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Abstract

Higher order abstract syntax is a natural way to formalize programming lan-
guages with binders, like the 7-calculus, because a-conversion and S-reduction
are delegated to the meta level of the provers, making tedious substitutions su-
perfluous. However, such formalizations usually lack induction principles, and
often give rise to exotic terms. Induction is necessary in syntax analysis, and
certain important syntactic properties might be invalid in the presence of ex-
otic terms. The paper introduces well formedness predicates for the w-calculus
with which exotic terms are excluded and, simultaneously, induction principles
are obtained. The principles are then used in formal proofs of vital syntactic
properties, mechanized in Isabelle/HOL.

Keywords: mobility, general-purpose theorem proving, higher order
abstract syntax, induction, mw-calculus

Résumé

La syntaxe abstraite d’ordre supérieur est une technique pour la formalisa-
tion de languages comportant des constructions liantes tels que le w-calcul.
Gréce a cette technique, 'utilisateur n’a pas a gérer explicitement une notion
de substitution, I’a-conversion et la S-réduction faisant intervenir les variables
du niveau meta. Cependant, dans une telle approche, I'on ne dispose pas de
principe d’induction de maniere naturelle, et de plus le langage tel qu’il est for-
malisé peut englober des termes considérés comme exotiques. Dans cet travail,
nous définissons des prédicats de bonne formation pour le w-calcul permettant
d’éliminer les termes exotiques et fournissant des principes d’induction. Ceci
rend possible la preuve de propriétés syntaxiques essentielles pour le 7-calcul,
que nous formalisons dans le systéme Isabelle/HOL.

Mots-clés: mobilité, assistants & la preuve, syntaxe abstraite d’ordre
supérieur, induction, m-calcul



1 Motivation

The w-calculus was introduced to model and analyse mobile systems [17, 16]. It
is based on synchronous communications, in which a sender ab.P transmits a
message b to a recipient ax.@, yielding a transition

ab.P|ax.Q — P|Q{b/x}

Traditionally, the resulting S-reduction is described by a substitution. This can
be a tedious task with processes containing binders, like @ = (vb)Q’, where fur-
ther substitutions are necessary for resulting a-conversions, @Q{b/x} =, (vb')
Q'{b’/b,b/x}. Communication channels and messages both belong to the same
type, called names. This simplicity gives the m-calculus the power to encode the
A-calculus [15], as well as higher order object oriented and imperative languages
[25, 24]. Proofs in the m-calculus, and in particular bisimulation proofs, tend
to be very large and tedious, hence machine assistance is necessary to prevent
errors. The work at hand is part of a larger project to provide a platform for
machine assisted reasoning in and about the w-calculus. We have chosen Is-
abelle/HOL [21, 19], as it is generic and offers a large range of powerful proof
techniques.

General-purpose theorem provers distinguish two levels of reasoning. Upon a
meta logic that has been provided by the implementors, users can create object
logics in which they define new data structures and derive proofs. Program-
ming languages or calculi can be formalized, either fully within the object level
using a first order syntax, or by exploiting the functional, that is, higher or-
der, mechanisms of the meta level. In a first order, or deep, embedding, the
syntax of the m-calculus is described in terms a recursive datatype of the form
P :=0]|ab.P|ab.P|... As a consequence, the user can make full use of
induction principles, yet has to introduce substitution functions to implement a-
conversion and S-reduction on the object level. Several first order formalizations
of the m-calculus have been studied in various theorem provers [13, 1, 9, 12, 8|.
They have given evidence that proofs about m-calculus processes in first or-
der embeddings are very hard, and that it would be illusive to try to tackle
larger proofs. This is due to the calculus being particularly characterized by its
binders, input and restriction, hence a lot of effort has to be invested in tedious
substitutions. In a higher order, or shallow, embedding, on the other hand, the
syntax of the m-calculus is described in terms of a recursive datatype of the
form P := 0| ab.P | az.fp(z) | .... Here, B-reduction boils down to func-
tion application on the meta level, and a-conversion is dealt with by the meta
logic as well, freeing the user from a tedious implementation and application
of substitution functions. Several higher order formalizations of the m-calculus
have been studied in various theorem provers [14, 11, 3]. Unfortunately, with
the above datatype not being recursive in a strict sense, there are no suitable
induction principles, hence, syntax analysis becomes impossible. Even worse,
encodings in higher order abstract syntax may fail to capture precisely the class
of processes one is interested in, giving rise to so called exotic terms. Consider,
for instance,

e 1 A(z : names). if z =a then 0 else ay.0

fw 1 A(z : names). ay.0



where fg is an exotic term, and fyr can be considered as wvalid, or well formed.

Three syntactic properties of the m-calculus are essential for a formalization
of its labelled transition semantics and bisimulations. This has been pointed
out with regard to strong semantics by Honsell, Miculan, and Scagnetto, in
[11]. Our own results give evidence that these principles also suffice for the
analysis of weak semantics. One of the properties, which Honsell et al. call
extensionality of contexts, deserves further mention, as it does not hold in the
presence of exotic terms: Two process abstractions are equal, if they are equal
for a fresh name. Consider fg and fy from above, and some b # a. Then
fe(b) = ay.0 = fu(b), because the conditional in fg evaluates to the negative
argument. Yet, still fg # fw, because fg(a) # fw(a). See also [10] for a
discussion.

In this paper, we discuss how exotic process terms can be ruled out and, si-
multaneously, induction principles can be obtained, by introducing well formed-
ness predicates on higher order process terms, making it possible for us to give
formal proofs of syntactic principles of the w-calculus. Our approach has been
inspired by the work of Despeyroux, Felty and Hirschowitz on higher order em-
beddings of the A-calculus [5, 4]. Alternative methodologies for obtaining induc-
tion principles in higher order abstract syntax are described in [7, 6]. Although
the use of well formedness predicates seems to be a natural choice, it was not ob-
vious at the beginning whether they would suffice to justify the desired syntactic
properties. The proofs, which have been fully formalized in Isabelle/HOL!, ap-
ply induction techniques, partly employing coercion from higher order to first
order syntax and back within a single proof step. To our knowledge, it is the first
time that these non-trivial properties have been derived in a theorem prover.

The paper is organized as follows: In Section 2, we present the necessary
background of Isabelle/HOL. In Section 3, we introduce the m-calculus, and
describe how it is formalized in our framework. In Section 4, we derive three
vital syntactic properties of the w-calculus mentioned above. In Section 5, we
discuss some questions related to our results.

2 Isabelle/HOL

We use the theorem prover Isabelle [21], implementing higher order intuitionistic
logic on its meta level, and formalize the m-calculus in its instantiation HOL for
higher order logic [19]. Proofs in Isabelle are based on unification, and are
usually conducted in a backward resolution style: the user formulates the goal
he/she intends to prove, and then — in interaction with Isabelle — continuously
reduces it to simpler subgoals until all of the subgoals have been accepted by the
tool. Upon this, the goal can be stored in the theorem database of Isabelle/HOL
to be applicable in further proofs. The prover offers various tactics, most of
them applying to single subgoals. The basic resolution tactic resolve_tac, for
instance, allows the user to instantiate a theorem from Isabelle’s database so that
its conclusion can be applied to transform a current subgoal into instantiations of
its premises. Besides these classical tactics, Isabelle offers simplification tactics
based on algebraic transformations. Powerful automatic tactics apply the basic
tactics to prove given subgoals according to different heuristics. These heuristics
have in common that a provable goal is always transformed into a set of provable

IThe sources are available at http://www7.in.tum.de/ roeckl/PI/syntax.shtml.



subgoals; rules that might yield unprovable subgoals are only applied if none of
the resulting subgoals has to be reported to the user as currently unproved.

A major characteristic of Isabelle is that it is generic. This means that new
objects must be defined in terms of already existing concepts. Properties of the
new objects can then be derived from their definitions by formal proofs. In Is-
abelle/HOL, the user can define, for instance, recursive datatypes and inductive
sets. Isabelle then automatically computes rules for induction and case injec-
tion. It should be noted that all these techniques have been fully formalized and
verified on the object level, that is, they are a conservative generic extension
of Isabelle/HOL [20, 2]. A recent extension of Isabelle/HOL allows function
types in datatype definitions to contain strictly positive occurrences of the type
being defined [2]. This allows for formalizations of programming languages in
higher order abstact syntax, like the one we develop in Section 3 of this paper.
Isabelle/HOL implements an extensional equality, =, which relates functions
if they are equal for all arguments. We employ this equivalence as syntactic
equivalence of m-calculus processes.

3 Formalizing Processes

The m-calculus is a value-passing calculus that has been introduced to reason
about mobile systems [17, 16]. In the m-calculus, names are used both for the
communication channels and the values sent along them, allowing processes to
emit previously private names, so to create new communication links with the
recipients. The w-calculus is particularly characterized by its binding opera-
tors input, ay.P, and restriction, (vz)P. The former implements the functional
aspects of the calculus — apply a process abstraction to a received name —
whereas the latter characterizes its imperative aspects — create a fresh loca-
tion, that is, a fresh name. In this section, we describe how the m-calculus
can be formalized in higher order abstract syntax, and present well formedness
predicates simultaneously ruling out exotic terms and introducing induction
principles. We use the datatype from [11, 3] so that our results are comparable
to these formalizations.

Names In the semantic analysis of processes one often instantiates process
terms with fresh names, hence, the type of names has to be at least countably
infinite. We do not use a specific type but employ an axiomatic type class
inf class comprising all types 7 for which there exists an injection from IN into
T. We neither require nor forbid the existence of a surjection, because for our
purpose it is simply relevant that there are infinitely many names, see also our
discussion in Section 5. We use a, b, ... to range over names, and f, and ff,
to denote names abstractions, that is, functions mapping one, respectively two
names, to names. In order to make names and meta variables distinguishable,
we use bold face letters for the former, as above, and italics for the latter, that
is, z,y,. ...

Processes Processes in the m-calculus are built from inaction and the basic
mechanisms for the exchange and creation of names, input, output, and restric-
tion, by applying constructors for choice (or, summation), parallel composition,
matching, mismatching, and replication. Applying higher order abstract syntax,
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Computing the free names and depth of binders of a process.

we formalize input and restriction by means of process abstractions fp, that is,
functions from names to processes.
abelle/HOL, because in the type of the declaration, processes only occur in a

This can be implemented directly in Is-



wip (P) wip (P)
wip (0) WO wip (r.P) W wip (ab.P) "V ?
wipa(fr) wipa(fr) wip (P) wip(Q)
wip (ay.fr(y)) = ° wip (vy)fr()) wip (P +Q) ?
wip (P) wip(Q) wip (P)
wihP[Q) ¢ wh(a=bp) "
wip (P) wip (P)
wip ([a # b]P) "' ° wip (IP) '°
Table 2: Well formed Processes.
positive position.
P == 0 Inaction
| 7P Silent Prefiz
| ab.P Output Prefix
| az.fp(x) Input Prefic
| (va)fe(x) Restriction
| P+P Choice (Summation)
| P|P Parallel Composition
| [a=Db]P Matching
| [a#Db]P Mismatching
| P Replication

The above datatype exactly corresponds to those formalized in Coq in [11, 3].
It is obvious that this datatype definition is not recursive in a strict sense, due
to the use of process abstractions fp as continuations of input and restriction.
Therefore, induction and case injection are not applicable. Further, it is possible
to derive exotic terms in Isabelle/HOL, like fr from the motivation. We use
P,Q,... to range over processes, and fp and ffp for process abstractions.

Free and Fresh Names Names occurring in a process which are not in the
scope of a binder are called free, names in the scope of a binder are called
bound. In higher order abstract syntax, it is neither necessary nor possible
to compute the bound names of a process, because they are represented by
meta level variables of the theorem prover. To compute the free names of a
process, which are represented by object level variables, we use a primitively
recursive function fn, see Table 1. Note that for exotic process terms like fg
from Section 1, fn and fna need not necessarily compute all fresh names; for
fE, for instance, fna computes the empty set. However, for all well formed
processes, fn and fna yield the expected results. A name is fresh in a process
or process abstraction if it is not among its free names. This can be formalized
in terms of fresh(a,P) iff a ¢ fn(P), and fresha(a, fp) iff a & fna(fp) and
freshaa(a, ffp) iff a & fnaa (ffp), respectively.

Well formedness We introduce well formedness predicates in the spirit of
[5, 4], with which we simultaneously eliminate exotic processes like fg given in
the motivation, and obtain induction principles which allow us to derive formally



o wipa (fp) « wia(f,) wfna(f,) wfpa(fp) o
wipa(Az.0) "0  wipa (Aa. 7. fr(z)) "L wipa (\z. fo(z)fs(z).fr(z)) Wi
wina(f,) Vb. wipa(\z. ffp(b,z)) Vb.wfpa(Az. ffp(z,b))
wipa (Az. fu(2)y.ffp(y, z))
Vb. wipa (Az. ffp(b,z)) Vb.wipa(Az. ffp(z,b)) We
wipa (Az. (v y) ffr(y, ) !
wipa(fp) wipa(fo) e _wipa(fr) wipa(fo) vy
wipa (Az. fp(z) + fo(z)) ~°  wipa(Az. fr(z) [ fol(z)) ~°
wina (f,) wfna(f,) wifpa(fp) We wina(f,) wfna(f,) wifpa(fp) We
wipa(\z. [fa(2) = fo(2)].fr(z)) 7  wipa(Az.[fa(z) # fo(2)].fr(x)) ~°

wipa (fp) a
wipa (I)’\j: !]fp (z)) Ws

Wi

Table 3: Well formed Process Abstractions.

wfna (A\z. z) Wi wfna (Az. a) W3

W3 wfnaa (\(z, ) v) Wi wfnaa (\(z,y). a) W

wfnaa (\(z,y). z)

Table 4: Well formed Names Abstractions.

syntactic properties of the w-calculus in Section 4. The predicates are defined
inductively, and concern three levels of reasoning: wfp defines the set of well
formed processes, see Table 2 for the introduction rules, wfpa yields the set of
well formed process abstractions, see Table 3, and wfna and wfnaa describe the
well formed names abstractions, see Table 4. The rules concerning the binders,
that is, W3, W4, W%, and Wy, are of particular interest. For a restricted or
input process to be well formed according to wfp, the continuation fp has to
be well formed according to wfpa. With fp possibly containing inputs and/or
restrictions itself, this argument could have to be continued ad infinitum. As
pointed out in [4], a second order predicates suffices to rule out at least those
exotic terms that might render syntactic properties of the original language
incorrect in the encoding. Therefore, we argue in W§ that a process abstraction
over two names can be applied safely if it is well formed according to wfna
in both its arguments. The process abstraction fg from the introduction, for
instance, is ruled out by this definition. Clearly, for every w-calculus process
there is a well formed encoding of it. On the other hand, we will see in Section 4
that our definition of well formedness is discriminating enough to prove all
necessary syntactic properties of the mw-calculus.

Counting Binders In the proof in Section 4.4, we apply a coercion from
higher order syntax to first order syntax by instantiating meta level variables
in the scope of the binding operators, with fresh names. In order to be able to
provide an amount of fresh names which is sufficient for the proof, we compute
the depth of binders with a primitively recursive function, db, examining process
trees in order to determine the maximal number of binders along each path.



fresh (a, £ (b fresha (a, Az ff (b,
reshaa 1), C10%) " aata i (Moxa)

wipa(fp) wipa(fq) _
fr(a) = fo(a)
fresha(a, fp) fresha(a, fg)
P o= fQQ (EXT)
wip (P) (Exp)

Jfp.wipa(fp) A fresha(a, fr) A P = fp(a)

Table 5: Formalizations of monotonicity, extensionality, and B-expansion.

The definition of db is given in Table 1, where c is an arbitrary name used to
instantiate process abstractions. Like fn, the function db only yields sensible
results for well formed processes.

4 Deriving Syntactic Properties

Three syntactic properties of the m-calculus are necessary in bisimulation proofs
and for the derivation of weak transition laws. As they all deal with process
abstractions, or, process contexts, Honsell, Miculan, and Scagnetto refer to them
as the theory of contexts [11]. Informally, they can be described as follows:

(MoN) Monotonicity: If a name a is fresh in an instantiated process
abstraction fp(b), it is fresh in fp already.

(ExT) Extensionality: Two process abstractions fp and fg are equal,
if they are equal for a fresh name a.

(ExP) [B-Expansion: Every process P can be abstracted over an arbi-
trary name a, yielding a suitable process abstraction.

We prove their formal counterparts, as presented in Table 5, for well formed
processes and process abstractions. Recall from the motivation that extension-
ality only holds for well formed processes. Also in the third law, describing
[B-expansion, that is, the reverse of S-reduction, we only consider well formed
processes and process abstractions, so to make the law strong enough for the
semantic analysis of well formed processes. To the best of our knowledge, it is
the first time that the three principles have been formally justified in interaction
with a theorem prover. The proofs have been conducted in the latest version
of Isabelle/HOL?. Honsell et al. encode them as axioms in their formalization,
reasoning informally for their correctness [11]. Recently, Hofmann has presented
another informal justification, using category theory [10].

4.1 Free and Fresh Names

In the proofs of (ExT)and (EXP), we employ the fact that there exist at least
countably infinitely many names, see Section 3, so we can always find a fresh

2The proof scripts are available at http://www7.in.tum.de/ roeckl/PI/syntax.shtml.



name with which to instantiate a process abstraction. The laws (fl1) — (f7)
formalize these basic properties; their proofs in Isabelle/HOL are standard, and
yield scripts of a few lines only.

finite (A)

Ib.bd A

(£3)  finite (fn(P)) (f4)  finite (fra(fp)) (f5)  finite (frnaa (ffr))
(f6) wipa(fp) fresha(a,fp) c#a
fre'Sh (aa fp(C))
Vb. wipa (Az. ffp (b, z))
Vb. wipa (Az. ffp (z,b)) freshaa(a, ffp)  c#a
fresha (a, Az. ffp(c,x))

Laws (f6) and (f7) express that a name a which is fresh for a well formed process
abstraction, is necessarily fresh for every instantiation except a. (f6) is proved
by induction over wfpa, and all cases are proved automatically by Isabelle; (f7)
can then be derived as a corollary, by a single call to an automatic tactic.

(f1) Ib.a#b (£2)

(7)

4.2 Monotonicity

The monotonicity law, see (MON) in Table 5, is implicitely encoded in our for-
malization. That is, a name a is only free in a process abstraction fp according
to fnaa if it is free in every instantiation, hence for a to be fresh in fp it suffices
to present a single name b so that a is fresh for fp(b). The proof in Isabelle
requires one call to a standard automatic tactic. Monotonicity can be derived
similarly for freshaa, see (MONA) in Table 5.

4.3 Extensionality

Two process abstractions should be equal if they are equal for a single fresh
name. This variation of extensionality, where usually a universal quantification
is used, is natural in the absence of exotic terms, yet does not hold in their
presence, see Section 1 for an example. In the formalization of the m-calculus
in Coq presented in [11], the Calculus of Constructions guarantees that exotic
terms cannot be derived as long as no functions and relations on names can be
defined. This allows Honsell et al. to add (EXT) as an axiom, without explicitely
requiring the abstractions to be well formed.

We prove (EXT) by induction over one of the two involved well formed
processes, fp, and using case injection for the other, that is, fo. Eight out of
the ten cases resulting from the induction are purely technical. The interesting
cases are those concerning input and restriction, because they involve process
abstractions taking two names as arguments. For them, induction yields the
following subgoal:

Vb, fo,a. wipa(fo) A fresha(a,Az. ffp (b,z)) A fresha(a, fo) A
ffr(03) = fo () — Av. ffo(b,2) = Av. fa(@)
Vb, fo,a. wifpa(fg) A fresha(a,Az. ffp (z,b)) A fresha(a, fo) A
ffr(a,b)=fq(a) — Az ffr(z,b) =Az. fo(z)
Vb. wipa (Az. ffp (b, z)) Vb. wipa (Az. ffp (z, b))
Vb. wipa (A\z. ffo (b, z)) Vb. wipa (Az. ffo (z,b))
freshaa(a, ffp) freshaa(a, ffq) Az. ffp (z,a) = Az. ffo (z,a)
Az. ffp (z,¢) = ffq(z,c)




The first two premises contain the two induction hypotheses corresponding to
instantiations of the first respectively second parameter of ffp. We make use of
both of them by subsequently instantiating the first arguments of ffp and ffo
and then the second. Laws (f5) and (f2) from Section 4.1 allow us to choose a
name d which does not occur in {a,c} U fnaa(ffp) U frnaa(ffg). We use this
name to instantiate the first components of ffp and ffg in the first induction
hypothesis, and obtain,

wipa (Az. ffo(d,z)) A fresha(a,Az. ffp (d,z)) A fresha(a,Az. ffo(d,z)) A
ffr(d,a) = ffq(d,a) — Az ffr(d,z) = Az. ffo(d,z)

As all the conditions for the implication can be derived directly from the
premises, or applying (f7) and the fact that d # a, this implication can be
resolved into a new premise of the form Az. ffp (d,z) = Az. ffo(d,z). Simi-
larly, by instantiating the second arguments of ffp and ffgy with c in the second
induction hypothesis, we obtain,

wipa (Az. ffg(z,c)) A fresha(a,Az. ffp (z,c)) A fresha(a,Az. ffo(z,c)) A
ffe(d,c) = ffo(d,c) — Az ffp(z,c) = Az. ffq(z,c)

The conditions imposed by the implications can be derived like in the above
case, this time employing that ¢ # a, yielding the conclusion Az. ffp (z,c) =
Az. ffo(z,c).

In all of the proofs, we have used standard Isabelle proof techniques. Alto-
gether, the proofs of the theorems leading to the extensionality result contain a
bit less than 200 lines of code. Note that it was not obvious at the beginning
that our well formedness predicate would suffice to prove (EXT), as it does not
rule out all exotic terms. From the fact that we have been able to prove ezt, we
can infer that every remaining exotic term is extensionally equal (in the univer-
sally quantified sense) to a term which directly corresponds to a process in the
m-calculus.

Extensionality for process abstractions taking two names as arguments can
be derived from (EXT) if the process abstractions are well formed for all in-
stantiations of their first and second arguments. In the proof, a fresh name is
chosen, and (EXT) is instantiated twice, once with that new fresh name, and a
second time with the fresh name from the premise, that is, the argument from
the proof of (EXT) is replayed, in a proof of about 20 lines of code.

4.4 Beta Expansion

Though seeming fully natural, 8-expansion (EXP) has turned out to be the most
difficult law to prove. This is because it necessitates an asymmetric treatment
of object and meta variables, that is, object variables have to be compared to
the name to be abstracted over, whereas meta variables are intended to pass
without comparison. Unlike in the proof of (EXT), we cannot directly apply
induction, due to the existential quantification in the conclusion. Instead, we
encode a methodology that can be used to abstract over a name in a well formed
process term without changing its syntactic structure. It remains to prove, by
induction, that the process abstraction resulting from such a transformation
indeed fulfills the three requirements described in the conclusion of (ExP).



[a,]] = .z
[a, (b, fo)zs] = if a= b then f, else [a, zs]

[0, zs, ys] = Az.0
[r.P, zs, ys] = Az.7.[P, zs, ys]
[ab.P, zs, ys] = Az.[a, zs](z)[b, zs](z).[P, zs, ys](z)

lay.fo(v), =5, y5] = Az [a, as]@)y. L (ot (ys)), (ot (ys), (. ), A (ys)]()
[((vy)fr(y), zs, ys] = Az. (vy) [fr(fst(ys)), (fst(ys), (Az. y))zs, t(ys)](z)
[P+ Q, zs, ys] = Az. [P, zs, ys](z) + [Q, zs, ys](x)
A
3
3

8

8

8

8

8

[[P || Q, s, ys]] = Az. [P, zs, yS]](.’B) || IIQa s, ys]](x)
[[a=Db|P, zs, ys] = Az.[[a, zs](z) = [b, zs](z)][P, zs, ys](z)
[[a # bIP, zs, ys] = Az.[[a, zs](z) # [b, zs](2)][P, zs, ys](z)

['P, zs, ys] = Az.![P, zs, ys](z)

8

8

Table 6: Abstracting over a name in a process.

The transformation We propose a methodology that is based on coercing
from higher order to first order syntax and back, using a primitively recursive
transformation function [P, zs,ys]. The two lists, zs and ys, are computed
prior to the transformation. The list xs is the transformation list telling for ev-
ery free name in P the names abstraction it is mapped to in the transformation;
it contains no element for the name to be abstracted over, but with all other
free names a in P, it associates a constant function A. a. The list ys contains
as many fresh names as are necessary to instantiate every meta variable in P.
When computing ys, we apply db(P,c) for some arbitrary name c, in order to
determine the necessary length of ys, see Table 1 for a formal description. The
transformation proceeds as follows, refer to Table 6 for its formalization: Ev-
ery name that is encountered is mapped to the names abstraction denoted in
the transformation list s. Only the name that is to be abstracted over does
not occur in zs, hence it is transformed into Az. xz. Whenever the transfor-
mation comes across a binder, that is, input or restriction, it instantiates the
continuation with the first fresh name from ys, that is, fst(ys), and adds a pair
(fst(ys), (Az.y)) to zs, where y is the meta variable given by the binder. When
the transformation later encounters the instantiated (object level) name, it ab-
stracts over it again. This methodology — that is, first instantiating and later
restoring meta variables in a process abstraction — prevents meta variables
from being compared with the object variable to be abstracted over. Note that
any such comparison meta and object variables in the transformation function
for names, [a, zs], could not be evaluated immediately, and, hence, would nec-
essarily result in an exotic process that would not even be extensionally equal
to the intended abstraction.

Well formedness We call an abstraction over a transformation list well
formed if it only applies well formed names abstractions (see Table 4 for a
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definition):

W winaa (ff.) wftrl(fzs) "
whtrl Az, []) witrl (Az. (a, ffa(2)) fos(z))  °

The following two theorems prove that the transformation described above pro-
duces well formed process abstractions when applied to well formed processes:

wipa (fp) wftrl(fzs) wip (P) V(a,f.) € zs. wina (f,)

wipa ([fp(c), fzs(d),ys]) A wipa ([P, zs,ys])
wipa (Az. [fp(c), fos(z), ys](b))

The proofs of the two theorems are tedious but purely technical inductions. The
main difficulty was to formulate a suitable notion of abstractions over transfor-
mation lists, and the first of the two theorems. Note that the second theorem
can only be proved as a consequence of the first.

Freshness In order to prove that the transformation really eliminates the in-
tended name a, we choose a name b # a, and derive by two technical inductions,

wipa(fp)  V(d,fs) €xs. a# fa(b) a#b
fresh(a, [fp(c), zs, ys] (b))

wip (P) V(d, fa) € zs. a# fq(b) a#£b
fresh(a, [P, zs,ys](b))

Again the proof of the second theorem is based on the first. In the proofs, we
make extensive use of law (f6), see Section 4.1.

Equality. It remains to show, again by induction, that a reinstantiation of a
transformation yields the original process. The proofs make use of the mono-
tonicity and extensionality theorems proved in Sections 4.2 and 4.3, as well as
of the well formedness and freshness results from the previous two sections. It
is therefore that we have to guarantee, by using db, that ys contains at least
as many names as there are nested binders in a process. We use a predicate
nodups, to ensure that ys does not contain duplicates. The function fst maps
pairs to their first item; when applied to a list (a1,b1)...(ap,by,) it returns
aj...anp.

wipa (fp) V(b, f5) € zs. fo = Az. b dba (fp,c) < |ys]|
fna(fp) C {a} U fst(xzs) a ¢ fst(xs) d € fst(xzs)
nodups (ys) ysN ({a} U fst(zs)) =0
[fp(d),=s,ys](a) = fr(d)
wip(P) V(b,fs) €zs. fo=Az.b db(P,c)<|ys| fn(P)C {a}U fst(zs)

a ¢ fst(zs) nodups (ys) ysN ({a} U fst(zs)) =0
[P, zs,ys](@) = P

The proofs are tedious but purely technical. Whenever a process abstraction is
encountered, the first name in ys is used as a fresh name, and (EXT) is applied.

The mechanization of the proofs of S-expansion in Isabelle/HOL consist of
about 350 lines of code. It has turned out that naive attempts to set up a
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proof of (-expansion are bound to fail, as object and meta variables cannot
be compared, but meta variables cannot be neglected either. As long as both
object (the free names, in our case) and meta variables (the bound names) both
play a role in the semantic analysis of a language, similar principles like (MON),
(EXT), and (ExP) will have to be derived. We are confident that the techniques
presented in this paper can be adapted to related problems with moderate effort.

5 Discussion

In this section, we discuss questions that have arisen during our work.

Why choose a shallow embedding? Binding mechanisms are tedious to
deal with in a deep embedding. This is especially hard for the w-calculus, be-
cause it is particularly characterized by its two binders, input and restriction.
As, for future prospects, we are particularly interested in reasoning about con-
crete m-calculus processes within our framework, we want to keep the related
effort as small as possible.

Why well formed processes? We have decided to introduce a well formed-
ness predicate, in order to rule out exotic terms and, simultaneously, to obtain
an induction principle. This gives us the opportunity to reason both within and
about the m-calculus in our formalization.

Why Isabelle/HOL? We have chosen Isabelle/HOL mainly for the following
reasons. First, Isabelle implements powerful automatic tactics that facilitate
especially prototypical proofs. Second, Isabelle/HOL provides a large database
of data structures and theorems about them, for instance, sets and lists. Third,
owing to its recent conservative extension, Isabelle is now able to deal with
higher order abstract syntax. And, finally, all the features that we exploit, that
is, recursion and induction, are generic extensions, that is, have been justified
within the object level.

What about other provers? The results presented in this work do not es-
pecially rely on Isabelle. A natural question is whether one could adapt them
to [11], so that the properties (MoN), (EXT), and (EXP) could be formally jus-
tified there as well. To do this, it would be necessary to enrich Coq extensional
notion of equality, like it is formalized in Isabelle/HOL. With Coq providing
powerful induction mechanisms and automatic tactics, we are confident that
the methodology presented in this paper could be mechanized there too.

In logical systems like AProlog [18] and EIf [22], encodings naturally exploit
higher order abstract syntax, and exotic terms are excluded automatically by
the meta logic. On the other hand, these frameworks do not offer adequate
induction principles, hence syntactic properties often cannot be derived within
the encoding. Recent work attemps to bridge this gap: the theorem prover Twelf
[23] implements a meta logic based on EIf which offers a form of automated
induction. While it may be possible to adapt the results presented in this paper
to a framework like Twelf, it remains an open question how much support
these systems can offer in semantic proofs, concerning transition systems and
bisimulations.
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How many names do we need? Any type with at least countably infinitely
many elements fits our formalization. The reason why there cannot be less
names is that the proofs of extensionality and (-expansion are based on the
creation of fresh names for processes or process abstractions. The situation is
less simple in the work of Honsell et al. [11], where the meta level of Coq is
employed to guarantee for the absence of exotic terms. A necessary condition
for this is that an equality relation on names can only be defined in Prop,
and not in Set. This rules out any inductive type. Honsell et al. suggest to
pick the real numbers. The main point, however, is to choose a type in which
any manipulation of names, be it by functions or by relations, is impossible.
This means that when choosing the real numbers, one has to take care that
no operator is defined for them in the formalization, otherwise an inconsistency
can be derived by applying (EXT) to the exotic terms constructed with the
operators.

What about justifying the theory of contexts? This work is not a formal
justification of the “theory of contexts” applied in [11]. To do this, we would
have to encode the meta level of Coq, that is, the Calculus of Constructions, in
a prover, and then employ, for instance, a category theoretical argument, which
seems quite illusive. Our work should rather be seen as a formal justification
of the three syntactic properties presented in the “theory of contexts”, within a
shallow formalization of the w-calculus. As such, our work can be related to that
of Gordon and Melham [7]. There, an axiomatization of a-conversion in HOL is
proposed, which serves as a framework for the derivation of syntax definitions,
as well as substitution and induction principles.

Is the theory of contexts really necessary? The three properties pre-
sented in the “theory of contexts”, and formally justified in this paper, are
essential for the semantic analysis of m-calculus processes. The reason is that
in transition systems and bisimulation proofs both free and bound names play
a role. Recently, Despeyroux has proposed a formalized strong late transition
system for a fragment of the w-calculus within a shallow embedding, which ap-
plies functions as derivatives in order to reduce the number of instantiations [3].
It will have to be investigated how this formalism can be extended to the full
m-calculus, and whether it necessitates a “theory of contexts” in order to reason
about semantics or not.

What about other languages? The theory of well formedness has originally
been developed for the A-calculus [5, 4]. In the same way as we have adapted
and extended it for reasoning about the w-calculus, it can serve as a means of
introducing induction into shallow formalizations of other languages as well. If
these languages possess binders of higher order, however, variables have to be
used to denote such higher order objects within binding constructs, see [4] for
details.
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