. In "standard"
causality, the imposed variable on an element is either the
effort, or the flow variable. The meaning of this statement is
that we assume that we know or impose the behaviours of the
flow and the effort at a specific place in the system, and this
approach allows the study of some kind of inverse problems.
This principle has been successfully applied in design or
sizing problems [Fotsu Ngwompo et al. 96, Fotsu Ngwompo
et al. 97] and in control synthesis [Gawthrop et al. 99].
The causal stroke of "bicausal" bond is seen as half strokes;
each of these half stroke is associated to an effort and a flow
variable that can be placed independently at each end of the
bond and impose the corresponding variable (using the
convention of the normal causality). Causal half strokes
indicate the fixed or known variables of the bond and
therefore determine the way to solve the modeled system.
This approach is also consistent for normal causality where it
is still possible to split the causal stroke in one effort and one
flow half causal stroke.
In this paper, this approach is used to solve the problem of
the existence of a causal and bicausal configuration in the
case of multi-port elements. In a first part, the problem is
limited to the existence of a causal configuration in the case
of 2-port elements, this condition is then extended to n-port
elements. In the following part, the use of the bicausality is
developed and the use of the obtained bicausal configuration
are discussed in the case of 2-port elements. These results are
still usable in the case of n-port elements. The study of a
physical application will illustrate the consequences of this
work in solving the reversibility of systems with multi-port
elements.
2 – EXISTENCE OF PARTIAL DERIVATIVE
FORM OF 2-PORT ELEMENTS
Any linear multi-port element is characterized by its
constitutive relations, which exist, and are known in a
preferred causality assignment [Karnopp et al.90, Breedveld
84]. As the condition of existence of a causal configuration
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may be generalized to any kind of multi-port element, the
constitutive relation will firstly be represented by an input-
output relation. For an R-element depending on the preferred
causal configuration the input variable may be the flow
(respectively the effort) and the output the effort
(respectively the flow). In the case of a C-element
(respectively I-element), the input variable to the constitutive
relation is the generalized displacement (respectively the
generalized momentum) and the output the effort
(respectively the flow). The proposed approach is also usable
for any other multi-port element, although in each case the
results may be adapted and/ or restricted. The problem is
then identical and we will consider the following
formulation:
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Let us firstly limit this approach to 2-port elements, that is to
say to consider a 2x2 system of linear equations :
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Non-preferable causal form
The existence of the non-preferable causal form simply
corresponds to the possibility to express the inputs as a
function of the outputs, that is to inverse the system:
Let us note B the matrix obtained in non-preferred causality.
B exists if and only if 0)( ≠ADet .
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Hybrid causal form
In this case, one of the input became an output and its
conjugate power variable an input. Let us assume the
existence of this form. The new formulation is for example:
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The condition of existence is then that 011 ≠a . For the

second hybrid form, the formulation would have been

022 ≠a .

Conclusion
If only one equation has to be reversed, it is not necessary
that the system is reversible. In the case of a 2-port element,
the condition of the existence of hybrid causality is the
coefficient linking the output to the input in the equation
which has to be reversed, being non-zero. This is still correct
in the case of an n-port element if only one bond is not in
preferred causality. If the ith output (respectively the ith input)
became an input (respectively an output), the resolution
consists in changing the form of the ith equation (5) using

iξ as a new output and iψ as a new input. The new relation

is then given by (6) and has to be introduced in the other
equations as shown in (7).
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3 – EXTENSION TO N-PORT ELEMENTS
In the case of an n-port element, it may be requested that a
subpart of the system is forced in non-preferred causality.

Let us note { } { }nrrr m ,,1,,1 �� ⊂=  the indices of

these equations. The causal form exists if and only if it is
possible to express the new input set as a function of the new



output set. This is equivalent to express in each equation in
the subset r, the output as a function of the new input set, that
is to inverse this subpart of the system. As the variables
associated to the equations which remain in preferred
causality, do not influence the reversibility of the equations
in the subset r, the condition of existence is given by the non-
nullity of the determinant of the matrix R (8). The square
matrix R is constituted of the elements of the initial matrix A
after the cancellation of the column and the row
corresponding to the complementary subset of r.

Theorem 1
Let A be the matrix corresponding to the constitutive
relations in the preferred causality.

Let us note { } { }nrrr m ,,1,,1 �� ⊂=  the subset of the

indices of the outputs that became known variables, i.e. the
new inputs (that is also the subset of the indices of the inputs
that became unknown variables, i.e. the new outputs).
Let us note rr =’ the complementary set.
The causal form corresponding to put the bond of the subset
r in non preferred causality exists if and only if the
determinant of the square matrix R constituted by the
elements of A after the cancellation of the columns and the
rows corresponding to the subset r’ is not zero.
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that leads to the reduced matrix [ ] { } rrjiaR ij ×∈= , (8)
4 – BICAUSAL ASSIGNMENT FOR MULTI-
PORT ELEMENTS
If bicausal bonds are used in the case of multi-port elements,
the input and the output are known in the corresponding
relation of the constitutive relation of the element. This
knowledge of the power in one bond, may be used in several
ways :

•  Firstly to propagate this knowledge to another
bond, i.e. to impose the power (flow and effort
variable). The bicausality is then propagated to the
rest of the system by applying the algorithm
described in Gawthrop [Gawthrop 95] or Fotsu-
Ngwompo [Fotsu Ngwompo et al. 96].

•  Secondly to determine some part of the
constitutive relation of the element in order to size
the system applying the method introduced by
Fotsu-Ngwompo.

If n is the dimension of the system, the situation of the
problem is the following. There are n  equations and

nn× parameters in the matrix, n inputs and n outputs (that

is nn 22 +  potential parameters). That is why nn +2

potential parameters have to be known parameters, and only
n  may be unknown parameters. Each bond imposing effort
and flow (bicausal bond) fixes two variables as known
variables.
Let us note p the number of imposed variables chosen either

in the input variable set or in the output variable set. There
are three different cases considering any combination of the
imposed variable set.

•  Case 1 : If np < , then there are less imposed

variables than inputs to the constitutive relation.
This means that the number of known variables is
smaller than the dimension of the system. The
system is then under constrained and it is not
possible to solve it as the number of known

parameters is nnpn +<+ 22 .

•  Case 2: If np = , then there are as many bicausal

bonds that impose the power to the element as
bicausal bonds, which force the power to their
connected element. It is also the case when there
is no bicausal bond connected to the multi-port
element. The system has a chance to be solved.
But it is not possible to set a coefficient of the
constitutive matrix as an unknown parameter
because the number of required known parameters

is 22 npnn =−+ , and is exactly the amount of

coefficients.



•  Case 3 : If np > , then the number of imposed

variables is greater than the number of constitutive
relations and the number of the required known

variables is now 22 npnn <−+ . The system

is over constrained and 3 new cases may be
considered:

•  npk −>  coefficients of the constitutive

relation are set as unknown parameters. This
means that the number of known parameters

is nnpkn +<+− 22 . The system is then

under constrained and it is not possible to
solve it.

•  npk −= coefficients of the constitutive

relation are set as unknown parameters in the
subset of equations where all the input and
output variables are known. The system has a
chance to be solved as the number of known

parameters is nnpkn +=+− 22 .

•  All the coefficients of the constitutive
relation are known or npk −<
coefficients are set as unknown parameters.
If, after reducing the system, the dependent
equations are verified, the system has a
solution. If not, there is no solution. Anyway
this case seems an ill-defined problem.

This discussion shows that only case 2 and 3 are to be
considered. The case 2 corresponds to the problem of the
propagation of bicausality through a multi-port element. In
order to determine one or more coefficients of the
constitutive relation of a multi-port element, the case 3 has to
be taken into consideration. The number of coefficients,
which may be determined using this method, is therefore
equal to the difference between the number of variables
imposed by causal or bicausal bonds and the dimension of
the multi-port element. The both interesting cases are
developed in the next section.
5 - APPLICATION TO A 2-PORT ELEMENT
AND GENERALIZATION
The two last cases are now studied for a 2 port element. The
results are then extended to any multi-port element.
Case 2 : np =
Here the number of bicausal bonds, which impose effort and
flow to the multi-port element, is the same as the number of
bicausal bonds, which impose effort and flow to their
connected element. The theorem 1 (section 3) is therefore a
particular case of the following development as the number
of bicausal bond is zero.
In the case of a 2-port element, only one bicausal bond
imposes the power to the 2-port element. This assumption
means that one input variable and its conjugate output
variable are known, and that the other input variable and its
conjugate output variable have to be determined. The
bicausality is propagated through the element. If, for
example, the output and its conjugate input are known in the
first equation of the constitutive relation, the resolution
consists to express the second input as a function of the first
input and output:
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The condition is then that 012 ≠a is required for the

existence of this bicausal configuration.
The situation is then very similar to the one described for the
hybrid causal form, although it is now necessary to compute
the determinant of the reduced matrix after canceling the
rows corresponding to the outputs which remain unknowns,
and the columns corresponding to the inputs which remain
imposed variables. The following theorem is a generalization
of this result.

Theorem 2
Let A be the matrix corresponding to the constitutive relation
in the preferred causality.

Let us note { } { }nrrr m ,,1,,1 �� ⊂= the subset of the

indices of the outputs that remain unknown variables (i.e.
outputs in the preferred causality) and

{ } { }nttt m ,,1,,1 �� ⊂= the subset of the indices of the

inputs that remain known variables (i.e. inputs in the
preferred causality).
The new causal form corresponding to this new set of known
and unknown variables exists if and only if the determinant



of the square matrix R constituted of the elements of A after
the cancellation of the columns corresponding to the subset t
and the row corresponding to the subset r is not zero.

The removed columns and rows are indicated on equation

(10) by the vertical ( { }mk tttt ,,1 �=∈ ) and horizontal

lines ( { }ml rrrr ,,1 �=∈ ).
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that leads to the reduced matrix [ ] { } trjiaR ij ×∈= , (10)

Remark : It appears that theorem 2 is a generalization for
theorem 1. If theorem 2 is applied with identical subsets r
and t, this case corresponds to put a subset of bonds in non-
preferred causality without bicausal bonds.

Case3 : np >  and npk −= coefficients of the
constitutive relation are unknowns.
In case of a 2 port element with the first bond being a
bicausal bond and the second bond in non reversed causality,
the system to be solved is the following one :
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The left-hand side represents the unknown terms and the
right hand side the known ones. It is then necessary to
choose one coefficient as unknown in order to relax the

constraint on the system. If 11a is chosen as unknown, we

obtain :
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Theorem 3:
For an n-port element, if np > variables in the input or

output set are defined as known variables, there are
npk −=  over constraint equations. If

npk −= coefficients of the constitutive relations are set as

unknown parameters, the condition for solving the problem
is that:

 i. the k coefficients of the constitutive relations
chosen as unknowns are related to the subset
of known variables in the input set (else the
system becomes non linear),

 ii. only one coefficient per line (or relation) is set
as unknown (else some relations remain over
constraints),

 iii. the known variables associated to the unknown
coefficients are different from zero,

 iv. the matrix of the constitutive relations in
preferred causality, where the relations in
which coefficients of the matrix are unknown
have been removed, verifies theorem 2.

Remark 1 : Some care have to be taken if the matrix is
symmetric or antisymmetric (I, C), it is then possible to set 2
coefficients per line (or relation) as unknowns.

Remark 2 : Theorem 3 shows that there are only n
coefficients in the constitutive relations, which may be
determined using this method.



5 – APPLICATION OF THE BICAUSALITY
TO MULTI-PORT ELEMENTS
In order to illustrate the obtained results, the variable
capacity (figure 1) is an interesting application. We note :
•  x the distance in between the plates and v the velocity.
•  F the force applied to one plate, the other one being

fixed.
•  U the voltage between the plates.
•  i the current in the capacity and q the charge.
•  S the section of the plates.
•  ε the dielectric constant of the medium.

F
x

U(t)

CC
u
q

F
x. .

Figure 1. Variable Capacity

The variable capacity is a non-linear system that may be
represented in bond graph by a multi-port C element. One
bond is in the electrical field, the other one in the mechanical
field. It is defined by the non-linear constitutive relations
(15) and the linearization around the equilibrium point (xe,
qe, ue, Fe) gives the form (16).
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where x* notes the variation of x around the equilibrium

point xe : )(* exxx −=
In this case, the preferred causality, that is the integral
causality, is obtained when the flows are imposed to the
element. Therefore the form (16) is in preferred causality, the
inputs are the generalized displacements (q*, x*) and the
outputs the efforts (u*, F*).

Causality assignment
It clearly appears that the conditions of existence of the
different causality are related to the values of qe and xe (to
stay in the physical reality, we assume that ε and S are not
zero). The table 1 summarizes these results. Applying
theorem 2 according to the considered causality assignment,
the removed columns and rows are indicated in table 1 by the
vertical and horizontal lines in order to obtain the condition
of existence of the causal form.

Sizing problem
Although the problem of the design is not very useful in this
case, it seems interesting to look at its application. If, for

example, the design problem is to size the coefficient 
S

xe

ε
,

the crucial question is what are the required trajectory (or
measurements) ? The result straightforwardly comes by
applying the proposed method (Table 2). To determine this
coefficient, the knowledge of at least 3 on the 4 variables
(inputs and outputs) is necessary and one of these variables
has to be q*. One bicausal bond has to impose the flow and
the effort, the other may have any causality, either effort or
flow, but q* must anyway be imposed. There are then 3
cases, which are shown on Table 2.
Remark : In this example, q* is only related to F*, it is
possible to avoid the non linearity and to use the following
causality to solve the problem:
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Table 1. Condition of existence for the different causalities
Causality Condition of existence Existence Calculus scheme
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Table 2. Condition of existence for the different causalities
Causality Condition of existence Existence Calculus scheme
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6 – CONCLUSION
In the proposed approach, the causal stroke or half-stroke
clearly appears as a symbolism for the orientation of the
calculus model. We show that the constitutive relations of
any linear multi-port element may be used to determine
quickly what kind of causality assignment does exist and
what could be determined using different schemes of
calculus, that is causality. Our original goal was to establish
the subsets of state variables and inputs that enable to define
the equilibrium set for a multi-port storage element. The
solution to this problem is now straightforward by applying
the proposed approach. The inspection of the condition of
existence for a causality assignment in linear multi-port
shows that the results are potentially relevant in different
contexts and have interesting applications on problems such
as system design, identification and control.
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