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REVIEW ARTICLE

Endogenous non-retroviral elements in genomes of Aedes mosquitoes and
vector competence
Vincent Houéa,b, Mariangela Bonizzoni c and Anna-Bella Failloux a

aDepartment of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France; bCollège Doctoral, Sorbonne Université, Paris,
France; cDepartment of Biology and Biotechnology, University of Pavia, Pavia, Italy

ABSTRACT
Recent extensive (re)emergences of arthropod-borne viruses (arboviruses) such as chikungunya (CHIKV), zika (ZIKV) and
dengue (DENV) viruses highlight the role of the epidemic vectors, Aedes aegypti and Aedes albopictus, in their spreading.
Differences of vector competence to arboviruses highlight different virus/vector interactions. While both are highly
competent to transmit CHIKV (Alphavirus,Togaviridae), only Ae. albopictus is considered as a secondary vector for DENV
(Flavivirus, Flaviviridae). Among other factors such as environmental temperature, mosquito antiviral immunity and
microbiota, the presence of non-retroviral integrated RNA virus sequences (NIRVS) in both mosquito genomes may
modulate the vector competence. Here we review the current knowledge on these elements, highlighting the
mechanisms by which they are produced and endogenized into Aedes genomes. Additionally, we describe their
involvement in antiviral immunity as a stimulator of the RNA interference pathways and in some rare cases, as
producer of viral-interfering proteins. Finally, we mention NIRVS as a tool for understanding virus/vector co-evolution.
The recent discovery of endogenized elements shows that virus/vector interactions are more dynamic than previously
thought, and genetic markers such as NIRVS could be one of the potential targets to reduce arbovirus transmission.
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The main vectors of many medically important arbo-
viruses, such as chikungunya (CHIKV), zika (ZIKV)
and dengue (DENV) viruses, are the two mosquito
species Aedes aegypti and Aedes albopictus. While
their extensive distribution covering most tropical,
subtropical and even, temperate countries, makes
them a real threat for human health, Ae. aegypti and
Ae. albopictus have different historical backgrounds
and do not exhibit the same efficiency to transmit arbo-
viruses. The objectives of this review are to point out
critical features of both mosquito species that could
explain their differences in vector competence. Vector
competence is modulated by environmental, genetic,
and epigenetic factors, the latter including mechanisms
induced by mosquito microbiota [1]. Recently, non-
retroviral integrated RNA virus sequences (NIRVS)
have been proposed to be among the genetic factors
influencing vector competence. The potential role of
NIRVS in mosquitoes as vectors is discussed.

Aedes albopictus and Aedes aegypti have
different histories (Figure 1)

Aedes albopictus (Skuse, 1894) is a mosquito species
closely related to Ae. aegypti, both belonging to the

Culicidae family and vectors of several different arbo-
viruses highly pathogenic for humans such as chikun-
gunya virus (CHIKV) [2,3], yellow fever virus (YFV)
[4] and dengue viruses (DENV) [5,6]. Contrary to
many other mosquito vectors such as the malaria vec-
tor Anopheles gambiae, Ae. albopictus and Ae. aegypti
eggs are capable of entering in diapause and quiescence
respectively, ensuring survival during and after
environmental stress [7–10]. In addition to survive
under extreme conditions, this characteristic allows
the two vectors to colonize new regions around the
world [11].

However, in terms of evolution, the two species have
a different history. Aedes aegypti (Linné, 1862) orig-
inates from a sub-Saharan African sylvan ancestor
that migrated to West Africa late in the 8th century.
It was introduced in the New World probably via the
African slave trade between 15th and 17th centuries
[12,13]. Around 1800, the species was introduced in
the Mediterranean region where it was established in
European harbours until about 1950 [14]. Aedes
aegypti was introduced into Asia from Europe with
the opening of the Suez Canal in 1869; it is abundantly
found in Asia since late nineteenth century [15]. The
species was later introduced in Australia (1887) and
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the South Pacific (1904) [14]. On the other hand, Ae.
albopictus is native to tropical forests of South-East
Asia. Until the late 70s, this species was restricted to

Asia, India and a few islands in the Pacific region
such as La Reunion [16], the Seychelles [17] Mariana
and Papua New Guinea islands [18]. However, in less
than three decades, it has conquered all continents
except Antarctica [19,20]. Contrary to Ae. aegypti
which took hundreds of years to cover the tropical
world, Ae. albopictus took only few decades to wide
spread. This impressive fast colonization, promoted
by increased human mobility and trade of goods
including used tires and lucky bamboo as potential
mosquito breeding sites, stresses its high ability to sur-
vive under both tropical and temperate regions. More-
over, Ae. albopictus is also a serious threat for human
populations as it is a competent vector for at least 26
different arboviruses [21] and filarial nematodes of
veterinary and zoonotic significance [22,23].

Both species are involved as vectors in major
human diseases (Table 1)

After suspected outbreaks in America and Asia in the
18th and 19th centuries [24], CHIKV has been first
identified in Tanzania in 1952 where it circulated
between non-human primates and mosquito vectors.
The virus escaped from a sylvatic cycle to cause
urban outbreaks in South East Asia and Africa from
the 1960s with Ae. aegypti as the main vector (reviewed
by [25]). Lastly, CHIKV re-emerged in Thailand in
1991 [26], in the Democratic Republic of Congo in
1999–2000 [27], then in coastal Kenya in 2004 [28],
and in the Union of Comoros, in 2005 [29,30], mainly
associated to Ae. aegypti. More recently, the same
species was involved in CHIKV outbreaks in 45
countries and territories in America, causing almost 3
million cases from 2013 to 2016 (https://www.paho.
org/hq/dmdocuments/2014/2014-jun-20-cha-CHIKV-

Figure 1. World distribution of Aedes albopictus and Aedes aegypti.

Table 1. List of arboviruses transmitted by Aedes aegypti and
Aedes albopictus.

Virus Family Genus

Transmitted by

Aedes
aegypti

Aedes
albopictus

DENV-1,2,3,4 Flaviviridae Flavivirus + +
Yellow Fever Virus + +
West Nile Virus + +
Japanese
Encephalitis
Virus

- +

St Louis
Encephalitis
Virus

- +

Zika Virus + +
Usutu Virus - +
Chikungunya Togaviridae Alphavirus +
Eastern Equine
Encephalitis
Virus

+ +

Venezuelan
Equine
Encephalitis
Virus

+ +

Western Equine
Encephalitis
Virus

+ +

Ross River Virus + +
Sindbis Virus + +
Mayaro Virus + +
Getah Virus + +
Rift Valley Fever
Virus

Phenuiviridae Phlebovirus + +

Potosi Virus Bunyavirus - +
Cache Valley Virus - +
Tensaw Virus - +
Keystone Virus - +
San Angelo Virus +
La Crosse Virus + +
Jamestown
Canyon Virus

- +

Trivittatus Virus - +
Oropouche Virus + +
Orungo Virus Reoviridae Orbivirus + +
Nodamura virus Picornavirus Nodaviridae + +
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authoch-imported-cases-ew-25.pdf; https://www.paho.
org/hq/dmdocuments/2015/2015-sep-18-cha-CHIKV-
cases-ew-37.pdf). On the other hand, Ae. albopictus
was also proved to be susceptible to CHIKV infection
[31] and could involve as a CHIKV vector. In 2005,
it became the primary vector on La Réunion Island
where Ae. aegypti was present as remote populations
[32–34]. On this island, CHIKV acquired a mutation
in the glycoprotein E1 (E1-A226V) [35] that increases
its infectivity in Ae. albopictus but not in Ae. aegypti
[36,37]. From there, the virus spread to India and
Southeast Asia between 2007 and 2014 causing 1.4
million cases [38].

Aedes aegypti and Aedes albopictus are also vectors
of DENV, with the former being the major vector.
Aedes aegypti has been responsible for severe outbreaks
in America, Southeast Asia and Western Pacific
regions in the late twentieth century [39,40]. On the
other hand, even though it was also responsible for
severe DENV outbreaks such as during the World
War II in Japan [41] or recently in China [42], Ae.
albopictus is considered as a less efficient vector of
DENV. Indeed, no major epidemics were reported in
regions like Taipei, Guam or Hawaii islands where
Ae. albopictus is predominant, even when nearby
places suffered from DENV outbreaks involving Ae.
aegypti (reviewed by [43]). Additionally, even in pres-
ence of DENV outbreaks due to Ae. albopictus, like in
the Seychelles Islands (1977), La Réunion Island
(1977), southern China (1978), Macao (2001), Hawaii
(2001) and lastly, in Europe [44,45], only mild symp-
toms are described [46].

Aedes albopictus and Aedes aegypti have
different vector competences

To be a vector, the arthropod species must be compe-
tent. The vector competence is the ability of an arthro-
pod to acquire, support replication and dissemination
of an infectious agent and successfully transmit it to
another susceptible host [47,48]. Vector competence
is a component of vectorial capacity and is determined
by both genetic (depending on mosquito species/popu-
lation, virus genotype/strain and their interactions)
[49] and non-genetic factors (e.g. environmental com-
ponents) [50]. Aedes albopictus and Ae. aegypti are
highly susceptible to different CHIKV strains (Table
S1) (reviewed by [51]). Although Ae. albopictus is con-
sidered as a secondary vector for DENV [21], its sus-
ceptibility to DENV infection compared to Ae.
aegypti remains controversial [52–56]. Aedes albopictus
mosquitoes generally show a higher midgut suscepti-
bility to DENV infection but a lower rate of virus dis-
semination compared to Ae. aegypti (Table S2) [43].

Epigenetic factors which include mechanisms
associated with the vector microbiota contribute to
vector competence [1]. Insect microbiota comes

from the environment: the breeding sites where imma-
ture stages live [57] and the flower nectar where adults
get the sugar nutrient as carbon source [58]. Insect
microbiota influences various physiological processes
that favour insect ecological adaptation such as
growth, reproduction, survival and tolerance to exter-
nal stresses [59–63]. Moreover, insect microbiota is
capable of stimulating immune responses, described
as immune priming, conferring antiviral protection
[64,65]. As an example, infection with the bacterium
Wolbachia induces an oxidative stress in Ae. aegypti
causing an increased level of reactive oxygen species
(ROS). The elevation of ROS activates immune path-
ways, inhibit DENV and then affect the vector compe-
tence [66].

Insect immunity: Toll, Imd, JAK-STAT
pathways

The antiviral role of the microbiota has been ascribed
to the activation of immune pathways [66,67]. So
anti-viral immunity in mosquito vectors is critical to
prevent virus replication and transmission. Mosquitoes
lack adaptive immune responses, but they present
innate immunity based on several strategies such as
encapsulation and phagocytosis, melanization and pro-
duction of physical barriers. Moreover, several molecu-
lar pathways have been described with antiviral
immunity activities, including the RNA interference
(RNAi) system, discussed further in the review, the
Toll, Immune deficiency (Imd), Janus Kinase-Signal
Transduction and Activators of Transcription (JAK-
STAT) pathways [67–72]. The activation of these path-
ways leads to the expression of effector genes that have
antiviral activities.

The Toll pathway of mosquitoes is very similar to
the mammalian Toll-Like Receptor pathway (TLR).
This pathway is activated by the interaction between
either viral pathogen-associated molecular patterns
(PAMPs) or the putative Toll ligand Spätzle, and host
pattern recognition receptors (PRRs), that are present
in several parts of the body (hemocele and midgut).
This interaction leads to the recruitment of Myd88
that triggers the phosphorylation and degradation of
the negative regulator Cactus and the nuclear translo-
cation of the NF-kB-like transcription factor Rel1
that induces the transcription of antimicrobial pep-
tides, such as cecropins and defensins [67].

The first (PRR activation) and the final step (syn-
thesis of antimicrobial peptides) of the Imd pathway
are processed in the same way as the Toll pathway,
but different intermediate components are required
in the cascade of the signalling pathway. The NF-kB-
like transcription factor Rel2 is activated by the cas-
pase-mediated cleavage and is then translocated to
the nucleus where it triggers the transcription of
Imd-related genes [73].
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The JAK-STAT pathway is activated through the
interaction between the Unpaired ligand (Upd) and
the receptor Dome. It first promotes the binding of
Janus kinases to Dome and then the recruitment of
STAT proteins. Once activated, STAT proteins are
translocated into the nucleus and trigger the transcrip-
tion of antimicrobial related genes, and specific
antiviral genes such as vir-1 (virus-induced RNA 1)
[74–76].

Studies in Ae. aegypti revealed that the Toll and
JAK-STAT pathways were both upregulated 10 days
after DENV infection suggesting an anti-DENV
activity [67,77]. Moreover, the JAK-STAT pathway
has an antiviral activity against another flavivirus,
WNV in Culexmosquito cells [71]. However, although
suggested in Drosophila [69,78], antiviral properties of
these signalling pathways are less obvious for the
alphaviruses of the Togaviridae family. In both in
vitro and in vivo experiments with Ae. aegypti , none
of the 3 above-mentioned pathways showed anti-
CHIKV properties [79]. Additionally, in Ae. albopic-
tus-derived U4.4 cells, infections with the Alphavirus
Semliki Forest virus did not trigger the JAK/STAT,
Toll and Imd pathways [80]. Primed by the mosquito
microbiota, the Imd pathway showed antiviral effects
in Ae. aegypti following a blood meal containing the
Alphavirus Sindbis virus (SINV) [81]. Ultimately, a
microarray analysis on Ae. aegypti infected by SINV
revealed a temporary up-regulation of Toll pathway
which was later inhibited by the virus [82]. Collectively,
these results suggest that antiviral immunity in mos-
quitoes is in part controlled by the Toll, Imd and
JAK-STAT pathways which are efficient against flavi-
viruses, such as DENV and WNV, but their action
on alphaviruses such as CHIKV and SINV is less
obvious suggesting a virus-specific antiviral regulation.

Genome characteristics and evolution

Quantitative trait loci (QTL)

Because vector competence is under the control of
multiple genes, quantitative genetics have been used
to measure the contribution of mosquito genetic fac-
tors to viral infection and dissemination in mosquitoes.
Quantitative Trait Loci (QTL) are defined as several
genes grouped in the genome that affect the expression
of quantitative traits and lead to important phenotypic
variations. The species Ae. aegypti is described under
two forms: Ae. aegypti formosus for the ancestral Afri-
can type breeding in tree holes and Ae. aegypti aegypti
for the domestic type colonizing man-made containers
[83]. Using intercrosses of Ae. aegypti aegypti and Ae.
aegypti formosus strains, respectively highly and weakly
susceptible to DENV infection, two QTLs were ident-
ified: one affecting the midgut infection barrier on
chromosomes 2 and 3, and one on chromosome 3

associated with a midgut escape barrier [84]. Moreover,
an additional QTL found on the chromosome 2 along
with a sex-linked QTL were associated with the ability
to infect the midgut [85]. Moreover, QTLs were ident-
ified on the 3 chromosomes of Ae. aegypti associated
with DENV-2 dissemination from midguts [86]. It
appears that several different parts of the Ae. aegypti
genome identified as QTL are independently capable
of modulating the vector competence to DENV-2.
However, no studies to date have been conducted to
identify potential QTLs affecting the vector compe-
tence to DENV in Ae. albopictus genome.

Transposable elements (TE)

Last technical improvements in genome sequencing
allowed bringing to light the complexity of mosquito
genomes. Aedes mosquitoes have the biggest genome
size among currently-sequenced mosquito genomes.
For instance Ae. aegypti genome is 1,380 MB; [87],
Ae. albopictus is 1,900 MB [88,89] while the Anopheles
gambiae genome is 278 MB; [90] and Culex quinque-
fasciatus is 579 MB; [91].

Differences observed in the genome size of Ae.
albopictus could be explained by the presence of
Transposable Elements (TEs) [92,93]. First discovered
in 1956 [94], TEs are considered as intragenomic
parasites [95,96]. Ubiquitously found in both prokar-
yotic and eukaryotic genomes, TE are described as
sequences integrated in the host genome capable of
both independent replication and movement from
one chromosomal location to another through a
phenomenon called transposition. Transposition can
occur in both somatic and germ line cells. However,
some elements transpose in specific cell types, like
the P elements in Drosophila melanogaster [97] or
without any cells preference, such as the bacterio-
phage Mu [98,99]. Transposons are classified into
two groups, depending on their DNA structure and
transposition mechanism. The class I, also called ret-
rotransposons, relies on RNA intermediates to trans-
pose and is divided in two subgroups: LTR (Long
Terminal Repeats) retrotransposons and non-LTR ret-
rotransposons (reviewed by [100]). The class II TEs,
also called DNA elements, contains terminal inverted
repeats (TIRs). Three different groups of DNA
elements have been described in eukaryotes: classic
transposons [101], helitrons [102] and mavericks,
also called politons [103]. Unlike retrotransposons,
DNA elements do not rely on RNA intermediates
for transposition [104].

Transposons are major drivers of host genome func-
tion and evolution. They can act as a source of muta-
tional variations through their transposition
producing multiple copies of the same element in the
host genome. These copies can facilitate regulation of
gene expression, recombination and unequal
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crossing-overs between chromosomes and therefore,
lead to chromosomal rearrangements by creating del-
etions, insertions, duplications, inversions and translo-
cations. When a TE insertion occurs in an exon, the
ORF can change and codes for a non-functional pep-
tide or cause missense or nonsense mutations. A TE
insertion can also create alternative splicing leading
to the production of several protein isoforms or intro-
duce a polyadenylation signal [105,106]. TE activity in
a host genome contributes to introduce diversity. In Ae.
albopictus genome, the differences of genome size are
explained by the amount of TEs which represents
68% (1,967 Mb) of the total genome [89]. Additionally,
variations of repetitive sequences were detected at the
intra- and interspecific levels [88,92,107,108]. When
comparing the TE composition between Ae. albopictus
and Ae. aegypti, differences in the quantity and type of
repeats are seen; TE amount reaches 1,343 and 988 Mb
in the Ae. albopictus and Ae. aegypti genomes, respect-
ively [89]. More than 20% of repetitive sequences pre-
sent in Ae. albopictus are absent in Ae. aegypti. The two
species have diverged 71 million years ago and most TE
insertions occurred during the last 10 million years in
the Ae. albopictus genome [89]. DNA transposons
represent only 8% of TEs present in the Ae. albopictus
genome, and 15% in the Ae. aegypti genome [89]. Non-
LTR retrotransposons LINE represent one third of TEs
in both genomes, followed by a high proportion of LTR
retrotransposons, suggesting that retrotransposons and
DNA transposons are suspected to cause genome size
variations between Ae. aegypti and Ae. albopictus.
Moreover, the activity of TEs can be controlled by
the siRNA and piRNA immune pathways. piRNAs
and siRNAs produced respectively by TEs from class
I and class II transposons, can be up-regulated after
an infectious blood feeding leading to modify the out-
come of infection, and then the vector competence
[109].

Endogenous viral elements (EVEs)

Due to strong and long-lasting interactions between
the virus and the vector, the virus could integrate
whole or parts of its genome into the genome of host
cells, leading to the formation of Endogenous Viral
Elements (EVEs) [110]. These elements are defined
as viral sequences that integrate into the host germline
as double-stranded DNA and are therefore maintained
in the population through vertical transmission to the
progeny. Considering that the genome of germline
cells are strongly protected against any kind of intru-
sions, such as TE activity, notably by piRNAs [111],
the odds of EVE introduction must be low. However,
around 7%–8% of the human genome is made up by
sequences of viral origins [112].

EVEs originated from retroviruses are called
Endogenous Retroviruses (ERVs). It is well known

that ERVs formation occurs frequently in host cells
since the integration into the genome host cell is man-
datory to complete their viral life cycle. ERVs are easily
detectable because of Long Terminal Repeats (LTR)
present at each end of the segment. Other EVEs origi-
nated from other viral families have been recently dis-
covered in many host genomes: single-stranded DNA
viruses such as Circoviridae and Parvoviridae in diverse
vertebrate genomes (dog, mouse and panda; [113]) and
double-stranded DNA viruses such as hepadnaviruses
in zebra finch genome [114].

Non-retroviral integrated RNA virus
sequences (NIRVS) (Figure 2)

Main characteristics

Since non-retroviral RNA viruses do not encode for
reverse transcriptase or integrase, endogenous enzymes
or viruses infecting the cell at the same time must be
involved in the endogenization of such viruses into
host genome DNA. Three steps should be involved to
achieve the integration of non-retroviral RNA viruses
into the host genome: (i) first, the non-retroviral
RNA needs to be reverse-transcribed into viral-derived
double-stranded DNA (vDNA), (ii) be imported in the
nucleus, and (iii) finally be integrated into the host
genome.

The first mosquito NIRVS were identified in 2004 in
Aedes spp. cell lines and mosquitoes [115]. Most of
them were truncated or incorporated several stop
codons, but one contained an intact ORF homologous
to the NS1-NS4A region of insect-specific viruses
(ISVs) in Ae. albopictus genome, i.e. Cell Fusing
Agent Virus (CFAV) and Kamiti River Virus (KRV).
This last fragment represents around one half of the
flaviviral genome. These NIRVS (also called Cell Silent
Agent (CSA) sequences) comprised two third of the
flaviviral genome and contained enzymatic domains
such as helicase and serine protease. The correspond-
ing mRNA was detected in C6/36 Ae. albopictus cells
suggesting the expression of the NIRVS and its poten-
tial functional role in the cell at the RNA level since no
protein was detected [116]. Moreover, this NIRVS is
present in 97%–98% of Ae. albopictus mosquitoes.
Many NIRVS were found homologous to insect-
specific flaviviruses (ISFs), such as CFAV, KRV and
Aedes Flavivirus (AeFV) closely related to arboviruses
[117,118]. The high prevalence of NIRVS in Aedes spp.
genome as well as the high frequency of transposons
might somehow be correlated to the mosquito genome
size [87,89].

Most NIRVS described up to date were found in
Aedes spp. genomes. Among 424 RNA viruses detected
in 22 mosquito genomes, 81% (194/239) were ident-
ified as NIRVs in Aedes genomes and among them,
63% of NIRVS were located into the Ae. aegypti
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genome, and the remaining 37% were identified in Ae.
albopictus [119]. Additionally, 72% of the NIRVS were
homologous to the Rhabdovirus family whereas 27%
were close to the Flavivirus genus and 1% left belonging
to Bunyavirus and Reovirus genera. These data are con-
sistent with another study which compared the
“EVEome” of both Ae. aegypti and Ae. albopictus
[120]. Factors leading to endogenisation of viral gen-
omes into host cells remain unclear. The mRNA abun-
dance could be critical since ssRNA+ genomes are
directly translated into proteins and ssRNA- genomes
have first to be transcribed. Moreover, the transcripts
of flaviviral genome are usually longer than those
from ssRNA- viruses, and this could decrease their
chance to be integrated into the host genome [121].
Most of the flaviviral NIRVS detected in silico are ori-
ginated from non-structural protein coding sequences
rather than structural ones. In Ae. aegypti and Ae. albo-
pictus genomes, 30 and 25 flaviviral NIRVS were
mapped to non-structural protein coding sequences,
and respectively, only 2 and 3 NIRVS represented simi-
larities with structural proteins coding sequences [119].
Half of the rhabdoviral NIRVS mapped to the N gene,
which encode the nucleoprotein [110,122]. From 3’ to
5’, each gene (N, P, M, G and L) of the rhabdoviral

genome is transcribed in a progressive graduated man-
ner due to the recognition of stop codons/polyadenyla-
tion signals by the polymerase [123], meaning that the
transcripts at the 3’ end (i.e. N gene) are in higher
quantities than for those near the 5’ end (i.e. L gene).

Production of viral DNA (vDNA) from
non-retroviral viruses

As previously mentioned, to become integrated into
the host genome, the non-retroviral RNA virus is first
reverse transcribed to produce viral DNA (vDNA),
imported into the cell nucleus and finally integrate
into the chromosome [124–127]. Interestingly, only
some parts of the viral genomes can be found in a
DNA form. The reverse transcriptase probably
switches from the original RNA template to a close
viral RNA genome causing multiple independent
reverse-transcription events [128,129]. These vDNA
could also be the result of replication-slippage events
caused by the reverse transcriptase. Whether the
vDNA form belongs to the host genome or is present
as extra-chromosomal DNA element such as episomes
is still unknown. RNAi-deficient cells (C6/36) possess
more vDNA forms than RNAi-proficient cells (Aag2

Figure 2. Formation and antiviral functions of NIRVS.When a non-retroviral virus infects a cell, the viral RNA is released and double
stranded RNA (dsRNA) intermediates are produced. Viral dsRNA is then used as a template to produce viral DNA (vDNA) by the
reverse transcriptase activity of retrotransposon elements (1). vDNA integrates into the host cell genome, probably by transposition
activity of retrotransposons, becoming a NIRVS (2). NIRVS is then transcribed either into siRNAs or piRNAs (3) to inhibit the viral RNA
after association with the RISC complex (4) or into mRNA (5), and translated into a dominant negative form protein (6), that can alter
the viral replication by several ways. For example, by inhibiting the viral replication complex (7) or viral assembly (8).
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cells) suggesting that RNAi system could inhibit vDNA
production. More importantly, after mosquito infec-
tion with CHIKV, vDNA has been found in legs and
wings of infected Aedes mosquitoes suggesting that
either vDNA is capable of dissemination from one tis-
sue to another (possibly through cellular and tissue
damages) in the mosquito or that all infected cells pro-
duce vDNA [125]. Moreover, FHV and Sindbis vDNA
were found in infected flies after infection [130].

NIRVS reverse transcription and integration
mediated by retrotransposons

vDNA from DNA viruses can integrate into host
chromosomes by Non-Homologous (double-stranded)
End Joining (NHEJ) [114,131], Non Homologous
DNA recombination used by adeno-associated DNA
virus [132–134] or Telomeric homologous recombina-
tion [135]. However, little is known about the mechan-
ism used by the NIRVS to integrate into host
chromosomes. Nevertheless, reverse transcription
activity from endogenous retrotransposons has been
associated with vDNA formation [130]. By adding a
reverse transcriptase inhibitor, azidothymidine (AZT)
in S2 and Kc167 Drosophila cell cultures, vDNA for-
mation was inhibited after infection with several
RNA viruses, namely Flock House Virus, Sindbis
Virus and Drosophila C Virus (DCV) [130]. vDNA of
CHIKV and DENV were detected after infections in
Ae. albopictus and Ae. aegypti mosquitoes and cell cul-
tures [125]. vDNA plays an important role in viral tol-
erance rather than viral resistance [125]. The early
production of vDNA (6 hours and 2 days post-infec-
tion in cultured cells and mosquitoes respectively) is
critical to establish efficient immune responses [125].
These regions were also enriched with LTR retrotran-
sposons as it has been shown in Drosophila, especially
retrotransposons of the Ty3_gypsy and Pao Bell
families [119,120]. This suggests an important role of
LTR retrotransposons in the reverse transcription of
vDNA.

Biological function of NIRVS

The integration of NIRVS into host genomes has now
been recognized to occur more frequently than pre-
viously thought. It has been suggested that NIRVS
could be involved in antiviral immunity [128,136]. A
non-retroviral RNAs segment encoding the capsid
protein of the Israeli Acute Paralysis Virus (IAPV), a
ssRNA+ dicistrovirus, was found in the genome of
one third of the honeybee population (Apis mellifera);
it was correlated with a virus-resistant phenotype
[137]. Moreover, the presence of vDNA allowed the
survival of FHV-infected flies [125,130]. More pre-
cisely, vDNA production detected at early stages of
infection, promoted viral persistence, as it has been

seen in in vivo and in vitro experiments with mosqui-
toes challenged with CHIKV and S2 FHV-infected
Drosophila cells [125,130].

The antiviral function of NIRVS has been linked to
the innate immune system of RNAi which has been
shown to be the main antiviral system in insects
[125,138,139]. This system relies on small RNAs
(sRNA) that when associated with a complex of pro-
teins recognized by sequence-complementarity, led to
the cleavage and degradation of incoming foreign
nucleic acids [140]. Three different pathways have
been described: the small interfering RNA (siRNA),
the micro RNA (miRNA) and the PIWI-interacting
RNA (piRNA). All three use the same mechanism to
perform their antiviral action, but are distinguished
by the sRNA biogenesis and the protein complex
involved. Whereas the role of siRNA pathway in viral
immunity in mosquitoes is largely accepted, little was
known about the function of the piRNA pathway
except its role in preserving genome stability in the
germline by regulating the activity of transposable
elements inD. melanogaster [141–145] and Aedesmos-
quitoes [146,147]. However, the piRNA pathway has
been linked to antiviral immunity both in vitro and
in vivo [148–153]. Indeed, deep-sequencing analysis
of DENV-2 infected Ae. aegypti Aag2 cells revealed
the production of specific viral piRNAs (vpiRNAs)
along with viral siRNAs (vsiRNAs) [154]. Moreover,
vpiRNAs have been detected in DENV-infected Ae.
aegypti individuals as early as 2 days post-infection
[151]. Nevertheless, the piRNA pathway has no anti-
viral property in the insect model D. melanogaster
suggesting a different function depending on the
host [155].

Interestingly, EVEs including NIRVS present in
Aedes mosquitoes are frequently located in TE-derived
piRNA clusters [119,120]. In Ae. aegypti and Ae. albo-
pictus, half of NIRVS mapped to piRNA clusters in Ae.
aegypti genome and only 12.5% of NIRVS mapped to
piRNA clusters in Ae. albopictus genome [119],
suggesting that the presence of NIRVS in these clusters
was not a general feature. Moreover, bioinformatic pre-
dictions on Aag2 cell line showed that piRNA clusters
containing EVEs produced more piRNA than those
without EVEs, meaning that viruses may not integrate
randomly in the host genome but target specific active
piRNA clusters for endogenization [120]. Additionally,
NIRVS produced both primary and secondary piRNAs;
immunoprecipitation of Piwi proteins also detected
NIRVS-derived sRNAs, and knockdown of Piwi pro-
teins resulted in a decrease of NIRVS-derived sRNA
expression [119]. However, NIRVS-derived siRNAs
were not found indicating that NIRVS are involved
in only one specific RNAi pathway. NIRVS originated
from insect-specific viruses were proved to produce
antisense orientation primary piRNA-like molecules
and be located in active regions of both siRNA and

548 V. Houé et al.



piRNA production in Ae. aegypti and Ae. albopictus
mosquitoes [116]. In CHIKV-infected Ae. aegypti and
Ae. albopictus, NIRVS produced viral small-interfering
RNAs (vsiRNAs) and probably vpiRNAs after infection
[125]. In FHV-infected Drosophila cells treated and
non-treated with AZT (inhibitor of reverse transcrip-
tase), vDNA are transcribed and processed by the
RNAi machinery into vsiRNAs [130]. The knocking-
down of RNAi machinery in Drosophila infected
cells resulted in an acute infection leading to cell
death [130].

In summary, NIRVS located in specific regions of
the genome such as TE-derived areas called piRNA
clusters in mosquitoes, are important for RNAi-based
immunity [156]. Their transcripts are capable of pro-
ducing vsiRNAs in Drosophila [130] and both vsiRNAs
and vpiRNAs in Aedes mosquitoes [119,120,125]. The
production of sRNAs is induced following arboviral
infections (Togaviridae and Flaviviridae) and NIRVS
are required for mosquito tolerance to control viral
infection [125]. Since vDNA has been found in many
mosquito tissues following viral infection, vDNA
could serve as a danger signal to warn the uninfected
cells and implement a solid immune response through
sRNA production [125], even though the virus could
also counteract by producing VSR (Viral Suppressor
of RNAi), as it has been seen with insect-specific
viruses [157,158].

NIRVS functional role at the protein level

Even though some NIRVS have accumulated several
mutations including stop codons, some of them
have conserved their open reading frames (ORFs)
suggesting that they could be translated into proteins
and have a function at the protein level. This scenario
was first described for many Endogenous Retroviral
elements (ERVs) found in different host genomes
[159]. Produced proteins can confer viral interference
and direct antiviral properties, leading to a resistance
phenotype [160–162]. Up to now, no biological func-
tions were found at the protein level for NIRVS in
mosquitoes. However, many of them were proved to
produce transcripts, mostly in Aedes and Anopheles
mosquitoes [115,116,119,122,163] meaning that
related proteins should be discovered shortly. Collec-
tively, these results suggest that NIRVS have biological
functions rather than being endogenized randomly
into host genomes. Despite their low or even
undetectable levels of RNA [119], NIRVS are
suggested to be involved in the main antiviral defense
mechanism in mosquitoes as being a source of sRNA
production [116,119,120,125,130]. In some rare
occasions, NIRVs produce a protein which blocks
viral infection and replication by affecting viral poly-
merase activity [161].

NIRVS as ancient scars attesting virus/host
coevolution

Understanding ancient viral cross-species transmission
events and how viruses have evolved and interacted
with their hosts in the past is important for anticipating
future emerging diseases. However, reconstituting the
history of viruses remains a challenge considering
their rapid evolution. Indeed, viruses are considered
as the fastest-evolving biological entity with an evol-
ution rate of 10−3 substitutions/site/year (s/s/y) [164–
167]. Once endogenized in the host, NIRVS are sub-
mitted to a slower evolution rate, around 10−9 s/s/y
for mammals [165,168]. However the evolutionary
reconstruction of the NIRVs remains tricky. EVEs
are considered as « fossil records » of ancient infections
[169]. Several different methods have been described to
date EVEs [110,170]. The minimum insertion date of
the EVE can be evaluated if the divergence time of
the two species sharing the same taxonomic position
is known [110]. Studies on EVE evolution revealed
that many viral families are more ancient than pre-
viously thought. As an example, the lentivirus family
classified as retroviruses dated to a hundred years by
molecular clock dating techniques [171] appeared sev-
eral million years ago since endogenous lentiviruses
were discovered in the grey mouse lemur (Microcebus
murinus) from Madagascar [172]. This can be
extended to other viruses: Hepadnaviridae [114,173]
and Bornaviridae [110].

Conclusion

Aedes albopictus and Ae. aegypti are two mosquito
species that have different histories. They vector several
major human arboviruses, including CHIKV and
DENV, for which they exhibit different vector compe-
tence. Whereas both species highly transmit CHIKV,
Ae. albopictus is considered as a less efficient vector
for DENV [21]. Along with environmental factors
such as the temperature, epigenetic factors like the
mosquito microbiota [1,66,67], and genetic factors
like Quantitative Trait Loci (QTLs) [86] are important
to determine the vector competence. More impor-
tantly, the recent discovery of NIRVS highlights their
potential role as modulator of vector competence to
arboviruses. It has been suggested that their association
with retrotransposons allowed them to be reverse tran-
scribed into viral DNA (vDNA) and then be integrated
into mosquito genomes. Moreover, NIRVS were found
to produce vsiRNAs and vpiRNAs, which are impor-
tant molecules in the RNAi-based immunity in Aedes
mosquitoes [119,120,125]. In rare cases, NIRVS are
translated into proteins that act as inhibitor of viral
replication [161]. However, some questions remain
unsolved, such as to which aim NIRVS are involved
in the antiviral immunity. NIRVS could act as a
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warning signal and prime the antiviral immunity for
allowing the host to control viral replication before
the infection becomes deleterious and harmful for the
vector host. It reminds us the adaptive immunity
mechanisms such as CRISPR-Cas systems in prokaryo-
tic cells. Alternatively, NIRVS could also act as a keeper
of persistent infection by maintaining a low level of
viral replication, diminishing the negative impacts on
the mosquito fitness. Nevertheless, analysis of natural
mosquito populations revealed a high diversity of
NIRVS at the intra- and inter-population levels
(Houé et al. unpublished data; [174]), suggesting
many DNA recombination in NIRVS-surrounding
areas. While many NIRVS have been found homolo-
gous to insect-specific flavi- and rhabdovirus [119],
which are genetically related to pathogenic viruses,
none was found homologous to Togaviridae family
that contains only two insect-specific viruses described
so far [175,176]. This could explain why CHIKV is
highly transmitted by both Ae. aegypti and Ae. albopic-
tus, compared to the Flaviviridae family that harbours
many insect-specific viruses [177].
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