

Quantitative Raman calibration of sulfate-bearing polymineralic mixtures: a S quantification in sedimentary rocks on Mars

Chloé Larre, Yann Morizet, Catherine Guillot-Deudon, Fabien Baron, Nicolas

Mangold

► To cite this version:

Chloé Larre, Yann Morizet, Catherine Guillot-Deudon, Fabien Baron, Nicolas Mangold. Quantitative Raman calibration of sulfate-bearing polymineralic mixtures: a S quantification in sedimentary rocks on Mars. Mineralogical Magazine, Mineralogical Society, 2019, 83 (1), pp.57-69. 10.1180/mgm.2018.147. hal-02933698

HAL Id: hal-02933698 https://hal.archives-ouvertes.fr/hal-02933698

Submitted on 8 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Quantitative Raman calibration of sulfate-bearing polymineralic
2	mixtures: a S quantification in sedimentary rocks on Mars
3	C. LARRE ^{1*} , Y. MORIZET ¹ , C. GUILLOT-DEUDON ^{1,2} , F. BARON ¹
4	and N. MANGOLD ¹
5	¹ Université de Nantes, Faculté des Sciences et Techniques, Laboratoire
6	de Planétologie et Géodynamique (LPG), UMR CNRS 6112, 2 rue de
7	la Houssinière, 44322 Nantes, France
8	² IMN, Institut des Matériaux Jean Rouxel de Nantes, UMR CNRS
9	6502, 2 rue de la Houssinière, 44322 Nantes, France
10	* Corresponding author e-mail : chloe.larre@univ-nantes.fr
11	
12	Abstract
13	The NASA 2020 Mars mission is a Curiosity-type rover aiming to
14	improve the knowledge of the geologic and climatic evolution of Mars
15	and collect rock samples for future return to Earth. The new rover
16	presents a payload of seven instruments including the SuperCam
17	instrument which is constituted of four tools including a Raman
18	spectrometer. This Raman device will be non-destructive and will
19	analyze the surface remotely in order to determine the mineralogy of
20	rocks and, by extent, to detect and quantify major elements such as
21	sulfur. Sulfur has been detected under sulfate forms (Ca,Mg,Fe-
22	sulfates) in sedimentary rocks. This element is difficult to quantify

using the laser ablation tool of the ChemCam instrument onboard theCuriosity rover.

We propose a Raman calibration to constrain the sulfur abundance in 25 26 multi-minerallic mixtures.. We acquired Raman signatures on binary and ternary mechanical mixtures containing Ca and Mg sulfates, mixed 27 with natural silicate minerals: olivine, clinopyroxene, orthopyroxene 28 29 and plagioclase; and supposed to be relevant of basaltic-sedimentary rocks at the surface of Mars. Specific processing of Raman spectra 30 extracted from our mixtures using Voigt function allows us to recover 31 the initial proportions of our preparations on Ca and Mg sulfates. From 32 these simulations, calibration equations have been provided allowing us 33 to determine sulfate proportions (CaSO₄ and MgSO₄) in a mixture with 34 basaltic minerals. With the presented calibration, S can be quantified at 35 a lower limit of 0.7 wt % in martian soil. 36

37

38

39

Keywords : Raman spectroscopy, S abundance, sulfates, sedimentary

40

41

1. Introduction

rocks. Mars.

42 One of the main objectives of both orbital and landed Mars missions is 43 the mineralogical characterization of the igneous and sedimentary rocks 44 in order to constrain past geological processes such as the early 45 volcanism and aqueous alteration. So far, many igneous rocks have 46 been detected at the surface of Mars and basaltic rocks represent the

47	most abundant part (e.g., Bandfield et al. 2000; McSween et al. 2009;
48	Taylor and McLennan 2009; Ody 2012; Baratoux et al. 2013; Sautter et
49	al. 2016; Cousin et al. 2017). Although the Curiosity rover and the
50	orbital spectrometer CRISM have recently discovered more felsic and
51	alkali-rich rocks including trachyte, andesite, diorite and putative
52	granitoïds (Wray et al. 2010; Stolper et al. 2013; Sautter et al. 2015;
53	Mangold et al. 2016). These magmatic rocks have been altered into
54	various minerals such as clays (various smectites, kaolinite, chlorite),
55	sulfates (Ca-, Fe-, Mg-sulfates), which are often detected in sediment
56	layers overlying the igneous bedrock or in crustal outcrops exhumed by
57	impact craters (e.g., Squyres et al. 2004; Arvidson et al. 2005; Poulet et
58	al. 2005; Gendrin et al. 2005; Elhmann et al. 2013, Carter et al. 2013).
59	The Curiosity rover currently analyzes rocks and soils on Mars using
60	Laser Induced Breakdown Spectroscopy (LIBS) (Maurice et al. 2012;
61	Wiens et al. 2012: Meslin et al. 2013: Maurice et al. 2017: Cousin et al.
62	2017; Mangold et al. 2017). The LIBS equipment enables the detection
62 63	2017; Mangold et al. 2017). The LIBS equipment enables the detection and quantification of all major elements (e.g., Si, Al) and the detection
62 63 64	2017; Mangold et al. 2017). The LIBS equipment enables the detection and quantification of all major elements (e.g., Si, Al) and the detection of volatiles and halogens (C-H-O-N-P-S-F-Cl). However, the detection
62 63 64 65	2017; Mangold et al. 2017). The LIBS equipment enables the detection and quantification of all major elements (e.g., Si, Al) and the detection of volatiles and halogens (C-H-O-N-P-S-F-Cl). However, the detection of these elements is difficult with this method because of the high
 62 63 64 65 66 	2017; Mangold et al. 2017). The LIBS equipment enables the detection and quantification of all major elements (e.g., Si, Al) and the detection of volatiles and halogens (C-H-O-N-P-S-F-Cl). However, the detection of these elements is difficult with this method because of the high excitation energies, their peak positions near the instrument limit and
 62 63 64 65 66 67 	2017; Mangold et al. 2017). The LIBS equipment enables the detection and quantification of all major elements (e.g., Si, Al) and the detection of volatiles and halogens (C-H-O-N-P-S-F-Cl). However, the detection of these elements is difficult with this method because of the high excitation energies, their peak positions near the instrument limit and the coupling of different major elements rays (e.g. Sallé et al. 2004,
 62 63 64 65 66 67 68 	2017; Mangold et al. 2017). The LIBS equipment enables the detection and quantification of all major elements (e.g., Si, Al) and the detection of volatiles and halogens (C-H-O-N-P-S-F-Cl). However, the detection of these elements is difficult with this method because of the high excitation energies, their peak positions near the instrument limit and the coupling of different major elements rays (e.g. Sallé et al. 2004, Clegg et al. 2007). This results in varying detection levels and lack of
 62 63 64 65 66 67 68 69 	2017; Mangold et al. 2017). The LIBS equipment enables the detection and quantification of all major elements (e.g., Si, Al) and the detection of volatiles and halogens (C-H-O-N-P-S-F-Cl). However, the detection of these elements is difficult with this method because of the high excitation energies, their peak positions near the instrument limit and the coupling of different major elements rays (e.g. Sallé et al. 2004, Clegg et al. 2007). This results in varying detection levels and lack of quantification for some of them. In particular, the detection limit for S

S is of prime interest, as this element is known to be fundamental for
Mars evolution (King and McLennan 2010).

In the future Mars 2020 mission, the SuperCam analytical equipment 73 74 will include Raman and IR spectrometers in addition to the LIBS instrument similar to ChemCam instrument onboard Curiosity (Fouchet 75 et al. 2016; Wiens et al. 2016, Ollila et al. 2017). Relevant 76 77 interpretations of Raman spectra will require the acquisition of laboratory data under similar analytical conditions of the Raman 78 spectrometer onboard. Although Raman spectroscopy is nominally 79 non-quantitative with relevant calibration, it can be used for quantifying 80 S at low concentrations (thousands of ppm) owing to the high Raman 81 activity of S-bearing molecular groups (Morizet et al. 2017). 82

Previous studies have focused on the quantification of volatile species 83 $(H_2O, CO_2 \text{ and } SO_4^{2-})$ in silicate glasses with application to Earth 84 volcanism (Zajacz et al. 2005; Mercier et al. 2009; Le Losg et al. 2012; 85 Morizet et al. 2013, 2017). However, up to now, the quantification of 86 individual mineral species in multi-minerallic mechanical mixtures 87 have been merely addressed using Raman spectroscopy (Kontoyannis 88 et al. 1997; Jehlicka et al. 2009; Noguchi et al. 2009; Kriskova et al. 89 2013). Jehlicka et al. (2009) have shown, the possibility to quantify 90 multi-component mixtures with a portable micro-Raman spectrometer. 91 In Kriskova et al. (2013) and Noguchi et al. (2009) only multi-92 minerallic mixtures with carbonates have been studied. Kontoyannis et 93 al. (1997) have established a calibration on carbonates mixed with 94

95 gypsum using Raman spectroscopy, but not applied to mineralogical96 mixtures representative of Mars mineralogy.

In the present work, we propose a calibration for quantifying the sulfate 97 98 content (thereby also the elemental sulfur content) in multi-minerallic mixtures. This calibration aims to be subsequently applied for 99 quantifying S under its sulfate form on the surface of Mars with the 100 Raman spectrometer of SuperCam. Several mixtures of sulfates (Ca-101 sulfate, Mg-sulfate) with silicate minerals (i.e., pyroxenes, olivine, and 102 plagioclase) were prepared in order to reproduce sulfate-bearing 103 104 Martian-like sedimentary rocks. These mixtures were analyzed by Raman spectroscopy. The equations derived from calibration curves are 105 then used to quantity sulfates in these mixtures. Finally, we discuss the 106 potential of this method to quantify S carried by sulfates in the Martian 107 soil and rocks. 108

109

110 **2. Methods**

111 2.1. Multi-minerallic mixtures preparation:

Multi-minerallic mixtures prepared from Ca-sulfate 112 were 113 (CaSO_{4.2}H₂O) and Mg-sulfate (MgSO_{4.}nH₂O) synthetic powders and silicate minerals selected from natural rocks. Pyroxenes and olivine 114 were extracted from a xenolith collected at the maar of Borée (France) 115 and plagioclase from a norite of Stillwater (USA). Chemical 116 compositions of minerals selected for this study are reported in Table 117 1. Olivine is Mg-rich in composition (forsterite, Si_{1.00} Fe_{0.18} Mg_{1.78} 118

119	$Na_{0.01} O_4$).Pyroxenes have compositions close to enstatite ($Si_{1.85} Al_{0.16}$)
120	$Fe_{0.16}Mg_{1.62}Ca_{0.02}Na_{0.02}O_6$) and augite end-members (Si _{1.78} Al _{0.23} Fe _{0.09})
121	$Mg_{0.95} Ca_{0.57} Na_{0.11} O_6$). The plagioclase from this study is Ca-rich and
122	has composition close to the anorthite end-member (Si_{2.21} Al_{1.76} Fe_{0.01}
123	$Mg_{0.01} Ca_{0.85} Na_{0.16} O_8$). Natural silicate minerals were crushed in a
124	steel-mortar with pestle and crushed again in an agate mortar. Ethanol
125	was added during crushing to clean the samples.

Mixtures between silicate minerals and sulfates were prepared and 126 127 mixed in together. The resulting powder was not sieved because grain size does not exceed 50 µm with this grinding procedure (see Figure 128 1A). Several samples at various sulfate proportions were prepared: 129 WF_{gypsum} = 0.20, 0.10, 0.05, 0.03, 0.01 and WF_{mg-sulfate}=0.20, 0.10, 0.05 130 and 0.03; where WF represents the Weight Fraction of sulfates. Ternary 131 132 mixtures were prepared with Ca-sulfate, clinopyroxene and olivine. Gypsum, clinopyroxene and olivine concentrations in mixtures were 133 respectively: $WF_{gypsum} = 0.20, 0.10 \text{ and } 0.05, WF_{clinopyroxene} = 0.40, 0.40$ 134 and 0.45, $WF_{olivine} = 0.40$, 0.50 and 0.50. The investigated sulfate 135 concentrations are consistent with the abundances of these minerals as 136 locally estimated in evaporites at Meridiani Planum (McLennan et al. 137 2006) or in fluvio-lacustrine sedimentary rocks at Gale crater (Vaniman 138 et al. 2017). 139

We also prepared ternary mixtures in order to reproduce in a more
realistic system the suggested Martian surface mineralogy: sulfates
mixed silicate minerals resulting of basalt alteration (Carter et al. 2013;

143	Forni et al. 2015; Cousin et al. 2017; Mangold et al. 2017). The resulting
144	powders were then pressed into pellets (Figure 1A). Pressures used
145	were between 5,000 and 9,000 kg/cm ² to create pellets with 7 to 10 mm
146	in diameters, respectively.
147	
148	2.2. Raman spectroscopy
149	The non-destructive nature of the Raman analyses will allow
150	mineralogical characterization (e.g., Reynard et al. 2012) of the Martian
151	rocks without any sample preparation. The Raman spectroscopy uses a
152	laser with a specific wavelength, which will excite molecules (Brawer
153	and White 1975; Mysen and Virgo 1980a, b; McMillan 1984; Rossano
154	and Mysen 2009; Rull 2012). The excitation of molecules produces a
155	Raman shift (i.e., the wavenumber differences between the signal from
156	the laser and the response of excited molecules; Delhaye and
157	Dhamelincourt 1975; Hoehse et al. 2009; Dubessy et al. 2012). The
158	strongest signatures received and detected by the Raman spectrometer
159	are called v_1 signatures and correspond to the symmetric stretching of
160	the molecules excited by the laser (Rossano and Mysen 2009; Rull
161	2012).
162	Raman spectra for each pellet were acquired on a Jobin-Yvon Labram
163	HR800 spectrometer equipped with a solid state laser diode operating
164	at 532 nm. A 20X Olympus objective was used. A 785 nm solid state
165	laser has also been used on one sample (GPG80, plagioclase-gypsum
166	mixture with $WF_{gypsum} = 0.20$) to circumvent the fluorescence. Spectra

167are acquired with a 300 grooves/mm grating with a 3 cm⁻¹ spectral168resolution. The output power of the laser was set to 74 mW for Ca-169sulfate mixtures and 50 mW for Mg-sulfate. For binary mixtures, we170did not use the confocal mode (with a hole calibrated around 50 μ m)171and the hole was fixed at 200 μ m. However, ternary mixtures were172analyzed in a confocal mode due to fluorescence problems (Panzcer et173al. 2012) in the non-confocal configuration.

The acquisition time varied from 3 to 10 s and 3 repetitive scans were 174 made on each point. Backgroun substraction for each spectrum has been 175 applied following the procedure of Tarcea and Popp (2012): a fit of 176 polylines (i.e., multiple lines added to create a baseline under the 177 spectrum) was made for each spectrum to establish a baseline correction 178 in order to measure areas and intensities for each peak. Peak intensity 179 and area were determined on normalized spectra to the same acquisition 180 181 time length (10 or 15 s). Details of the analytical conditions are reported in the Supplementary Material (Table 1). 182

A large mapping of 5 by 5 mm (Figure 1B) was conducted on each 183 pellet with a spot size of about 1.6 µm. Each analyses were performed 184 every 150 µm. This mapping results in 1024 spectra representing the 185 mixture analyzed. Since grain size did not exceed 50 µm, possible 186 coupling of the same crystal analysis is expected. This phenomenon 187 would have occurred for every crystal, since we suppose the mixture 188 homogeneous in grain size (Figure 1A). Then, an average of these 189 spectra, that will consider the previous artefact, is computed to obtain a 190

191 single Raman spectrum representative of the analyzed mixture (Figure192 1C).

The effect of polarization was also tested on Raman spectra of pure 193 194 minerals. We have observed that the spectrum intensity is modified when acquisition angle on the crystal is changed, which is consistent 195 with the results of Bremard et al. (1986) and Rull (2012) where 196 197 polarization effects have been observed and measured when changing crystal orientation. Nevertheless, we assumed that the polarization 198 effect is averaged out by the large mapping procedure adopted and 199 200 considering that crystals in the pellet have all possible crystallographic orientations from a statistical point of view. 201

202

2.2.1 Mineral Raman spectra:

The Raman spectrum of each individual mineral used in this study is 203 reported in Figure 2. The gypsum Raman pure spectrum (Figure 2A) 204 exhibits several peaks with low intensities in the 400-700 cm⁻¹ region 205 corresponding to the symmetric (400-500 cm⁻¹) and antisymmetric 206 (600-700 cm⁻¹) bending vibrations of SO₄ molecules (v_2 and v_4). The 207 strong peak at 1006 cm⁻¹ corresponds to the symmetric stretching 208 vibration (or v_1) of S-O bonds in SO₄ molecular groups (Knittle et al. 209 2001; Buzgar et al. 2009; Bishop et al. 2014). Peaks observed in the 210 highest frequency region (> 1100 cm^{-1}) are attributed to antisymmetric 211 stretch vibrations (v_3) of SO₄ and have a weak Raman activity. 212

213 Similar to gypsum, the principal symmetric v_1 vibration of Mg-214 sulfate is identified in Figure 2B around 1040 cm⁻¹ (Buzgar et al. 2009).

215 Antisymmetric bending and stretching of SO_4 molecules are observed 216 at 620 and 1110 cm⁻¹, respectively.

The Raman spectrum of olivine (Figure 2C) shows two strong peaks above 800 cm⁻¹, followed by two less intense peaks above 900 cm⁻¹, which are attributed to the symmetric stretch of the Si-O bonds of SiO₄ tetrahedrons (Chopelas 1991; Kolesov and Tanskaya 1996; Kolesov and Geiger 2004; Kuebler et al. 2006; McKeown et al 2010).

Plagioclase Raman spectrum shown in Figure 2D exhibits a strong peak around 500 cm⁻¹ attributed to the v_1 of Al₂O₃ or SiO₄ tetrahedrons in the tectosilicate structure (Sharma et al. 1983; Freeman et al. 2008). Peaks identified at higher wavenumbers correspond to the v_3 vibrations for these tetrahedrons.

Pyroxenes spectra shown in Figures 2E and 2F are similar in the high 227 frequency region (> 600 cm^{-1}) where bending and stretching vibrations 228 of SiO₄ tetrahedrons are observed, for signatures around 660 and 1006 229 cm⁻¹ respectively. At low frequency, in the 200-400 cm⁻¹ region, it is 230 231 possible to discriminate clinopyroxene from orthopyroxene, which does not present the same peak intensities. In this region, vibrations related 232 to Fe, Ca and Mg molecular environments are responsible for the 233 observed peaks (Sharma et al. 1983; Huang et al. 2000; Wang et al. 234 2001; Prencipe et al. 2011). Specific peak assignments for each mineral 235 in this study are described in Table 2. 236

237

2.2.2. Analytical conditions useable for the SuperCam instrument:

The new rover send for the 2020 Mars mission will use a laser-pulse Raman spectrometer with a 532 nm solid-state laser (Olila et al. 2012, Wiens et al. 2016). The rover will target rocks and soil from several meters away and with a resolution on the order of 10 cm⁻¹ (Wiens et al. 2016).

Knowing those conditions, we performed several tests to analyze the 243 pellets. A map size of 5 by 5 mm was necessary to reproduce in an 244 adequate way the mineral mixtures. Using 2 by 2 or 3 by 3 mm map 245 size was not sufficient to retrieve the initial mineral proportions in the 246 247 mixture. Furthermore, the 5 by 5 mm size map is also consistent with the analytical conditions for the 2020 rover, which will have a large 248 analytical area. The adopted laboratory analytical conditions (i.e., focus 249 250 20X, 300 grooves/mm grating and non-confocal mode) were optimized to obtained spectra that could be compared to the Raman spectra which 251 252 will be acquired by SuperCam.

253

254

2.3. Calibration method:

The calibration method in the present study is similar to that used by Kontoyannis et al. (1997), Noguchi et al. (2009) and Kristova et al. (2013). Our method is based on the spectral deconvolution of the investigated pure minerals Raman spectrum presented in the previous section. For instance, to establish a calibration on a gypsum-olivine mixture, pure spectrum of gypsum and olivine are treated individually. The spectrum treatment consists in extracting peak information using

subsequent deconvolution. Since we are analyzing crystallized species, 262 we expect the Raman signature to have a pure Lorentzian shape; 263 however, a contribution of a Gaussian component in addition to the 264 Lorentzian signal has been observed. This would likely be caused by 265 intrinsic crystal defaults. Therefore, we used a Voigt simulation (i.e., a 266 mix of Gaussian and Lorentzian deconvolution) which provides better 267 simulations of our spectra. The simulation equation of a Voigt 268 deconvolution is given below (Eq.1): 269

270
$$y = y_0 + A \frac{2\ln 2}{\pi^2} \times \frac{W_L}{W_G^2} \times \int_{-\infty}^{\infty} \frac{e^{-t^2}}{\left(\sqrt{\ln 2} \times \frac{W_L}{W_G}\right)^2 + \left(\sqrt{4\ln 2} \times \frac{x - x_C}{W_G} - t\right)^2} dt \quad (1)$$

Where y_0 and y are the intensity after a baseline correction of the 271 spectrum and the intensity for the peak simulated, respectively. The 272 273 parameter A represents the simulated area and W_G et W_L are respectively the Gaussian and Lorentzian widths for a given peak. The 274 x parameter is the position in cm^{-1} ; where x is the Raman shift and x_c is 275 the derived peak position simulated in cm⁻¹. Finally, in Eq. 1, t is the 276 277 time component. Since the Raman spectra are not time-dependent, t is 278 set to 0. We reported in the Supplementary Material (Table 1) all peaks simulated for mineral pure spectrum, with their specifics parameters 279 (width, position, area). Forclarity, simulations of silicate and sulfate 280 281 minerals pure spectra are only shown in the Supplementary material (Fig.S1). 282

283 Due to the strong overlapping between the different spectral lines in the 284 recovered average Raman spectrum for each pellet, it was not possible 285 to perform the simulation of all the identified peaks for pure spectrum

of minerals reported in Table 2. For instance, clinopyroxene has a main peak at 1006 cm⁻¹ comparable to the one in gypsum Raman spectrum. Therefore, simulating those two peaks in the average mixed spectrum is complicated by their proximity and relevant simulation could not be achieved. Hence, for each species, we have selected peaks that are distinct in their position and indicated in Table 3.

292 The protocol to simulate Raman peaks is fully described in previous studies and is routinely used for the quantification of volatiles species 293 in silicate glasses (Mysen and Virgo 1980a, b; Mercier et al. 2009; 294 Morizet et al. 2013, 2017). First, we have fixed the peak position and 295 widths (Gaussian and Lorentzian), leaving only the peak area 296 optimized. Position is then optimized as we observed slight variations 297 in the peak position in our mixture spectrum compared to the position 298 derived from the acquired pure spectrum. These variations could be due 299 300 to the dependence of the Raman signature on crystal orientation or unaccounted chemical heterogeneity. Gaussian and Lorentzian widths 301 are also optimized to better adjust our simulations. This procedure is 302 repeated several times until the chi-square (χ^2 parameter representing 303 the robustness of the fit) is the lowest possible and the residual are small 304 (see Figure 3). 305

With parameters extracted from simulations, we were able to calculate the mixing proportion present in the analyzed pellet. We determined a ratio R between the simulated area for the peak of the mixed spectrum and that of the pure spectrum such as:

$$R = \frac{A_{mixture}}{A_{pure}} \quad (2)$$

311 In Eq.2, A represents the area determined with a Voigt simulation for a same peak for the mixture (A_{mixture}) and the pure Raman spectrum 312 (A_{pure}). This method differs from previous Raman calibrations studies 313 of Kontoyannis et al. (1997) and Kriskova et al. (2013) where peak 314 intensities were chosen instead of areas. Since we observed several 315 variations in intensity and peak positions between pure spectrum and 316 317 the average spectrum of the mixture, we consider that peak areas averaged out every possible variation between acquisitions with the 300 318 grooves/mm grating. The ratios are then normalized to obtain the result 319 in weight fraction (WF). This proportion is then assimilated to a 320 coefficient "a": 321

322
$$a = \frac{\sum A_{gypsum}}{\sum A_{mineral}} \quad (3)$$

with A being peak areas for gypsum (A_{gypsum}) and for mineral in the mixture (A_{mineral}). In case of the ternary mixtures with more than 2 peaks simulated for one mineral, A_{mineral} is entirely summed in the denominator. Examples of mineral pure spectrum and mixture deconvolutions are provided in the Supplementary Material (Fig.S1).

328

329 3. Results

3.1. Binary and ternary mixtures with Ca-sulfate:

A typical example of the spectral treatment is presented in Figure 3. In
Figure 3A, Raman spectra collected represents olivine and gypsum

mixtures with: $WF_{gypsum} = 0.2, 0.1, 0.05$ and 0.01. The Raman spectra 333 obtained for the mixtures with other minerals (pyroxenes and 334 plagioclase) are reported in the Supplementary Material (Fig.S2). In 335 Figure 3A, it can be observed that the peak intensity for v_1 gypsum at 336 1006 cm⁻¹ increases with increasing the proportion of gypsum in the 337 mixture. For instance, in GOLI80 $WF_{gypsum} = 0.20$ (see Table 3 for 338 theoretical WF of each mixture), the 1006 cm⁻¹ symmetric stretch peak 339 is more intense as compared to the one in GOLI90 (WF_{gypsum}= 0.10). 340 For these two mixtures, the measured intensity in the SO₄ vibrations 341 342 peak is twice for GOLI80 as compared to the one in GOLI90 which 343 appears to be consistent with the prepared compositions (Table 3). Although the gypsum content in the GOLI99 mixture is extremely low 344 (WF_{gypsum} = 0.01), the peak at 1006 cm⁻¹ is still detected because of the 345 strong Raman activity of symmetric stretch of the S-O bonds in SO₄ 346 molecular groups in gypsum (see Figure 3A). 347

We chose to simulate three different peaks in the 890-1100 cm⁻¹ region 348 and located at 914, 958 for olivine and 1006 cm⁻¹ for gypsum (Figure 349 3). For on olivine mixtures, relevant results were obtained when 350 considering two Raman peaks identified in Table 2: 914 cm⁻¹ for olivine 351 and 1006 cm⁻¹ for gypsum. In order to avoid contribution of the 1006 352 cm⁻¹ gypsum peak over the 950 cm⁻¹ of olivine (see on Figure 3E-H), 353 we have simulated the olivine peak at 914 cm⁻¹ for our simulations. The 354 355 robustness of our simulations is asserted by the small residual observed in Figure 3E-H. For a theoretical proportion mixture of 0.80 and 0.20 356 weight fraction of olivine and gypsum respectively (Figure 3D), the 357

calculated proportions (from Eq. 2 and 3) are 0.79 (0.08, error relative 358 359 to simulations) for olivine and 0.21 (0.01) for gypsum (Figure 3H). With lower Ca-sulfate proportion, we obtain consistent results in 360 between the measured and theoretical mixtures. For initial proportions 361 at 0.90 and 0.10, we calculate 0.91 (0.01) for olivine and 0.09 (0) for 362 gypsum (Figure 3C and 3G). The same applies with the 0.01 and 0.05 363 mixtures of gypsum where 0.01 (0.01) and 0.06 (0) weight fraction of 364 gypsum is calculated respectively, as shown in Figure 3A,B and Figure 365 3E,F. 366

On the Figure 4 is showed the calculated coefficients from simulated 367 areas in each mixture (see Eq.3) as a function of the theoretical CaSO₄ 368 content. The results are represented for the different mixtures with 369 basaltic minerals: plagioclase-gypsum mixture in Figure 4A, 370 orthopyroxene-gypsum in Figure 4B, clinopyroxene and olivine-371 372 gypsum in Figure 4C and 4D, respectively. Results from simulations are reported in Table 3. In Figure 4, we can observe that the best 373 calibration (based on the linear regression coefficient R² which defines 374 375 the quality of the linear regression on experimental data) is obtained for olivine-gypsum simulations comparing to the calibration with other 376 silicate minerals. Simulations (Figures 4A to 4C) show good R^2 with 377 0.95, 0.94 and 0.96 for plagioclase, orthopyroxene and clinopyroxene 378 respectively. The plagioclase-mixture with 0.20 weight fraction of 379 380 gypsum (i.e., GPG80, see Table 3) has been calibrated using different peaks because of the use of the 785 nm laser for our analysis. 381 Consequently, this point is not reported in Figure 4A. 382

We adopted the same procedure as for binary mixtures for ternary 383 384 mixtures. The retained peak positions for our simulations are reported in Table 3. We considered the 300-390 cm⁻¹ clinopyroxene peak areas, 385 representative of Ca-O stretching vibrations, since they are isolated 386 from the contribution of olivine and gypsum peaks in the Raman 387 spectrum. For olivine, we consider the 947 cm⁻¹, one of SiO₄ symmetric 388 stretching vibrations signatures, and 485 cm⁻¹ for gypsum which 389 represents the bending of SO₄ molecules. Those peaks were selected 390 because they were the most separated from each other. 391

Simulations results and derived coefficients are reported in Table 3. We established a calibration expressed with the coefficient calculated (Eq.3) from areas simulated for each mineral according to the initial weight fraction of gypsum, indicated in Figure 5. In the Figure 5, we obtained a good calibration with $R^2 = 0.99$ on ternary mixtures.

397

398

3.4. Binary mixtures with Mg-sulfate

399 As for Ca-sulfate mixtures, we proceeded with the same method for pellets containing Mg-sulfate. We reported results from Mg-sulfate 400 calibration on Figure 6 where the same mixtures of natural silicate 401 minerals of olivine, pyroxenes and plagioclase are represented. In 402 Figures 6A and 6C, pyroxenes calibration with Mg-sulfate are showed. 403 As we can see on these results, the R^2 is fairly good (0.86 for 404 orthopyroxene mixtures and 0.85 for clinopyroxene) and initial 405 proportions of Mg-sulfate can be well estimated from our method. 406

407	Plagioclase mixtures with Mg-sulfate is reported on Figure 6B, where
408	we obtained $R^2=0.43$ and show the less consistent results. Finally,
409	olivine mixtures with initial proportions of Mg-sulfate (Figure 6D)
410	result in a R^2 =0.69. All results of calculated mixtures proportions are
411	reported in Table 3.
412	
413	4. Discussion
414	Binary and ternary mixtures with sulfates were calibrated with several
415	proportions of sulfate tested. In this section, we discuss the limit of our
416	calibration method and its application to the martian context.
417	4.1. Detection limit of sulfur:
418	In Figure 4 we have reported results from binary mixtures of gypsum.
419	We reported error bars extracted from errors under peak areas
420	simulated. As can be observed in Figures 4B and 4C, corresponding to
421	pyroxene-bearing mixtures, samples with 0.03 and 0.01 weight
422	fractions of gypsum present a significant vertical error. Some selected
423	peaks for the calibration do not exhibit a high Raman activity but we
424	had to select those peaks, , due to the necessity of choosing individual
425	peaks for our simulations. In simulation results shown in Table 3, we
426	can see that we have still a good agreement in between the calculated
427	proportions and the initial proportions within the mixtures. Considering
428	that some of molecule vibrations are less Raman active relative to
429	Raman spectroscopy, we consider that our method of calibration is
430	reliable until $WF_{sulfate} = 0.03$ weight fraction in a mechanical mixture.

431	Knowing this detection limit of our calibration, we can extrapolate this
432	method to Martian rocks. With the proposed method and the calibration
433	equations, S could be determined at the surface of Mars for a
434	sedimentary rock containing sulfate until approximately $WF_S = 0.007$
435	weight fraction (i.e., 7 000 ppm). Below this S content, our calibration
436	can still beapplied, but the errors will be higher and results might not
437	be reliable.
438	
439	4.2. Application to the calibration curves to the determination of sulfur
440	on the Martian surface
441	Results provided by the calibration are specified in Figure 7 for all
442	mixtures created. On Figure 7, we can see the good agreement of our
443	calibration method. This plot showed us that the calculated proportions
444	of gypsum areclose to the theoretical proportions and all data points are
445	aligned along the 1:1 line. Ternary mixtures with gypsum are also
446	represented and are in good accordance. Mg-sulfate mixtures in Figure
447	7 showed us that the calibration is also good and data points are aligned
448	along the 1:1 line.
449	We have reported on Table 3, all calibrations equations calculated from
450	our calibration method for gypsum and Mg-sulfate mixtures.
451	As a result, we can determine the sulfate content in a mixture with
452	olivine, pyroxenes and plagioclase in unknown proportions according
453	to equations extracted from our simulations shown in Figures 4, 5 and
454	6. Using a Raman spectrum obtained on the surface of Mars of a

455 mechanical solid mixture containing sulfate (Ca or Mg), and simulating
456 specific peaks (reported in Table 3), a coefficient can be calculated (i.e.,
457 the "a" component in equations in Table 3).

458 The established calibration method based on Raman spectroscopy will be of use for the future 2020 Mars mission to quantify S abundance 459 when present as sulfates. For the application of the present calibration, 460 the peak selections from Raman spectrum must be conducted with care. 461 We suggest using only the peaks mentioned in the present work and 462 reported in the Supplementary Material (Table 1). However, this will 463 be dependent on the resolution of the SuperCam Raman spectrometer 464 and the quality of the acquired signal (Wiens et al. 2016). In the case of 465 a low resolution, peaks with low intensities (for instance v_3) will be 466 difficult to constrain. However, other peaks mentioned in the 467 Supplementary Material (Table 1), such as v_1 or v_2 can be well defined 468 by the future rover and calibration can still be applicable (referred with 469 the Table 1 in the Supplementary Material peak information). Since our 470 analyses were performed with a high resolution Raman spectrometer, 471 further analyses will be acquired with a pulsed-Raman with distance 472 from the sample similar to the one presupposed for SuperCam in order 473 to compare data and modify, if necessary, the calibration. 474

Furthermore, Mars mineralogy has been partly investigated using remote sensing and rover data, as well as Martian meteorites, showing that pigeonite and augite are the two most common pyroxenes found in Martian rocks (both are clinopyroxenes but with low Ca content for pigeonite) (e.g., Lodders 1998, Agee et al. 2004; Mustard et al. 2005;

Cousin et al. 2017; Morrison et al. 2017). Mg-rich olivine, 480 481 orthopyroxene and plagioclase have also been detected in Martian meteorites and at the surface of the planet(Agee et al. 2004; Mustard et 482 al. 2005; Dehouck et al. 2014; Cousin et al. 2017; Morrison et al. 2017). 483 Nonetheless, Fe-rich olivine can be expected in small amounts which 484 only differs in spectral signature by the relative intensity between the 485 double peak around 800-850 cm⁻¹. Since our calibration is not based on 486 those peaks (see Table 3), the quantification of sulfate with favalite can 487 still be possible. Plagioclase such as anorthite may be the most common 488 489 feldspar on Mars (Bish et al. 2013, Blake et al. 2013, Vaniman et al. 2014) although andesine has been observed as the predominant 490 plagioclase at Gale crater by the Curiosity rover instruments (Sautter et 491 al. 2016, Morrison et al. 2017). Consequently, the proposed calibration 492 493 method can be useable for a mixture of sedimentary rocks containing sulfates and silicate minerals even if the minerals present does not have 494 the same chemical composition within a solid solution as used in our 495 496 study.

497

498 **5. Summary**

In the present study, we have prepared pellets by mixing Ca and Mg sulfates with silicate minerals commonly found in basalt (olivine, pyroxenes and plagioclase) in order to investigate the Raman signature of multi-minerallic mechanical assemblages. The main objective was to establish a relevant calibration for the determination of S content at the 504surface of Mars with analytical conditions close to the future Raman505spectrometer on SuperCam equipment for the 2020 spatial mission.506Calibration equations were obtained for both binary and ternary507mixtures of CaSO4 with minerals for a range of gypsum of 0.01 to 0.20508weight fraction. Equations were also estimated from Mg-sulfate509mixtures with initial proportion of 0.03 to 0.20 weight fraction.

The protocol used in this study involves simulations of the resulting 510 average Raman spectrum using a Voigt distribution on peaks attributed 511 to each mineral. The simulation of the entire Raman spectrum is not 512 simulated with an enough good accuracy and careful attention is 513 necessary for peak identifications. The actual method could be applied 514 to the quantitative characterization of the soil of Mars which is 515 recognized to present sedimentary rocks containing sulfates and silicate 516 minerals obtained from bedrock erosion. 517

Given our equations extracted from calibrations on both Mg and Ca 518 sulfates, we would be able to calculate a coefficient from a given Raman 519 520 spectrum acquired on Mars and treated according to specific peak simulations. Coupling this coefficient with the proper calibration 521 equation (i.e., when knowing the mineralogical characterization of the 522 523 mixture analyzed) we can estimate the proportion of this sulfate in weight fraction. By extent, this calibration could be used to constraint 524 525 part of the S content at the surface carried by sulfate minerals phases. We have estimated the detection limit of S at 7 000 ppm which is well 526 below the current detection limit by the LIBS technique (e.g., Wiens et 527 al. 2012; Nachon et al. 2014, Anderson et al. 2017). Nevertheless, 528

- further calibrations are requested involving more complex mineral
 mixtures, including other sulfates (Fe-sulfate) and sulfides, and
 mixtures with more than four compounds.
- 532

533 Acknowledgements

We thank particularly the Université de Nantes, the LPG and Institut des Matériaux de Nantes Jean Rouxel for their support with experimental and analytical facilities. We also thank Jean Pierre Lorand (LPG) for providing us rocks used in our samples. We acknowledge the support of the Centre National d'Etudes Spatiales (CNES), the Région Pays de la Loire and the Agence Nationale de la recherché (ANR) under the contract ANR-16-CE31-0012 entitled "Mars-PRIME".

541

542 **References**

- Agee, C.B., Draper, D.S. (2004): Experimental constraints on the origin
 of Martian meteorites and the composition of the Martian mantle. *Earth Planet Science Letters*, 224, 415-429.
- Anderson, D.E., *et al.* (2017): Characterization of LIBS estimation lines
 for the identification of chlorides, carbonates, and sulfates in
 salt/basalt mixtures for the application to MSL ChemCam data. *Journal of Geophysical Research: Planets*, **122**, 744-770.

550	Arvidson, R.E., Poulet, F., Bibring, JP., Wolff, M., Gendrin, A.,
551	Morris, R.V., Freeman, J.J., Langevin, Y., Mangold, N., Bellucci,
552	G. (2005): Spectral reflectance and morphologic correlations in
553	Eastern Terra Meridiani, Mars. Science, 307, 1591-1594.
554	Bandfield, J.L., Hamilton, V.E., Christensen, P.R. (2000): A global
555	view of Martian surface composition from MGS-TES. Science,
556	287 , 1626-1630.
557	Baratoux, D., Toplis, M.J., Monnereau, M., Sautter, V. (2013): The
558	petrogical expression of early Mars volcanism. Journal of
559	Geophysical Research: Planets, 118, 59-64.
560	Bish, D.L., et al. (2013): X-ray diffraction results from Mars Science
561	Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 341,
562	3153.
563	Bishop, J.L., Lane, M.D., Dyar, M.D., King, S.J., Brown, A.J., and
564	Swayze, G. (2013): Spectral properties of Ca-sulfates: Gypsum,
565	Bassanite and Anhydrite. American Mineralogist, 99, 2105-2115.
566	Blake, D.F., et al. (2013): Curiosity at Gale crater, Mars:
567	Characterization and analysis of the Rocknest sand shadow.
568	<i>Science</i> , 341 , 6153.
569	Bremard, C., Dhamelincourt, P., Laureyns, J., Turrell, G. (1986):
570	Polarization measurements in micro-Raman and

571	microfluorescence spectrometries. Journal of Molecular
572	<i>Structure</i> , 142 , 13-16.
573	Buzgar, N., Buzatu, A., and Sanislav, I.V. (2009): The Raman study on
574	certain sulfates. ANALELE ŞTIINŢIFICE ALE
575	UNIVERSITĂȚII "AL. I. CUZA" IAȘI Geologie. Tomul LV,
576	nr.1.
577	Carter, J., Poulet, F., Bibring, JP., Mangold, N., and Murchie, S.
578	(2013): Hydrous minerals on Mars as seen by the CRISM and
579	OMEGA imaging spectrometers: Updated global view. Journal
580	of Geophysical Research: Planets, 118 , 1-28.
581	Chopelas, A. (1991): Single crystal Raman spectra of forsterite,
582	fayalite, and monticellite. <i>American Mineralogist</i> , 76 , 1101-1109.
583	Clegg, S.M. et al. (2007): Sulfur geochemical nalysis with remote
584	laser-induced breakdown spectroscopy on the 2009 mars science
585	laboratory rover. Lunar Planetary Science Conference abstract
586	#1960.
587	Cousin, A., Sautter, V., Payré, V., Forni, O., Mangold, N., Gasnault, O.,
588	Le Deit, L., Johnson, J., Maurice, S., Salvatore, M., Wiens, R.C.,
589	Gasda, P., Rapin, W. (2017): Classification of igneous rocks
590	analyzed by ChemCam at Gale Crater, Mars. Icarus, 288, 265-
591	283.

592	Culka, A., Kosek, F., Drahota, P., Jehlicka, J. (2014): Use of
593	miniaturized Raman spectrometer for detection of sulfates of
594	different hydration states – Significance for Mars studies. Icarus,
595	243 , 440-453.
596	Daniel, I. and Edwards, H.G.M. (2012): Raman spectroscopy in
597	biogeology and astrobiology. EMU Notes in Mineralogy, 12, 389-
598	412.
599	Dehouck, E., McLennan, S.M., Meslin, PY., Cousin, A. (2014):
600	Constraints on abundance, composition, and nature of X-ray
601	amorphous components of soils and rocks at Gale crater, Mars.
602	Journal of Geophysical Research: Planets, 119, 2640-2657.
603	Delhaye, M., and Dhamelincourt, P. (1975): Raman microprobe and
604	microscope with laser excitation. Journal of Raman spectroscopy,
605	3 , 33-43.
606	Dubessy, J., Caumon, MC., Rull, F., and Sharma, S. (2012):
607	Instrumentation in Raman spectroscopy: elementary theory and
608	practice. EMU Notes in Mineralogy, 12, 83-172.
609	Filiberto, J., Baratoux, D., Beaty, D., Breuer, D., Farcy, B.J., Grott, M.,
610	Jones, J.H., Kiefer, W.S., Mane, P., McCubbin, F.M., Schwenzer,
611	P. (2016): A review of volatiles in the Martian interior.
612	Meteoritics & Planetary Science, 1-24.

613	Forni, O et al. (2015): First detection of fluorine on Mars: Implication
614	for Gale Crater's geochemistry. Geophysical Research Letters
615	42 , 1020-1028.

- Fouchet, T., et al. (2016): The SuperCam Remote Sensig Suite for
 MARS 2020: Nested and Co-Aligned LIBS, Raman, and VISIR
 Spectroscopies, and color micro-imaging. *American Astronimical Society*.
- Freeman, J.J., Wang, A., Kuebler, K.E., Jolliff, D.L., Haskin, L.A.
 (2008): Characterization of natural feldspars by Raman
 spectroscopy for future planetary exploration. *The Canadia Mineralogist*, 46, 1477-1500.
- Gendrin, A., Mangold, N., Bibring, J.P., Langevin, Y., Gondet, B.,
 Poulet, F., Bonello, G., Quantin, C., Mustard, J., Arvidson, R.,
 LeMouélic, S. (2005): Sulfates in Martian layered Terrains: the
 OMEGA/Mars express view. *Science*, **307**, 1587-1591.
- Hewins, H. *et al.* (2016): Regolith Northwes Africa 7533: Mineralogy
 and petrology with implications for early Mars. *Meteoritics & Planetary Science*, 52, 89-124.
- Hoehse, M., Mory, D., Florek, S., Weritz, F., Gornushkin, I., Panne, U.
 (2009): A combined laser-induced breakdown and Raman
 spectroscopy Echelle systemn for elemental and molecular
 microanalysis. *Spectrochimica Acta Part B: Atomic Spectroscopy*, 64, 1219-1227.

636	Huang, E., Chen, C.H., Huang, T., Lin, E.H., and XU, JA. (2000):
637	Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes.
638	American Mineralogist, 85 , 473-479.
639	Jehlicka, J., Vitek, P., Edwards, H.G.M, Heagraves, M., Capoun, T.
640	(2009): Application of portable Raman instruments for fast and
641	non-destructive detection of minerals on outcrops.
642	Spectrochimica Acta Part A, 73, 410-419.
643	King, P.L., and McLennan, S.M. (2010): Sulfur on Mars. <i>Elements</i> , 6,
644	107-112.
645	Knittle, E., Phillips, W., Williams, Q. (2001): An infrared and Raman
646	spectroscopic study of gypsum at high pressures. Physics
647	<i>Chemistry Mineral</i> , 28 , 630-640.
648	Kontoyannis, C.G., Orkoula, M.G., and Koutsoukos, P.G. (1997):
649	Quantitative Analysis of Sulfated Calcium Carbonates Using
650	Raman Spectroscopy and X-Ray Power Diffraction. The Analyst,
651	122 , 33-38.
652	Kolesov, B.A., and Tanskaya, J.V. (1996): Raman spectra and cation
653	distribution in the lattice of olivines. Materials Research Bulletin,
654	31 , 1035-1044.
655	Kolesov, B.A., and Geiger, C.A. (2004): A Raman spectroscopic study
656	of Fe-Mg olivines. Physics and Chemistry Minerals, 31, 142-154.

657	Kristova, P., Hopkinson, L., Rutt, K., Hunter, H., and Cressey, G.
658	(2013): Quantitative analyses of powdered multi-minerallic
659	carbonate aggregates using a portable Raman spectrometer.
660	American Mineralogist, 98 , 401-409.
661	Kuebler, K.E., Jolliff, B.L., Wang, A., Haskin, L.A. (2006): Extractif
662	olivine (Fo-Fa) compositions from Raman spectral peak
663	positions. <i>Geochimica et Cosmichimica Acta</i> , 70 , 6201-6222.
664	Lodders, K. (1998): A survey of shergottite, nakhlite and chassigny
665	meteorites whlore-rock compositions. Meteoritics & Planetary
666	Science, 33 , 183-190.
667	Le Losq, C., Neuville, D.R, Moretti, R., Roux, J. (2012): Determination
668	of water content in silicate glasses using Raman spectrometry:
669	Implications for the study of explosive volcanism. American
670	Mineralogist, 97 , 779-790.
671	Mangold, N., Baratoux, D., Witasse, O., Encrenaz, T., Sotin, C. (2016):
672	Mars: a small terrestrial planet. Astronomy and Astrophysics
673	<i>Review</i> , 24 , 15.
674	Mangold, N., Schmidt, M.E., Fisk, M.R., Forni, O., McLennan, S.M.,
675	Ming, D.W., Sautter, V., Sumner, D., Williams, A.J., Clegg,
676	S.M., Cousin, A., Gasnault, O., Gellert, R., Grotzinger, J.P.,
677	Wiens, R.C. (2017): Classification scheme for sedimentary and
678	igneous rocks in Gale crater, Mars. Icarus, 284, 1-17.

679	Maurice, S., Wiens, R.C., Saccoccio, M., Barraclough, B., Gasnault, O.,
680	and 65 more authors (2012): The ChemCam Instrument Suite on
681	the Mars Science Laboratory (MSL) Rover: Science objectives
682	and Mast Unit Description. Space Science Reviews, 170, 167-227.
683	Maurice, S. et al. (2016): ChemCam activities and discoveries during
684	the nominal mission of Mars Science Laboratory in Gale crater,
685	Mars. Journal of Analytical Atomic Spectrometry, 31 , 863-889.
686	McKeown, D.A., Bell, M.I., and Caracas, R. (2010): Theoretical
687	determination of the Raman spectra of single-crystal forsterite
688	(Mg ₂ SiO ₄). American Mineralogist, 95 , 980-986.
689	McMillan, P. (1984): Structural studies of silicate glasses and melts:
690	applications and limitations of Raman spectroscopy. American
691	Mineralogist, 69 , 622-644.
692	McSween, H.Y., Taylor, G.J., Wyatt, M.B. (2009): Elemental
693	Composition of the Martian Crust. Science, 324 , 736-739.
694	Mercier, M., Di Muro, A., Giordano, D., Métrich, N., Lesne, P.,
695	Pichavant, M., Scaillet, B., Clocchiatti, R., Montagnac, G. (2009):
696	Influence of glass polymerization and oxidation on micro-Raman
697	water analysis in alumino-silicate glasses. Geochimica et
698	<i>Cosmochimica Acta</i> , 73 , 197-217.
699	Meslin, PY., Gasnault, O., Forni, O., Schröder, S., Cousin, A., and 55
700	more authors and the MSL Science Team (2013): Soil Diversity

- and Hydration as Observed by ChemCam at Gale Crater, Mars. *Science*, 341.
- Morizet, Y., Brooker, R.A., Iacono-Marziano, G., Kjarsgaard, B.A.
 (2013): Quantification of dissolved CO₂ in silicate glasses using
 micro-Raman spectroscopy. *American Mineralogist*, 98, 17881802.
- Morizet, Y., Paris, M., Di Carlo, I., Scaillet, B. (2013): Effect of
 Sulphur on the structure of silicate melts under oxidizing
 conditions. *Chemical Geology*, **358**, 131-147.
- Morizet, Y., Gennaro, E., Jego, S., Zajacz, Z., Iacono-Marziano, G.,
 Pichavant, M., Di Carlo, I., Ferraina, C., Lesne, P. (2017): A
 Raman calibration for the quantification of SO₄²⁻ groups
 dissolved in silicate glasses: Application to natural melt
 inclusions. *American Mineralogist*, **102**, 2065-2076.
- Morrison, S.M. (2017): Crystal chemistry of martian minerals from
 Bradbury Landing through Naukluft Plateau, Gale Crater, Mars. *American Mineralogist, in press.*
- Mustard, J.F., Poulet, F., Bibring, J.P., Langevin, Y., Gondet, B.,
 Mangold, N., Bellucci, G., Altieri, F. (2005): Olivine and
 pyroxene diversity in the crust of Mars. *Science*, 307, 1594-1597.

721	Mysen, B.O., and Virgo, D. (1980a): Solubility mechanisms of carbon
722	dioxide in silicate melts: a Raman spectroscopic study. American
723	Mineralogist, 65 , 885-899.
724	Mysen, B.O., and Virgo, D. (1980b): The solubility behavior of CO_2 in
725	melts on the join NaAlSi ₃ O ₈ -CaAl ₂ SiO ₈ -CO ₂ at high pressures
726	and temperatures: A Raman spectroscopic study. American
727	Mineralogist, 65 , 1166-1175.
728	Nachon, M. (2016) : Chimie de la surface de Mars dans le cratère Gale
729	par l'analyse de données élémentaires de ChemCam sur Curiosity
730	couplée à des simulations en laboratoire. PhD thesis.
731	Nachon, M., et al. (2017): Chemistry of diagnetic features analyzed by
732	ChemCam at Pahrump Hill, Gale crater, Mars. Icarus, 281, 131-
733	136.
734	Noguchi, N., Shinoda, K., and Masuda, K. (2009): Quantitative analysis
735	of binary mineral mixtures using Raman microspectroscopy:
736	Calibration curves for silica and calcium carbonate minerals and
737	application to an opaline silica nodule of volcanic origin. Journal
738	of Mineralogical and Petrological Sciences, 104 , 253-262.
739	Ody, A. (2012): Dépouillement et interprétation des données spatiales
740	d'imagerie hyperspectrale de Mars (OMEGA/MEx): Evolution
741	volcanique de la surface de Mars. PhD thesis.

742	Ollila, A.M., et al. (2017): Preliminary Evaluation of the Mars 2020
743	Rover's SuperCam Development Unit: Co-Aligned Chemical and
744	Mineralogical Analyses. Lunar and Planetary Science XLVIII.
745	Panczer, G., De Ligny, D., Mendoza, C., Gaft, M., Seydoux-Guillaume,
746	AM., and Wang, X. (2012): Raman and fluorescence. EMU
747	Notes in Mineralogy, 12 , 1-22.
748	Prencipe, M., Mantovani, L., Tribaudino, M., Bersani, D., Lottici, P.P.
749	(2011): The Raman spectrum of diopside: a comparison between
750	ab initio calculated and experimentally measured frequencies.
751	European Journal of Mineralogy, 24 , 457-464.
752	Reynard, B., Montagnac, G., and Cardon, H. (2012): Raman
753	spectroscopy at high pressure and temperature for the study of the
754	Earth's mantle and planetary minerals. EMU Notes in
755	<i>Mineralogy</i> , 12 , 365-388.
756	Rossano, S. and Mysen, B. (2012): Raman spectroscopy of Silicate
757	Glasses and Melts. EMU Notes in Mineralogy, 12, 319-364.
758	Rull, F. (2012): The Raman Effect and the vibrational dynamics of
759	molecules and crystalline solids. EMU notes in Mineralogy, 12,
760	1-60.
761	Sallé, B., Lacour, J-L., Vors, E., Fichet, P., Maurice, S., Cremers, D.A.,
762	Wiens, R.C. (2004) : Laser-Induces Breakdown Spectroscopy for
763	Mars surface analysis : capabilities at stand-off distances and

764	detection of chlorine and sulfur elements. Spectrochimica Acta
765	Part B: Atomic Spectroscopy, 59, 1413-1422.
766	Sautter, V. et al. (2015): In situ evidence for continental crust on early
767	Mars. Nature Geosciences, 8, 605-609.
768	Sautter, V. et al. (2016): Magmatic complexity on early Mars as seen
769	through a combination of orbital, in-situ and meteorite data.
770	Lithos, 254-255 , 36-52.
771	Sharma, S.K., Simons, B., and Yoder Jr, H.S. (1983): Raman study of
772	anorthite, calcium Tschermak's pyroxene, and gehlnite in
773	crystalline and glassy states. American Mineralogist, 68, 11-12.
774	Squyres, S.W., Knoll, A.H. (2005): Sedimentary rocks at Meridiani
775	Planum: Origin, diagenesis and implications for life on Mars.
776	Earth Planetary Science Letters, 240 , 1-10.
777	Stolper, E.M., and the MSL team (2013): The Petrochemistry of
778	Jake_M: Martian Mugearite. Science, 341.
779	Tarcea, N., and Popp, J. (2012): Raman data analysis. EMU Notes in
780	<i>Mineralogy</i> , 12 , 195-228.
781	Taylor, S.R., McLennan, S.M. (2009): Planetary Crusts. Cambridge,
782	378.

783	Tribaudino, M., Mantovani, L., Bersani, D., and Lottici, P.P. (2012):
784	Raman spectroscopy of (Ca,Mg)MgSi ₂ O ₆ clinopyroxenes.
785	American Mineralogist, 97 , 1339-1347.
786	Vaniman, D.T et al. (2017): Calcium Sulfates At Gale Crater And
787	Limitations On Gypsum Stability. 48th Lunar Planetary Science
788	Conference.
789	Wang, A., Jolliff, B.L., Haskin, I.A., Kuebler, K.E., and Viskupic, K.M.
790	(2001): Characterization and comparison of structural and
791	compositional features of planetary quadrilateral pyroxenes by
792	Raman spectroscopy. American Mineralogist, 86, 790-806.
793	Wang, A., Kuebler, K.E., Haskin, L.A. (2003): Raman spectroscopy
794	characterization of the feldspars – Implications for In situ surface
795	mineral characterization in planetary exploration. Lunar and
796	Planetary Science XXXIV.
797	Wiens, R.C. et al. (2012): The ChemCam Instrument Suite on the Mars
798	Science Laboratory (MSL) Rover: Body Unit and combined
799	System Tests. Space Science Reviews, 170, 167-227.
800	Wiens, R.C., et al. (2016): SuperCam Remote-Sensig on the Mars 2020
801	Rover: Science Goals and Overview 3rd International Workshop
802	on Instrumentation for Planetary Missions. 4136.
803	Wray, J., Hansen, S.T., Dufek, J., Swayze, G.A., Murchie, S.L., Seelos,
804	F.P., Skok, J.R., Irwin III, R.P., Ghiorso, M.S. (2013): Prolonged

805	magmatic	activity on	Mars	inferred	from	the	detection	of	felsic
806	rocks. Nati	ure Geosci	ence, (5, 1013-1	017.				

- Zajacz, Z., Halter, W., Malfait, W.J., Bachmann, O., Bodnar, R.J.,
 Hirschmann, M.M., Mandeville, C.W., Morizet, Y., Müntener,
 O., Ulmer, P., Webster, J.D. (2005): A composition-independent
 quantitative determination of the water content in silicate glasses
 and silicate melt inclusions by confocal Raman spectroscopy. *Contributions to Mineralogy and Petrology*, **150**, 631-642.
- 813

814 Figure captions:

815Figure 1: A: Pellet of a 90/10 mixture of olivine (weight fraction816 $WF_{olivine} = 0.90$) and gypsum ($WF_{gypsum} = 0.10$) named GOLI90; B: 5817mm mapping of spectrum intensities acquired by Raman spectroscopy818showing the homogeneity of GOLI90; C: The average spectrum issued819from the 5 mm mapping of GOLI90 with v_1 peaks (symmetric stretching820mode of SiO4 and SO4 molecules) of olivine and gypsum reported.

Figure 2: Multi-minerallic pure Raman spectrum with their acquisition time for A : olivine ; B: Mg-sulfate; C: gypsum; D: plagioclase; E: clinopyroxene; and F: orthopyroxene. Significant peaks for each minerals has been reported in graphs. For peak assignments see Table 2.

827	Figure 3: A: Global spectra for every mixtures of olivine with gypsum
828	in different proportions: A: $WF_{olivine} = 0.99$; B: $WF_{olivine} = 0.95$; C:
829	$WF_{olivine} = 0.90$; D: $WF_{olivine} = 0.80$; with their main peaks reported.
830	Variations of gypsum v_1 (symmetric stretch of SO ₄) peak intensity are
831	shown in red arrows. Zoom (890-1100 cm ⁻¹ area) of spectra acquired
832	by Raman spectroscopy after mapping, from different mixtures of
833	olivine with gypsum in several proportions: E: $WF_{gypsum} = 0.01$; F:
834	$WF_{gypsum} = 0.05$; G: $WF_{gypsum} = 0.10$; H: $WF_{gypsum} = 0.20$. Spectra are
835	correlated with peak simulations: blue for olivine peaks and green for
836	gypsum's. Red curves are cumulative peaks and black dotted lines are
837	residuals from simulations. Weight fractions are calculated with peak
838	simulations and reported in boxes in each graph and in Table 3.

Figure 4: Calibration coefficients calculated from simulated areas of 840 gypsum and mineral mixed versus the weight fraction (WF) of gypsum 841 842 theoretical. Black square are samples simulated with their relative errors. Red lines correspond to calibration lines extrapolated from 843 calibration coefficients depending on theoretical weight fraction of 844 845 gypsum. Calibration lines established on four binary mixtures of: A: plagioclase; B: orthopyroxene; C: clinopyroxene; D: olivine; with 846 gypsum in different proportions (WF_{gypsum} = 0.20, 0.10, 0.05, 0.03, 847 0.01). Equations and linear regression coefficient (R^2) of each 848 calibration lines are reported in boxes in each graph. 849

851	Figure 5: Calibration line for ternary mixtures of gypsum (WF _{gypsum}
852	=0.2, 0.1, 0.05) with olivine (WF _{olivine} = 0.40, 0.50, 0.50) and
853	clinopyroxene (WF _{clinopyroxene} = 0.40 , 0.40 , 0.45). Black squares are
854	simulations results with their errors (black vertical lines). Red line is
855	the calibration line calculated from simulations results. Equation and
856	regression linear coefficient (\mathbb{R}^2) are specified in the graph box.

Figure 6: Calibration coefficients calculated from simulated areas of 858 Mg-sulfate and mineral mixed versus the theoretical weight fraction 859 (WF) of the sulfate. Black square are samples simulated with their 860 relative errors. Red lines correspond to calibration lines extrapolated 861 from calibration coefficients depending on theoretical weight fraction 862 of Mg-sulfate. Calibration lines established on four binary mixtures of: 863 864 A: orthopyroxene; B: plagioclase; C: clinopyroxene; D: olivine; with Mg-sulfate in different proportions (WF_{gypsum} = 0.20, 0.10, 0.05 and 865 0.03). Equations and linear regression coefficients (R^2) of each 866 calibration lines are reported in boxes for every graph. 867

868

Figure 7: Weight fractions calculated for sulfates (Ca and Mg-sulfate)
depending on its theoretical weight fraction in each mixture of olivine,
clinopyroxene, orthopyroxene and plagioclase. In black, gypsum binary
samples are represented. Mg-sulfate mixtures are in blue in the figure.
Red diamonds: ternary mixtures of gypsum.

875	
876	
877	
878	
879	
880	
881	
882	
883	
884	
885	
886	
887	
888	
889	
890	Tables :
891	

_			
	Mineral	Origin	Chemical formula
	Olivine	Forsterite from Maar de Borée (France)	Si1.00 Fe0.18 Mg1.78 Na0.01 O4
	Clinopyroxene	Augite from Maar de Borée (France)	Si1.78 Alo.23 Feo.09 Mg0.95 Ca0.57 Na0.1
	Orthopyroxene	Enstatite from Maar de Borée (France)	Si1.85 Alo.16 Feo.16 Mg1.62 Cao.02 Nao.0
	Plagioclase	Anorthite from a diorite of StillWater (USA)	Si _{2.21} Al _{1.76} Fe _{0.01} Mg _{0.01} Ca _{0.85} Na _{0.1}
	Gypsum	Synthetic calcium sulfate dehydrated from MERCK (Germany)	CaSO ₄ .(2H ₂ O)
	Mg-sulfate	Synthetic magnesium sulfate hydrated from LABOSI (France)	MgSO ₄ .(nH ₂ O)
	Tabl	e 1: Origins and chemical compositions of	of basaltic minerals (olivine,
	pyro	xenes and plagioclase, determined by Sc	anning Electron Microscopy
	(SEN	A) analysis) and sulfates used in this study.	
		Raman shift (cm ⁻¹)	Mode assignments

Orthopyroxene	[1], [2], [3], [4]
225-325	Fe-O octahedron
375-490	Mg-O octahedron
650-750	Si-O v ₃ ^c

	800-1100	Si-O v ₁ ª		
	Clinopyroxene [1], [2],[3], [4]			
	230 and 327	M-O* stretching		
	255 and 360	Ca-O stretching		
	393	Mg-O stretch		
	665	Si-O-Si v ₂ ^b		
	1010	Si-O v ₁		
	0	livine [5], [6], [7], [8]		
	820	Si-O v ₁		
	850	Si-O v ₁		
	914	Si-O v ₃		
	950	Si-O v ₃		
	Pla	agioclase [9] and [3]		
	200-400	Lattice modes		
	420-503	AI-O or Si-O v ₁		
	900-1000	Si-O-Al v ₃		
	> 1000	Si-O-Si v ₃		
	Gy	psum [10], [11], [12]		
	400-500	SO4 V2		
	600-700	SO4 v4 ^d		
	1006	SO4 V1		
	>1100	SO4 V3		
		Mg-sulfate [11]		
	400 - 600	SO4 V2		
	620	SO4 V4		
	1040	SO ₄ v ₁		
	1050 – 1150	SO4 V3		
906	^a v ₁ : Symmetric stretch			
907	v ₂ : symmetric bending			
908	v_3 : antisymmetric stretch			
909	^a v ₄ : antisymmetric bending			
910	* With M referring as different m	etal cations present in the chemical structure		
911	of the mineral (Buzgar et al. 2009	9)		
912	Table 2: Specific peak assignm	ents for each mineral used in this study.		
913	Principal peaks observed in spect	tra are described according to [1]: Huang et		
914	al. (2000), [2]: Prencipe et al. (20	011), [3]: Sharma and al. (1983), [4]: Wang		
915	et al. (2001) [5]: Chopelas (199	1), [6]: Kolesov and Tanskaya (1996), [7]:		
916	Kolesov and Geiger (2004), [8]:	McKeown et al. (2010), [9]: Freeman et al.		

917	(2008) [10]: Bishop et al. (2014), [11]: Buzgar et al. (2009) and [12]: Knittle
918	et al. (2001).
919	
920	
921	
922	
923	
924	
925	
926	
927	
928	
929	
930	Table 3: Samples created in this study for binary and ternary mixtures with
931	sulfates (Ca and Mg) and basaltic minerals (i.e olivine, orthopyroxene,
932	clinopyroxene and plagioclase). Peak simulated in each mixture are reported,
933	followed by the calibration equation resulting from calibrations. Weight
934	fractions (WF) theoretical, WF calculated and coefficients (a) are reported for
935	each mixture. Errors relative to calculations are reported next to the WF
936	calculated and coefficients.

Sample name	WF theoretical	WF calculated	а
	Olivi	ine – Gypsum	
	Peak simulate	ed : 914 and 1006 cm ⁻¹	

	Calibration equatio	n : a = 81.36 x WF _{sulfate theoretical}	
GOLI80	0.80 - 0.20	0.79 (0.08) – 0.21 (0.01)	17.21(3.20)
GOLI90	0.90 - 0.10	0.91 (0.01) – 0.09 (0)	6.55 (0.36)
GOLI95	0.95 - 0.05	0.94 (0.01) - 0.06 (0)	4.04 (0.22)
GOLI97	0.97 – 0.03	0.97 (0.02) – 0.03 (0.04)	1.87 (0.88)
GOLI99	0.99 - 0.01	0.99 (0) - 0.01 (0)	0.76 (0.08)
	Orthop	yroxene - Gypsum	
	Peak simula	ated : 230 and 491 cm ⁻¹	
GOPX80		0.85(0.04) - 0.15(0.03)	1 52 (0 01)
GOPX90	0.90 - 0.10	0.89(0.03) - 0.11(0.04)	0.99 (0.12)
GOPX95	0.95 - 0.05	0.94(0.02) - 0.06(0.05)	0.51 (0.01)
GOPX97	0.97 – 0.03	0.96 (0.01) – 0.04 (0.08)	0.34 (0.35)
GOPX99	0.99 – 0.01	0.98 (0.01) - 0.02 (0.05)	0.19 (0.23)
	Clinopy	/roxene – Gypsum	
	Peak simula	ated : 362 and 412 cm ⁻¹	
	Calibration equation	Dn : $a = 1.93 \times WF_{sulfate theoretical}$	
GCPX80	0.80 - 0.20	0.82 (0.02) – 0.18 (0.02)	0.40 (0.49)
GCPX90	0.90 - 0.10	0.92(0.01) - 0.08(0.03)	0.15 (0.69)
GCPX95	0.95 – 0.05	0.93 (0) – 0.07 (0.01)	0.13 (0.38)
GCPX97	0.97 – 0.03	0.96 (0.01) – 0.04 (0.06)	0.07 (0.54)
GCPX99	0.99 – 0.01	0.99 (0) – 0.01 (0)	0.02 (0.42)
	Plagi Peak simula	oclase - Gypsum ted : 504 and 1006 cm ⁻¹	
	Calibration equatio	$n: a = 59.83 \times WF_{sulfate theoretical}$	
GPG80	0.80 - 0.20	0.83 (0.01) - 0.17 (0.01)	1.19 (0.02)
GPG90	0.90 - 0.10	0.90 (0.03) - 0.10 (0.01)	6.24 (0.89)
GPG95	0.95 – 0.05	0.95 (0.01) – 0.05 (0)	2.75 (0.10)
GPG97	0.97 – 0.03	0.98 (0.01) - 0.02 (0.01)	1.17 (0.04)
GPG99	0.99 – 0.01	0.98 (0) - 0.02 (0)	1.15 (0.01)
	Olivine – Cl	inopyroxene - Gypsum	
	Peak simulated :	947 - 310/328/359/384 - 485	
		ION: $a = 1.71 \times VV_{sulfate theoretical}$	0.25 (0.05)
GOLCX00	0.40 - 0.40 - 0.20	0.35(0.27) = 0.50(0.01) = 0.15(0.06)	0.35(0.03)
GOLCX90	0.50 - 0.40 - 0.10 0.50 - 0.45 - 0.05	0.49(0.18) = 0.33(0.08) = 0.03(0.03)	0.13(0.03)
GOLCX95	0.50 - 0.45 - 0.05	0.39 (0.17) - 0.44 (0.07) - 0.03 (0.03)	0.07 (0.02)

Sample name WF theoretical

а

Olivine - Mg-sulfate Peak simulated : 950 and 1040 cm ⁻¹ Calibration equation: $a = 5.26 \times WF_{sulfate theoretical}$ MgOLI80 $0.80 - 0.20$ $0.84 (0.05) - 0.16 (0.09)$ 0.000 MgOLI90 $0.90 - 0.10$ $0.86 (0.02) - 0.14 (0.03)$ 0.0000 MgOLI95 $0.95 - 0.05$ $0.94 (0.03) - 0.06 (0.19)$ $0.00000000000000000000000000000000000$	0.90 (0.19) 0.81 (0.03) 0.30 (0.59) 0.23 (0.63) 0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
Peak simulated : 950 and 1040 cm-1 Calibration equation: $a = 5.26 \times WF_{suttate theoretical}$ MgOLI80 0.80 - 0.20 0.84 (0.05) - 0.16 (0.09) 0 MgOLI90 0.90 - 0.10 0.86 (0.02) - 0.14 (0.03) 0 MgOLI95 0.95 - 0.05 0.94 (0.03) - 0.06 (0.19) 0 MgOLI97 0.97 - 0.03 0.95 (0.02) - 0.05 (0.20) 0 Orthopyroxene - Mg-sulfate Peak simulated: 330/370/400 - 1040 cm-1 0 Calibration equation: $a = 2.19 \times WF_{sulfate theoretical}$ 0 0 MgOPX80 0.80 - 0.20 0.82 (0.02) - 0.18 (0.02) 0 MgOPX90 0.90 - 0.10 0.89 (0.01) - 0.11 (0.02) 0 MgOPX95 0.95 - 0.05 0.90 (0.01) - 0.10 (0.02) 0 MgOPX97 0.97 - 0.03 0.96 (0) - 0.04 (0.01) 0 Clinopyroxene - Mg-sulfate Peak simulated: 666/1006 and 1040 cm-1 0 Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ 0 0 MgCPX80 0.80 - 0.20 0.82 (0) - 0.18 (0.04) 0 MgCPX90 0.90 - 0.10 0.87 (0) - 0.13 (0.03) 0 MgCPX95 0.95 - 0.05 0.94 (0) - 0.06 (0.	0.90 (0.19) 0.81 (0.03) 0.30 (0.59) 0.23 (0.63) 0.23 (0.63) 0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
Calibration equation: $a = 5.26 \times WF_{sutfate theoretical}$ MgOLI80 $0.80 - 0.20$ $0.84 (0.05) - 0.16 (0.09)$ 0.00 MgOLI90 $0.90 - 0.10$ $0.86 (0.02) - 0.14 (0.03)$ 0.00 MgOLI95 $0.95 - 0.05$ $0.94 (0.03) - 0.06 (0.19)$ 0.000 MgOLI97 $0.97 - 0.03$ $0.95 (0.02) - 0.05 (0.20)$ 0.0000 MgOLI97 $0.97 - 0.03$ $0.95 (0.02) - 0.05 (0.20)$ $0.00000000000000000000000000000000000$	0.90 (0.19) 0.81 (0.03) 0.30 (0.59) 0.23 (0.63) 0.23 (0.63) 0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
MgOLI80 $0.80 - 0.20$ $0.84 (0.05) - 0.16 (0.09)$ 0 MgOLI90 $0.90 - 0.10$ $0.86 (0.02) - 0.14 (0.03)$ 0 MgOLI95 $0.95 - 0.05$ $0.94 (0.03) - 0.06 (0.19)$ 0 MgOLI97 $0.97 - 0.03$ $0.95 (0.02) - 0.05 (0.20)$ 0 Orthopyroxene - Mg-sulfate Peak simulated: $330/370/400 - 1040 \text{ cm}^{-1}$ Calibration equation: $a = 2.19 \times WF_{sulfate theoretical}$ MgOPX80 $0.80 - 0.20$ $0.82 (0.02) - 0.18 (0.02)$ 0 MgOPX90 $0.90 - 0.10$ $0.89 (0.01) - 0.11 (0.02)$ 0 MgOPX95 $0.95 - 0.05$ $0.90 (0.01) - 0.10 (0.02)$ 0 MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ 0 Clinopyroxene - Mg-sulfate Peak simulated: $666/1006$ and 1040 cm^{-1} Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ 0 MgCPX90 $0.90 - 0.10$ $0.87 (0) - 0.13 (0.03)$ 0 MgCPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.03)$ 0 MgCPX97 $0.97 - 0.03$	0.90 (0.19) 0.81 (0.03) 0.30 (0.59) 0.23 (0.63) 0.23 (0.63) 0.25 (0) 0.25 (0) 0.20 (0) 0.08 (0)
MgOLI90 $0.90 - 0.10$ $0.86 (0.02) - 0.14 (0.03)$ $0.00 + 0.03$ MgOLI95 $0.95 - 0.05$ $0.94 (0.03) - 0.06 (0.19)$ $0.00 + 0.03$ MgOLI97 $0.97 - 0.03$ $0.95 (0.02) - 0.05 (0.20)$ $0.00 + 0.03$ MgOLI97 $0.97 - 0.03$ $0.95 (0.02) - 0.05 (0.20)$ $0.00 + 0.00 $	0.81 (0.03) 0.30 (0.59) 0.23 (0.63) 0.23 (0.02) 0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
MgOLI95 $0.95 - 0.05$ $0.94 (0.03) - 0.06 (0.19)$ 0.07 MgOLI97 $0.97 - 0.03$ $0.95 (0.02) - 0.05 (0.20)$ 0.07 Orthopyroxene - Mg-sulfate Peak simulated: $330/370/400 - 1040 \text{ cm}^{-1}$ Calibration equation: $a = 2.19 \times WF_{sulfate theoretical}$ MgOPX80 $0.80 - 0.20$ $0.82 (0.02) - 0.18 (0.02)$ 0.07 MgOPX90 $0.90 - 0.10$ $0.89 (0.01) - 0.11 (0.02)$ 0.97 MgOPX95 $0.95 - 0.05$ $0.90 (0.01) - 0.10 (0.02)$ $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ Clinopyroxene - Mg-sulfate Peak simulated: $666/1006$ and 1040 cm^{-1} Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ 0.07 MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.13 (0.03)$ 0.07 MgCPX95 $0.95 - 0.05$ $0.94 (0) - 0.06 (0.04)$ 0.07 MgCPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.03)$ 0.07 MgCPX95 $0.95 - 0.05$ $0.94 (0) - 0.06 (0.04)$ 0.07 MgCPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.0$	0.30 (0.59) 0.23 (0.63) 0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
MgOLI97 $0.97 - 0.03$ $0.95 (0.02) - 0.05 (0.20)$ $0.00000000000000000000000000000000000$	0.23 (0.63) 0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
Orthopyroxene - Mg-sulfate Peak simulated: $330/370/400 - 1040 \text{ cm}^{-1}$ Calibration equation: $a = 2.19 \times WF_{sulfate theoretical}$ MgOPX80 $0.80 - 0.20$ $0.82 (0.02) - 0.18 (0.02)$ 0.02 MgOPX90 $0.90 - 0.10$ $0.89 (0.01) - 0.11 (0.02)$ $0.90 - 0.10 (0.02)$ $0.90 (0.01) - 0.10 (0.02)$ MgOPX95 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.01 (0.02)$ MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.18 (0.04)$ $0.02 (0.02) - 0.02 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.03 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.03 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.02 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.02 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.02 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.02 (0.02) - 0.04 (0.03)$ $0.02 (0.02) - 0.02 (0.02) - 0.04 (0.03) - 0.04$	0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
Peak simulated: $330/370/400 - 1040 \text{ cm}^{-1}$ Calibration equation: $a = 2.19 \times WF_{sulfate theoretical}$ MgOPX80 $0.80 - 0.20$ $0.82 (0.02) - 0.18 (0.02)$ 0.020 MgOPX90 $0.90 - 0.10$ $0.89 (0.01) - 0.11 (0.02)$ $0.90 - 0.10 (0.02)$ MgOPX95 $0.95 - 0.05$ $0.90 (0.01) - 0.10 (0.02)$ $0.90 - 0.10 (0.02)$ MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ $0.90 - 0.10 (0.02)$ Clinopyroxene - Mg-sulfate Peak simulated: $666/1006$ and 1040 cm^{-1} Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ 0.02 MgCPX930 $0.90 - 0.10$ $0.87 (0) - 0.13 (0.03)$ 0.02 MgCPX95 $0.95 - 0.05$ $0.94 (0) - 0.06 (0.04)$ 0.02 Plagioclase - Mg-sulfate Plagioclase - Mg-sulfate Peak simulated: 750 and 1113 cm ⁻¹ Calibration equation: $a = 2.88 \times WF_{sulfate theoretical}$	0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
Calibration equation: $a = 2.19 \times WF_{sulfate theoretical}$ MgOPX80 $0.80 - 0.20$ $0.82 (0.02) - 0.18 (0.02)$ 0.020 MgOPX90 $0.90 - 0.10$ $0.89 (0.01) - 0.11 (0.02)$ $0.90 - 0.10 (0.02)$ MgOPX95 $0.95 - 0.05$ $0.90 (0.01) - 0.10 (0.02)$ MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ Clinopyroxene - Mg-sulfate Peak simulated: 666/1006 and 1040 cm ⁻¹ Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ 0.00 MgCPX95 $0.90 - 0.10$ $0.87 (0) - 0.13 (0.03)$ 0.00 MgCPX97 $0.97 - 0.03$ $0.94 (0) - 0.06 (0.04)$ 0.00 Plagioclase - Mg-sulfate Plagioclase - Mg-sulfate Peak simulated: 750 and 1113 cm ⁻¹ Calibration equation: $a = 2.88 \times WF_{sulfate theoretical}$	0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
MgOPX80 $0.80 - 0.20$ $0.82 (0.02) - 0.18 (0.02)$ 0.02 MgOPX90 $0.90 - 0.10$ $0.89 (0.01) - 0.11 (0.02)$ MgOPX95 $0.95 - 0.05$ $0.90 (0.01) - 0.10 (0.02)$ MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ Clinopyroxene - Mg-sulfate Peak simulated: $666/1006$ and 1040 cm^{-1} Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ 0.000 MgCPX95 $0.99 - 0.10$ $0.87 (0) - 0.13 (0.03)$ 0.000 MgCPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.03)$ 0.0000 MgCPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.03)$ 0.000000 MgCPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.03)$ $0.00000000000000000000000000000000000$	0.43 (0.02) 0.25 (0) 0.20 (0) 0.08 (0)
MgOPX90 $0.90 - 0.10$ $0.89 (0.01) - 0.11 (0.02)$ MgOPX95 $0.95 - 0.05$ $0.90 (0.01) - 0.10 (0.02)$ MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ Clinopyroxene - Mg-sulfate Peak simulated: $666/1006$ and $1040 cm^{-1}$ Calibration equation: $a = 1.05 x WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ $0.00000000000000000000000000000000000$	0.25 (0) 0.20 (0) 0.08 (0)
MgOPX95 $0.95 - 0.05$ $0.90 (0.01) - 0.10 (0.02)$ MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ Clinopyroxene - Mg-sulfate Peak simulated: $666/1006$ and $1040 cm^{-1}$ Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ 0.00 MgCPX90 $0.90 - 0.10$ $0.87 (0) - 0.13 (0.03)$ 0.00 MgCPX95 $0.95 - 0.05$ $0.94 (0) - 0.06 (0.04)$ 0.00 MgCPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.03)$ 0.00 Plagioclase - Mg-sulfate Plagioclase - Mg-sulfate Peak simulated: 750 and $1113 cm^{-1}$ $Calibration$ equation: $a = 2.88 \times WF_{sulfate theoretical}$	0.20 (0) 0.08 (0)
MgOPX97 $0.97 - 0.03$ $0.96 (0) - 0.04 (0.01)$ Clinopyroxene - Mg-sulfate Peak simulated: 666/1006 and 1040 cm ⁻¹ Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ $0.00000000000000000000000000000000000$	0.08 (0)
Clinopyroxene - Mg-sulfate Peak simulated: 666/1006 and 1040 cm ⁻¹ Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 0.80 - 0.20 0.82 (0) - 0.18 (0.04) 0 MgCPX90 0.90 - 0.10 0.87 (0) - 0.13 (0.03) 0 MgCPX95 0.95 - 0.05 0.94 (0) - 0.06 (0.04) 0 MgCPX97 0.97 - 0.03 0.96 (0) - 0.04 (0.03) 0 Plagioclase - Mg-sulfate Plagioclase - Mg-sulfate Deak simulated: 750 and 1113 cm ⁻¹ Calibration equation: $a = 2.88 \times WF_{sulfate theoretical $	
Peak simulated: 666/1006 and 1040 cm ⁻¹ Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 0.80 - 0.20 0.82 (0) - 0.18 (0.04) 0 MgCPX90 0.90 - 0.10 0.87 (0) - 0.13 (0.03) 0 MgCPX95 0.95 - 0.05 0.94 (0) - 0.06 (0.04) 0 MgCPX97 0.97 - 0.03 0.96 (0) - 0.04 (0.03) 0 Plagioclase - Mg-sulfate Plagioclase - Mg-sulfate Deak simulated: 750 and 1113 cm ⁻¹ Calibration equation: $a = 2.88 \times WF_{sulfate theoretical $	
Calibration equation: $a = 1.05 \times WF_{sulfate theoretical}$ MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ $0.00 - 0.02 (0.03)$ MgCPX90 $0.90 - 0.10$ $0.87 (0) - 0.13 (0.03)$ $0.00 - 0.02 (0.04) (0.04)$ $0.00 - 0.02 (0.04) (0.04)$ $0.00 - 0.02 (0.04) (0.04) (0.02)$ $0.00 - 0.02 (0.04) (0.04) (0.02)$ $0.00 - 0.02 (0.04) (0.04) (0.04) (0.02)$ $0.00 - 0.02 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)$	
MgCPX80 $0.80 - 0.20$ $0.82 (0) - 0.18 (0.04)$ $0.00 - 0.00$ MgCPX90 $0.90 - 0.10$ $0.87 (0) - 0.13 (0.03)$ $0.00 - 0.05$ $0.94 (0) - 0.06 (0.04)$ $0.00 - 0.00 (0.04)$	
MgCPX90 $0.90 - 0.10$ $0.87 (0) - 0.13 (0.03)$ $0.00 - 0.03$ MgCPX95 $0.95 - 0.05$ $0.94 (0) - 0.06 (0.04)$ $0.00 - 0.04 (0.03)$ $0.00 - 0.04 (0.04)$	0.19 (0.01)
MgCPX95 0.95 - 0.05 0.94 (0) - 0.06 (0.04) 0 MgCPX97 0.97 - 0.03 0.96 (0) - 0.04 (0.03) 0 Plagioclase - Mg-sulfate Peak simulated: 750 and 1113 cm ⁻¹ Calibration equation: a = 2.88 x WF _{sulfate theoretical}	0.14 (0.01)
MgCPX97 0.97 - 0.03 0.96 (0) - 0.04 (0.03) 0 Plagioclase - Mg-sulfate Plagioclase - Mg-sulfate 1 Calibration equation: a = 2.88 x WF _{sulfate theoretical} 0.96 (0.04) 0.14 (0.09) 0	0.06 (0.01)
Plagioclase - Mg-sulfate Peak simulated: 750 and 1113 cm ⁻¹ Calibration equation: a = 2.88 x WF _{sulfate theoretical}	0.03 (0.01)
Peak simulated: 750 and 1113 cm ⁻¹ Calibration equation: $a = 2.88 \times WF_{sulfate theoretical}$ Mapping 0.80 0.20 0.86 (0.04) 0.14 (0.00) 0.14 (0.00)	
Calibration equation: $a = 2.88 \times WF_{sulfate theoretical}$	
	0.54 (0.45)
	0.51 (0.15)
MgPG90 0.90 - 0.10 0.91 (0.03) - 0.09 (0.12) 0	0.33 (0.21)
MgPG95 0.95 - 0.05 0.93 (0.01) – 0.07 (0.07) 0	0.23 (0.11)
MgPG97 0.97 – 0.03 0.93 (0.02) – 0.07 (0.06) 0	

Figure 1

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Supplementary material:

Figure caption:

Figure 1: Deconvolution of minerals pure spectrum for A: gypsum; B: clinopyroxene; C: orthopyroxene; D: plagioclase; E: olivine; and F: Mg-sulfate. With individual peaks simulated in blue, cumulative peaks simulated in red dashed lines and residuals in black dotted lines. Analytical parameters (acquisition time and confocal mode) are described for each spectrum.

Figure 2: Peak simulations for the other different mixtures: A: orthopyroxene-gypsum mixture with initial proportion of 0.8 and 0.2 respectively; B: plagioclase-gypsum mixture with theoretical proportions of 0.9 and 0.1; C: olivine-mgsulfate mixture (theoretical proportions: $WF_{olivine}=0.8$ and $WF_{Mg-sulfate}=0.2$); D: clinopyroxene-gypsum mixture of theoretical weight fraction of 0.90 and 0.10 respectively. Green peaks are attributed to sulfates vibrations (Ca or Mg) and blue ones for silicate minerals. Red dashed and blacks dotted lines are cumulative peaks simulated and residuals left after simulations. Weight fraction calculated by simulations for examples shows in this figure are reported in each graph. All results from simulations on the different mixtures are described in **Table 4**.