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Abstract

Learning over multi-view data is a challenging problem with strong practical
applications. Most related studies focus on the classification point of view and
assume that all the views are available at any time. We consider an extension of this
framework in two directions. First, based on the BiGAN model, the Multi-view
BiGAN (MV-BiGAN) is able to perform density estimation from multi-view inputs.
Second, it can deal with missing views and is able to update its prediction when
additional views are provided. We illustrate these properties on a set of experiments
over different datasets.

1 Introduction

Many concrete applications involve multiple sources of information generating different views on the
same object (Cesa-Bianchi et al., 2010). If we consider human activities for example, GPS values
from a mobile phone, navigation traces over the Internet, or even photos published on social networks
are different views on a particular user. In multimedia applications, views can correspond to different
modalities (Atrey et al., 2010) such as sounds, images, videos, sequences of previous frames, etc...

The problem of multi-view machine learning has been extensively studied during the last decade,
mainly from the classification point of view. In that case, one wants to predict an output y based
on multiple views acquired on an unknown object x. Different strategies have been explored but a
general common idea is based on the (early or late) fusion of the different views at a particular level
of a deep architecture (Wang et al., 2015; Ngiam et al., 2011; Srivastava & Salakhutdinov, 2012).

The existing literature mainly explores problems where outputs are chosen in a discrete set (e.g
categorization), and where all the views are available. An extension of this problem is to consider the
density estimation problem where one wants to estimate the conditional probabilities of the outputs
given the available views. As noted by (Mathieu et al., 2015), minimizing classical prediction losses
(e.g Mean square error) will not capture the different output distribution modalities.

In this article, we propose a new model able to estimate a distribution over the possible outputs given
any subset of views on a particular input. This model is based on the (Bidirectional) Generative
Adversarial Networks (BiGAN) formalism. More precisely, we bring two main contributions: first,
we propose the CV-BiGAN (Conditional Views BiGAN – Section 3) architecture that allows one to
model a conditional distribution P (y|.) in an original way. Second, on top of this architecture, we
build the Multi-view BiGANs (MV-BiGAN – Section 4) which is able to both predict when only
one or few views are available, and to update its prediction if new views are added. We evaluate
this model on different multi-views problems and different datasets (Section 5). The related work is
provided in Section 6 and we propose some future research directions in Section 7.
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2 Background and General Idea

2.1 Notations and Task

Let us denote X the space of objects on which different views will be acquired. Each possible input
x ∈ X is associated to a target prediction y ∈ Rn. A classical machine learning problem is to
estimate P (y|x) based on the training set. But we consider instead a multi-view problem in which
different views on x are available, x being unknown. Let us denote V the number of possible views
and x̃k the k-th view over x. The description space for view k is Rnk where nk is the number of
features in view k. Moreover, we consider that some of the V views can be missing. The subset
of available views for input xi will be represented by an index vector si ∈ S = {0, 1}V so that
sik = 1 if view k is available and sik = 0 elsewhere. Note that all the V views will not be available
for each input x, and the prediction model must be able to predict an output given any subset of views
s ∈ {0; 1}V .

In this configuration, our objective is to estimate the distributions p(y|v(s, x)) where v(s, x) is the
set of views x̃k so that sk = 1. This distribution p will be estimated based on a training set D of
N training examples. Each example is composed of a subset of views si, v(si, xi) associated to an
output yi, so that D = {

(
y1, s1, v(s1, x1)

)
, ...,

(
yN , sN , v(sN , xN )

)
} where si is the index vector

of views available for xi. Note that xi is not directly known in the training set but only observed
through its associated views.

2.2 Bidirectional Generative Adversarial Nets (BiGAN)

We quickly remind the principle of BiGANs since our model is an extension of this technique.
Generative Adversarial Networks (GAN) have been introduced by (Goodfellow et al., 2014) and
have demonstrated their ability to model complex distributions. They have been used to produce
compelling natural images from a simple latent distribution (Radford et al., 2015; Denton et al.,
2015). Exploring the latent space has uncovered interesting, meaningful patterns in the resulting
outputs. However, GANs lack the ability to retrieve a latent representation given an output, missing
out an opportunity to exploit the learned manifold. Bidirectional Generative Adversarial Networks
(BiGANs) have been proposed by (Donahue et al., 2016) and (Dumoulin et al., 2016), independently,
to fill that gap. BiGANs simultaneously learn both an encoder function E that models the encoding
process PE(z|y) from the space Rn to a latent space RZ , and a generator function G that models the
mapping distribution PG(y|z) of any latent point z ∈ RZ to a possible object y ∈ Rn. From both the
encoder distribution and the generator distribution, we can model two joint distributions, respectively
denoted PE(y, z) and PG(y, z):

PG(y, z) = P (z)PG(y|z)
PE(y, z) = P (y)PE(z|y)

(1)

assuming that P (z) = N (0, 1) and P (y) can be estimated over the training set by a uniform
sampling. The BiGAN framework also introduces a discriminator network D1 whose task is to
determine whether a pair (y, z) is sampled from pG(y, z) or from pE(y, z), whileE andG are trained
to fool D1, resulting in the following learning problem:

min
G,E

max
D1

Ey∼P (y),z∼PE(z|y) [logD1(y, z)]

+Ez∼P (z),y∼PG(y|z) [1− logD1(y, z)]
(2)

It can be shown, by following the same steps as in (Goodfellow et al., 2014), that the optimization
problem described in Equation 2 minimizes the Jensen-Shanon divergence between PE(y, z) and
PG(y, z), allowing the model to learn both a decoder and a generator over a training set that will
model the joint distribution of (y, z) pairs. As proposed by (Dumoulin et al., 2016), we consider
in the following that PG(y|z) is modeled by a deterministic non-linear model G so that G(z) = y,
and PE as a diagonal Gaussian distribution E(z) = (µ(y), σ(y)). G, µ and σ are estimated by using
gradient-based descent techniques.
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Figure 1: The CV-BiGAN Architecture. The two top levels correspond to the BiGAN model, while the
third level is added to model the distribution over the latent space given the input of the CV-BiGAN.
The discriminator D2 is used to constraint P (z|y) and P (z|x̃) to be as close as possible.

2.3 General Idea

We propose a model based on the Generative Adversarial Networks paradigm adapted to the multi-
view prediction problem. Our model is based on two different principles:

Conditional Views BiGANs (CV-BiGAN): First, since one wants to model an output distribution
based on observations, our first contribution is to propose an adaptation of BiGANs to model
conditional probabilities, resulting in a model able to learn P (y|x̃) where x̃ can be either a single
view or an aggregation of multiple views. If conditional GANs have already been proposed in the
literature (see Section 6) they are not adapted to our problem which require explicit mappings between
input space to latent space, and from latent space to output space.

Multi-View BiGANs (MV-BiGAN): On top of the CV-BiGAN model, we build a multi-view model
able to estimate the distribution of possible outputs based on any subset of views v(s, x). If a natural
way to extend the Conditional BiGANS for handling multi-view is to define a mapping function
which map the set of views to a representation space (see Section 4.1) the resulting model has shown
undesirable behaviors (see Section 5.1). Therefore, we propose to constrain the model based on
the idea that adding one more view to any subset of views must decrease the uncertainty on the
output distribution i.e the more views are provided, the less variance the output distribution has. This
behavior is encouraged by using a Kullback-Leibler divergence (KL) regularization (see Section 4.2).

3 The Conditional BiGAN Model (CV-BiGAN)

Our first objective is to extend the BiGAN formalism to handle an input space (e.g a single observed
view) in addition to the output space Rn. We will denote x̃ the observation and y the output
to predict. In other words, we wish to capture the conditional probability P (y|x̃) from a given
training dataset. Assuming one possesses a bidirectional mapping between the input space and an
associated representation space, ie. PE(z|y) and PG(y|z), one can equivalently capture P (z|x̃).
The CV-BiGAN model keeps the encoder E and generator G defined previously but also includes
an additional encoder function denoted H which goal is to map a value x̃ to the latent space RZ .
Applying H on any value of x̃ results in a distribution PH(z|x̃) = N (µH(x̃), σH(x̃)) so that a value
of z can be sampled from this distribution. This would then allow one to recover a distribution
P (y|x̃).

Given a pair (x̃, y), we wish a latent representation z sampled from PH(z|x̃) to be similar to one
from PE(z|y). As our goal here is to learn P (z|x̃), we define two joint distributions between x̃ and
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z:
PH(x̃, z) = PH(z|x̃)P (x̃)

PE(x̃, z) =
∑
y

PE(z|y)P (x̃, y) (3)

Minimizing the Jensen-Shanon divergence between these two distributions is equivalent to solving
the following adversarial problem:

min
E,H

max
D2

Ex̃,y∼p(x̃,y),z∼pE(z|y) [logD2(x̃, z)]

+Ex̃,y∼p(x̃,y),z∼pH(z|x) [1− logD2(x̃, z)]
(4)

Note that when applying stochastic gradient-based descent techniques over this objective function,
the probability P (x̃, y) is approximated by sampling uniformly from the training set. We can sample
from PH(x̃, z) and PE(x̃, z) by forwarding the pair (x̃, y) into the corresponding network.

By merging the two objective functions defined in Equation 2 and 4, the final learning problem for
our Conditionnal BiGANs is defined as:

min
G,E,H

max
D1,D2

Ex̃,y∼P (x̃,y),z∼PE(z|y) [logD1(y, z)]

+Ez∼P (z),y∼PG(y|z) [1− logD1(y, z)]

+Ex̃,y∼P (x̃,y),z∼pE(z|y) [logD2(x̃, z)]

+Ex̃,y∼P (x̃,y),z∼PH(z|x̃) [1− logD2(x̃, z)]

(5)

The general idea of CV-BiGAN is illustrated in Figure 1.

4 Multi-View BiGAN

4.1 Aggregating Multi-views for CV-BiGAN

We now consider the problem of computing an output distribution conditioned by multiple different
views. In that case, we can use the CV-BiGAN Model (or other conditional approaches) conjointly
with a model able to aggregate the different views whereA is the size of the aggregation space. Instead
of considering the input x̃, we define an aggregation model Ψ. Ψ(v(s, x)) will be the representation
of the aggregation of all the available views x̃k1:

Ψ(v(s, x)) =

V∑
k=1

skφk(x̃k) (6)

where φk is a function that will be learned that maps a particular view in Rnk to the aggregation
space RA. By replacing x̃ in Equation 5, one can then simultaneously learn the functions φk and the
distributions PH , PE and PD, resulting in a multi-view model able to deal with any subset of views.

4.2 Uncertainty reduction assumption

However, the previous idea suffers from a very high instability when learning, as it is usually noted
with complex GANs architectures (see Section 5). In order to stabilize our model, we propose to add
a regularization based on the idea that adding new views to an existing subset of views should reduce
the uncertainty over the outputs. Indeed, under the assumption that views are consistent one another,
adding a new view should allow to refine the predictions and reduce the variance of the distribution
of the outputs.

Let us consider an object x and two index vectors s and s′ such that v(x, s) ⊂ v(x, s′) ie.
∀k, s′k ≥ sk. Then, intuitively, P (x|v(x, s′)) should be ”included” in P (x|v(x, s)). In the CV-
GAN model, since P (y|z) is deterministic, this can be enforced at a latent level by minimizing

1 Note that other aggregation scheme can be used like recurrent neural networks for example.
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H(.) φ1(x̃1)H

H(.) φ1(x̃1) + φ3(x̃3)H

KL constraint

Figure 2: The MV-BiGAN additional components. In this example, we consider a case where only
x̃1 is available (top level) and a second case where both x̃1 and x̃3 are available. The distribution
P (z|x̃1, x̃3) is encouraged to be ”included” in P (z|x̃1) by the KL constraint. The aggregation of the
views is made by the φk functions that are learned conjointly with the rest of the model.

KL(P (z|v(x, s′) || P (z|v(x, s)). By assuming those two distributions are diagonal gaussian distribu-
tions (ie. P (z|v(x, s′) = N (µ1,Σ1) and P (z|v(x, s) = N (µ2,Σ2) where Σk are diagonal matrices
with diagonal elements σk(i)), the KL divergence can be computed as in Equation 7 and differentiated.

KL(P (z|v(x, s′))||P (z|v(x, s))) =

1

2

Z∑
i=1

(
−1− log

(
σ2
1(i)

σ2
2(i)

)
+
σ2
1(i)

σ2
2(i)

+
(µ1(i) − µ2(i))

2

σ2
2(i)

)
(7)

Note that this divergence is written on the estimation made by the function H and will act as a
regularization over the latent conditional distribution.

The final objective function of the MV-BiGAN can be written as:

min
G,E,H

max
D1,D2

Es,x,y∼P (s,x,y),z∼PE(z|y) [logD1(y, z)]

+Ez∼P (z),y∼PG(y|z) [1− logD1(y, z)]

+Es,x,y∼P (s,x,y),z∼PE(z|y) [logD2(v(x, s), z)]

+Es,x,y∼P (s,x,y),z∼PH(z|v(x,s)) [1− logD2(v(x, s), z)]

+λEx∼P (x)

∑
s,s′∈Sx
∀k,s′k≥sk

KL(H(v(x, s′))||H(v(x, s)))

(8)

where λ controls the strength of the regularization. Note that aggregation models Ψ are included into
H and D2 and can be optimized conjointly in this objective function.

4.3 Learning the MV-BiGAN

The different functions E, G, H , D1 and D2 are implemented as parametric neural networks and
trained by mini-batch stochastic gradient descent (see Section 5.4 for more details concerning the
architectures).We first update the discriminators networks D1 and D2, then we update the generator
and encoders G, E and H with gradient steps in the opposite direction.

As with most other implementation of GAN-based models, we find that using an alternative objective
proposed by (Goodfellow et al., 2014) for E, G and H instead leads to more stable training. The
new objective consist of swapping the labels for the discriminators instead of reversing the gradient.
We also find that we can update all the modules in one pass instead of taking alternate gradient steps
while obtaining similar results.

Note that the MV-BiGAN model is trained based on datasets where all the V views are available
for each data point. In order to generate examples where only subsets of views are available, the
ideal procedure would be to consider all the possible subsets of views. Due to the number of data
points that would be generated by such a procedure, we build random sequences of incremental sets
of views and enforce the KL regularization over successive sets.
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5 Experiments

We evaluate our model on three different types of experiments, and on two differents datasets. The
first dataset we experiment on is the MNIST dataset of handwritten digits. The second dataset is the
CelebA (Liu et al., 2015) dataset composed of both images of faces and corresponding attributes. The
MNIST dataset is used to illustrate the ability of the MV-BiGAN to handle different subset of views,
and to update its prediction when integrating new incoming views. The CelebA dataset is used to
demonstrate the ability of MV-BiGAN to deal with different types (heterogeneous) of views.

5.1 MNIST, 4 views

Figure 3: Results of the MV-BiGAN on sequences of 4 different views. The first column corresponds
to the provided views, while the other columns correspond to outputs sampled by the MV-BiGAN.

We consider the problem where 4 different views can be available, each view corresponding to a
particular quarter of the final image to predict – each view is a vector of R(14×14). The MV-BiGAN
is used here to recover the original image. The model is trained on the MNIST training digits, and
results are provided on the MNIST testing dataset.

Figure 3 illustrates the results obtained for some digits. In this figure, the first column displays
the input (the subset of views), while the other columns shows predicted outputs sampled by the
MV-BiGAN. An additional view is added between each row. This experiment shows that when new
views are added, the diversity in the predicted outputs decreases due to the KL-contraint introduced in
the model, which is the desired behavior i.e more information implied less variance. When removing
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Figure 4: Comparaison between MV-BiGAN with (top) and without (bottom) KL-constraint.

the KL constraint (Figure 4), the diversity still remains important, even if many views are provided to
the model. This show the importance of the KL regularization term in the MV-BiGAN objective.

5.2 MNIST, sequence of incoming views

We made another set of experiments where the views correspond to images with missing values
(missing values are replaced by 0.5). This can be viewed as a data imputation problem – Figure 5.
Here also, the behavior of the MV-BiGAN exhibits interesting properties: the model is able to predict
the desired output as long as enough information has been provided. When only non-informative
views are provided, the model produces digits with a high diversity, the diversity decreasing when
new information is added.

Figure 5: MV-BiGAN with sequences of incoming views. Here, each view is a 28×28 matrix (values
are between 0 and 1 with missing values replaced by 0.5).

5.3 CelebA, integrating heterogeneous information

At last, the third experiment aims at measuring the ability of MV-BiGAN to handle heterogeneous
inputs. We consider two views: (i) the attribute vector containing information about the person in
the picture (hair color, sex, ...), and (ii) a incomplete face. Figure 6 illustrates the results obtained
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Figure 6: Results obtained on the CelebA dataset for two examples. The first line corresponds to
the images generated based on the attribute vector, the second line corresponds to images generated
based on the incomplete face, the third line corresponds to the images generated based on the two
views. The groundthruth face is given in the bottom-left corner, while the incomplete face is given in
the top-left corner.

on two faces. The first line corresponds to the faces generated based on the attribute vector. One
can see that the attribute information has been captured by the model: for example, the sex of the
generated face is constant (only women) showing that MV-BiGan has captured this information from
the attribute vector. The second line corresponds to the faces generated when using the incomplete
face as an input. One can also see that the generated outputs are ”compatible” with the incomplete
information provided to the model. But the attribute are not considered (for example, women and
men are generated). At last, the third line corresponds to images generated based on the two partial
views (attributes and incomplete face) which are close to the ground-truth image (bottom left). Note
that, in this set of experiments, the convergence of the MV-BiGAN was quite difficult to obtain, and
the quality of the generated faces is still not satisfying.

5.4 Implementation details

All models are optimized using Adam with standard hyperparameters β1 = 0.5, β2 = 10−3 and
a learning rate of 2 · 10−5. All hidden layers in generator or encoder networks are followed by a
rectified linear unit. In discriminator networks, leaky rectified linear units of slope 0.2 are used
instead. Latent representations (µ, log(σ2)) are of size 2×128.

For MNIST experiments, the generator function G has three hidden fully connected layers. The
second and the third hidden layers are followed by batch normalizations. The output layer uses a
sigmoid.

The aggregation model Ψ is a sum of mapping functions φk. Each φk is a simple linear transformation.
The encoding functions E and H are both neural networks that include an aggregation network
followed by two fully connected layers. A batch normalization is added after the second layer. They
output a pair of vectors (µ, log(σ2)). The output layers has a tanh for µ and a negative exponential
linear unit for log σ2.

The discriminator D1 has three fully connected layers with batch normalization at the third layer. A
sigmoid is applied to the outputs. The vector z is concatenated to the representation at the second
layer.

The discriminator D2 is similar to E and H except it uses a sigmoid at the output level. z is
concatenated directly to the aggregation vector Ψ(v(x, s)).

All hidden layers and the aggregation space are of size 1500. λ is set to 1 · 10−5. Minibatch size is
set to 128. The models have been trained for 300 epochs.

For CelebA experiments, the generator function G is a network of transposed convolution layers
described in table 5.4.

The mapping functions φk for images are convolution networks (Table 5.4). For attribute vectors,
they are linear transformations. E and H are neural networks with one hidden layer on top of the
aggregation model. The hidden layer is followed by a batch normalization. The output layer is
the same as in the MNIST experiments. The discriminator D1 is a transposed convolution network
followed by a hidden fully connected layer before the output layer. z is concatenated at the hidden
fully connected level. As in the MNIST experiments, the discriminator D2 is similar to E and H, and
z is concatenated directly to the aggregation vector Ψ(v(x, s)). Aggregation space is of size 1000. λ
is set to 1 · 10−3, and mini-batch size is 16. The model has been trained for 15 epochs.
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Operation Kernel Strides Padding Feature maps BN Nonlinearity

Convolution 4× 4 2× 2 1× 1 64 × Leaky ReLU
Convolution 4× 4 2× 2 1× 1 128

√
Leaky ReLU

Convolution 4× 4 2× 2 1× 1 256
√

Leaky ReLU
Convolution 4× 4 2× 2 1× 1 512

√
Leaky ReLU

Convolution 4× 4 1× 1 output size × Linear

Transposed convolution 4× 4 1× 1 512
√

ReLU
Transposed convolution 4× 4 2× 2 1× 1 256

√
ReLU

Transposed convolution 4× 4 2× 2 1× 1 128
√

ReLU
Transposed convolution 4× 4 2× 2 1× 1 64

√
ReLU

Transposed convolution 4× 4 2× 2 1× 1 3 × Tanh
Table 1: Convolution architectures used in our experiments on the CelebA dataset. The top part is
used for encoding images into the aggregation space. The bottom part is used in G to generate images
from a vector z.

6 Related work

Multi-view and Representation Learning: Many application fields naturally deal with multi-view
data with true advantages. For example, in the multimedia domain, dealing with a bunch of views is
usual (Atrey et al., 2010): text, audio, images (different framings from videos) are starting points of
these views. Besides, multimedia learning tasks from multi-views led to a large amount of fusion-
based ad-hoc approaches and experimental results. The success of multi-view supervised learning
approaches in the multimedia community seems to rely on the ability of the systems to deal with the
complementary of the information carried by each modality. Comparable studies are of importance
in many domains, such as bioinformatics (Sokolov & Ben-Hur, 2011), speech recognition (Arora
& Livescu, 2012; Koço et al., 2012), signal-based multimodal integration (Wu et al., 1999), gesture
recognition (Wu et al., 2013), etc.

Moreover, multi-view learning has been theoretically studied mainly under the semi-supervised
setting, but only with two facing views (Chapelle et al., 2006; Sun, 2013; Sun & Taylor, 2014; Johnson
& Zhang, 2015). In parallel, ensemble-based learning approaches have been theoretically studied, in
the supervised setting: many interesting results should concern multi-view learning, as long as the
ensemble is built upon many views (Rokach, 2010; Zhang & Zhang, 2011). From the representation
learning point of view, recent models are based on the incorporation of some ”fusion” layers in the
deep neural network architecture as in (Ngiam et al., 2011) or (Srivastava & Salakhutdinov, 2012) for
example. Some other interesting models include the multiview perceptron(Zhu et al., 2014).

Estimating Complex Distributions: While deep learning has shown great results in many classifi-
cation task for a decade, training deep generative models still remains a challenge. Deep Boltzmann
Machines (Salakhutdinov & Hinton, 2009) are un-directed graphical models organized in a succes-
sion of layers of hidden variables. In a multi-view setting, they are able to deal with missing views
and have been used to capture the joint distribution in bi-modal text and image data (Srivastava &
Salakhutdinov, 2012; Sohn et al., 2014). Another trend started with denoising autoencoder (Vincent
et al., 2008), which aims to reconstruct a data from a noisy input have been proved to possess some
desirable properties for data generation (Bengio et al., 2013). The model have been generalized under
the name Generative Stochastic Networks by replacing the noise function C with a mapping to a
latent space (Thibodeau-Laufer et al., 2014). Pulling away from the mixing problems encountered
in previous approaches, Variational Autoencoders (Kingma & Welling, 2013) attempts to map the
input distribution to a latent distribution which is easy to sample from. The model is trained by
optimizing a variational bound on the likelihood, using stochastic gradient descent methods. The
Kullback-Leibler regularizer on the latent Gaussian representations used in our model is reminiscent
of the one introduced in the variational lower bound used by the VAE.

The BiGAN model (Donahue et al., 2016; Dumoulin et al., 2016) that serves as a basis for our work
is an extension of the Generative Adversarial Nets (Goodfellow et al., 2014). A GAN extension
that captures conditional probabilities (CGAN) has been proposed in (Mirza & Osindero, 2014).
However, as noted by (Mathieu et al., 2015) and (Pathak et al., 2016), they display very unstable
behavior. More specifically, CGAN have been able to generate image of faces conditioned on an
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attribute vector (Gauthier, 2014), but fail to model image distribution conditioned on a part of the
image or on previous frames. In both CGAN and CVBiGAN, the generation process uses random
noise to be able to generate a diversity of outputs from the same input. However, in a CGAN, the
generator concatenate an independent random vector to the input while CV-BiGAN learns a stochastic
latent representation of the input. Also, some of the difficulties of CGAN in handling images as both
inputs x̃ and outputs ỹ stem from the fact that CGAN’s discriminator directly compares x̃ and y. In
CV-BiGAN, neither discriminators has access to both x̃ and y but only to a latent representation z
and either x̃ or y.

7 Conclusion and Perspectives

We have proposed the CV-BiGAN model for estimating conditional densities, and its extension
MV-BiGAN to handle multi-view inputs. The MV-BiGAN model is able to both handle subsets of
views, but also to update its prediction when new views are added. It is based on the idea that the
uncertainty of the prediction must decrease when additional information is provided, this idea being
handled through a KL constraint in the latent space. This work opens different research directions.
The first one concerns the architecture of the model itself since the convergence of MV-BiGAN is
still difficult to obtain and has a particularly high training cost. Another direction would be to see if
this family of model could be used on data streams for anytime prediction.
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