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Abstract5

This study describes a simplified method to formulate the closest point projection (CPP) for associative6

models. It represents the elastoplastic model on a rotated energy-mapped stress space (REMSS). The CPP in7

conventional stress space does not give the closest point in Euclidean norm, but in energy norm. In REMSS8

the correct return trajectory is a closest-point return. REMSS allows to find models that are analytically9

solvable. The rotated stresses aim in simplifying the constitutive relation allowing to get analytical solutions10

or applying the Newton’s method at a smaller system of equations. The analytical solution is up to four11

times faster than a standard numerical backward Euler algorithm. The rotated space described here allows12

to drop one cylindrical coordinate, i.e., instead of using three coordinates (e.g. ξ, ρ and β) to represent a13

yield surface in principal stress space, at most two are necessary (e.g. ξ and/or β). The analytical CPP14

solution using the proposed method is described for Druker-Prager and von Mises models. This study also15

discuss the numerical solution of modified hyperbolic Drucker-Prager. The proposed formulation is verified16

by applying it to three finite element examples and the code is available on-line. Extent of the code proposed17

here to elastoplastic calculations of other models is straightforward.18

Keywords closest point projection, rotated energy-mapped stress space, computational plasticity, finite19

elements, Mathematica20

1 Introduction21

The non-linear Finite Element solution of an elastoplastic analysis is separated in two levels. At the material22

level, the constitutive equations must be integrated for a given strain increment and a load history for every23

integration point. At the global equilibrium level, the internal stresses must be balanced with the external loads.24

The method adopted to integrate the constitutive equations at the material level directly control the accuracy and25

stability of the finite element solution. There are two main lines adopted to integrate the constitutive equations26

at the material level: explicit forward Euler and implicit backward Euler.27

The explicit methods first appear in [1, 2, 3]. This technique computes the yield function, the flow rule and28

the hardening law at a known stress, allowing the solution of complex models, but at the same time it does not29

enforce consistency, making control error algorithms and small load steps necessary.30

Implicit Backward Euler integration schemes have achieved much popularity over the past two decades31

[4, 5, 3, 6, 7, 8]. In implicit methods, stress and hardening variables are unknown, resulting in a non-linear32

set of equations that must be solved iteratively. The implicit technique to integrate the elastoplastic equations33

is known as Return Mapping Algorithm (RMA). In this formulation, the numerical integration is divided into34

two main steps: an elastic trial step and a plastic correction step (or return-mapping algorithm). If the trial35

stress computed in the first step fails to verify the plastically admissible condition, it is returned to the yield36
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surface using Newton’s method to solve the non-linear system of equations. The implicit return mapping can37

be interpreted as a closest point projection (CPP) of the trial stress onto a returned stress in the yield surface38

[9, 10, 12, 8].39

As pointed by [11], in conventional stress space (SS) the closest point projection (CPP) of computational40

plasticity in general does not provide the closest point to the trial stress in a Euclidean sense, but rather in41

energy metrics. The CPP will be provided in a Euclidean sense only when the Poisson coefficient is zero or for42

the simple case explored by [13], where the author proposed the radial return method, following the von Mises43

yield criterion with perfect plasticity. Thus, if a trial stress is projected onto the yield surface in the conventional44

stress space, the project path will be oblique to the yield surface, except in the simple cases discussed above. In45

this study, inspired by [11] and [14], a new stress space is proposed, in which a yield surface’s parametrization46

and a rotation matrix are introduced to transform the stresses from the conventional stress space (SS) to a rotated47

energy mapped stress space (REMSS).48

In REMSS, the projection direction will be aligned with the plastic flow rule and the distance between the49

trial and the returned stress will be the closest. Determining the CPP in the REMSS is an intuitive task in50

which it is possible to graphically identify the smallest distance between two points and calculate it by taking51

the Euclidean norm of the vector formed by the difference between these two points (e.g. trial and returned52

stresses). In addition, it makes it possible to verify if the algorithm is working properly by calculating the53

internal product of the projection direction in relation to the direction parallel to the plastic surface and verifies54

if they are perpendicular.55

A rotation is introduced to simplify the CPP by orienting the stress axes to coincide with the hydrostatic56

coordinate. This rotation enables rewriting the constitutive matrices in a diagonal form, having as a consequence57

the RMA simplification. If in case the yield surface does not depend on the Lode angle (e.g., von Mises or58

Drucker-Prager models), the closest point to the admissibility surface will have the same lode angle. This59

means the solution can be found by varying only one parameter. For some plasticity surfaces, in case of60

associative models without hardening, the closest point can be computed analytically. This is the case of the61

von Mises criterion (projection on a cylinder) or Drucker-Prager (projection on a cone). The analytical solution62

is up to four times faster than a standard numerical backward Euler algorithm [15]. In this study, the analytical63

solutions for both models are obtained in closed form. When the estimate of the projected point is sufficiently64

close to the target point, the distance function is a convex function of the variables which parametrize the65

surface. Therefore, algorithms used to minimize the distance of a point to a surface are more stable than66

Newton’s method for the resolution of a general non-linear system of equations.67

The elastoplastic constitutive model in a Finite Element framework is well-known and widely used for68

solving computation problems in Engineering and Physics. However, the implementation of a clear step-by-69

step program in Wolfram Mathematica environment has yet to been reported. The finite element code discussed70

here is available online.71

2 Finite Element Formulation72

The mechanical problem consists of finding the displacement field u that is the solution of the following prob-73

lem:74 
div(σ) + b = 0 in Ω

u = 0 on ΓD

σ.n = t on ΓN

(1)

where Ω is the material domain, ΓD is the boundary part of Ω in which displacement is zero (null Dirichlet75

boundary condition), ΓN is the boundary part of Ω in which traction is known (Neumann boundary condition),76

b is the body force, known in Ω, and t is the traction force known in boundary ΓN .77



2.1 Linearised Virtual Work78

Considering the infinitesimal strain79

ε(u) =
1

2

(
∇u+∇uT

)
, (2)

the weak form of the equilibrium equation is obtained by multiplying Equation 1 by trial function v ∈ V and80

integrating it over the domain as described in 3.81

�
Ω
−div(σ)v dω −

�
Ω
b · v dω = 0 (3)

Space V is given in 4, were [H1(Ω)]2 denotes the vectorial space of functions, which is square integrable.82

V = {v ∈ [H1(Ω)]2 so that v = 0 in ΓD}, (4)

Using the divergence theorem (integration by parts) in Equation 3, we get 5.83

G(u,v) =

�
Ω
σ : ∇v dω −

�
Ω
b · v dω −

�
ΓN

t · v ds = 0, ∀v ∈ V, (5)

To find the solution in elastic problems, one needs to find the displacement field that satisfies the virtual work84

functional defined in 5. In the elastoplastic case, it is necessary to use the linearised version of the Equation 5,85

which from [6], is given by Equation 6.86

�
Ω

Dep : δε : ∇v dω = −
�

Ω
(σ : ∇v − b · v) dω −

�
ΓN

t · v ds, ∀v ∈ V, (6)

2.2 Matrix Finite Element Formulation87

The weak formulation described by Equation 6 can be rewritten in matrix form, which can be implemented and88

solved in computer systems. Here, a two dimensional (plane stress and plane strain problems) formulation is89

discussed.90 ∑
e

�
Ωe

BT Dep B dAe = −
∑
e

�
Ωe

ΨT b dAe +
∑
e

�
Ωe

BT σ dAe −
∑
e

�
Γe,N

ΨT t dse (7)

Where Ψ is a 2× 2n matrix of shape functions, defined as:91

Ψ =

[
ψ̂1 0 ψ̂2 0 . . . ψ̂n 0

0 ψ̂1 0 ψ̂2 . . . 0 ψ̂n

]
(8)

The matrix described in 9, known as strain-displacement matrix B, is a 3× 2n matrix.92

B =


∂ψ̂1

∂x 0 ∂ψ̂2

∂x 0 . . . ∂ψ̂n

∂x 0

0 ∂ψ̂1

∂y 0 ∂ψ̂2

∂y . . . 0 ∂ψ̂n

∂y
∂ψ̂1

∂y
∂ψ̂1

∂x
∂ψ̂2

∂y
∂ψ̂2

∂x . . . ∂ψ̂n

∂y
∂ψ̂n

∂x

 (9)

The global stiffness matrix (Equation 10), the internal force vector (Equation 11) and the external force vector93

(Equation 12) are computed as a sum of the contributions of all the elements composing the FEM mesh.94

KT =
∑
e

�
Ωe

BT Dep B dAe (10)



95

f int =
∑
e

�
Ωe

BT σ dAe (11)

96

fext =
∑
e

�
Γe,N

ΨT t dse +
∑
e

�
Ωe

ΨT b dAe (12)

Finding the nodal displacement vector un+1 satisfies the incremental finite element equilibrium equation de-97

scribed in 13, and r is the residual vector.98

r(un+1) = f int(un+1)− fext = 0 (13)

Newton’s method consists of solving the linear system of equations for the load step.99

KT δu = −r (14)

3 Constitutive elastoplastic model100

Total deformation tensor ε can be divided into two parts: ε = εe + εp, an elastic part εe and a plastic part εp.101

Free energy ϕ is also divided into portions of elastic ϕe(ε− εp) and plastic contributions ϕp(α), in which α is102

the internal damage variable. The law of elasticity establishes tensor σ = ρ̄∂ϕe

∂εe
, in which ρ̄ is the specific mass103

in the configuration of reference. The plastic portion is not related to the strain state of the material; instead, it104

is related to the history of irreversible dissipative processes to which the material was submitted based on three105

fundamental axioms: an yield criterion, a flow rule, and a hardening law.106

• Yield Criterion. Describes the transition between the elastic and plastic domains using the plasticity107

function Φ = Φ(σ, A), where A = ρ∂ϕp/∂α is the thermodynamic hardening force. The plasticity108

function assumes non-positive values in an elastic basis and null values in a plastic basis.109

• Flow Rule. Assumes the existence of a plastic potential function Ψ = Ψ(σ, A), which specifies how the110

plastic deformation tensor εp evolves in a plasticity process
.
εp =

.
γa, in which a(σ, A) = ∂Ψ/∂σ is111

the flow direction, and γ(t) is a plastic multiplier.112

• Hardening Law. Specifies the evolution of internal damage variable
.
α =

.
γh, in which h(σ, A) =113

−∂Ψ/∂A is the hardening modulus.114

In summary, the elastic-plastic constitutive model is formed by the following initial value problem: initial115

values εp(t0) andα(t0) and the history of infinitesimal deformation tensor ε(t), t ∈ [t0, T ] are estimated to find116

the functions that define plastic deformation tensor εp(t), internal damage variable α(t) and plastic multiplier117
.
γ(t) that give constitutive elastoplastic equations118 { .

εp =
.
γ a

.
α =

.
γ h

(15)

with restrictions
.
γ(t) ≥ 0, Φ(σ(t), A(t)) ≤ 0,

.
γ(t)Φ(σ(t), A(t)) = 0 in each (pseudo) instant t ∈ [t0, T ].119

3.1 Algorithm for solving the incremental elastoplastic constitutive problem120

For the integration of elastoplastic non-linear systems, the use of efficient numerical integration methods is121

required. Using the implicit Euler method at a step of (pseudo) time [tn, tn+1] of a loading cycle, given the122

deformation state εn and the corresponding plastic deformation εp,n and the internal state variable αn at tn,123

for prescribed incremental strain ∆ε, then plastic deformation εp,n+1, the internal variable αn+1 and ∆γ at124



the next step are obtained as a solution of the problem that consists of an incremental non-linear system of125

equations126

εe,n+1 = εe,n + ∆ε−∆γ an+1

αn+1 = αn + ∆γ hn+1
(16)

for unknown εe,n+1, αn+1 and ∆γ, subjected to restrictions127

∆γ ≥ 0, Φ(σn+1, A) ≤ 0, ∆γΦ(σn+1, A) = 0. (17)

As shown in [6], the imposition of restrictions suggests a procedure for solving the problem in two major128

steps. It begins with a purely elastic predictor process (elastic trial step), with ∆γ = 0. In this case, trial129

elastic strain εe,trial = εe,n + ∆ε and internal variables αt = αn are defined. Then σt is calculated according130

to εte, and the corresponding Φ(σt, A) is given. If Φ(σt, A) ≤ 0, a valid solution to the system is reached,131

and the variables are replaced by the trial ones. Otherwise, a plastic corrector step or RMA is performed by132

reformulating the incremental problem searching εe,n+1, αn+1 and by having ∆γ satisfy133

εe,n+1 = εte −∆γ a(σn+1, A) (18)

αn+1 = αt + ∆γh (σn+1, A) (19)

∆γ > 0, Φ(σn+1, A) = 0 (20)

Next, the plastic strain is updated134

εp,n+1 = εp,n + ∆ε−∆εe.

Where superscript t means trial.135

4 Rotated stress space136

Instead of using the six stress-independent components for the geometric representation of a state of stress at a137

given point, a simplified alternative is to adopt principal stresses σ = [σ1, σ2, σ3]T as coordinates. This space,138

known as Haigh–Westergaard stress space, will be refereed to simply as stress space (SS). The stress tensor is139

represented in terms of the principal stresses sorted in descending order σ1 ≥ σ2 ≥ σ3, and are calculated by140

σ =

 ξ/
√

3 +
√

2/3ρ cos(β)

ξ/
√

3 +
√

2/3ρ cos(β − 2π/3)

ξ/
√

3 +
√

2/3ρ cos(β + 2π/3)

 . (21)

Principal stresses are a parametrisation of Haigh–Westergaard cylindrical coordinates ξ, ρ and β ,141

ξ =
I1√

3
, ρ =

√
2J2, β =

1

3
cos−1

(
3
√

2

2

J3

J
3/2
2

)
. (22)

Constitutive laws can be simplified with the introduction of a new coordinate system of rotated principal vari-142

ables, similar to the decompositions defined in [16, 17], called a rotated stress space (RSS). The RSS is defined143

as σ̃ = [σ̃1, σ̃2, σ̃3]T , and is defined by144

σ̃ =

 ξ
ρ cos(β)
ρ sin(β)

 . (23)

The RSS can also be computed by the rotationR,145

R =


1√
3

1√
3

1√
3√

2
3 − 1√

6
− 1√

6

0 1√
2
− 1√

2

 . (24)



This transformation relates the principal stresses in SS and RSS, This relation is defined in Equation (25).146

σ̃ = R σ, (25)

in RSS the expressions for the cylindrical coordinates and invariants become simpler,147

ξ = σ̃1, ρ =
√
σ̃2

2 + σ̃2
3, β = arctan (σ̃3/σ̃2) . (26)

5 CPP in the SS and RSS spaces148

The elastic stress-strain relation in SS and RSS are given by149

σ = Dss ε, σ̃ = Drss ε̃. (27)

Were the elastic constitutive matrices in SS and RSS are given by150

Dss =

 (K + 4G
3

) (
K − 2G

3

) (
K − 2G

3

)(
K − 2G

3

) (
K + 4G

3

) (
K − 2G

3

)(
K − 2G

3

) (
K − 2G

3

) (
K + 4G

3

)
 (28)

and151

Drss = RT Dss R =

 3K 0 0
0 2G 0
0 0 2G

 , (29)

respectively. Elastic constants K and G are the Bulk and the Shear Modulus, respectively.152

Distance equations in SS and RSS are defined as the euclidean norm of the difference between trial and153

returned stresses in an energy metrics, and are described by Eqs. (30) and (31). Superscripts t and r denote the154

trial and return stresses.155

d(σt,σr) =

√
(σt − σr)T D−1

ss (σt − σr) (30)
156

d(σ̃t, σ̃r) =

√
(σ̃t − σ̃r)T D−1

rss (σ̃t − σ̃r) (31)

The CPP solution consists in minimizing these distances by making their derivatives equal to zero and solving157

for the state variables (e. g. ∂d(σt,σr)
2
/∂σr = 0 or ∂d(σ̃t, σ̃r)2/∂σ̃r = 0).158

It is important to note that matrix Drss is a 3x3 diagonal matrix and implies in significant simplifications159

in the CPP’s formulation:160

• For perfect plasticity, the solution to β is analytical and is the same for Drucker-Prager, von Mises and161

any other model that has circular shape in the deviatoric section.162

• Equations are much simpler due to the rotation employed to simplify the constitutive relations.163

• For some plasticity surfaces, in case of associative models without hardening, the closest point can be164

computed analytically. This is the case of the von Mises criterion (projection on a cylinder) or Drucker-165

Prager criterion (projection on a cone). In this paper, the analytical solution for both models are obtained166

in closed form.167

• When the estimate of the projected point is sufficiently close to the target point, the distance function168

is a convex function of the variables that parametrize the surface. Therefore, algorithms oriented to169

minimizing the distance of a point to a surface are more stable than Newton’s method for the resolution170

of a general non-linear system of equations.171



6 CPP in EMSS and REMSS172

As discussed previously, the CPP consists in minimizing the distance between the trial and returned stress in173

energy metric in the SS and RSS spaces. Of an Euclidean point of view, this will only be the closest point in a174

principal stress space for the special case where 2G = 3K, or for certain simple models such as the von Mises175

yield criterion.176

A new energy-mapped stress space (EMSS) was introduced by [11] and was defined to be equivalent in the177

Euclidean norm to the conventional stress in the energy norm. In this space, the correct return trajectory is the178

closest-point return.179

The stress vector in EMSS is represented by σ̂ = [σ̂1, σ̂2, σ̂3]T , and can be computed by180

σ̂ = T̂σ, (32)

were181

T̂ =


1
9(3
√

2
√

E
G +
√

3
√

E
K ) 1

18(−3
√

2
√

E
G + 2

√
3
√

E
K ) 1

18(−3
√

2
√

E
G + 2

√
3
√

E
K )

1
18(−3

√
2
√

E
G + 2

√
3
√

E
K ) 1

9(3
√

2
√

E
G +
√

3
√

E
K ) 1

18(−3
√

2
√

E
G + 2

√
3
√

E
K )

1
18(−3

√
2
√

E
G + 2

√
3
√

E
K ) 1

18(−3
√

2
√

E
G + 2

√
3
√

E
K ) 1

9(3
√

2
√

E
G +
√

3
√

E
K )

 . (33)

A rotated energy mapped stress space (REMSS) has it’s coordinates σ̄ = [σ̄1, σ̄2, σ̄3]T , and is given by182

σ̄ = T̄ σ̃, (34)

with183

T̄ = RT T̂ R =


√

E
3K 0 0

0
√

E
2G 0

0 0
√

E
2G

 . (35)

The distance equation in EMSS and in REMSS are described by184

d(σ̂t, σ̂r) =

√
1

E
(σ̂t − σ̂r)T (σ̂t − σ̂r), (36)

and185

d(σ̄t, σ̄r) =

√
1

E
(σ̄t − σ̄r)T (σ̄t − σ̄r). (37)

To obtain the full stress tensorσ, first the returned cylindrical variables (i.e. ξr, ρr and βr) have to be substituted186

in Eq. (21) to get the principal returned stress σri , and the187

σ =
3∑
i=1

σri (ei ⊗ ei). (38)

7 Solution examples in REMSS188

The closest point projection in REMSS is equivalent to minimizing the distance in this space. The distance189

function in REMSS can be computed by using the Euclidean norm of the projection’s stress vector, which is190

computed as the difference of two points: trial stresse σ̄t and retuned stress σ̄r in REMSS. Next, the CPP’s191

closed solution for von Mises and Drucker-Prager models will be discussed, and also a numerical solution to192

modified Drucker-Prager.193



7.1 von Mises194

The von Mises yield surface is a cylinder in the stress space. The surface, considering a perfectly plastic model,195

is given by196

Φ =
√

3/2ρ− σy, (39)

were σy is the material yield stress in uniaxial tension. The cylinder radius is constant and can be computed by197

making Equation (39) equal to zero. The result is given by Equation (40), which is the radial returned deviatoric198

coordinate. Equation (40) also gives the return hydrostatic coordinate, which is equal to the trial one199

ρr = σy
√

2/3 , ξr = ξt. (40)

The returned stresses in yield surface σ̄r can be computed by substituting Equation (40) in (23) and then in200

(34), to get201

σ̄r =
1√
3


ξr
√

E
K

σy

√
E
G cos(βr)

σy

√
E
G sin(βr)

 , (41)

were the only unknown is βr. The trial stress in REMSS is computed by202

σ̄t = T̄Rσt. (42)

Substituting Equations (42) and (41) in (37) results in the distance function203

d(σ̄t, σ̄r)2 =
4
(
σt1 + σt2 + σt3 −

√
3ξr
)2

36K
+

3
(
−2σt1 + σt2 + σt3 + 2σy cos(βr)

)2
36G

+(
−3σt2 + 3σt3 + 2

√
3σy sin(βr)

)2
36G

, (43)

to be minimized with respect to βr. Deriving Equation (43) in relation to β, equaling it to zero and then solving204

it to obtain the β provides the analytical solution (44). To obtain the projected or returned principal stresses, it205

is necessary to substitute Equations (44) and (40) in (21).206

βr = − arctan

( √
3(σt2 − σt3)

−2σt1 + σt2 + σt3

)
. (44)

As previously discussed in [13], in the von Mises model the CPP will be perpendicular to the yield surface in207

all stress spaces mentioned above, even with ν 6= 0. Figure 1 illustrates this fact, showing the projection vector208

is perpendicular to the yield surface in all spaces.209

7.2 Drucker-Prager210

The Drucker-Prager yield surface is a cone in the stress space. The surface considering a perfectly plastic model211

is given by212

Φ =
ρ√
2

+A

√
3ξ

3
−Bc, (45)

were c is the material cohesion, A and B are constants that depend on the internal friction angle φ. For plane213

strain match [6], the constants are given by214

A = 3 tan(φ)/
√

9 + 12 tan(φ)2, B = 3/
√

9 + 12 tan(φ)2. (46)



(a) (b) (c) (d)

Figure 1: CPP in the von Mises yield surface. The figures show the projections in the following spaces a) SS, b)
RSS, c) EMSS and d) REMSS. To generate the surfaces, the following values for the constants were adopted:
E = 210000MPa, ν = 0.3 and σy = 210MPa.

The cone radius depends on the hydrostatic component ξr and can be computed by making Equation (45) equal215

to zero and solving for ρr,216

ρr =
√

2 B c−
√

2

3
A ξr, (47)

which is the radial returned deviatoric coordinate.217

The returned stresses on yield surface σ̄r is computed by substituting (47) in Equation (23) and then in218

Equation (34) to get219

σ̄r =


ξr

√
E
K√

3

1
3

(
3Bc−

√
3Aξr

√
E
G cos(βr)

)
1
3

(
3Bc−

√
3Aξr

√
E
G cos(βr)

)
 . (48)

Substituting (42) and (48) in (37) to get the distance function220

d(σ̄t, σ̄r)2 =
4
(
σt1 + σt2 + σt3 −

√
3ξr
)2

36K
+[√

3
(
2σt1 − σt2 − σt3

)
+
(
−6Bc+ 2

√
3Aξr

)
cos(βr)

]2
36G

+[
3
(
σt2 − σt3

)
+
(
−6Bc+ 2

√
3Aξr

)
sin(βr)

]2
36G

(49)

to be minimized in terms of ξ and β. Here βr has the same analytical solution obtained above to von Mises221

model.222

The minimum is found deriving Equation (49) in relation to ξr, equaling to zero and solving for ξr, to get223

ξr =
−3AK

(
2σt1 − σt2 − σt3

)
cos(βr) +

√
3
[
6ABcK + 2G

(
σt1 + σt2 + σt3

)
− 3AK

(
σt2 − σt3

)
sin(βr)

]
6 (G+A2K)

.

(50)
To change the Mohr-Coulomb’s fit (e.g. inner, outer match), the constants A and B (here defined to be plane224

strain match) have to be changed.225



Returned principal stresses are obtained by the substitution of the Equations (50), (47) and (44) in (21).226

Figure 2 illustrates the discussion above, showing that the CPP method is not the perpendicular to the yield227

surface in spaces SS and RSS, but it is in spaces EMSS and REMSS. To generate surfaces of Figure 2, the228

constants detailed in Table (2) were used.229

(a) (b) (c) (d)

Figure 2: CPP in the Drucker-Prager yield surface. The figures show the projections in the following spaces:
a) SS, b) RSS, c) EMSS and d) REMSS

7.3 Modified Drucker-Prager230

A Modified Drucker-Prager yield surface were the hydrostatic tensile apex is removed through the use of231

hyperbolic meridians, as illustrated in Figure (3). The modified Drucker-Prager with perfectly plasticity is232

given by233

Φ =

(
c cot(φ)− ξ/

√
3

Amd

)2

−

(
ρ/
√

2

Bmd

)2

− 1, (51)

were c is the material cohesion, Amd and Bmd are constants that depend on internal friction angle φ. Constants234

Amd and Bmd are chosen to be equivalent to Mohr-Coulomb plane strain match, and are detailed in Eq. (59).235

The radial returned deviatoric coordinate ρr depends on the hydrostatic component ξr and is computed by236

making Equation (51) equal to zero,237

ρr =

√√√√−2B2
md

(
3A2

md − 3 (c cot(φ))2 + 2
√

3 c cot(φ)ξr − (ξr)2
)

3A2
md

. (52)

The returned stresses and the distance function can be obtained using analogous process as discussed for the238

models above. An important observation is that here βr is also computed analytically using Eq. (44). Thus the239

solution of this model is reduced to minimizing the distance function (quartic equation) for only one variable:240

ξr. Analytical solution to this model can be found using the symbolic package Mathematica. Although analyt-241

ical solution exists for this model, it is too cumbersome, and for this reason is not shown here. For simplicity,242

in this study, the Newton’s method is employed to minimize the distance function in REMSS.243

Several trial stresses were randomly generated and projected on the yield surface of the modified Drucker-244

Prager in REMSS. As the stresses are oriented in descending order, only one part of the yield surface is active,245

as illustrates Figure (4). Due to the high non-linearity of the apex, some convergence difficulties were faced246



(a) (b)

Figure 3: Drucker-Prager yield surface in: (a) hydrostatic, versus deviatoric, stress space and (b) principal stress
space showing both the hyperbolic and original cones.

when using the build in NMinimize1 method of Mathematica. The problem was solved by using a ”good” initial247

guess to feed the algorithm.248

8 Examples249

As an application of the discussed formulation, three numerical examples are considered in this section. In the250

first example, a long metallic thick-walled cylinder subjected to internal pressure is simulated. The obtained251

solutions are verified with the analytical solution available in literature. In the second example, the application252

of the finite element method for the determination of the bearing capacity (limit load) of a strip footing is con-253

sidered. Also, in this example, a comparison between the modified and common Drucker-Prager is discussed.254

In example three, the finite element simulation of an inclined earth embankment subjected to self-weight is255

performed. The solution obtained with hyperbolic Drucker-Prager is compared with Mohr-Coulomb. The256

cylindrical arc-length method was used to enable the solution algorithms to pass the problems limit load points.257

The code written in Mathematica is available to download in https://github.com/diogocecilio/258

FEM-plasticity. 2
259

8.1 Example 1260

In this example, the behavior of a long steel thick-walled cylinder subjected to a prescribed internal pressure P261

in the inner surface is simulated, considering the von Mises perfectly plastic model. The elastic constants of the262

1NMinimize is a function to find the global minimum of a equation.
2The code was written in the Wolfram Mathematica 11.0.1.0 version.

https://github.com/diogocecilio/FEM-plasticity
https://github.com/diogocecilio/FEM-plasticity
https://github.com/diogocecilio/FEM-plasticity


(a) (b)

Figure 4: CPP in the Modified Drucker-Prager yield surface. The figures show the projections in REMSS.
Random trial stresses are projected on the yield surface.

material are E = 210GPa, ν = 0.3 and σy = 0.24GPa. The cylinder has 100mm and 200mm internal and263

external radius, respectively. The mesh, illustrated in Figure 5, is composed by twelve nine-noded elements.264

The plane strain condition is assumed. Due to the symmetry, only a quarter of the cylinder cross-section is265

discretized. Null displacements are imposed in the horizontal and vertical direction on the left and bottom266

edge, respectively. Pressure P is gradually increased until it reaches the limit burst pressure. Fifteen load steps267

are applied.268
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Figure 5: Internally pressurized cylinder. Geometry and finite element mesh.

Figure 6 shows the node’s nine radial displacement versus the applied pressure. The solid line is the269

analytical solution provided by [18] and the points are the FEM solution. The numerical solution proves to270

be an excellent approximation of the analytical one. Note that the arc-length method allows the numerical271

simulation to continue, even after the limit load is reached.272

Figure 6: Internally pressurized cylinder. Pressure versus displacement diagram.

Figure 7 shows that the plastic yielding starts at the inner surface and develops gradually toward the outer273

face of the cylinder. Rupture occurs when the plastic face reaches the outer face and the entire cylinder becomes274

plastified. At the limit load, the cylinder can expand indefinitely without further increase in the applied pressure.275

A closed-form solution to this problem has been derived by [18].276
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Figure 7: Hoop (7a) and radial (7b) stress distributions at different applied internal pressures. The finite element
results are computed at the Gauss integration points.

8.2 Example 2277

In this example, a finite element analysis of the plastic limit load of strip foundations is considered. The278

solution of associative Modified and common Drucker-Prager models are compared. The constants A, B, Amd279

and Bmd are defined to be the Drucker–Prager approximation to the Mohr–Coulomb law in plane strain match.280

The problem material data is described in Table (1). Plane strain analysis is adopted. The soil is assumed to be281

weightless. The mesh has a total of 240 eight-noded quadrilaterals elements.282



Figure 8: Strip footing mesh.

The loading consists of the increasing value of the pressureP . The normalized pressure versus displacement283

is ilustrated in Figure (9). The results are in excellent agreement with Prandtl’s solution, and both the, regular284

and Modified Drucker-Prager models present very similar solutions. In this case, the predicted limit pressure is285

Plim/c ≈ 15.

Table 1: Material parameters for the soil taken from [6].

Parameter Value

E(Young’s modulus) 107kPa
ν(Poisson’s ratio) 0.48

c 490kPa
φ 20◦

286



Figure 9: Strip footing. Load-displacement curve, comparing our results with [6].

(a) (b)

Figure 10: 9th load step, considering the modified Drucker-Prager. Figure (a) show the deformed mesh and (b)
the displacement field. The adopted scale factor is 200.



8.3 Example 3287

In this example the plane-strain analysis of an inclined earth embankment subjected to self-weight is performed.288

The soil is modelled as Modified hyperbolic Druker-Prager material with the material constants shown in Ta-289

ble (2). The material is assumed to be perfectly plastic. The constants Amd and Bmd are defined to be the290

Drucker–Prager approximation to the Mohr–Coulomb law in plane strain match. The mesh used in the finite

Table 2: Material parameters for the soil taken from [6].

Parameter Value

E(Young’s modulus) 20000kPa
ν(Poisson’s ratio) 0.49

c 50kPa
φ 20◦

γ 20kN/m3

291

element simulation is illustrated in Figure (11). The mesh is composed of 512 eight-nodes elements. The load292

was applied in ten steps. Figure (12) show the displacement in point A versus the load factor. The limit analysis293

of slopes under gravity load is described by [19]. A safety factor based on limit analysis for the present dimen-294

sions and material properties predict a maximum load factor of 4.045. For more details about the analytical295

solution see [6]. The finite element’s simulation predicts a failure with a load factor of 4.19, see Figure (12).296

This represents a 3.4% above the limit analysis solution. Figure (12) compares the solution obtained by [6]297

using the Mohr-Coulomb model with the present solution considering the hyperbolic Drucker-Prager. Results298

are very similar.299

Figure 11: Finite element mesh, geometry and boundary conditions schemes.



Figure 12: Displacement plotted against the gravity factor. Comparing the present results with [6].

Figure (13) show the incremental plastic multiplier and the displacement field with a gravity load factor of300

4.11. The plastic multiplier contours as well as the displacement vector field reproduces the log spiral failure301

mechanism observed in the collapse of this kind of structure.302

(a) (b)

Figure 13: Figures generated with a gravity load factor of 4.11. (a) Incremental plastic multiplier (∆γ) and (b)
displacement vector field with 10 scale factor.

9 Conclusion303

A simplified methodology was proposed for elastoplastic calculations, which holds for associative models. It304

generates a representation of the elastoplastic model based on REMSS and on the fact that, in this coordinate305

system, the correct return trajectory is the closest-point return. The CPP in REMSS is a powerful approach that306

allows a straightforward numerical solution of complex computational plasticity models. The rotated space de-307

scribed simplify the constitutive relations and consequently the CPP equations. For perfect plasticity the CPP308

solution to β is analytical and is the same for Drucker-Prager, von Mises and any other model that has circular309



shape in the deviatoric section. In this study, the analytical solution for both von Mises and Druker-Prager310

models were obtained. Also, a numerical solution to a modified hyperbolic Drucker-Prager was presented.311

The proposed formulation was verified by the application to three finite element examples. The obtained so-312

lutions are in excellent agreement with the analytical solutions. The hyperbolic Drucker-Prager produced very313

similar solution to Mohr-Coulomb in example 3. The models derivatives and the consistent modular matrix314

are described in the appendix. The code used in this study is available on-line, and can be easily extended to315

elastoplastic calculations of other models.316
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A Consistent modular matrix356

In this section the flow rules ∂Φ/∂σ and the matrix ∂2Φ/∂σ2 are derived for the perfectly plastic and asso-357

ciative von Mises and Drucker-Prager models. They are necessary to compute the consistent modular matrix.358

Voigt notation is considered, and the full returned stress tensor (σ = [σxx σyy σzz σyz σxz σxy]) is obtained359

making use of Eq. (38).360

A.1 von Mises361

The yield surface of this model is given by Eq. (39), and the flow rule represented by362

a(σ) = ∂Φ/∂σ =

√
3

2
√
J2
,S. (53)

were S = σ − 1/3(σxx + σyy + σzz) I . The matrix (∂a/∂σ) is computed in terms of the projected stresses363

by (54).364

∂a

∂σ
= ∂2Φ/∂σ2 =

√
3

2
√
J2
P +

√
3

4J
3/2
2

S ⊗ S., (54)

were P is described in Eq. (64).365

A.2 Drucker Prager366

The yield surface is given by Eq. (45), and the flow rule is given by367

a(σ) =
A

3
I +

√
3

2
√
J2
S, (55)

were I = [1 1 1 0 0 0]. The matrix ∂a
∂σ is given by,368

∂a

∂σ
=

1

2
√
J2
P − 1

4J
3/2
2

S ⊗ S. (56)



A.3 Modified Drucker-Prager369

a(σ) =
6 c cot(φ)B2

mdI − 2B2
mdI1I + 9 A2

md S

9 A2
md B

2
md

(57)

∂a

∂σ
=

P

B2
md

− 2I ⊗ I
9 A2

md

(58)

Amd =
c√

3 tan(φ)
− c cot(φ), Bmd = AmdA (59)

A.4 Consitent modular matrix370

The incremental plastic multiplier (∆γ) is computed by371

∆γ =
||εt − ε||
||a||

. (60)

To compute ∆γ is necessary the returned stress (σ) and the flow rule (a(σ)).372

The consitent modular matrix Dep is obtained by enforcing the consistency condition on the discrete algo-373

rithmic problem (20). The algorithmic moduliH is defined as374

H =

(
I + ∆γDe ∂a

∂σ

)−1

De, (61)

and the consistent modular matrix by,375

Dep =
H a aTH

aT H a
, (62)

were the elastic constitutive matrix is376

De =



K + 4G/3 K − 2G/3 K − 2G/3 0 0 0
K − 2G/3 K + 4G/3 K − 2G/3 0 0 0
K − 2G/3 K − 2G/3 K + 4G/3 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 . (63)

with K = E
3(1−2ν) and G = E

2(1+ν) .377

P =



2/3 −1/3 −1/3 0 0 0
−1/3 2/3 −1/3 0 0 0
−1/3 −1/3 2/3 0 0 0

0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 . (64)
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