Further Studies on the Sparing Number of Graphs

Sudev Naduvath, K Germina

To cite this version:

Sudev Naduvath, K Germina. Further Studies on the Sparing Number of Graphs. TechS Vidya e-Journal of Research, Vidya Academy of Science \& Technology,Thalakkottukara, Thrissur-680501, India 2014. hal-02099221

HAL Id: hal-02099221 https://hal.archives-ouvertes.fr/hal-02099221

Submitted on 7 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Further Studies on the Sparing Number of Graphs

N.K. Sudev ${ }^{1}$ and K.A. Germina ${ }^{2}$
${ }^{1}$ Department of Mathematics
Vidya Academy of Science \& Technology
Thrissur - 680501, Kerala, India
email:sudevnk@gmail.com
and
${ }^{2}$ Department of Mathematics
School of Mathematical \& Physical Sciences
Central University of Kerala, Kasaragod - 671316, Kerala, India.
email:srgerminaka@gmail.com

Abstract

Let \mathbb{N}_{0} denote the set of all non-negative integers and $\mathcal{P}\left(\mathbb{N}_{0}\right)$ be its power set. An integer additive set-indexer is an injective function f : $V(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ such that the induced function $f^{+}: E(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ defined by $f^{+}(u v)=f(u)+f(v)$ is also injective, where $f(u)+f(v)$ is the sum set of $f(u)$ and $f(v)$. If $f^{+}(u v)=k \forall u v \in E(G)$, then f is said to be a k-uniform integer additive set-indexer. An integer additive set-indexer f is said to be a weak integer additive set-indexer if $\left|f^{+}(u v)\right|=\max (|f(u)|,|f(v)|) \forall u v \in$ $E(G)$. In this paper, we study the admissibility of weak integer additive setindexer by certain graphs and graph operations.

Keywords: Integer additive set-indexers, weak integer additive set-indexers, weakly uniform integer additive set-indexers, mono-indexed elements of a graph, sparing number of a graph.
AMS Subject Classification: 05C78

1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [12], [3] and [6] and for different graph classes, we further refer to [4] and [8]. Unless mentioned otherwise, all graphs considered here are simple, finite and have no isolated vertices.

For two non-empty sets A and B, the sum set of A and B is denoted by $A+B$ and is defined by $A+B=\{a+b: a \in A, b \in B\}$. Using the concepts of sum sets, an integer additive set-indexer is defined as follows.

Definition 1.1. [9] Let \mathbb{N}_{0} denote the set of all non-negative integers and $\mathcal{P}\left(\mathbb{N}_{0}\right)$ be its power set. An integer additive set-indexer (IASI, in short) is defined as an injective function $f: V(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ such that the induced function $f^{+}: E(G) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ defined by $f^{+}(u v)=f(u)+f(v)$ is also injective. A Graph which admits an IASI is called an integer additive set-indexed graph (IASI graph).

Definition 1.2. [10] The cardinality of the labeling set of an element (vertex or edge) of a graph G is called the set-indexing number of that element.

Definition 1.3. [9] An IASI is said to be k-uniform if $\left|f^{+}(e)\right|=k$ for all $e \in E(G)$. That is, a connected graph G is said to have a k-uniform IASI if all of its edges have the same set-indexing number k. In particular, we say that a graph G has an arbitrarily k-uniform IASI if G has a k-uniform IASI for every positive integer k.

The characteristics of a special type of k-uniform IASI graphs, called weakly k-uniform IASI graphs, has been studied in [10]. A characterisation of weak IASI graphs has been done in [16]. The following are the major notions and results established in these papers.

Lemma 1.4. [10] For an integer additive set-indexer f of a graph G, we have

$$
\max (|f(u)|,|f(v)|) \leq\left|f^{+}(u v)\right|=|f(u)+f(v)| \leq|f(u)||f(v)|,
$$

where $u, v \in V(G)$.
Definition 1.5. [10] An IASI f is said to be a weak IASI if

$$
\left|f^{+}(u v)\right|=\max (|f(u)|,|f(v)|) \text { for all } u, v \in V(G)
$$

An IASI f is said to be a strong IASI if

$$
\left|f^{+}(u v)\right|=|f(u)+f(v)| \leq|f(u)||f(v)| \text { for all } u, v \in V(G) .
$$

A weak IASI is said to be weakly uniform IASI if

$$
\left|f^{+}(u v)\right|=k \text { for all } u, v \in V(G) \text { and for some positive integer } k .
$$

A graph which admits a weak IASI may be called a weak IASI graph.
The following result provides a necessary and sufficient condition for a graph G to admit a weak IASI.

Lemma 1.6. [10] A graph G admits a weak IASI if and only if at least one end vertex of every edge of G has a singleton set-label.

Definition 1.7. [16] An element (a vertex or an edge) of graph which has the set-indexing number 1 is called a mono-indexed element of that graph. The sparing number of a graph G is defined to be the minimum number of mono-indexed edges required for G to admit a weak IASI and is denoted by $\varphi(G)$.

Theorem 1.8. [16] If a graph G is a weak (or weakly uniform) IASI graph, then any subgraph H of G is also a weak (or weakly uniform) IASI graph.

Theorem 1.9. [16] If a connected graph G admits a weak IASI, then G is bipartite or G has at least one mono-indexed edge.

From the above theorem, it is clear that all paths, trees and even cycles admit a weak IASI. We observe that the sparing number of bipartite graphs is 0 .

Theorem 1.10. [16] The complete graph K_{n} admits a weak IASI if and only if the number of edges of K_{n} that have set-indexing number 1 is $\frac{1}{2}(n-1)(n-2)$.

We can also infer that a complete graph K_{n} admits a weak IASI if and only if at most one vertex (and hence at most $(n-1)$ edges) of K_{n} can have a non-singleton set-label.

Theorem 1.11. [16] Let C_{n} be a cycle of length n which admits a weak IASI, for a positive integer n. Then, C_{n} has an odd number of mono-indexed edges when it is an odd cycle and has even number of mono-indexed edges, when it is an even cycle.

Theorem 1.12. [16] The sparing number of C_{n} is 0 if n is an even number and is 1 if n is an odd integer.

The admissibility of weak IASIs by the union of weak IASI graphs has been established in [17] and hence proposed the following theorem.

Theorem 1.13. [17] Let G_{1} and G_{2} be two cycles. Then, $G_{1} \cup C_{2}$ admits a weak IASI if and only if both G_{1} and G_{2} are weak IASI graphs.

The above theorem is proved by defining a weak IASI for the union G of two graphs G_{1} and G_{2}, which is a combination of the weak IASIs of G_{1} and G_{2}. The sparing number of the union of two weak IASI graphs is provided in the following theorem.

Theorem 1.14. [17] Let G_{1} and G_{2} be two weak IASI graphs. Then, $\varphi\left(G_{1} \cup G_{2}\right)=$ $\varphi\left(G_{1}\right)+\varphi\left(G_{2}\right)-\varphi\left(G_{1} \cap G_{2}\right)$. More over, if G_{1} and G_{2} are edge disjoint graphs, then $\varphi\left(G_{1} \cup G_{2}\right)=\varphi\left(G_{1}\right)+\varphi\left(G_{2}\right)$.

2 New results on graph joins

The join of two graphs is defined as follows.
Definition 2.1. [12] Let $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ be two graphs. Then, their join (or sum), denoted by $G_{1}+G_{2}$, is the graph whose vertex set is $V_{1} \cup V_{2}$ and edge set is $E_{1} \cup$ $E_{2} \cup E_{i j}$, where $E_{i j}=\left\{u_{i} v_{j}: u_{i} \in G_{1}, v_{j} \in G_{2}\right\}$.

Certain studies about the admissibility of weak IASIs by the join of graphs have been done in [17]. In this section, we verify the admissibility of a weak IASI by certain graphs which are the joins of some other graphs.

A major result regarding the admissibility of weak IASI by graph joins, proved in [17], is the following.

Theorem 2.2. [17] Let $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ be weak IASI graphs. Then, the graph $\sum_{i=1}^{n} G_{i}$ is a weak IASI graph if and only if all given graphs G_{i}, except one, are 1-uniform IASI graphs.

Invoking Theorem 2.2, we study about the sparing number of certain graph classes which are the joins of some weak IASI graphs. First, recall the definition of a fan graph.

Definition 2.3. [8] The graph $P_{n}+K_{m}$ is called an (m, n)-fan graph and is denoted by $F_{m, n}$.

The following result estimates the sparing number of a fan graph $F_{m, n}$.
Theorem 2.4. For two non-negative integers $m, n>1$, the sparing number of an (m, n) fan graph $F_{m, n}=P_{n}+\bar{K}_{m}$ is n, the length of the path P_{n}.

Proof. By Theorem 2.2, $F_{m, n}$ admits a weak IASI if and only if either P_{n} or \bar{K}_{m} is 1uniform.

If P_{n} is not 1-uniform, then no vertex of \bar{K}_{m} can have a non-singleton set-label. In this case, the number of mono-indexed edges is $m\left\lfloor\frac{n+1}{2}\right\rfloor$.

If P_{n} is 1-uniform, since no two vertices in \bar{K}_{m} are adjacent, all vertices of \bar{K}_{m} can be labeled by non-singleton set-labels. Therefore, no edge between P_{n} and \bar{K}_{m} is monoindexed in G. That is, in this case, the number of mono-indexed edges in $F_{m, n}$ is n.

Since $m>1$, we have $n<m\left\lfloor\frac{n+1}{2}\right\rfloor$. Hence, the sparing number of $F_{m, n}$ is n.
The above theorem raises a natural question about the sparing number of a graph which is the join of a cycle and a trivial graph. Let us recall the definition of an (m, n)-cone.

Definition 2.5. [8] The graph $C_{n}+\bar{K}_{m}$ is called an (m, n)-cone.
The following theorem establishes the sparing number of an (m, n)-cone $G=C_{n}+$ \bar{K}_{m}.

Theorem 2.6. For two non-negative integers $m, n>1$, the sparing number of an (m, n)cone $C_{n}+\bar{K}_{m}$ is n.

Proof. Let $G=C_{n}+\bar{K}_{m}$. Then, by Theorem 2.2, G admits a weak IASI if and only if either C_{n} or \bar{K}_{m} is i-uniform. If some vertex of C_{n} has a non-singleton set-label, then all vertices in \bar{K}_{m} must be mono-indexed. In this case, the number of mono-indexed vertices is $m\lceil n\rceil$. If C_{n} is 1 -uniform, then all vertices in \bar{K}_{m} can be labeled by distinct non-singleton sets, as they are non-adjacent among themselves. In this case, the number of mono-indexed edges is n. Since $m>1$, we have $n \leq m\lceil n\rceil$. Therefore, $\varphi\left(C_{n}+\bar{K}_{m}\right)$ is n.

Now, let us consider some graphs which are the join of more than two graphs. Consider an (m, n)-tent graph which is defined as follows.

Definition 2.7. A graph $C_{n}+K_{1}+\bar{K}_{m}$ is called an (m, n)-tent. A tent graph can also be considered as the join of a wheel graph $W_{n+1}=C_{n}+K_{1}$ and the trivial graph \bar{K}_{m}.

We now proceed to find out the sparing number of an (m, n)-tent graph.
Theorem 2.8. For two non-negative integers $m, n>1$, the sparing number of an (m, n) tent $C_{n}+K_{1}+\bar{K}_{m}$ is $2 n$.

Proof. Let $G=C_{n}+K_{1}+\bar{K}_{m}$. By Theorem 2.2, only one among C_{n}, K_{1} and \bar{K}_{m} can have non-singleton set-label at a time.

If the vertex in K_{1} has a non-singleton set label, then both C_{n} and \bar{K}_{m} are 1-uniform and hence the number of mono-indexed edges in G is $(m+1) n$.

If some of the vertices in C_{n} are not 1-uniform, then it has (at least) $\left\lceil\frac{n}{2}\right\rceil$ mono-indexed vertices. In this case, all vertices in $K_{1} \cup \bar{K}_{m}$ are 1-uniform. Therefore, G has a minimum of $(m+1) \frac{n}{2}$ mono-indexed edges if C_{n} is an even cycle and has a minimum of $(m+1) \frac{n+1}{2}+1$ mono-indexed edges if C_{n} is an odd cycle.

If both K_{1} and C_{n} are 1-uniform, then all vertices of \bar{K}_{m} can be labeled by nonsingleton sets. Then, the number of mono-indexed edges in G is $2 n$.

Since m and n are positive integers, $2 n$ is the minimum among these numbers of monoindexed edges. Hence, the sparing number of an (m, n)-tent is $2 n$.

Another class of graphs, common in many literature, is the class of friendship graphs which is defined as

Definition 2.9. A graph $K_{1}+m K_{2}$ is called an m-friendship graph, where $m K_{2}$ is the disjoint union of m copies of K_{2}. A generalised friendship graph is the graph $K_{1}+m P_{n}$ which is usually called by an (m, n)-friendship graph. A graph $K_{1}+m C_{n}$ is called an (m, n)-closed friendship graph. A graph $K_{1}+m K_{n}$ is called an (m, n)-complete friendship graph or a windmill graph.

Theorem 2.10. The sparing number of an m-friendship graph is n, the sparing number of an (m, n)-friendship graph is $m\left\lfloor\frac{n+1}{2}\right\rfloor$, the sparing number of an (m, n)-closed friendship graph is $m\left\lceil\frac{n}{2}\right\rceil$ and the sparing number of an (m, n)-complete friendship graph is $\frac{1}{2} m n(n-$ $1)$.

Proof. Let $G=K_{1}+m K_{2}$. If K_{1} is not mono-indexed, then no vertex in the copies of K_{2} can be labeled by a non-singleton set. Therefore, all edges of $m K_{2}$ are mono-indexed. That is, the number of mono-indexed edges in G is m. If K_{1} is mono-indexed, then, in each copy K_{2}, one vertex can be labeled by a singleton set and the other vertex can be labeled by a non-singleton set. Then, one of the two edges between K_{1} and each copy of K_{2} is mono-indexed. That is, the number of mono-indexed edges in this case is also m. Hence, $\varphi\left(K_{1}+m K_{2}\right)=m$.

Let us next consider the graph $G=K_{1}+m P_{n}$. If K_{1} is not mono-indexed, then no vertex in the copies of P_{n} can be labeled by a non-singleton set. Therefore, the number of mono-indexed edges of G is $m n$. If K_{1} is mono-indexed, then the vertices in each copy of P_{n} can be labeled alternately by distinct non-singleton sets and distinct singleton sets. Then, the number of mono-indexed vertices in each copy of P_{n} is $\left\lfloor\frac{n+1}{2}\right\rfloor$. Also, the edges connecting K_{1} and these mono-indexed vertices are also mono-indexed. Hence, the
total number of mono-indexed edges in G is $m\left\lfloor\frac{n+1}{2}\right\rfloor$. Since $m, n>1, m\left\lfloor\frac{n+1}{2}\right\rfloor<m n$. Therefore, the sparing number of an (m, n)-friendship graph is $m\left\lfloor\frac{n+1}{2}\right\rfloor$.

Now, we shall consider the graph $G=K_{1}+m C_{n}$. If K_{1} is not mono-indexed, then no vertex in the copies of C_{n} can be labeled by a non-singleton set. That is, the number of mono-indexed edges of G is $m n$. If K_{1} is mono-indexed, then the vertices in each copy of C_{n} can be labeled alternately by distinct non-singleton sets and distinct singleton sets. Then, the number of mono-indexed vertices in each copy of C_{n} is $\left\lceil\frac{n}{2}\right\rceil$. Hence, the total number of mono-indexed edges in G is $m\left\lceil\frac{n}{2}\right\rceil$. Since $m, n>1, m\left\lceil\frac{n}{2}\right\rceil<m n$. Therefore, the sparing number of an (m, n)-closed friendship graph is $m\left\lceil\frac{n}{2}\right\rceil$.

We now consider the graph $G=K_{1}+m K_{n}$. If K_{1} is not mono-indexed, then no vertex in the copies of K_{n} can be labeled by a non-singleton set. That is, all copies of K_{n} are 1 -uniform. Therefore, the total number of mono-indexed edges in G is $\frac{1}{2} m n(n-1)$. If K_{1} is mono-indexed, then exactly one vertex of each copy of K_{n} can have non-singleton setlabel. Therefore, there exist $n-1$ mono-indexed edges between K_{1} and each copy of K_{n}. By Theorem 1.10 , each copy of K_{n} has $\frac{1}{2}(n-1)(n-2)$ mono-indexed edges. Therefore, the total number of mono-indexed edges is $m(n-1)+m \frac{1}{2}(n-1)(n-2)=m \frac{1}{2} n(n-1)$. Note that the number of mono-indexed edges is the same in both cases. Hence, $\varphi(G)=$ $\frac{1}{2} m n(n-1)$.
This completes the proof.

3 Weak IASI of the Ring sum of Graphs

Analogous to the symmetric difference of sets, we have the definition of the symmetric difference or ring sum of two graphs as follows.

Definition 3.1. [6] Let G_{1} and G_{2} be two graphs. Then the ring sum (or symmetric difference) of these graphs, denoted by $G_{1} \oplus G_{2}$, is defined as the graph with the vertex set $V_{1} \cup V_{2}$ and the edge set $E_{1} \oplus E_{2}$, leaving all isolated vertices, where $E_{1} \oplus E_{2}=$ $\left(E_{1} \cup E_{2}\right)-\left(E_{1} \cap E_{2}\right)$.

The following theorem establishes the admissibility of a weak IASI by the ring sum of two graphs.

Theorem 3.2. The ring sum of two weak IASI graphs admits a (an induced) weak IASI.
Proof. Let G_{1} and G_{2} be two graphs which admit weak IASIs f_{1} and f_{2} respectively. Choose the functions f_{1} and f_{2} in such way that no set $A_{i} \subset \mathbb{N}_{0}$ is the set-label of a vertex u_{i} in G_{1} and a vertex v_{j} in G_{2} simultaneously.

Let $H_{1}=G_{1}-G_{1} \cap G_{2}$ and $H_{2}=G_{2}-G_{1} \cap G_{2}$. Then, by Theorem 1.8, the restriction $f_{1}^{\prime}=\left.f_{1}\right|_{H_{1}}$ is an induced weak IASI for H_{1} and the restriction $f_{2}^{\prime}=\left.f_{2}\right|_{H_{2}}$ is an induced weak IASI for H_{2}. Also, $G_{1} \oplus G_{2}=H_{1} \cup H_{2}$.

Now, define a function $f: V\left(G_{1} \oplus G_{2}\right) \rightarrow \mathcal{P}\left(\mathbb{N}_{0}\right)$ such that

$$
f(v)= \begin{cases}f_{1}^{\prime}(v) & \text { if } v \in V\left(H_{1}\right) \tag{1}\\ f_{2}^{\prime}(v) & \text { if } v \in V\left(H_{2}\right)\end{cases}
$$

Since f_{1}^{\prime} and f_{2}^{\prime} are weak IASIs of H_{1} and H_{2}, which are edge disjoint graphs such that $H_{1} \cup H_{2}=G_{1} \oplus G_{2}, f$ is a weak IASI on $G_{1} \oplus G_{2}$.

The most interesting and relevant question that arises here is about the sparing number of the ring sum of two weak IASI graphs. The following theorem estimates the sparing number of the join of two weak IASI graphs.

Theorem 3.3. [16] Let G_{1} and G_{2} be two weak IASI graphs. Then, $\varphi\left(G_{1} \oplus G_{2}\right)=\varphi\left(G_{1}\right)+$ $\varphi\left(G_{2}\right)-2 \varphi\left(G_{1} \cap G_{2}\right)$.

Proof. Let G_{1} and G_{2} be two weak IASI graphs and let $H_{1}=G_{1}-G_{1} \cap G_{2}$ and $H_{2}=$ $G_{2}-G_{1} \cap G_{2}$. Then, $G_{1} \oplus G_{2}=H_{1} \cup H_{2}$. Therefore, $\varphi\left(H_{1}\right)=\varphi\left(G_{1}-G_{1} \cap G_{2}\right)=$ $\varphi\left(G_{1}\right)-\varphi\left(G_{1} \cap G_{2}\right)$. Similarly, $\varphi\left(H_{2}\right)=\varphi\left(G_{1}\right)-\varphi\left(G_{1} \cap G_{2}\right)$.

Since $H_{1} \cup H_{2}=G_{\oplus} G_{2}$ and H_{1} and H_{2} are edge disjoint, $\varphi\left(G_{1} \oplus G_{2}\right)=\varphi\left(H_{1} \cup H_{2}\right)$. Then, we have

$$
\begin{aligned}
\varphi\left(G_{1} \oplus G_{2}\right) & =\varphi\left(H_{1}\right)+\varphi\left(H_{2}\right) \\
& =\varphi\left(H_{1}\right)+\varphi\left(H_{2}\right) \quad \text { (by Theorem 1.14) } \\
& =\left[\varphi\left(G_{1}\right)-\varphi\left(G_{1} \cap G_{2}\right)\right]+\left[\varphi\left(G_{2}\right)-\varphi\left(G_{1} \cap G_{2}\right)\right] \\
& =\varphi\left(G_{1}\right)+\varphi\left(G_{2}\right)-2 \varphi\left(G_{1} \cap G_{2}\right) .
\end{aligned}
$$

This completes the proof.
Remark 3.4. It is to be noted that if G_{1} and G_{2} are edge disjoint graphs, then their ring sum and union are the same. In this case, $\varphi\left(G_{1} \oplus G_{2}\right)=\varphi\left(G_{1} \cup G_{2}\right)$.

Now, we proceed to discuss the sparing number of certain graphs which are the joins of path and cycles.

Remark 3.5. Let P_{m} and P_{n} be two paths in a given graph G. Then, $P_{m} \oplus P_{n}$ is a path or edge disjoint union of paths or a cycle or union of edge disjoint cycles. Hence, the sparing number of $P_{m} \oplus P_{n}$ is zero if P_{m} and P_{n} have at most one vertex in common after the removal of all common edges. If P_{m} and P_{n} have two or more common vertices after the removal of all common edges, then the $P_{m} \oplus P_{n}$ is a cycle or the union of cycles. Then, the sparing number of $P_{m} \oplus P_{n}$ is the sum of the sparing numbers of all these individual cycles.

Remark 3.6. Let P_{m} be a path and C_{n} be a cycle in a given graph G. If P_{m} and C_{n} are edge disjoint, then $P_{m} \oplus C_{n}=P_{m} \cup C_{n}$. Therefore, $\varphi\left(P_{m} \oplus C_{n}\right)=\varphi\left(C_{n}\right)$. If P_{m} and C_{n} have some edges in common, then $P_{m} \oplus C_{n}$ is a path or edge disjoint union of a cycle and a path. Hence, the sparing number of $P_{m} \oplus C_{n}$ is the sum of individual edge-disjoint subgraphs obtained after the removal of common edges of P_{m} and C_{n}.

TechS Vidya e-Journal of Research
ISSN 2322-0791
Vol. 2 (2013-14) pp.28-38.

The following theorem establishes the admissibility of weak IASI by the ring sum of two cycles.

Theorem 3.7. If C_{m} and C_{n} are two cycles which admit weak IASIs, and $C_{m} \oplus C_{n}$ be the ring sum of C_{m} and C_{n}. Then,

1. if C_{m} and C_{n} are edge disjoint, $\varphi\left(C_{m} \oplus C_{n}\right)=\varphi\left(C_{m}\right)+\varphi\left(C_{n}\right)$.
2. if C_{m} and C_{n} are of same parity, then $\left(C_{m} \oplus C_{n}\right)$ contains even number of monoindexed edges. Moreover, $\varphi\left(C_{m} \oplus C_{n}\right)=0$.
3. if C_{m} and C_{n} are of different parities, then $\left(C_{m} \oplus C_{n}\right)$ contains odd number of mono-indexed edges. Moreover, $\varphi\left(C_{m} \oplus C_{n}\right)=1$.

Proof. Let C_{m} and C_{n} be two cycles which admit weak IASIs. If C_{m} and C_{n} have no common edges then, $C_{m} \oplus C_{n}=C_{m} \cup C_{n}$. By Theorem 1.13, the union of two weak IASI graphs admits a weak IASI and $\varphi\left(C_{m} \oplus C_{n}\right)=\varphi\left(C_{m}\right)+\varphi\left(C_{n}\right)$.

Let us now assume that C_{m} and C_{n} have some common edges. Let v_{i} and v_{j} be the end vertices of the path common to C_{m} and C_{n}. Let $P_{r}, r<m$ be the $\left(v_{i}, v_{j}\right)$-section of C_{m} and $P_{s}, s<n$ be the $\left(v_{i}, v_{j}\right)$-section of C_{n}, which have no common elements other than v_{i} and v_{j}. Hence, we have $C_{m} \oplus C_{n}=P_{r} \cup P_{s}$ is a cycle. Then, we have the following cases. Case 1: Let C_{m} and C_{n} be of same parity. Then we need to consider the following subcases. Subcase-1.1: Let C_{m} and C_{n} are odd cycles. If C_{m} and C_{n} have an odd number of common edges, then both P_{r} and P_{s} are paths of even length. Hence, the cycle $P_{r} \cup P_{s}$ is an even cycle. Therefore, $C_{m} \oplus C_{n}$ has a weak IASI with sparing number 0 . If C_{m} and C_{n} have an even number of common edges, then both P_{r} and P_{s} are paths of odd length. Therefore, the cycle $P_{r} \cup P_{s}$ is an even cycle. Hence, by Theorem 1.11, $C_{m} \oplus C_{n}$ has even number of mono-indexed edges and by Theorem 1.9, the sparing number of $C_{m} \oplus C_{n}=0$.
Subcase-1.2: Let C_{m} and C_{n} be even cycles. If C_{m} and C_{n} have an odd number of common edges, then both P_{r} and P_{s} are paths of odd length. Hence, the cycle $P_{r} \cup P_{s}$ is an even cycle. Therefore, $C_{m} \oplus C_{n}$ has a weak IASI. If C_{m} and C_{n} have an even number of common edges, then both P_{r} and P_{s} are paths of even length. Hence, the cycle $P_{r} \cup P_{s}$ is an even cycle. Therefore, by Theorem $1.11, C_{m} \oplus C_{n}$ has even number of mono-indexed edges and by Theorem 1.9, the sparing number of $C_{m} \oplus C_{n}=0$.
Case 2: Let C_{m} and C_{n} be two cycles of different parities. Without loss of generality, assume that C_{m} is an odd cycle and C_{n} is an even cycle. Then, we have the following subcases.
Subcase-2.1: Let C_{m} and C_{n} have an odd number of common edges. Then, the path P_{r} has even length and the path P_{s} has odd length. Hence, the cycle $P_{r} \cup P_{s}$ is an odd cycle. Therefore, by Theorem $1.11, C_{m} \oplus C_{n}$ has odd number of mono-indexed edges. More over, by Theorem 1.12, $\varphi\left(C_{m} \oplus C_{n}\right)=1$.
Subcase-2.2: Let C_{m} and C_{n} have an even number of common edges. Then, P_{r} has odd length and P_{s} has even length. Hence, the cycle $P_{r} \cup P_{s}$ is an odd cycle. therefore, by Theorem 1.11, $C_{m} \oplus C_{n}$ has odd number of mono-indexed edges and by Theorem 1.12, $\varphi\left(C_{m} \oplus C_{n}\right)=1$.

This completes the proof.
To discuss the next result we need the following notion.
Definition 3.8. Let H be a subgraph of the given graph G, then the graph $G-H$ is called complement of H in G.

Theorem 3.9. Let G be a weak IASI graph and H be a subgraph of G. Then, $\varphi(G \oplus H)=$ $\varphi(G)-\varphi(H)$.

Proof. Let H be a subgraph of the graph G. The complement of H in $G, G \oplus H=G-H$, is a subgraph of G. Hence, as G is a weak IASI graph, by Theorem 1.8, the restriction of this IASI to $G-H$ is a weak IASI for $G-H$. Therefore, $\varphi(G \oplus H)=\varphi(G-H)=$ $\varphi(G)-\varphi(H)$.

4 Conclusion

In this paper, we have discussed the existence of weak IASI for different graph classes which are the joins of some other graphs and for the ring sum of two graphs. Certain problems in this area are still open. We have not addressed the problem of finding a weak IASI for the join of two arbitrary graphs. Uncertainty in adjacency and incidence patterns among the elements of arbitrary graphs make our studies complex. There are several other factors such as degree of the vertices of the gien graphs, order and size of the graphs etc. which influence the set-labeling of graphs and hence graph joins.

The problems regarding the admissibility of weak IASIs by the join of certain graph classes, whose adjacency and incidence relations are well-known, are yet to be settled. Some of the most promising problems among them are the following.

Problem 4.1. Estimate the sparing number of the join of two regular graphs.
Problem 4.2. Estimate the sparing number of the join of two generalised Petersen graphs.
Problem 4.3. Estimate the sparing number of the join of two bipartite (and complete bipartite) graphs.

Problem 4.4. Estimate the sparing number of the join of two graphs, one of which is a complete graph.

We have already formulated some conditions for some graph classes and graph operations to admit weak IASIs. More properties and characteristics of weak IASIs, both uniform and non-uniform, are yet to be investigated. The problems of establishing the necessary and sufficient conditions for various graphs and graph classes to have certain other types IASIs are still open. A study about those IASIs which assign sets having specific properties, to the elements of a given graph is also noteworthy. All these facts highlight a wide scope for further studies in this area.

References

[1] B D Acharya,(1983). Set-Valuations and Their Applications, MRI Lecture notes in Applied Mathematics, The Mehta Research Institute of Mathematics and Mathematical Physics, New Delhi.
[2] B D Acharya, (2001). Set-Indexers of a Graph and Set-Graceful Graphs, Bull. Allahabad Math. Soc., 16, 1-23.
[3] J A Bondy and U S R Murty, (2008). Graph Theory, Springer.
[4] A Brandstädt, V B Le and J P Spinrad, (1987). Graph Classes: A Survey, SIAM, Philadelphia.
[5] G Chartrand and P Zhang, (2005). Introduction to Graph Theory, McGraw-Hill Inc.
[6] N Deo, (1974). Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall.
[7] R Diestel, (2000). Graph Theory, Springer-Verlag, New York.
[8] J A Gallian, (2011). A Dynamic Survey of Graph Labelling, The Electronic Journal of Combinatorics (DS 16).
[9] K A Germina and T M K Anandavally, (2012). Integer Additive Set-Indexers of a Graph:Sum Square Graphs, Journal of Combinatorics, Information and System Sciences, 37(2-4), 345-358.
[10] K A Germina, N K Sudev, On Weakly Uniform Integer Additive Set-Indexers of Graphs, Int.Math. Forum, 8(37),1827-1834.
[11] K A Germina, N K Sudev, Some New Results on Strong Integer Additive Set-Indexers, submitted.
[12] F Harary, (1969). Graph Theory, Addison-Wesley Publishing Company Inc.
[13] K D Joshi, (2003). Applied Discrete Structures, New Age International.
[14] S S Ray, (2013). Graph Theory with Algorithms and Applications in Applied Sciences and Technology, Springer.
[15] A Rosa, (1967). On Certain Valuation of the Vertices of a Graph, in Theory of Graphs, Gordon and Breach.
[16] N K Sudev and K A Germina, (2014). A Characterisation of Weak Integer Additive Set-Indexers of Graphs, ISPACS Journal of Fuzzy Set-Valued Analysis, 2014, 1-7, Article id:jfsva00189.

TechS Vidya e-Journal of Research
ISSN 2322-0791
Vol. 2 (2013-14) pp.28-38.
[17] N K Sudev and K A Germina, (2014). Weak Integer Additive Set-Indexers of Certain Graph Operations, Global J. Math. Sci.: Theory \& Practical, 6(1),25-36.
[18] N K Sudev and K A Germina, (2014). The Sparing Number of Certain Graph Structures, Annals of Pure and Applied Mathematics, 6(2), 140-149.
[19] N K Sudev and K A Germina, (2014). A Note on the Sparing Number of Graphs, Advances \& Applications in Discrete Mathematics, 14(1), 61-75.
[20] D B West, (2001). Introduction to Graph Theory, Pearson Education Inc.

