

Social Skills Training Tool in Virtual Reality, Intended for Managers and Sales Representatives

Jean-Daniel Taupiac, Nancy Rodriguez, Olivier Strauss, Pierre Beney

▶ To cite this version:

Jean-Daniel Taupiac, Nancy Rodriguez, Olivier Strauss, Pierre Beney. Social Skills Training Tool in Virtual Reality, Intended for Managers and Sales Representatives. IEEE-VR: Virtual Reality and 3D User Interfaces, Mar 2019, Osaka, Japan. 26th Conference on Virtual Reality and 3D User Interfaces, 2019. hal-02091017

HAL Id: hal-02091017 https://hal.archives-ouvertes.fr/hal-02091017

Submitted on 5 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

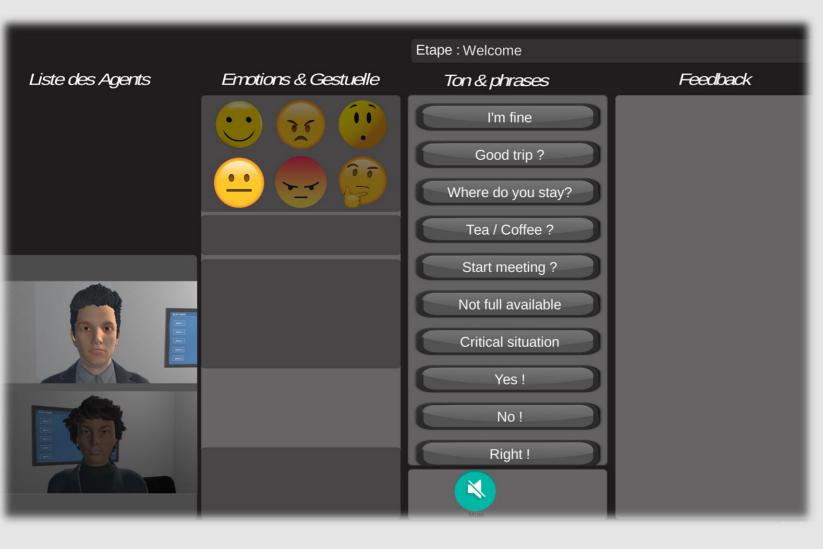
Copyright

Social skills training tool in Virtual Reality, intended for managers and sales representatives

Jean-Daniel Taupiac¹², Nancy Rodriguez¹, Olivier Strauss¹, Pierre Beney³ ¹LIRMM, Univ Montpellier, CNRS, Montpellier (France) ²Capgemini Customer Service Development, Bayonne (France) ³Safran Helicopter Engines, Tarnos (France) #095

INTRODUCTION

- ☐ Social skills: "The ability of an interactant to choose among available communicative behaviors in order that he may accomplish his own interpersonal goals during an encounter while maintaining the face and line of his fellow interactants within the constraints of the situation" (Wiemman, 1977) [1]
- > Widely used in managerial and commercial professions
- ☐ Today managers and sales representatives training \rightarrow role-playing sessions with an instructor


ROLEPLAYS LIMITS

- > Human and financial costs
- > Lack of realism and contextualization:
 - Actors: peers or instructors
 - Different actors = differences in ways to play
 - Learners expect to be pushed into a difficult position
 - Difficulties to offer varying profiles and environments
 - Not made in real context
 - Limits in the emotional dimension
- Objectivity's importance for assessment:
 - Currently assessment is subjective
 - → based on instructors observations & feelings
 - Important for roleplays debriefings

RELATED WORK

- ☐ Virtual characters tend to induce a social presence for learners [2] \rightarrow favor learning [3]
- ☐ Uses of "Wizard of Oz" approach [4]:
 - Control remotely virtual characters
 - Avoid voice recognition & AI problems
 - Let study how users interact [5,6]
 - Explore automaton conception trails [7,8]
- ☐ Effects of gender during human-machine interactions [9]
- > Limit variability effects by confronting subjects with same-gender characters [7,10]
- ☐ HMD integration [11-15]

PROTOTYPE

"Wizard of Oz" control panel

Managers' scene

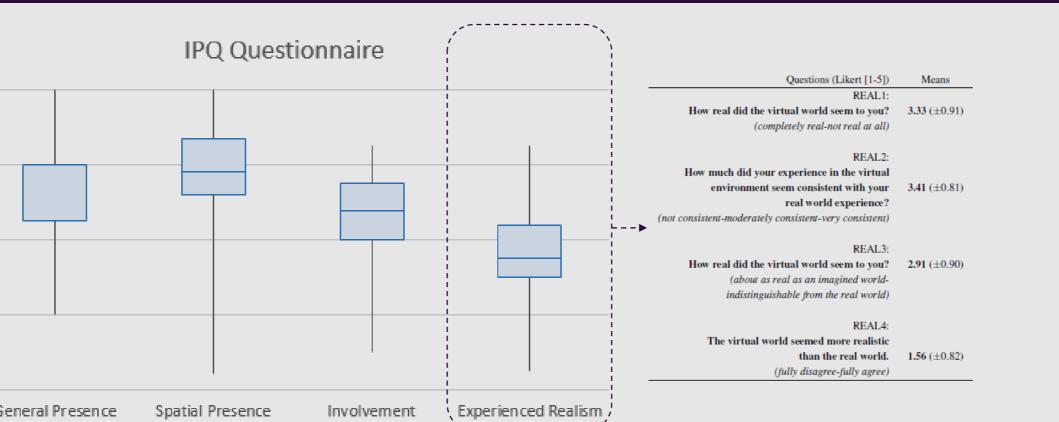
Sales representatives' scene

Real objects tracking

EXPERIMENTS

To validate:

- ☐ How users feel social interaction?
- ☐ How users feel present in the virtual environment?
- ☐ Generic scenario: restaurant-choice negotiation
- > Reuse of sales representatives' scene
- ➤ With a single virtual character → same gender


☐ Process:

- 1. Prototype test
- 2. IPQ presence questionnaire [16]
- 3. Social presence questionnaire [17]
- 4. Open interview
- ☐ 54 co-workers:
- > 63% men, 37% women
- \rightarrow Average age: 36(\pm 10)

Open interviews explanations: "Cartoon style"

- "Simplistic rendering style"

RESULTS

- \rightarrow Improving Experienced Realism \rightarrow impact on learners' attention?

Social presence

Social presence

Open interviews:

- Limits of the scenario (43%)
- Non-verbal critics:
- Gestural animations (24%) - Gaze behavior (11%)
- "Wizard of Oz" impact?
- Reaction time felt (24%)
- "Was understanding me" (15%)

Limits:

- \Box Carried out inside an open space \rightarrow potential negative impact on presence
- ☐ Software engineer population
- > 56% have been aware of works (52% discussions, 13% presentation video, 7% prototype test)

CONCLUSIONS

- ✓ Encouraging results about the prototype design:
 - General & Spatial Presence
 - Involvement
 - Social Presence
- Areas of improvement noticed:

 - Scenario content - Environment realism
 - Non-verbal behaviors

FUTURE WORKS

- > Analyze impacts of Experienced Realism on learners' attention
- > Experiments on end-users (managers & sales representatives):
 - Tool's usability
 - Learning contributions: verbal & non-verbal behaviors
 - Learners' motivation
 - Mistakes awareness - Self-confidence

- Added value

IEEE VR 2019

REFERENCES

J. M. Wiemann. Explication and test of a model of communicative competence. Human communication research H. C. Lane, M. J. Hays, M. G. Core, and D. Auerbach. Learning intercultural communication skills with virtual humans: Feedback and fidelity. Journal of Educational Psychology, 105(4):1026, 2013.

R. Moreno and R. E. Mayer. Personalized messages that promote science learning in virtual environments. Journal

- of Educational Psychology, 96(1):165, 2004. A. Cordar, A. Wendling, C. White, S. Lampotang, and B. Lok. Repeat after me: Using mixed reality humans to influence best communication practices. In Virtual Reality (VR), 2017 IEEE, pp. 148–156. IEEE, 2017. D. DeVault, R. Artstein, G. Benn, T. Dey, E. Fast, A. Gainer, K. Georgila, J. Gratch, A. Hartholt, M. Lhommet, et al. Simsensei kiosk: A virtual human interviewer for healthcare decision support. In Proceedings of the 2014
- international conference on Autonomous agents and multi-agent systems, pp. 1061–1068. International Foundation for Autonomous Agents and Multiagent Systems, 2014. D. DeVault, K. Georgila, R. Artstein, F. Morbini, D. Ř. Traum, S. Scherer, A. S. Rizzo, and L.-P. Morency. Verbal
- indicators of psychological distress in interactive dialogue with a virtual human. In SIGDIAL Conference, pp. 193-7. D. DeVault, J. Mell, and J. Gratch. Toward natural turn-taking in a virtual human negotiation agent. In AAAI Spring Symposium on Turntaking and Coordination in Human-Machine Interaction. AAAI Press, Stanford, CA, 2015.
- J. Gratch, G. M. Lucas, A. A. King, and L.-P. Morency. It's only a computer: the impact of human-agent interaction in clinical interviews. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems, pp. 85–92. International Foundation for Autonomous Agents and Multiagent Systems, 2014. C. Nass, Y. Moon, and N. Green. Are machines gender neutral? genderstereotypic responses to computers with voices. Journal of applied social psychology, 27(10):864–876, 1997.
- 10. M. E. Hoque, M. Courgeon, J.-C. Martin, B. Mutlu, and R. W. Picard. Mach: My automated conversation coach. Ir
- Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pp. 697–706. 11. S. Babu, E. Suma, T. Barnes, and L. F. Hodges. Can immersive virtual humans teach social conversational protocols? In Virtual Reality Conference, 2007. VR'07. IEEE, pp. 215–218. IEEE, 2007. 12. R. W. Hill Jr, J. Gratch, S. Marsella, J. Rickel, W. R. Swartout, and D. R. Traum. Virtual humans in the mission
- rehearsal exercise system. Ki, 17(4):5, 2003. L. Huguet, D. Lourdeaux, and N. Śabouret. Pr´esentation du projet victeams [victeams project presentation]. In Workshop Affect, Compagnon Artificiel, Interaction (WACAI 2016) [In French], 2016. 14. M. Ochs, B. Donval, and P. Blache. Virtual patient for training doctors to break bad news. In Workshop, Affect, Compagnon Artificiel, Interaction, 2016.
- 15. D. Traum, W. Swartout, J. Gratch, S. Marsella, P. Kenny, E. Hovy, S. Narayanan, E. Fast, B. Martinovsky, R. Baghat, et al. Virtual humans for non-team interaction training. In AAMAS-05 workshop on creating bonds with humanoids, 16. T. W. Schubert. The sense of presence in virtual environments: A three-component scale measuring spatial
- presence, involvement, and realness. Zeitschrift f¨ur Medienpsychologie, 15(2):69–71, 2003. 17. J. N. Bailenson, J. Blascovich, A. C. Beall, and J. M. Loomis. Equilibrium theory revisited: Mutual gaze and personal space in virtual environments. Presence: Teleoperators & Virtual Environments, 10(6):583-598, 2001.