
HAL Id: hal-02098330
https://hal.archives-ouvertes.fr/hal-02098330

Submitted on 12 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Residual Networks for Computer Go
Tristan Cazenave

To cite this version:
Tristan Cazenave. Residual Networks for Computer Go. IEEE Transactions on Games, Institute of
Electrical and Electronics Engineers, 2018, 10 (1), �10.1109/TCIAIG.2017.2681042�. �hal-02098330�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/217876472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02098330
https://hal.archives-ouvertes.fr


IEEE TCIAIG 1

Residual Networks for Computer Go

Tristan Cazenave
Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, 75016 PARIS, FRANCE

Deep Learning for the game of Go recently had a tremendous success with the victory of AlphaGo against Lee Sedol in March
2016. We propose to use residual networks so as to improve the training of a policy network for computer Go. Training is faster
than with usual convolutional networks and residual networks achieve high accuracy on our test set and a 4 dan level.

Index Terms—Deep Learning, Computer Go, Residual Networks.

I. INTRODUCTION

DEEP Learning for the game of Go with convolutional
neural networks has been addressed by Clark and Storkey

[1]. It has been further improved by using larger networks
[2]. Learning multiple moves in a row instead of only one
move has also been shown to improve the playing strength of
Go playing programs that choose moves according to a deep
neural network [3]. Then came AlphaGo [4] that combines
Monte Carlo Tree Search (MCTS) with a policy and a value
network.

Deep neural networks are good at recognizing shapes in the
game of Go. However they have weaknesses at tactical search
such as ladders and life and death. The way it is handled
in AlphaGo is to give as input to the network the results of
ladders. Reading ladders is not enough to understand more
complex problems that require search. So AlphaGo combines
deep networks with MCTS [5]. It learns a value network
from self-played games in order to evaluate positions. When
playing, it combines the evaluation of a leaf of the Monte Carlo
tree by the value network with the result of the playout that
starts at this leaf. The value network is an important innovation
due to AlphaGo. It made a large improvement in the level of
play.

One of the problems about training a value network is that
millions of games have to be played by the policy network
against different versions of itself in order to create the data
used to train the value network. It is therefore interesting to
find a way to learn with less training examples so as to reduce
the bottleneck of playing millions of games. Learning with less
examples also often implies that in the end the accuracy of the
network on the training set is greater.

Residual Networks improve the training of very deep net-
works [6]. These networks can gain accuracy from consider-
ably increased depth. On the ImageNet dataset a 152 layers
networks achieves 3.57% error. It won the 1st place on the
ILSVRC 2015 classification task. The principle of residual nets
is to add the input of the layer to the output of each layer. With
this simple modification training is faster and enables deeper
networks. We propose to use residual networks for computer
Go in order to train networks faster, to increase accuracy and
also to enable training deeper networks.

The second section details the use of residual networks for
computer Go, the third section gives experimental results, and

ReLU

Output

Convolution

Input

Fig. 1. The usual layer for computer Go.

the last section concludes.

II. RESIDUAL LAYERS

The usual layer used in computer Go program such as Al-
phaGo [2] and DarkForest [3] is composed of a convolutional
layer and of a ReLU layer as shown in figure 1.

The residual layer used for image classification adds the
input of the layer to the output of the layer. It uses two
convolutional layers before the addition. The ReLU layers are
put after the first convolutional layer and after the addition.
The residual layer is shown in figure 2. We will experiment
with this kind of residual layers for our Go networks.

The input layer of our Go networks is also residual. It uses
a 5×5 convolutional layer in parallel to a 1×1 convolutional
layer and adds the outputs of the two layers before the ReLU
layer. It is depicted in figure 3.

The output layer of the network is a 3 × 3 convolutional
layer with one output plane followed by a SoftMax. All the
hidden layers use 256 feature planes and 3× 3 filters.

We define the number of layers of a network as the
number of convolutional layers. So a 28 layers network has
28 convolutional layers corresponding to 14 layers depicted in
figure 2.

III. EXPERIMENTAL RESULTS

In this section we will explain how we conducted the exper-
iments evaluating deep residual networks. We first present the



IEEE TCIAIG 2

Input

Convolution

ReLU

Convolution

Addition

ReLU

Output

Fig. 2. The residual layer.

Input

Addition

ReLU

Output

5x5 Convolution 1x1 Convolution

Fig. 3. The residual input layer for computer Go.

data that was used for training and testing. We then describe
the input and output planes of the networks and the training
and testing phases with results given as percentages on the test
set. We finish the section describing our Go playing program
Golois. All experiments were done using Torch [7].

A. The Data

Our training set consists of games played between 2000 and
2014 on the Kiseido Go Server (KGS) by players being 6 dan
or more. We exclude handicap games.

Each position can be rotated and mirrored to its eight
possible symmetric positions. It results in approximately 160
000 000 positions in the training set.

The test set contains the games played in 2015. The posi-
tions in the test set are not mirrored and there are 500 000
different positions in the test set.

The dataset is similar to the AlphaGo and the DarkForest
datasets, all the games we have used for training are part of
these two other datasets. AlphaGo also uses games by weaker
players in its dataset [2], instead we only use games by 6
dan or more, it probably makes the dataset more difficult and
more meaningful. The AlphaGo dataset is not available, also it
would help to have the 30 000 000 games played by AlphaGo
against itself so as to train a value network but this dataset is
not available either.

We also used the GoGoD dataset. It is composed of many
professional games played until today. We used the games
from 1900 to 2014 for the training set and the games from
2015 and 2016 as the test set. In our experiments we use the
first 500 000 positions of the test set to evaluate the error and
the accuracy of the networks.

B. Input and Output Planes

The networks use 45 19× 19 input planes: three planes for
the colors of the intersections, one plane filled with ones, one
plane filled with zeros, one plane for the third line, one plane
filled with one if there is a ko, one plane with a one for the
ko move, ten planes for the liberties of the friend and of the
enemy colors (1, 2, 3, 4, ≥ 5 liberties), fourteen planes for
the liberties of the friend and of the enemy colors if a move
of the color is played on the intersection (0, 1, 2, 3, 4, 5, ≥ 6
liberties), one plane to tell if a friend move on the intersection
is captured in a ladder, one plane to tell if a string can be
captured in a ladder, one plane to tell if a string is captured
in a ladder, one plane to tell if an opponent move is captured
in a ladder, one plane to tell if a friend move captures in a
ladder, one plane to tell if friend move escapes a ladder, one
plane to tell if a friend move threatens a ladder, one plane to
tell is an opponent move threatens a ladder, and five planes
for each of the last five moves.

The output of a network is a 19 × 19 plane and the target
is also a 19 × 19 plane with a one for the move played and
zeros elsewhere.

C. Training

In order to train the network we build minibatches of size
50 composed of 50 states chosen randomly in the training set,



IEEE TCIAIG 3

each state is randomly mirrored to one of its eight symmetric
states. The accuracy and the error on the test set are computed
every 5 000 000 training examples. We define an epoch as 5
000 000 training examples.

The updating of the learning rate is performed using algo-
rithm 1. A step corresponds to 5 000 training examples. Every
1000 steps the algorithm computes the average error over the
last 1000 steps and the average error over the step minus 2000
to the step minus 1000. If the average error increases then the
learning rate is divided by 2. The initial learning rate is set
to 0.2. The algorithm stays at least 4000 steps with the same
learning rate before dividing it by 2.

Algorithm 1 The algorithm used to update the training rate.
if nbExamples % 5000 == 0 then
step← step+ 1
if step % 1000 == 0 then
error1000←

∑
last 1000 steps(errorStep)

error2000←
∑

step − 2000 to step − 1000(errorStep)
if step - lastDecrease > 3000 then

if error2000 < error1000 then
rate← rate

2
lastDecrease← step

end if
end if

end if
end if

The evolution of the accuracy on the KGS test set is given
in figure 4. The horizontal axis gives the number of epochs.
The 20 layers residual network scores 58.2456%. We also give
the evolution of the accuracy of a 13 layers vanilla network of
the same type as the one described in the AlphaGo papers. We
can see that the accuracy of the smaller non residual network
is consistently smaller.

In order to further enhance accuracy we used bagging. The
input board is mirrored to its 8 possible symmetries and the
same 20 layers network is run on all 8 boards. The outputs of
the 8 networks are then mirrored back and summed. Bagging
improves the accuracy up to 58.5450%. The use of symmetries
is similar to AlphaGo.

In comparison, AlphaGo policy network with bagging
reaches 57.0% on a similar KGS test set and Darkforest policy
network reaches 57.3%.

The evolution of the mean square error on the test set is
given in figure 5. We can observe that the error of the 20
layers residual network is consistently smaller than the one of
the non residual 13 layers network.

Figures 6 and 7 give the accuracy and the error on the
GoGoD test set for 20 residual layers and 28 residual layers
networks. Going from 20 layers to 28 layers is a small
improvement.

In order to test the 28 layers residual networks we organized
a round robin tournament between 10 of the last networks,
going from epoch 70 to epoch 79 of the training. The results
are given in table I. The network that has the best raw accuracy
on the GoGoD test set is the network of epoch 71 with
54.6042% accuracy. When improved with bagging it reaches

Fig. 4. Evolution of the accuracy on the KGS test set.

Fig. 5. Evolution of the error on the KGS test set.

Fig. 6. Evolution of the accuracy on the GoGoD test set.



IEEE TCIAIG 4

Fig. 7. Evolution of the error on the GoGoD test set.

TABLE I
ROUND ROBIN TOURNAMENT BETWEEN 28 LAYERS GOGOD NETWORKS.

Epoch Test error Test accuracy Games won Score

70 8.1108971917629 54.5606 256/540 0.474074
71 8.1061121976376 54.6042 282/540 0.522222
72 8.1098112225533 54.3868 286/540 0.529630
73 8.0968823492527 54.4516 271/540 0.501852
74 8.1007176065445 54.4184 268/540 0.496296
75 8.1010078394413 54.4528 247/540 0.457407
76 8.0951432073116 54.4934 271/540 0.501852
77 8.1806340968609 54.0784 284/540 0.525926
78 8.1806341207027 54.0784 294/540 0.544444
79 8.1806340968609 54.0784 241/540 0.446296

54.9954% on the GoGoD test set. However the network that
has the best score is the network of epoch 78 which has a
score against the other networks of 0.544444 which is better
than the network of epoch 71 that has a score of 0.522222. The
epoch 78 network has a 55.0306% accuracy when combined
with bagging.

D. Golois

We made the 20 layers residual network with bagging and
a 58.5450% accuracy play games on the KGS internet Go
server. The program name is Golois4 and it is quite popular,
playing 24 hours a day against various opponents. It is ranked
3 dan.

Playing on KGS is not easy for bots. Some players take
advantage of the bot behaviors such as being deterministic, so
we randomized play choosing randomly among moves that are
evaluated greater than the evaluation of the best move when
augmented by 0.05. Golois4 plays its moves almost instantly
thanks to its use of a K40 GPU. It gives five periods of 15
seconds per move to its human opponents.

We also made the best residual network with 28 layers play
on KGS under the name Golois6 and it reached 4 dan.

In comparison, AlphaGo policy network and DarkForest
policy network reached a 3 dan level using either reinforce-
ment learning [4] or multiple output planes giving the next
moves to learn and 512 feature planes [3].

IV. CONCLUSION

The usual architecture of neural networks used in computer
Go can be much improved. Using residual networks helps
training the network faster and training deeper networks. A
residual network with 20 layers scores 58.2456% on the KGS
test set. It is greater than previously reported accuracy. Using
bagging of mirrored inputs it even reaches 58.5450%. The 20
layers residual network with bagging plays online on KGS and
reached a 3 dan level playing almost instantly. The 28 layers
residual network trained on the GoGoD dataset reached 4 dan.

For future work we intend to use residual networks to train
a value network. We could also perform experiments as in [8].

ACKNOWLEDGMENT

The author would like to thank Nvidia and Philippe Van-
dermersch for providing a K40 GPU that was used in some
experiments.

REFERENCES

[1] C. Clark and A. Storkey, “Training deep convolutional neural networks
to play go,” in Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), 2015, pp. 1766–1774.

[2] C. J. Maddison, A. Huang, I. Sutskever, and D. Silver, “Move evalu-
ation in go using deep convolutional neural networks,” arXiv preprint
arXiv:1412.6564, 2014.

[3] Y. Tian and Y. Zhu, “Better computer go player with neural network and
long-term prediction,” arXiv preprint arXiv:1511.06410, 2015.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[5] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Computers and Games, 5th International Conference, CG
2006, Turin, Italy, May 29-31, 2006. Revised Papers, ser. Lecture Notes
in Computer Science, H. J. van den Herik, P. Ciancarini, and H. H. L. M.
Donkers, Eds., vol. 4630. Springer, 2006, pp. 72–83.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, 2016, pp. 770–778. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2016.90

[7] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, no.
EPFL-CONF-192376, 2011.

[8] A. Veit, M. J. Wilber, and S. J. Belongie, “Residual networks behave
like ensembles of relatively shallow networks,” in Advances in Neural
Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, 2016, pp. 550–558. [Online]. Available: http://papers.nips.cc/paper/
6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks

Tristan Cazenave Professor of Artificial Intelli-
gence at LAMSADE, University Paris-Dauphine,
PSL Research University. Author of more than a
hundred scientific papers about Artificial Intelli-
gence in games. He started publishing commercial
video games at the age of 16 and defended a PhD
thesis on machine learning for computer Go in 1996
at University Paris 6.


