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and
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Abstract. This paper presents a global stabilization for the two and three-

dimensional Navier-Stokes equations in a bounded domain Ω around a given
unstable equilibrium state, by means of a boundary normal feedback control.

The control is expressed in terms of the velocity field by using a non-linear

feedback law. In order to determine the feedback control law, we consider
an extended system coupling the equations governing the perturbation with

an equation satisfied by the control on the domain boundary. By using the

Faedo-Galerkin method and a priori estimation techniques, a stabilizing bound-
ary control is built. This control law ensures a decrease of the energy of the

controlled discrete system. A compactness result then allows us to pass to the

limit in the system satisfied by the approximated solutions.

1. Introduction. Let Ω be a bounded Lipschitz domain in Rd (d = 2, 3) with
a boundary Γ and let Γi ⊂ Γ, i = 0, 1, 2, · · · , N , be open boundary and nonzero
surface measure such that Γi ∩ Γj = ∅ for i 6= j and Γ = ∪Ni=0Γi. Further, we

denoted by Γl = Γ0 and Γb = ∪Ni=1Γi. In particular, the boundary Γb is the part
of Γ, where a Dirichlet boundary control in feedback form has to be determined.
The usual function spaces L2(Ω), H1(Ω), H1

0 (Ω), are used and we let L2(Ω) =
(L2(Ω))d, H1(Ω) = (H1(Ω))d and H1

0(Ω) = (H1
0 (Ω))d. Negative ordered Sobolev

space H−1(Ω) is defined as the dual space, i.e., H−1(Ω) = {H1
0(Ω)}′. We denote by

〈·|·〉 and ‖ · ‖ = ‖ · ‖L2(Ω), the scalar product and the norm in L2(Ω), respectively.
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2 EVRAD NGOM, ABDOU SÈNE AND DANIEL LE ROUX

Further, if u ∈ L2(Ω) is such that ∇ · u ∈ L2(Ω), we denote the normal trace of u

in H−
1
2 (Γ) by u · n, where n denotes the unit outer normal vector to Γ.

We consider a stationary motion of an incompressible fluid described by the
velocity and pressure couple (vs, qs), which is the solution to the stationary Navier-
Stokes equations 

−ν∆vs + (vs.∇)vs +∇qs = fs in Ω,

∇ · vs = 0 in Ω,

vs = ψ on Γ.

(1)

In this setting, ν > 0 is the viscosity, fs is a function in L2(Ω), ψ belongs to V
1
2 (Γ)

defined as V
1
2 (Γ) =

{
u ∈ H1/2(Γ) :

∫
Γ

u · n dζ = 0
}

. In [16], it is shown that a

solution (vs, qs) to (1) exists in H1(Ω)× L2
0(Ω) where

L2
0(Ω) =

{
p ∈ L2(Ω),

∫
Ω

p(x) dx = 0

}
.

For T > 0 fixed, let Q = [0, T [×Ω, Σl = [0, T [×Γl and Σb = [0, T [×Γb and consider
a trajectory (u, q) solution of the non stationary Navier-Stokes equations

∂u

∂t
− ν∆u + (u · ∇)u +∇q = fs in Q,

∇ · u = 0 in Q,

u = ψ|Γb + ub on Σb,

u = ψ|Γl on Σl,

u0(x) = vs(x) + v0(x) in Ω,

(2)

with x = (x, y, z) if d = 3. Consequently, the couple (v = u − vs, p = q − qs)
satisfies the following non stationary system

a.
∂v

∂t
− ν∆v + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 in Q,

b. ∇ · v = 0 in Q,

c. v = ub on Σb,

d. v = 0 on Σl,

e. v(t = 0,x) = v0(x) in Ω.

(3)

The control ub(t) is called a feedback if there exists a mapping M : X(Ω) →
U(Γb) such that

ub(t) =M(v(t)), t ∈ (0,∞), (4)

where the spaces X(Ω) and U(Γb) will be defined in the sequel. Our goal is the
following: for a prescribed rate of decrease σ > 0, we need to find a feedback control
ub on Σb such that the velocity v in (3) satisfies the exponential decay

‖v(t)‖X(Ω) ≤ C e−σt, t ∈ (0,∞). (5)

The theoretical setting of the stabilization procedure, for the non stationary
incompressible Navier-Stokes equations using a feedback control, has been studied
by a number of authors, e.g. A.V. Fursikov et al. [13, 14], V. Barbu et al. [3, 7,
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8, 9, 10], J.-P. Raymond et al. [25, 26, 27] and M. Badra et al. [1, 2]. In these
papers, the linear feedback law M is first determined by solving a linear control
problem for the linearized system of equations (for example the Oseen system) and
then this linear feedback is used in order to stabilize the original non linear system
(for example the Navier-Stokes system).

By employing the extension operator, A.V. Fursikov [13, 14] addressed the sta-
bilization of the 2D and 3D Navier-Stokes equations. In [2, 6, 7, 8, 26, 27], the
feedback control laws are determined by solving a Riccati equation in a space of
infinite dimension. In such a case, an optimal control problem has to be solved,
involving the minimization of an objective functional. In practice, the control is
calculated through approximation via the solution of an algebraic Riccati equation,
which may be computationally expensive. The use of finite-dimensional controllers
may be more appropriate to stabilize the Navier-Stokes equations. Such an ap-
proach is performed in [9], in the case of an internal control, and in [1, 6, 7, 8, 25],
in the case of a boundary control. In [1, 9, 25], the authors search for a boundary
control ub of finite dimension of the form

ub =

N∑
j=1

uj(t)ψj(x), t ≥ 0, x ∈ Γ,

where (ψj)j=1,2,3,...,N is a finite-dimensional basis obtained from the eigenfunctions

of some operator and u = (u1, u2, u3, . . . , uN ) is a control function expressed with
a feedback formulation. In [25] and [1], where d = 2, and d = 3, respectively, the
feedback control is obtained from the solution of a finite-dimensional Riccati equa-
tion while a stochastic-based stabilization technique is employed in [5], in the case
of an internal control, which avoids the difficult computation problems related to
infinite-dimensional Riccati equations. The procedure employed in [3] for a bound-
ary control resembles the form of stabilizing noise controllers designed in [5].

A linear feedback law is first determined by solving a linear control problem
in all the papers cited above, and this linear feedback is then used in order to
stabilize the original non linear system. Such a procedure leads to choose the initial
velocity small enough, limiting the generality of the result. Moreover, it usually
requires to search for the initial condition and the control ub in sufficiently regular
spaces. The choice of the control profile is also very critical. Indeed, the case of
a normal profile is very useful in many applications [15, 20, 23], but the control
laws built in all the papers cited above does not guarantee ub · n 6≡ 0 on Γ, since
ub ∈ {u ∈ L2(Γ) :

∫
Γ

u · n = 0}.
In the above mentioned studies, for a prescribed rate of decay σ > 0, an expo-

nential decay of the following form is obtained

‖v‖X(Ω) ≤ C‖v0‖X(Ω)e
−σ t, t > 0, (6)

where X(Ω) is the adequate space and the constant C ≥ 1. In practice, it is
preferable to have C = 1, yielding an immediate exponential decay.

Another approach for stabilizing fluid dynamics equations is proposed in [12, 17,
18, 22, 28]. The method was first published with application on a 1D shallow water
equation in [28]. It consists on establishing an equation involving the derivative
of energy with respect to time, and the boundary conditions. Then, by utilizing
adequate feedback boundary conditions, the authors manage to get the energy’s
exponential decrease. So far, the method has been applied to stabilize irrigation
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channel networks [17, 18], coupled shallow-water and erosion-sedimentation equa-
tions [12], and the Navier-Stokes system around a steady-state [22]. Note that in
[22], an extended system is considered with an additional equation satisfied by the
control on the domain boundary, and the boundary feedback control is constructed
via a Galerkin method. Thereby, the authors stabilize the Navier-Stokes equations
in a bounded domain Ω around a given steady-state which satisfies the stationary
Navier-Stokes equations. However, in [22], the result of stabilization is obtained
with a rate of decay σ depending on the viscosity ν and the steady-state vs. Conse-
quently, the problem of stabilization remains uncontrolled for unstable equilibrium
states.

In this paper, the approach of [22], using an extended system is followed, and σ
not only depends on the viscosity ν and the steady-state vs, but also on the size
N of the control. Thus, for any fixed ν, we can find N which is greater or equal to
the number of unstable mode, such that the problem of stabilization is controllable.
This allows the stabilization rate sigma to be arbitrarily large.

The boundary control ub in (3) is rewritten on the form ub = αi(t)gi(x) on
Σi = [0, T [×Γi, where the quantity αi is a priori unknown and the fixed profile
gi is such that gi ∈ H1/2(Γ), gi = 0 on Γj ∪ Γl for j 6= i, gi · n 6≡ 0 on Γi and∫

Γi
gi · n = 0. In order to stabilize (3), with ub = αi(t)gi(x) on Σi, by employing

energy a priori estimation technics, the quantity αi is found to satisfy the relation∫
Γi

[ν
∂v

∂n
− pn] · gi dζ = fi(v), i = 1, 2, 3, · · · , N, (7)

where fi is a polynomial in αi of degree 2 and will be defined later in (28). The
quantity αi depends nonlinearly on v in (7), and hence αi satisfies a nonlinear
feedback law of the form (4). System (3) is then extended by adding (7), and the
extended system, namely (3) and (7), with ub = αi(t)gi(x) on Σi, is the stabilization
problem considered in this paper, i.e.

a.
∂v

∂t
− ν∆v + (v · ∇)vs + (vs · ∇)v + (v · ∇)v +∇p = 0 in Q,

b. ∇ · v = 0 in Q,

c. v = αi(t)gi(x), i = 1, 2, 3, · · · , N on Σi,

d. v = 0 on Σl,

e. v(0,x) = v0(x) in Ω,

f.

∫
Γi

[ν
∂v

∂n
− pn] · gi dζ = fi(v), i = 1, 2, 3, · · · , N.

(8)

In order to determine αi, leading to the determination of the boundary control ub,
system (8) is solved via a Galerkin procedure which consists of building a sequence
of approximated solutions using an adequate Galerkin basis.

The paper is organized as follows. In section 2, the notations and mathematical
preliminaries are given. In section 3, stabilization is proved and, thanks to technics
developed in [19] (which are not related specifically to a stabilization problem), the
existence of at least one weak solution of the non-linear Navier-Stokes system is
established by applying the Galerkin method.

2. Notation and Preliminaries.
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2.1. Function Spaces. Some spaces of free divergence functions are introduced:

V(Ω) =
{
u ∈ H1(Ω) : ∇ · u = 0 in Ω, u = 0 on Γl,

∫
Γb

u · n dζ = 0
}
, (9)

V0(Ω) = {u ∈ H1
0(Ω) : ∇ · u = 0 in Ω}, (10)

H(Ω) =
{
u ∈ L2(Ω) : ∇ · u = 0, u · n = 0 on Γl

}
. (11)

Since V(Ω) is a closed subspace of H1(Ω), we have, by definition ‖·‖V(Ω) = ‖·‖H1(Ω).

2.2. Linear Forms. In order to define a weak form of the Navier-Stokes equations,
we introduce the continuous bilinear forms

a(v1,v2) =

∫
Ω

∇v1 : ∇v2 dx, ∀(v1,v2) ∈ H1(Ω)×H1(Ω),

and the trilinear form:

b(v1,v2,v3) =

∫
Ω

(v1∇)v2 · v3 dx, ∀(v1,v2,v3) ∈ H1(Ω)×H1(Ω)×H1(Ω).

In this respect, by integration by parts, we obtain, respectively

b(u,v,v) =
1

2

∫
Γb

|v|2(u · n) dζ, ∀u,v ∈ V(Ω). (12)

Thanks to Hölder inequality, we obtain

|b(v1,v2,v3)| ≤ ‖v1‖L3(Ω)‖∇v2‖‖v3‖L6(Ω), ∀v1, v2, v3 ∈ H1(Ω).

Further, due to the generalized Sobolev’s inequality, there exists a positive constant
C such that

‖v1‖L3(Ω) ≤ C‖v1‖
1
2 ‖∇v1‖

1
2 and ‖v3‖L6(Ω) ≤ C‖∇v3‖, for d = 2, 3,

hence,

|b(v1,v2,v3)| ≤ C‖v1‖
1
2 ‖∇v1‖

1
2 ‖∇v2‖‖∇v3‖. (13)

We now built a hilbertian basis and a control law.

2.3. Hilbertian basis and control law. Let {zj , λj , j = 1, 2, 3, · · · } be the eigen-
functions and eigenvalues of the following spectral problem for the Stokes operator:

−∆zj +∇pj = λjzj , ∇ · zj = 0 in Ω; zj |Γ = 0. (14)

As shown in [11], 0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ as j → ∞, and {zj} forms an
orthonormal basis in V0(Ω) :

〈zj , zk〉 = δjk, a(zj , zk) = λjδjk, ∀j, k. (15)

Since λj in (14) goes to ∞ as j → ∞, for a prescribed rate of decrease σ > 0, we
always find Nσ belonging to N∗, such that

σ ≤ σNσ =
ν

4
λNσ+1 −

(
2

3 ν

)3
C4 ‖∇vs‖4, (16)

where C is defined in (13). Still denoting Nσ by N in the remaining of this paper, we
define I = {1, 2, 3, · · · , N} and we let V1/2(Γi), i ∈ I, the space of trace functions



6 EVRAD NGOM, ABDOU SÈNE AND DANIEL LE ROUX

whose extended by zero over Γ belongs to H1/2(Γ). In order to built the control
law, for all i ∈ I, the profile gi must satisfies

gi ∈ V1/2(Γi), (17)

gi · n 6≡ 0 on Γi, (18)∫
Γi

gi · n dζ = 0. (19)

Further, in the eventual purpose of ensuring a normal profile for the control, the
condition

gi(ζ) · τ (ζ) = 0, ∀ζ ∈ Γi and ∀τ ∈ Tζ(Γi), (20)

might be added to (17)-(19), where the tangent space of Γi at ζ, denoted by Tζ(Γi),
is defined as the set of all tangent vectors at ζ. For example, assuming that the
boundary Γ is regular enough for n to be in H1/2(Γ), we consider hj , j = 0, 1,
defined on Γi, i ∈ I as

hj(x) =

exp

(
−
‖x− xj‖2

r2
j − ‖x− xj‖2

)
n if x ∈ B(xj , rj) ∩ Γi,

0 else,

(21)

where B(xj , rj) is the open ball centered at xj ∈ Γi, with radius rj , such that
B(x0, r0)∩B(x1, r1) = ∅. By choosing r0 and r1 appropriately, one can satisfy (21).
If βj , j = 0, 1, is defined as

βj =

∫
B(xj ,rj)∩Γi

hj · n dζ,

the control profile gi = β0h1 − β1h0 satisfies not only (17)-(19) but also (20).
However, note that condition (20) is not necessary to construct the control law in
the present study. One might also consider gi(ζ) = β0h1(ζ)− β1h0(ζ) +A(ζ)τ (ζ),
where A(ζ) is a sufficiently regular function.

Let us consider the following Stokes problem

a. −∆ψi +∇qi = 0, in Ω,

b. ∇ ·ψi = 0 in Ω,

c. ψi = 0 on Γl ∪ Γj , j 6= i,

d. ψi = gi on Γi.

(22)

First, thanks to (17) and (19), the Stokes problem (22) admits a unique solution
(ψi, qi) belonging to H1(Ω) × L2

0(Ω)(See [11, Proposition III.4.1]). Therefore, the
sequence ψ1, ψ2, ψ3, · · · ,ψN , z1, z2, z3, · · · , is linearly independent. Hence, we
choose to search the solution v of (8) in

W(Ω) = span(ψn + zn){n∈I} ⊕ span(zn){n>N}. (23)

We do not propose any particular norm for the space W(Ω) as it is not needed in
the manuscript. Further, the solution v can be expressed as:

v = w + z, where w =

N∑
i=1

αiwi and z =

∞∑
i=N+1

θizi, (24)

with wi = ψi + zi, for i ∈ I.
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Secondly, conditions (17) and (18) lead to Lemma 2.1 (see proof in [19]), which
is used in the sequel.

Lemma 2.1. There exists a constant Ci > 0 such that, for all v ∈W(Ω),

|αi| ≤ Ci‖v‖, i ∈ I. (25)

Further, using (25), Lemma 2.2 is obtained.

Lemma 2.2. For all v = w + z ∈W(Ω), w satisfies

‖w‖ ≤ CN‖v‖, (26)

where CN =
(∑N

i=1 C
2
i ‖wi‖2 + 2

∑
1≤i<j≤N |Ci|Cj ||〈wi,wj〉|

) 1
2

, N ∈ N∗.

Proof. Developing ‖w‖2 from (24) and using (25) yields

‖w‖2 =

N∑
i=1

α2
i ‖wi‖2 + 2

∑
1≤i<j≤N

αiαj〈wi,wj〉

≤
N∑
i=1

α2
i ‖wi‖2 + 2

∑
1≤i<j≤N

|αi||αj ||〈wi,wj〉|

≤

 N∑
i=1

C2
i ‖wi‖2 + 2

∑
1≤i<j≤N

|Ci||Cj ||〈wi,wj〉|

 ‖v‖2. (27)

Finally, for i ∈ I, the control law is defined as

fi(v) = aiα
2
i + biαi − (ν − ε)λN+1

αi‖wi‖2 + 2〈wi, z〉+

N∑
j=1; j 6=i

αj〈wi,wj〉

 (28)

where the positive constant ε < ν is defined in (39) and for i ∈ I,

ai =
1

2

∫
Γi

|gi|2(gi · n) dζ and bi =
1

2

∫
Γi

|gi|2(vs · n) dζ.

The dependence of f on v is realized in the right side of (28) with help of parameters
αi, i ∈ I, and vector z (see definition (24) of v ).

3. Stability Result.

3.1. The variational formulation. We first consider the variational formulation
of the extended Navier-Stokes system.

Definition 3.1. Let T > 0 an arbitrary real number and v0 ∈ H(Ω), we shall say
that v is a weak solution of (8) on [0, T ) if

• v ∈ [L∞(0, T ; H(Ω)) ∩ L2(0, T ; V(Ω))],

• ∃αi ∈ L∞(0, T ) such that v = αigi on Γi, i ∈ I,
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• ∀ ṽ =
∑N
i=1 α̃iwi +

∑∞
i=N+1 θ̃izi ∈W(Ω), we have



a.
d

dt

∫
Ω

v · ṽ dx + νa(v, ṽ) + b(v,vs, ṽ) + b(vs,v, ṽ)

+ b(v,v, ṽ) =

N∑
i=1

α̃ifi(v),

b.

(∫
Ω

v · ṽ dx

)
(0) =

∫
Ω

v0 · ṽ dx.

(29)

Note that the initial condition (29-b) makes sense because for any solution v of (29-a),
we see that t −→

∫
Ω

v(t) · ṽ dx is continuous in time (see [11] Corollaire II.4.2).

The main achievement of this paper is the following boundary stabilization result.

Theorem 3.2. Let σ > 0 a prescribed rate of decrease, assume that (16) is satisfied
and let gi, i ∈ I, such that

gi ∈ V1/2(Γi), gi · n 6≡ 0 on Γi,

∫
Γi

gi · n dζ = 0.

For arbitrary initial data v0 ∈ H(Ω), there exists a weak solution v of (8) in the
sense of definition 3.1. Moreover, v satisfies the following estimates:

‖v(t)‖ ≤ ‖v0‖ e−σt, ∀t > 0, (30)∫ T

0

‖∇v(s)‖2 ds ≤ C, (31)

where C is a constant.

Proof. Let us begin with the proof of the stability estimates (Section 3.2) followed
by the existence result (Section 3.3).

3.2. A priori estimates.

3.2.1. A priori estimate for (30). We take ṽ = v =
∑N
i=1 αiwi +

∑∞
i=N+1 αizi

in (29-a), we have

1

2

d

dt
‖v‖2 + ν‖∇v‖2 + b(v,v,v) + b(vs,v,v)

+ b(v,vs,v) =

N∑
i=1

αifi(v). (32)

Due to (12), we obtain respectively

b(v,v,v) =
1

2

∫
Γb

|v|2(v · n) dζ =

N∑
i=1

aiα
3
i , (33)

b(vs,v,v) =
1

2

∫
Γb

|v|2(vs · n) dζ =

N∑
i=1

biα
2
i . (34)
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Using (13) and the Young’s inequality leads to

|b(v,vs,v)| ≤ C‖v‖ 1
2 ‖∇v‖ 1

2 ‖∇vs‖‖∇v‖

≤ ε1
2
‖∇v‖2 +

C2

2ε1
‖∇vs‖2‖v‖‖∇v‖

≤ ε1
2
‖∇v‖2 +

ε2
2
‖∇v‖2 +

1

2ε2

(
C2

2ε1
‖∇vs‖2

)2

‖v‖2.

Taking ε1 = ε2 = ε, we deduce

|b(v,vs,v)| ≤ ε‖∇v‖2 +

(
C4

8ε3
‖∇vs‖4

)
‖v‖2. (35)

Definition (28) leads to

N∑
i=1

αifi(v) =

N∑
i=1

aiα
3
i +

N∑
i=1

biα
2
i − (ν − ε)λN+1(‖v‖2 − ‖z‖2). (36)

Using (33)-(36) in (32) leads to

1

2

d

dt
‖v‖2 + (ν − ε)‖∇v‖2 + Cε‖v‖2 ≤ (ν − ε)λN+1‖z‖2. (37)

where

Cε = (ν − ε)λN+1 −
C4

8ε3
‖∇vs‖4

with λN+1 such that Cε > 0, namely

h(ε) =
C4

8(ν − ε)ε3
‖∇vs‖4 < λN+1. (38)

To optimize the choice of λN+1 in (38), we search for ε ∈]0, ν[ which minimizes h.
Consequently, ε is such that h′(ε) = 0, i.e.

ε =
3ν

4
, (39)

which is unique. Due to (22), for all i ∈ I and j > N , we have 〈∇wi,∇zj〉 = 0 and
hence we deduce,

‖∇v‖2 = ‖∇w‖2 + ‖∇z‖2. (40)

Using (39) and (40) in (37), it follows

1

2

d

dt
‖v‖2 +

ν

4
‖∇w‖2 +

ν

4
‖∇z‖2 + σN‖v‖2 ≤

ν

4
λN+1‖z‖2 (41)

where σN =
ν

4
λN+1 −

(
2

3ν

)3
C4 ‖∇vs‖4 has been used in (16). Since

λN+1‖z‖2 = λN+1

∞∑
i=N+1

α2
i ≤

∞∑
i=N+1

λiα
2
i = ‖∇z‖2,

according to (41) we obtain

1

2

d

dt
‖v‖2 +

ν

4
‖∇w‖2 + σN‖v‖2 ≤ 0. (42)

Consequently, for all σ such that 0 < σ ≤ σN , we have

1

2

d

dt
‖v‖2 + σ‖v‖2 ≤ 0 (43)
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and hence v satisfies

‖v‖ ≤ ‖v(0)‖e−σt. (44)

Moreover, taking ṽ = v(0) in (29-b), leads to∫
Ω

|v(0)|2 =

∫
Ω

v0 · v(0) ≤ 1

2

∫
Ω

|v0|2 +
1

2

∫
Ω

|v(0)|2

hence

‖v(0)‖2 ≤ ‖v0‖2, (45)

and according to (44), we obtain

‖v‖ ≤ ‖v0‖e−σt. (46)

3.2.2. A priori estimate for (31). Since σN > 0, from (37) with ε in (39), we obtain

1

2

d

dt
‖v‖2 +

ν

4
‖∇v‖2 ≤ ν

4
λN+1‖z‖2 =

ν

4
λN+1‖v −w‖2

≤ ν

2
λN+1‖v‖2 +

ν

2
λN+1‖w‖2. (47)

Using Lemma 2.2 in (47), yields

d

dt
‖v‖2 +

ν

2
‖∇v‖2 ≤MN‖v‖2 (48)

where MN = νλN+1(1 + C2
N ). Integrating (48) over (0, t) and using the stability

estimate (46), we obtain

‖v‖2 +
ν

2

∫ t

0

‖∇v‖2 ds ≤ ‖v0‖2 +MN

∫ t

0

‖v‖2 ds

≤
(

1 +MN

∫ t

0

e−2σs ds

)
‖v0‖2

≤
(

1 +
MN

2σ

)
‖v0‖2. (49)

Therefore, we obtain the a priori estimate∫ T

0

‖∇v‖2 ds ≤
(

2

ν
+

1 + C2
N

σ
λN+1

)
‖v0‖2. (50)

3.3. Existence. The proof of the existence follows a standard procedure. In a
first step a sequence of approximate solutions using a Galerkin method is built. A
compactness result from [21] allows us to pass to the limit in the system satisfied
by the approximated solutions.

3.3.1. The Galerkin Method. For all m > N , we define the space Wm as:

Wm = span({w1,w2,w3, · · · ,wm}),

where

wi =

wi if 1 ≤ i ≤ N,

zi if N + 1 ≤ i ≤ m.
(51)
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Then for vm ∈Wm, l ∈ I, we write vm =
∑m
i=1 φimwi and we define the following

finite-dimensional problem

(a) 〈∂tvm,wj〉+ νa(vm,wj) + b(vm,vs,wj) + b(vs,vm,wj)

+ b(vm,vm,wj) =

N∑
l=1

δ
lj
fl(vm),

(b) 〈vm(0)− v0,wj〉 = 0, for j = 1, 2, 3, · · · ,m,

(52)

where δ
lj

defines the Kronecker symbol and for zm =
∑m
i=N+1 φimwi and l ∈ I,

fl(vm) = alφ
2
lm + blφlm −

ν

4
λN+1φlm‖wl‖2 −

ν

2
λN+1〈wl, zm〉

−ν
4
λN+1

N∑
i=1, i 6=l

φim〈wl,wi〉, (53)

Recall that φim, i ∈ I, is a priori unknown and thanks to (53), it satisfies a non-
linear feedback law leading to search for φim(vm(t)). Because (53) is independent
of x, φim(vm(t)) is a function of t only. For the sake of simplicity, φim(vm(t)) is
written φim in the sequel.

Lemma 3.3. The discrete problem (52) has a unique solution vm ∈W 1,∞(0, T ;Wm).
Moreover this solution satisfies :

‖vm‖L∞(0,T ;L2(Ω)) + ‖∇vm‖L∞(0,T ;L2(Ω)) ≤ C, (54)

where C is a positive constant independent of m.

Proof. We rewrite (52) in terms of the unknown φim, i = 1, 2, 3 · · ·m, and we obtain

m∑
i=1

dφim
dt
〈wi,wj〉+

m∑
i=1

φ
im

(
ν a(wi,wj) + b(vs,wi,wj) + b(wi,vs,wj)

)
+

m∑
i,k=1

φ
km
φ
im
b(wi,wk,wj) =

N∑
l=1

δ
lj
fl(vm),

m∑
i=1

φ
im

(0)〈wi,wj〉 = 〈v0,wj〉, for j = 1, 2, 3 · · · ,m.

(55)

Since the matrix with elements 〈wi,wj〉 (1 ≤ i, j ≤ m) is nonsingular, (55) reduces
to a nonlinear system with constant coefficients

dφ
im

dt
+

m∑
j=1

φjmXij +

m∑
j,k=1

φkmφjmYijk =

m∑
j=1

δ
lj
fl(vm)Zij ,

φim(0) =

m∑
j=1

〈v0,wj〉Zij ,
(56)

where Xij , Yijk, Zij ,∈ R. Then, there exists Tm (0 < Tm ≤ T ) such that the nonlin-

ear differential system (56) has a maximal solution defined on some interval [0, Tm].
In order to show that Tm is independent of m, it is sufficient to verify the bound-
edness of φim, and hence the boundedness of the L2-norm of vm independently of



12 EVRAD NGOM, ABDOU SÈNE AND DANIEL LE ROUX

m. Following the same procedure as for the derivation of the a priori estimates (46)
and (50), yields 

a. ‖vm(t)‖ ≤ ‖v0‖ e−σt, ∀t > 0

b.

∫ T

0

‖∇vm(s)‖ ds ≤ C.
(57)

Consequently, according to (57-a), we obtain Tm = T .

Moreover, a consequence of the a priori estimates (57) is that (vm)m is bounded
in L2(0, T ; V(Ω)) and L∞(0, T ; H(Ω)). Therefore, for a subsequence of vm (still
denoted by vm), the estimates in (57) yield the following weak convergences as m
tends to ∞ : vm ⇀ v weakly* in L∞(0, T ; H(Ω)),

vm ⇀ v weakly in L2(0, T ; V(Ω)).
(58)

Nevertheless, the convergences in (58) are not sufficient to pass to the limit in the
weak formulation (52), because of the presence of the convection term. Conse-
quently, we need to obtain additional bounds in order to utilize the compactness
theory on the sequence of approximated solution (vm)m.

3.3.2. Additional bounds. As in [21], let us assume that B0, B and B1 are three
Hilbert spaces such that B0 ⊂ B ⊂ B1. If v : R → B1 is a function, we denote by
v̂ its Fourier transform

v̂(τ) =

∫ +∞

−∞
e−2iπtτv(t)dt.

Let us recall the following identity about the Fourier transform of differential oper-
ators:

D̂γ
t v(τ) = (2iπτ)γ v̂(τ),

for a given γ > 0, and let us define the space

Hγ(R;B0, B1) = {u ∈ L2(R, B0), Dγ
t u ∈ L2(R, B1)}.

The space Hγ(R;B0, B1) is endowed with the norm

‖v‖Hγ(R;B0,B1) = (‖v‖2L2(R;B0) + ‖|τ |γ v̂‖2L2(R;B1))
1
2 .

We also define Hγ(0, T ;B0, B1), as the space of functions obtained by restriction
to [0, T ] of functions of Hγ(R;B0, B1). Further, we recall the following result [21]:

Lemma 3.4. Let B0, B and B1 be three Hilbert spaces such that B0 ⊂ B ⊂ B1 and
B0 is compactly embedded in B. Then for all γ > 0, the injection Hγ(0, T ;B0, B1)→
L2(0, T ;B) is compact.

For small enough ε, this lemma is used later with

B0 = V(Ω), B = H(Ω), B1 = H(Ω), γ =
1

4
− ε.

The main result of the present section, based on utilizing Lemma 3.4, is furnished
by the following lemma:

Lemma 3.5. The sequence vm is bounded in Hγ(0, T ; V(Ω),H(Ω)) for 0 ≤ γ ≤
1
4 − ε.
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Proof. We denote by vm the extension of vm by zero 0 for t < 0 and t > T , and
v̂m the Fourier transform with respect to time of vm. It is classical that since vm
has two discontinuities at 0 and T , in the distributional sense, the derivative of vm
is given by

d

dt
vm = um + vm(0)δ0 − vm(T )δT , (59)

where δ0, δT are Dirac distributions at 0 and T , and

um = v′m = the derivative of vm on [0, T ].

After a Fourier transformation, (59) gives

2iπτ v̂m(τ) = ûm(τ) + vm(0)− vm(T )e−2iπτT ,

where v̂m and ûm denote the Fourier transforms of vm and um respectively. Since
we already know that vm is uniformly bounded in L2(0, T,V(Ω)), it remains to
prove that ∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖dτ ≤ C. (60)

For all ṽ ∈Wm with ṽ = α̃igi on Γi, we have that vm satisfies∫
Ω

∂vm
∂t
· ṽ dx + ν

∫
Ω

∇vm : ∇ṽ dx +

∫
Ω

Gm · ṽ dx +

∫
Ω

G0
m · ṽ dx +

∫
Ω

G1
m · ṽ dx

= −
∫

Ω

vm(T ) · ṽδT dx +

∫
Ω

vm(0) · ṽδ0 dx +

N∑
i=1

α̃iHim, (61)

where Gm = (vm∇)vm, G0
m = (vm∇)vs, G

1
m = (vs∇)vm and Him = fi(vm).

We now apply the Fourier transform to the equation (61) and take v̂m as a test
function, it yields

2iπτ

∫
Ω

|v̂m(τ)|2 dx + ν

∫
Ω

∇v̂m(τ) : ∇v̂m(τ) dx +

∫
Ω

Ĝm(τ) · v̂m(τ) dx

+

∫
Ω

Ĝ0
m(τ) · v̂m(τ) dx +

∫
Ω

Ĝ1
m(τ) · v̂m(τ) dx =

∫
Ω

vm(0) · v̂m(τ) dx

−
∫

Ω

vm(T ) · v̂m(τ)e−2iπτT dx +

N∑
i=1

φ̂imĤim, (62)

where Ĝm, Ĝ
0
m, Ĝ

1
m and Ĥim are respectively the Fourier transform with respect

to time of Gm, G
0
m, G

1
m and Him. Note that

φ̂imĤim = −ν
4
λN+1(φ̂im)2‖wi‖2 −

ν

2
λN+1φ̂im〈wi, ẑm〉

− ν

4
λN+1

N∑
j=1, j 6=i

φ̂imφ̂jm〈wi,wj〉+ aiφ̂im(̂φ2
im) + bi(φ̂im)2

hence
N∑
i=1

φ̂imĤim = −ν
4
λN+1

[
‖v̂m‖2 − ‖ẑm‖2

]
+

N∑
i=1

aiφ̂im(̂φ2
im) +

N∑
i=1

bi(φ̂im)2. (63)

Thanks to Lemma 2.1, we have

|φ̂im(τ)| ≤ Ci‖v̂m(τ)‖,



14 EVRAD NGOM, ABDOU SÈNE AND DANIEL LE ROUX

using (63) in (62) and taking the imaginary part of (62) leads to

|τ |‖v̂m(τ)‖2 ≤ C ‖v̂m(τ)‖
(

sup
τ∈R

N∑
i=1

aiCi(̂φ
2
im) + ‖vm(T )‖+ ‖vm(0)‖

)
+ C‖v̂m(τ)‖V(Ω)

(
‖Ĝm(τ)‖V′(Ω) + ‖Ĝ0

m(τ)‖V′(Ω) + ‖Ĝ1
m(τ)‖V′(Ω)

)
. (64)

Note that in the sequel, C stands for different positive constants. We now prove
that each term lying in the right hand side of (64) is bounded.

First, we have

‖Gm‖V′(Ω) ≤ c1‖vm‖2H1(Ω), ‖Gsm‖V′(Ω) ≤ c2‖vm‖H1(Ω), s = 0, 1,

and thanks to the energy estimate (57) satisfied by vm, Gm and Gsm remain bounded

in L1(R; V′(Ω)) and the functions Ĝm, Ĝ
s
m are bounded in L∞(R; V′(Ω)). Conse-

quently, we have

sup
τ∈R

(‖Ĝm(τ)‖V′(Ω) + ‖Ĝ0
m(τ)‖V′(Ω) + ‖Ĝ1

m(τ)‖V′(Ω)) ≤ C.

Finally, we show that the three last terms in the right hand side of (64) are bounded.

Thanks to lemma 2.1, we show that φ2
im is bounded in L1(R), and the function φ̂2

im

is bounded in L∞(R) with:

sup
τ∈R

N∑
i=1

aiCi(̂φ
2
im) ≤ C.

Thanks to the energy estimate (57-a) satisfied by vm, we have ‖vm(T )‖ ≤ C and
‖vm(0)‖ ≤ C. Then, inequation (64) finally reduces to

|τ |‖v̂m(τ)‖2 ≤ C(‖v̂m(τ)‖+ v̂m(τ)‖H1(Ω)) ≤ C‖v̂m(τ)‖H1(Ω),

where C stands for different positive constants.

For 0 < γ < 1
4 , we now estimate the norm∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2dτ.

Note that, (see [21])

|τ |2γ ≤ c(γ)
1 + |τ |

1 + |τ |1−2γ
, ∀τ ∈ R.

Consequently, we deduce∫ +∞

−∞
|τ |2γ‖v̂m(τ)‖2dτ

≤ c(γ)

∫ +∞

−∞

‖v̂m(τ)‖2

1 + |τ |1−2γ
dτ + c(γ)

∫ +∞

−∞

|τ |‖v̂m(τ)‖2

1 + |τ |1−2γ
dτ

≤ c3(γ)

∫ +∞

−∞

‖v̂m(τ)‖2H1(Ω)

1 + |τ |1−2γ
dτ + c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ

≤ c3(γ)

∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ + c4(γ)

∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ. (65)
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The last integral in the right hand side of (65) satisfies∫ +∞

−∞

‖v̂m(τ)‖H1(Ω)

1 + |τ |1−2γ
dτ ≤

(∫ +∞

−∞

dτ

(1 + |τ |1−2γ)2

) 1
2
(∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ

) 1
2

(66)

and the first integral in the right hand side of (66) is convergent for any 0 < γ < 1
4 .

On the other hand, using the Parseval equality leads to∫ +∞

−∞
‖v̂m(τ)‖2H1(Ω)dτ =

∫ T

0

‖vm(t)‖2H1(Ω)dt ≤ C.

Then, the sequence vm is bounded in Hγ(0, T ; V(Ω),H(Ω)), for 0 ≤ γ ≤ 1
4 − ε.

Now, applying Lemmas 3.4 and 3.5, there is a subsequence of (vm)m∈N which
converges strongly in L2(0, T,H(Ω)).

3.3.3. Passage to the limit. The compactness result obtained in the previous section
implies the following strong convergence (at least for a subsequence of vm still
denoted vm)

vm → v strongly in L2(0, T ; L2(Ω)).

This convergence result together with (58) enable us to pass to the limit in the
following weak formulation, obtained from (52) by multiplication by ϕ ∈ D(]0, T [)
and integration by parts with respect to time

−
∫ T

0

∫
Ω

vm · ṽjϕ′(t) dxdt−
∫

Ω

vm(0)ṽjϕ(0) dx + ν

∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t) dxdt+

∫ T

0

∫
Ω

(vm · ∇vs) · ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(vs · ∇vm) · ṽjϕ(t) dxdt =

∫ T

0

α̃jδljfl(vm)ϕ(t) dt (67)

for all ṽj = α̃jwj . As a first step the integrals in the left hand side of (67) are
examined. Using the weak estimates (58) leads to∫ T

0

∫
Ω

vm · ṽjϕ′(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

v · ṽjϕ′(t) dxdt,

∫ T

0

∫
Ω

∇vm : ∇ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

∇v : ∇ṽjϕ(t) dxdt,

∫ T

0

∫
Ω

(vm · ∇vs) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇vs) · ṽjϕ(t) dxdt,

∫ T

0

∫
Ω

(vs · ∇vm) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(vs · ∇v) · ṽjϕ(t) dxdt,

for the linear terms. Further, since vm converges to v in L2(0, T ; V(Ω)) weakly,
and in L2(0, T ; L2(Ω)) strongly, we can pass to the limit in the nonlinear term to
obtain∫ T

0

∫
Ω

(vm · ∇vm) · ṽjϕ(t) dxdt −−−−−→
m→+∞

∫ T

0

∫
Ω

(v · ∇v) · ṽjϕ(t) dxdt. (68)
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As far as the right hand side of (67) is concerned. Using Lemma 2.1 and according
to (57-a), we have φim ∈ L∞(0, T ). Then for a subsequence of φim (still denoted by
φ
im

):

φ
im
⇀ αi weakly∗ in L∞(0, T ). (69)

Let us notice that the convergence of vm in L2([0, T ] × Ω) implies its convergence
in L1(0, T ; L2(Ω)). Hence

‖vm‖ −→ ‖v‖ in L1(0, T ). (70)

Due to lemma 2.1, for all i ∈ I, we have

|φ
ip
− φ

iq
| ≤ Cb‖vp − vq‖, ∀vp,vq ∈Wm,

and φ
im

is then a Cauchy sequence in L1(0, T ) and

φ
im
−→ φi in L1(0, T ). (71)

Further, according to (69) we have φi = αi ∈ L∞(0, T ) from [11, Proposition II.1.26]
and since φim is bounded in L∞(0, T ), using (71) we obtain

φ
im
−→ αi in Lp(0, T ),

from [11, Corollaire II.1.24], for all p ∈]1,+∞[.
Now we can pass to the limit in the following term:∫ T

0

α̃iφ
2
im
ϕ(t) dt −−−−−→

m→+∞

∫ T

0

α̃iα
2
iϕ(t) dt, (72)

and since zm = vm −
∑N
i=1 φimwi, we have∫ T

0

α̃i〈wi, zm〉ϕ(t) dt −−−−−→
m→+∞

∫ T

0

α̃i〈wi, z〉ϕ(t) dt. (73)

Consequently ∫ T

0

α̃if(vm)ϕ(t) dt −−−−−→
m→+∞

∫ T

0

α̃ifi(v)ϕ(t) dt,

where

fi(v) = aiα
2
i + biαi −

ν

4
λN+1

αi‖wi‖2 + 2〈wi, z〉+

N∑
j=1; j 6=i

αj〈wi,wj〉

 .

Thus, passing to the limit in (67) gives

−
∫ T

0

∫
Ω

v · ṽjϕ′(t) dxdt−
∫

Ω

v0ṽjϕ(0) dx + ν

∫ T

0

∫
Ω

∇v : ∇ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(v · ∇v) · ṽjϕ(t) dxdt+

∫ T

0

∫
Ω

(v · ∇vs) · ṽjϕ(t) dxdt

+

∫ T

0

∫
Ω

(vs · ∇v) · ṽjϕ(t) dxdt =

∫ T

0

α̃jδijfi(v)ϕ(t) dt. (74)

for all ṽj = α̃jwj , j ∈ N∗. By linearity, equation (74) holds true for all ṽ combina-
tion of finite ṽj and by density, for any element of W(Ω).
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4. Concluding remarks. In this work the global exponential stabilization of the
two and three-dimensional Navier-Stokes equations in a bounded domain is studied
around a given unstable equilibrium state, using a boundary feedback control. In
order to determine a feedback law, an extended system coupling the Navier-Stokes
equations with an equation satisfied by the control on the domain boundary is
considered. We first assume that on Σi, i ∈ I, the i-th part of the domain boundary
Σb, the trace of the fluid velocity is proportional to a given normal velocity profile
gi. The proportionality coefficient αi measures the velocity flux at the interface,
it is an unknown of the problem and it is written in feedback form. By using
the Galerkin method, αi is determined such that the Dirichlet boundary control
ub = αigi is satisfied on Σi, and the stabilizing boundary control is built. The
resulting nonlinear feedback control is proven to be globally exponentially stabilizing
the unstable equilibrium state of the two and three-dimensional weak Navier-Stokes
equations in the L2-norm.
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