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ABSTRACT: Using as a model the single adenine strand (dA)20, we study the
ultrafast evolution of electronic excitations in DNA with a time resolution of 30 fs.
Our transient absorption spectra in the UV and visible spectral domains show that
internal conversion among photogenerated exciton states occurs within 100 fs.
Subsequently, the ππ* states acquire progressively charge-transfer character before
being completely trapped, within 3 ps, by fully developed charge-transfer states
corresponding to transfer of an electron from one adenine moiety to another
(A+A−).

The electronic excited states of DNA multimers are studied
in connection to the damage of the genetic code

provoked by UV radiation.1 Significant progress has been
made in their characterization since the beginning of the 21st
century thanks to femtosecond spectroscopy, which evidenced
that interchromophore interactions play a key role.2−8 On the
one hand, transient absorption (TA) studies showed that
excited charge-transfer (CT) states involving neighboring
nucleobases are populated in high yield; the reported lifetimes
of CT states range from 20 to 200 ps.3,5,7 On the other hand,
fluorescence upconversion measurements detected an impor-
tant decrease of the fluorescence anisotropy occurring in less
than 300 fs,4,8 corresponding to the instrumental response
function; this was attributed to ultrafast energy transfer among
bases involving exciton states. However, neither the dynamics
of the energy-transfer process nor that of the exciton trapping
by CT states has been resolved to date. This is achieved in the
present transient absorption study, performed with a time
resolution of ca. 30 fs, exceeding by nearly an order of
magnitude that used in previous studies on DNA multimers.
We focus on adenine single strands, which are known to

adopt a helical structure and have been intensively studied on
longer time scales.9−16 Over the years, Kohler and co-workers
studied (dA)n multimers in phosphate buffer with a time
resolution of 250 fs by probing TA at selected wavelengths,
typically 250 and 570 nm;10,11,14,16 they fitted TA traces with
biexponential functions attributing the shortest time constant
(2.7 ps for (dA)18)

16 to monomer like relaxation and the
longest one to excimers with strong CT character (170 ps
(dA)18).

16 A more complex picture emerged from the work by
Kwok and co-workers, who obtained TA spectra with time
resolution of 150−250 fs, associated with Kerr-gated time-
resolved fluorescence;13 fits of the decays with three-
exponential functions provided time constants of 0.4, 4.3,

and 182 ps, correlated with the formation of two excimers, in
addition to monomer-like decay. In parallel, fluorescence
decays and fluorescence anisotropy decays showed that (i) part
of the excited-state population survives down to the nano-
second time scale12,15 and (ii) the maximum of the
fluorescence spectrum (360 nm), decaying on the subnano-
second time scale, does not correspond to a CT state; this was
attributed to “neutral” excimers identified by quantum
chemistry calculations.15

Here we follow the differential absorption spectra of (dA)20
from 280 to 700 nm on a time window reaching 3 ps. We show
that internal conversion among Frenkel excitons occurs within
100 fs; subsequently, the nature of the excited states changes
progressively and the appearance of CT states, identified
unambiguously by their UV−visible absorption spectrum,
requires 3 ps.
Our measurements were carried out on a homemade high

time resolution pump−probe setup (see the Supporting
Information), described in detail elsewhere.17,18 Pump pulses
had a bandwidth spanning between 260 and 280 nm (Figure
1a) and 16 fs duration; the energy per pulse was adjusted to 13
nJ, resulting in an excitation intensity of 1010 W cm−2.
Broadband white light continuum probe pulses covered the
280−700 nm spectral range. The instrumental response
function decreased from 45 to 25 fs, when going from 280
to 700 nm; below 330 nm, the first 70 fs were distorted by the
coherent artifact. Pump and probe polarizations were set at the
magic angle. HPLC purified (dA)20 multimers, purchased from
Eurogentec Europe, were dissolved in saline phosphate buffer
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(6 × 10−3 mol L−1, pH 7.4); 15 mL of the solution were kept
flowing in free jet so as not to excite helices containing
photoinduced lesions.19−21 For comparison, the adenosine
monomer was also studied under identical conditions. The
ground-state absorption spectra of the monomer and the
multimer are shown in Figure 1a. The concentration of
absorbed photons per pulse (1 × 10−5 mol L−1) was
significantly lower than the ground-state concentration of
both the multimer (2 × 10−4 mol L−1) and the monomer (4 ×
10−3 mol L−1), thus avoiding biphotonic events. We did not
detect any signal from the neat solvent arising from hydrated
electrons, which exhibit a broad peak around 700 nm;22 such
an undesired signal is an obstacle for recording full transient
absorption spectra in the visible domain. In addition, electrons
are also known to react with nucleic acids,23,24 thus destroying
the helix structure.
The transient absorption spectra of the monomer (Figure

2a−c) are rather simple to describe, as they are characterized
by a photoinduced absorption band peaking at 380 nm and a

second one around 685 nm (noted B1 and B2, respectively, in
Figure 3a) both of which decrease in intensity without

important changes in their shape. On the other hand, the
evolution of the multimer TA spectra is quite complex. We can
roughly distinguish three phases, depicted in Figure 2d−f. We
note that our spectra recorded at longer times resemble those
reported by Kwok et al.13 To better grasp the spectral
differences between multimer and monomer, we present in
Figure 3a−c the monomer and multimer TA spectra recorded
at selected delays normalized in intensity. Thus, it appears that
the relative intensity of band B1 versus B2, which is initially
higher for the multimer compared to the monomer,
subsequently becomes equal and finally lower.
Looking more in detail at the multimer TA spectra recorded

at early times (Figure 2d), we note the fast buildup of bands
B1 and B2. However, while the intensity of B1 reaches its
maximum within 30 fs, 100 fs are required for the latter. This is
correlated with the disappearance of a second UV band (noted
B3 in Figure 3a) around 330 nm, which cannot be properly
resolved because of the coherent artifact, particularly important
in this spectral domain, and with a change in the spectral
profile from a two-peaked to a single-peaked structure (B1).
We assign the spectral evolution observed during this first
phase to intraband scattering, that is, internal conversion
among exciton states. Theoretical studies reported the
existence of exciton states in adenine single strands,26−28

(persisting even in the presence of conformational disorder),29

in line with the significant difference of the multimer steady-
state absorption spectrum with respect to that of the monomer
(Figure 1a), showing strong interactions among bases.
In the case of the monomer, the steady-state absorption

spectrum corresponds to two close-lying ππ* states, La and Lb.
Predicted by quantum chemistry calculations,30 their existence
was experimentally evidenced by the low fluorescence
anisotropy found for various adenosine derivatives, attributed
to emission from the La state, following excitation of the Lb
state.31 The computed TA spectrum of La consists of an
intense peak in the near UV and a weaker intensity band in the
visible.32 Such a description is in qualitative agreement with
the present results, confirming that, in aqueous solution, La is

Figure 1. (a) Steady-state absorption spectra of the monomer (blue)
and the multimer (red); the ε values, given per base, are taken from
ref 25. The violet line represents the spectrum of the exciting pulse
(arbitrary intensity). (b) Normalized transient absorption dynamics at
400 nm (green) and 570 nm (dark red) recorded for the monomer
(dotted lines) and the multimer (solid lines).

Figure 2. Transient absorption spectra obtained for the monomer
(a−c) and the multimer (d−f) at selected times. The gray line in
panel c corresponds to the spectrum of the aqueous solvent at 1 ps.

Figure 3. Comparison of the spectral shapes of the multimer (red)
and monomer (blue) at selected times (a−c). The green spectrum in
panel d corresponds to the sum of the spectra of the dAMP radical
cation and dAMP radical anion. The spectral intensities have been
normalized in an arbitrary way. The vertical lines in panel c indicate
the wavelengths at which the decays in Figure 1b were recorded.
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the lowest-energy bright state. In line with recent studies on
adenosine,33,34 we did not detect any clear evidence for Lb →
La internal conversion, meaning that the dynamics of this
process is in the limit of our time resolution. More details on
the adenosine are given in the Supporting Information.
Returning to the multimer behavior, we observe that its TA

spectrum at 150 fs is quite similar to that of the monomer
(Figure 3b). This similarity could be explained by localization
of the exciton states and/or by the presence of collective states
that are built on the monomer La states. Such exciton states
being linear combinations of La, the position and shape of their
absorption spectrum should coincide with those of La provided
that they are isoenergetic to the monomer state. Our high
temporal resolution thus enables us to visualize relaxation
within the excitonic manifold of the multimer, which is
completed within 100 fs. During the second phase (Figure 2e),
lasting approximately from 150 to 800 fs, we observe that the
bands B1 and B2 start decreasing and shifting to shorter
wavelengths. This trend is much more pronounced for B1,
which loses half of its intensity and undergoes a ∼2200 cm−1

(40 nm) blue shift, versus 30% decrease and ∼800 cm−1 (25
nm) shift for B2. We assign this intermediate regime of the
excited-state relaxation to progressive alteration of the ππ*
character of the electronic excitations which start acquiring
partial CT character while neighboring bases approach each
other. This is in agreement with measurements performed by
fluorescence upconversion, showing that, on this time scale,
the emission spectrum shifts to longer wavelengths and the
fluorescence anisotropy diminishes.15 The anisotropy decrease
upon increasing of the CT character of excited states is
predicted by quantum chemistry calculations.35 It is also
possible that, in parallel, some localized excitations simply
decay through monomer-like pathways. However, this path is
not expected to concern a significant population of excited
states in view of (i) the important differences in both the
position and the intensity between the monomer and multimer
TA spectra (Figure 2) and (ii) the strong hypochromism (42%
at the maximum) exhibited by the steady-state spectrum of
(dA)20 (Figure 1a), showing very efficient base stacking.
The blue shift of the multimer absorption spectra continues

on the picosecond time scale (Figure 2f), but the intensity
changes are now weak. Progressively, a new spectral shape
appears. At 3 ps we can distinguish a peak at 350 nm and
another at around 600 nm (noted B4 and B5 in Figure 3d).
The band B4 is better distinguished in Figure S1a in the
Supporting Information, where spectra in the 280−350 nm
region are shown. On the picosecond time scale, the monomer
spectra (Figure S1b) correspond to the vibrationally excited
ground state.10,34

As mentioned above, the long-lived excited states in (dA)n
have been attributed to CT states. However, this attribution
did not result from a spectral identification. As such, CT states
correspond to transfer of an electron between two neighboring
bases (A+A−); their absorption spectrum is expected to be the
sum of the spectra of the adenosine radical cation21,36 and the
adenosine radical anion24,37,38 reported in the literature. The
spectra of these radicals have been obtained via photo-
ionization20,34 and pulse radiolysis measurements,35−37 re-
spectively. Thus, in Figure 3d we compare TA spectrum of
(dA)20 at 3 ps with the spectrum of an equimolar mixture of
radical cation and the radical anion of the mononucleotide 2′-
deoxyadenosine 5′-monophosphate (dAMP) considering their
respective molar absorption coefficients. The agreement

between the two spectra in Figure 3d is quite striking, further
confirming the nature of this long-lived excited state.
Given the complex evolution of the multimer TA spectra,

the decays strongly depend on the probe wavelength (Figure
S2). They are longer than those of the monomer, which also
exhibit a smaller but clearly detectable wavelength dependence
(Figure S3). As an example, the decays recorded for both
systems at 400 and 570 nm are shown in Figure 1b. The
dynamics can be fitted with bi- or triexponential functions, but
such fits do not have physical meaning because we deal with
inhomogeneous systems. In the case of the monomer, we have
continuous evolution along a nonplanar potential energy
surface.31 The multimer case is even more complicated
because the helix geometry is highly anisotropic and undergoes
dynamical conformational changes. CT formation, requiring
the approach of two chromophores within the helix, can be
considered as a bimolecular reaction. It is well-documented
(see for example ref 39) that the dynamics of such reactions
follow nonexponential patterns when they take place in
restricted geometries. As a result, the time constants derived
for this type of systems from fits with exponential functions
depend not only on the wavelength but also on the time-
window, explaining the diversity of the values reported in the
literature. For the same reasons, fitting of the TA spectra with
Gaussian curves is not appropriate.
With the above considerations in mind, in order to obtain a

phenomenological description of the monomer decays, we
fitted them with biexponential values (Table S1). The average
decay times between 380 and 680 nm vary from 260 to 320 fs
(Table S1), which fall in the range of previously reported
values.31,33,34

In conclusion, our experiments on a model DNA helix
provided unprecedented information on the ultrafast processes
associated with exciton trapping; the successive steps of the
complex process leading from the Franck−Condon to excited
CT states are summarized in Table 1. The dynamics of

intraband scattering, resulting from ultrafast energy transfer
among bases,1 was resolved. Moreover, the subtle and
progressive evolution of ππ* excitations toward CT states
was evidenced. Finally, for the first time, full spectral
identification was provided regarding the lowest bright excited
state of the adenosine chromophore and the long-lived excited
states of the multimer. This work paves the way toward the
study of more complex DNA structures (duplexes, G-
quadruplexes, i-motifs, etc.). We hope that it will stimulate
theoretical studies, which could shed light on the transient
absorption spectra of collective states and rationalize the
observed spectral evolution through quantum dynamics
calculations. Such calculations will possibly allow elucidating
whether other types of excimers,15,40 such as those dominating
the fluorescence spectrum of (dA)20, are populated in

Table 1. Processes Underlying the Time Evolution of the
Multimer Transient Absorption Spectra

time process

t ≤ 100 fs intraband scattering (internal conversion among
exciton states)

150 fs < t < 800 fs decrease in the interchromophore distance; the
excited states start acquiring a CT character

0.8 ps < t < 3 ps geometrical rearrangement resulting from the
interchromophore charge transfer

t = 3 ps stabilization of the CT state (A+A−)
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substantial yields during the excited-state relaxation of this
DNA helix.
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