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Abstract

Typical statistical methods of data analysis only handle determinate uncertainty, the type of un-

certainty that can be modeled under the Bayesian or confidence theories of inference. An example of

indeterminate uncertainty is uncertainty about whether the Bayesian theory or the frequentist theory is

better suited to the problem at hand. Another example is uncertainty about how to modify a Bayesian

model upon learning that its prior is inadequate.

Both problems of indeterminate uncertainty have solutions under the proposed framework. The

framework is based on an information-theoretic definition of an incoherence function to be minimized. It

generalizes the principle of choosing an estimate that minimizes the reverse relative entropy between it

and a target posterior distribution such as a confidence distribution. The simplest form of the incoherence

function, called the incoherence distribution, is a min-plus probability distribution, which is equivalent

to a possibility distribution rather than a measure-theoretic probability distribution.

An analog of Bayes’s theorem for min-plus probability leads to a generalization of minimizing relative

entropy and thus of maximizing entropy. The framework of minimum incoherence is applied to problems

of Bayesian-confidence uncertainty and to parallel problems of indeterminate uncertainty about model

revision.

Keywords: Bayes-frequentist continuum; Bayesian model checking; blended inference; coding theory; fidu-

cial inference; information theory; Kullback-Leibler divergence; possibility theory



1 Introduction

Uncertainty in statistical inference has multiple layers. The lowest layer is uncertainty about an unknown

quantity or about the truth of a hypothesis according to a mathematical model.

The next layer is uncertainty about which model to rely on under some higher level model. A simple

remedy is Bayesian model averaging, integrating multiple posterior distributions with respect to a posterior

distribution over the models. The resulting average posterior distribution may then generate estimates that

minimize posterior expected loss. That approach is insufficient in itself when there is uncertainty about

the prior over the models or about the highest level hyperprior over candidates for that prior. The more

frequentist approach of fiducial model averaging (Bickel, 2018a) is also insufficient when there is uncertainty

about the highest level confidence distribution.

The first two layers involve what Walley (1991, §5.1.2), citing the 1933 edition of Knight (2012), calls

determinate uncertainty, that which can be represented in terms of a probability distribution. The third layer

of uncertainty in statistical inference involves indeterminate uncertainty, model uncertainty that cannot be

represented by a single posterior distribution given the data (Walley, 1991, §5.1.2), whether that posterior

is a confidence distribution or the result of Bayes’s theorem.

Some forms of indeterminate uncertainty succumb to minimizing risk over a set of candidate models.

Unlike Bayesian model averaging, that approach can discriminate between Bayesian models that have no

hyperprior over them (e.g., Grünwald and Dawid, 2004) and can even adjudicate between frequentist and

Bayesian point estimates (Samaniego, 2010). Other forms of indeterminate uncertainty can be reduced a

problem of minimizing expected loss with respect to a distribution that maximizes entropy in the broad

sense of minimizing relative entropy. Extreme forms call for a generalization of maximum entropy such as

the framework proposed in this paper.

In that framework, indeterminate uncertainty is made determinate by finding the most coherent dis-

tribution, the posterior distribution that minimizes a measure of the incoherence between the uncertain

distributions of that quantity. If parameter estimates or other actions are needed, they may then be found

by minimizing the expected loss with respect to the most coherent distribution. Even when there is no

unique most coherent distribution, basing inference only on the most coherent distributions can benefit from

a substantial reduction in indeterminacy.
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Incoherence between Bayesian and frequentist inference occurs in many applications when there is inde-

terminate uncertainty about which theory of statistics to use.

Example 1. Let p (0) denote a Bayesian posterior probability that ψ, the parameter of interest, is 0 or

some other null hypothesis value. Simple lower bounds on the Bayes factor that quantifies the relevancy of

the evidence for the null hypothesis H0 are available under various sets of assumptions reviewed in Held and

Ott (2018). From such a lower bound on the Bayes factor, Bayes’s theorem generates p (0), a lower bound

on p (0), given any prior probability of H0 or given any interval of such prior probabilities.

That approach to hypothesis testing faces two major obstacles. First, a lower bound on the posterior

probability of H0, no matter how low, cannot in itself imply that the posterior probability of H0 is low

(Sellke et al., 2001), for that could be anywhere in the interval
[
p (0) , 1

]
. For example, if p (0) = 10−7, then

p (0) ∈
[
10−7, 1

]
, which is not much more useful than the trivial p (0) ∈ [0, 1].

Second, many argue that sinceH0 cannot be exactly true, it should always be assigned 0 prior probability,

necessarily leading to p (0) = 0 regardless of what data are observed (e.g., Bernardo, 2011). The view that

the posterior probability of H0 must be 0 agrees with the standard practice of reporting a confidence interval

for ψ in the sense that the confidence density for a continuous parameter (Efron, 1993) puts 0 fiducial

probability at each possible value of ψ, including 0. Further, confidence distributions tend to be close to

objective Bayes posteriors, posterior distributions derived from improper priors. While there are important

exceptions (Fraser, 2011; Bahamyirou and Marchand, 2015), confidence distributions and objective Bayes

posteriors are similar for large enough samples under broad conditions (Veronese and Melilli, 2018a,b).

Giving due weight to the arguments that raise the second obstacle provides a straightforward path through

the first obstacle. That will be seen to result from minimizing incoherence. N

Another example of Bayes-frequentist indeterminacy calls for blending fully Bayesian inference on one

hand with frequentist or objective Bayes inference on the other.

Example 2. A scientist observes x = 2 as the value of X ∼ N(θ, 1) for an unknown θ. In the domain

of application, the prior distribution of θ is N
(
0, σ2

0

)
, with σ0 = 1/8 according to the working hypothesis.

Since the working hypothesis might be incorrect, the scientist considers not only the resulting fully Bayesian

posterior but also the usual confidence intervals for θ, all of which may be encoded in as the single confidence

distribution N(x, 1) = N (2, 1) (e.g., Schweder and Hjort, 2016). (In this case, N(2, 1) is also the objective
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Bayes posterior from the uniform prior.) Judging both the fully Bayesian approach and the frequentist

approach relevant to inference about θ, the scientist uses N
(
0, σ̃2

0

)
as the prior distribution, where the value

of σ̃0 > 1/8 is determined by blending the confidence distribution with the fully Bayesian posterior such that

incoherence is minimized. N

In addition to Bayes-frequentist incoherence, a manifestation of indeterminate uncertainty that challenges

statistical data analysis is that of model selection in light of inference after model selection but without a

unique hyperprior over the models. Understood broadly, indeterminate model selection includes inference

after updating a prior distribution in light of prior-data conflict (Walter and Augustin, 2009; Evans and

Jang, 2011; Bickel, 2018b) in spite of its violation of Bayes’s theorem (cf. Mayo, 2018, §6.4).

Example 3. A scientist who had been heavily relying on N
(
0, σ2

0

)
with σ0 = 1/8 as the prior distribution

of θ observes that X = 2 and becomes aware of independent arguments against σ0 = 1/8. Since those

arguments do not counter all the evidence that seemed to support σ0 = 1/8, they do not warrant jumping to

a default prior, proceeding as if it were never reasonable to use σ0 = 1/8. Nonetheless, the initial prior must

be weakened in the direction of the uniform prior (cf. Evans, 2015, §5.7), which is practically equivalent to

N
(
0, σ2

0

)
for sufficiently high σ0. That may be accomplished by increasing σ0 to σ∗

0 , the value that minimizes

the incoherence between the posteriors from the initial prior and the uniform prior. N

In spite of the similarities between Examples 2-3, their most coherent distributions differ since σ∗
0 < σ̃0.

The extent of the discrepancy is recorded in Figure 1.

The formalism of minimum incoherence is presented in Section 2 with an eye to statistical theory and

applications. That framework justifies a generalization of maximum entropy, which solves the problems of

Example 1 and a problem of model revision conditional on a new insight (Section 3). Examples 2 and 3

instead require hierarchical incoherence, the topic of Section 4. Finally, Appendix A compares merits of the

recommended framework to those of a generalized principle of maximum expected utility.
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Figure 1: Posterior density functions of θ, the mean of a unit-variance observable random variable X , given
the observation that X = 2. The two lighter curves correspond to the fully Bayesian posterior based on the
normal prior of mean 0 and standard deviation 1/8 (solid) and to the confidence distribution that is equal
to the objective Bayes posterior based on the uniform prior (dotted). Between the two lighter curves, each
of the two darker curves represents the most coherent density function for statistical inference according to
whether it is a blend of Bayesian and frequentist inference (dashed), as per Example 2, or whether it results
from revising the first prior (solid), as per Example 3.

2 Incoherence as generalized redundancy under indeterminate un-

certainty

2.1 Source distributions and coding distributions for statistics

The incoherence framework specified in Section 2.2 follows the distinction in information theory between

"source distributions" and "coding distributions," which is analogous to the distinction in statistical theory

between true distributions and distributions that estimate them, respectively. Applications of minimum

incoherence require identifying source distributions and coding distributions in the problem at hand. For the

examples in Section 1, the source distributions and coding distributions are posterior distributions understood

broadly enough to include not only Bayesian posterior distributions but also prior-free posteriors such as

confidence distributions and other fiducial distributions (e.g., Hannig et al., 2016) as well as posteriors from

inferential models (Martin and Liu, 2013).

In Examples 1 and 2, the fully Bayesian posteriors would be source distributions, whereas the objective

Bayes posteriors and fiducial distributions would be coding distributions according to arguments that the

latter approximate or estimate the former. Singh, Xie, and Strawderman (2007) and Xie and Singh (2013)
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considered confidence distributions as estimates of ψ, the parameter of interest. In the case that ψ is an

indicator of the truth of a hypothesis, as in Examples 1-4, a fiducial probability in the form of an observed

confidence level (Polansky, 2007) serves as an estimate of ψ (Bickel, 2012a). Wilkinson (1977, §6.2) instead

presented fiducial probability, a generalization of an observed confidence level, not as a level of belief but

rather as an estimate of a level of belief since it cannot be updated via Bayes’s theorem. If true levels of

belief are equated with Bayesian posterior probabilities (Wilkinson, 1977, §6.2), that would suggest that

confidence distributions and other fiducial distributions are estimates of Bayesian posterior distributions.

That seemingly academic viewpoint has two concrete implications for statistical inference. First, it

indicates that fiducial distributions may well be useful as estimates in spite of criticisms that they deviate

from some certain laws of probability (e.g., Grundy, 1956; Lindley, 1958; Evans, 2015, §3.6), for estimates

need not have all the properties of what they estimate. Second, it guides the application of Section 2.2

by letting fiducial distributions as estimates serve as coding distributions and the fully Bayesian targets of

estimation serve as source distributions.

In contrast, in Example 3, the fully Bayesian posterior, now considered inadequate, would no longer

qualify as a source distribution. However, because it is not abandoned entirely, it could serve as a coding

distribution that in some sense estimates a source distribution for purposes of model revision. Since a

candidate for the revised model in that example is based on the uniform prior, the corresponding objective

Bayes posterior is appropriate as a candidate source distribution.

It will be seen in Section 4 that the differences in what are considered source distributions and coding

distributions account for the discrepancy noted in Figure 1.

2.2 Derivation of the incoherence function

In the problem of source coding, a source distribution p generates an outcome to be encoded by an algorithm

called a code that is idealized as a coding distribution q (Picard, 2004, §1.2). If p and q are probability

mass functions on some finite set Θ of possible outcomes, then the number of characters a code requires to

describe an outcome is abstracted as the ideal codelength (cf. Grünwald, 2007), the amount of information

S (q (θ)) that would be gained by observing an outcome θ in addition to the information in its probability
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q (θ) according to q as the coding distribution. Assuming that q (θ) > 0 =⇒ S (q (θ)) ≥ 0 and that

q (θ) , q (θ′) > 0 =⇒ S (q (θ) q (θ′)) = S (q (θ)) + S (q (θ′))

for outcomes θ and θ′, it follows that S (q (θ)) ∝ − log q (θ), with the result that S (q (θ)) = − log q (θ) may

be adopted as a convention (Aczél and Daróczy, 1975, §0.2). That defines E p (S (q)) =
∑
θ p (θ)S (q (θ)) as

the expected ideal codelength of q with respect to p.

The redundancy of a coding distribution q with respect to a source distribution p is this difference in

expected ideal codelengths:

rdndcp (q) := Ep (S (q))− E p (S (p)) = Ep

(
log

p

q

)
=
∑

θ

p (θ) log
p (θ)

q (θ)
, (1)

which is the Kullback-Leibler divergence between p and q (Cover and Thomas, 2006, §13.1). Relaxing

the assumption that Θ is finite, the redundancy a coding probability distribution q with respect to source

probability distribution p is the Kullback-Leibler divergence

rdndcp (q) = Ep

(
log

d p

d q

)

if q dominates p or rdndcp (q) = ∞ otherwise. For example, rdndcp (q) =
∫

p (θ) log (p (θ) / q (θ)) dθ if p and

q are source and coding probability density functions on Θ with respect to the Lebesgue measure. Given

a source distribution p, the goal is to determine which members of a set Q of possible coding distributions

minimize the redundancy:

bestp (Q) := {q ′ ∈ Q : rdndcp (q
′) = infq∈Q rdndcp (q)} . (2)

The function minimized, q 7→ rdndcp (q), is called reverse relative entropy to distinguish it from p 7→

rdndcp (q), called relative entropy.

In typical statistical applications, Θ is an uncountable set of parameter values that index the distributions

of some family {x 7→ f θ (x ) : θ ∈ Θ} of probability density functions that could have generated the observed

sample x ; that is, x is a realization of the random sample X ∼ f θ for some unknown θ ∈ Θ. Accordingly,
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the source distribution p is a posterior distribution such as a confidence distribution (Bickel, 2012a) or the

Bayesian posterior that results from applying Bayes’s theorem to a prior distribution. As a distribution

intended to estimate p, the coding distribution q may also be a posterior distribution.

Under the indeterminate uncertainty introduced in Section 1, p is not known but is considered as a mem-

ber of a set P of posterior distributions. For example, P may be the set of Bayesian posterior distributions

corresponding to different priors, or P could be the set of confidence distributions corresponding to different

methods of constructing confidence intervals (Bickel, 2012b). To generalize minimum redundancy to that

setting, we need an “incoherence function” to minimize over a set of “decisions” that is analogous to the

function q 7→ rdndcp (q) that is minimized over the set Q of coding distributions in equation (2). Such a

function is defined by its desirable properties.

Definition 1. Let Q and P denote the power sets (collections of all subsets) of Q and P, respectively. Q and

P induce Q⊗P, the power set of the decision set Q×P. The set of most coherent decisions in D0 ∈ Q⊗P

restricted to a non-empty D1 ∈ Q⊗P is

cohrnt (D0 | D1) :=
{
d ′ ∈ D0 : I

(
d ′ | D1

)
= min (infd∈D0

I (d | D1) , I (∅|D1))
}
, (3)

where I (d | D1) = I ({d} |D1) for all d ∈ Q×P, assuming the I written in equation (3) is a conditional

incoherence function according to the following definition. The function I (•) on Q⊗P is an incoherence

function, and the function I (•|•) on (Q⊗P)× (Q⊗P) is a conditional incoherence function if all of these

conditions hold:

1. I (D0 | D1) = I (d | D1) for every d ∈ cohrnt (D0 | D1) and every non-empty D1 ∈ Q⊗P. (The inco-

herence of making a decision in D0 given that it must be in D1 is the incoherence of making one of the

most coherent such decisions. That is because the decision maker minimizes incoherence according to

equation (3).)

2. I (D0) = I (D0 | Q×P) for all D0 ∈ Q⊗P. (The incoherence of making a decision in D0 is the

incoherence of making a decision in D0 given that it is in the decision set.)

3. There is a real number I such that I (D0 | D1) = I for every non-empty D0,D1 ∈ Q⊗P such that

D1 ⊂ D0. (Since every decision must be in the set to which it is restricted, the incoherence of making
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a decision in a set that includes the whole restriction set does not depend on those particular sets.)

4. There are no non-empty D0,D1 ∈ Q⊗P such that cohrnt (D0 | D1) = ∅. (At least one of the decisions

in D0 restricted to D1 has to be among the most coherent.)

5. All incoherence functions share a function φ such that I (D0 | D1) = φ (I (D0 ∩D1) , I (D1)) for all

D0 ∈ Q⊗P and all non-empty D1 ∈ Q⊗P. (Following the analogous condition that Cox (1961) used

to characterize standard conditional probability, this constrains the incoherence of making a decision

in D0 given that the decision must be taken in D1; see also Lapointe and Bobée (2000).)

6. Let Q : Q×P → Q and P : Q×P → P denote the functions such that Q ((q , p)) = q and P ((q, p)) =

p for all q ∈ Q and p ∈ P. There are real numbers ccond and cjoint and a positive real number c>0

such that

I (Q = q |P = p) = (rdndcp (q)− ccond) c>0 (4)

I (Q = q,P = p) = (rdndcp (q)− cjoint) c>0 (5)

for all q ∈ Q and p ∈ P. (Given that a decision must include a certain source distribution p, incoherence

is a linear function of the redundancy with respect to that source distribution. That is fitting since

redundancy is a linear function of the difference in ideal codelengths according to equation (1).)

The rationale for each condition appears in parentheses. The conditions are compressed as follows.

Lemma 1. I and I (•|•) are an incoherence function and a conditional incoherence function on Q⊗P and

(Q⊗P)× (Q⊗P) if and only if, for all D0 ∈ Q⊗P, there is a real number I such that

I (D0) ≥ I = I (Q×P) (6)

I (∅) ≥ sup
d∈Q×P

I (d) (7)

I (D0) = infd∈D0
I (d) (8)
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I (D0 | D1) = I (D0 ∩D1)− I (D1) + I ∀D1 ∈ (Q⊗P) \∅ (9)

I (Q = q |P = p)− I ∝ rdndcp (q)− infq′∈Q rdndcp (q
′) ∀ q ∈ Q, p ∈ P . (10)

Proof. This proof’s condition numbers are those of the list in Definition 1. Consider any D0 ∈ Q⊗P and

any real value I .

( ⇐= ) . Assume equations (6)-(10) for any non-empty D1 ∈ Q⊗P. Condition 5 follows immediately

from equation (9). By equation (9), I (D0 | Q×P) = I (D0 ∩ (Q×P)) − I (Q×P) + I , which is I (D0) by

D0 ⊂ Q×P and equation (6). That establishes condition 2.

Equations (9) and (8) generate the conditional counterparts of equations (6), (7), and (8):

I (D0 | D1) = I (D0 ∩D1)− I (D1) + I ≥ I = I ((Q×P) ∩ D1)− I (D1) + I = I (Q×P |D1) (11)

I (∅|D1) = I (∅ ∩ D1)− I (D1) + I ≥ sup
d∈Q×P

I ({d} ∩ D1)− I (D1) + I = sup
d∈Q×P

I (d | D1) (12)

I (D0 | D1) = I (D0 ∩D1)− I (D1) + I = infd∈D0
I ({d} ∩ D1)− I (D1) + I = infd∈D0

I (d | D1) . (13)

For every d ∈ cohrnt (D0 | D1), equation (3) gives I (d | D1) = infd∈D0
I (d | D1), which is I (D0 | D1) accord-

ing to equation (13), and so condition 1 must hold. If D1 ⊂ D0, then equations (8) and (13) imply

I (D0 | D1) = infd∈D1
I ({d} ∩ D1)− I (D1) + I = I (D1)− I (D1) + I ,

resulting in condition 3. By equations (3) and (12), cohrnt (D0 | D1) 6= ∅ if D0 6= ∅, which is what condition

4 requires.

For the ( ⇐= ) direction of the proof, it now suffices to prove condition 6, which asserts equations (4)
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and (5). Equation (4) follows directly from equation (10). From formulas (9) and (10), there is a constant

of proportionality c∝ > 0 such that

I (Q = q,P = p) = I (Q = q |P = p)− I + I (P = p)

= (rdndcp (q)− infq′∈Q rdndcp (q
′)) c∝ + I (P = p)

=

(
rdndcp (q)−

(
infq′∈Q rdndcp (q

′)−
I (P = p)

c∝

))
c∝,

which reduces to equation (5).

Therefore, I (•) and I (•|•) are an incoherence function and a conditional incoherence function on Q⊗P

and (Q⊗P)× (Q⊗P).

( =⇒ ) . Assume I (•) and I (•|•) are an incoherence function and a conditional incoherence function on

Q⊗P and (Q⊗P)× (Q⊗P). By equation (3) and by conditions 2 and 1,

I (D0) = I (D0 | Q×P) = infd∈D0
I (d | Q×P) = infd∈D0

I (d) ,

establishing equation (8), from which it follows that I (D0) ≥ I (Q×P) since D0 ⊂ Q×P. Thus, since

I (Q×P) = I (Q×P |Q×P) = I by conditions 2 and 3, equation (6) holds.

If equation (7) were false, then there would be a d ∈ Q×P such that I (∅) < I ({d}), which, with

condition 2, would imply that cohrnt ({d} |Q×P) = ∅. Since that contradicts condition 4, equation (7)

cannot be false.

Condition 6 says there are a real number ccond and a positive number c>0 such that equation (4) holds

for all q ∈ Q and p ∈ P . Since condition 3 implies that I (Q×P |P = p) = I ,

I = I (Q×P |P = p) = I (Q ∈ Q |P = p) = (infq∈Q rdndcp (q)− ccond) c>0 .

Thus, ccond = infq∈Q rdndcp (q)− I / c>0, which substituted into equation (4) gives

I (Q = q |P = p) = (rdndcp (q)− infq′∈Q rdndcp (q
′)) c>0 + I (14)

for all q ∈ Q and p ∈ P . Equation (10) follows with c>0 as the constant of proportionality.
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A similar expression comes from analogous reasoning with equation (5) instead of equation (4). By

equation (6),

I = I (Q×P) = (infq∈Q,p∈P rdndcp (q)− cjoint) c>0 .

Then cjoint = infq∈Q,p∈P rdndcp (q)− I / c>0, and substitution into equation (5) gives

I (Q = q ,P = p) = (rdndcp (q)− infq′∈Q,p′∈P Ep′ (uq′)) c>0 + I (15)

for all q ∈ Q and p ∈ P . Again applying equation (8),

I (P = p) = infq′∈Q I (Q = q ′,P = p)

= (infq′∈Q rdndcp (q
′)− infq′∈Q,p′∈P Ep′ (uq′)) c>0 + I

according to equation (15). Then, by equations (14) and (15),

I (Q = q,P = p)− I (Q = q |P = p) = (infq′∈Q rdndcp (q
′)− infq′∈Q,p′∈P Ep′ (uq′)) c>0

= I (P = p)− I .

That forces the φ in condition 5 to satisfy

I (D0 | D1) = φ (I (D0 ∩D1) , I (D1)) = I (D0 ∩D1)− I (D1) + I

for any non-empty D1 ∈ Q⊗P. That entails equation (9).

The conditions are simplified further in Section 2.3.

2.3 The incoherence function as a min-plus probability distribution

Two simplifications to the result of Lemma 1 do not affect the set of chosen decisions: first, replace equation

(7) with I (∅) = ∞; second, let I = 0. In fact, any functions Π(•) and Π(•|•) on Q⊗P and (Q⊗P) ×

(Q⊗P) are known as a min-plus probability distribution and a conditional min-plus probability distribution,

respectively, if they satisfy I (∅) = ∞ and equations (6), (8), and (9) with I = 0. The “min” in “min-plus”
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refers to the “ inf” in equation (8), where standard probability would instead have addition for marginalization,

and the “plus” refers to the “+” in I (D0 ∩D1) = I (D0 | D1)+ I (D1), where standard conditional probability

would instead have multiplication.

The considerable simplification without changing the most coherent decisions warrants working only with

incoherence functions that are also min-plus probability distributions.

Theorem 1. For every I (•) and I (•|•) that are an incoherence function and a conditional incoherence

function on Q⊗P and (Q⊗P) × (Q⊗P), let Π(•) and Π(•|•) be a min-plus probability distribution and

a conditional min-plus probability distribution such that

{
d ′ ∈ D0 : I

(
d ′ | D1

)
= infd∈D0

I (d | D1)
}
=
{
d ′ ∈ D0 : Π

(
d ′ | D1

)
= infd∈D0

Π(d | D1)
}

(16)

for any D0 ∈ Q⊗P and non-empty D1 ∈ Q⊗P. Then Π(•) and Π(•|•) are an incoherence function and

a conditional incoherence function on Q⊗P and (Q⊗P)× (Q⊗P).

Proof. Since equations (6)-(10) characterize incoherence functions and conditional incoherence functions

according to Lemma 1, it suffices to derive those equations for Π(•) and Π(•|•) using Π = 0 in place of I .

As min-plus probability distributions and conditional min-plus probability distributions, they by definition

satisfy equations (6), (8), and (9). Since min-plus probability distributions also satisfy I (∅) = ∞, equation

(7) holds for Π(•).

Thus, equation (16) is only needed to prove that Π(•) and Π(•|•) satisfy equation (10) with Π = 0 in

place of I . By equations (16) and (9),

arg infd∈D0
I (d | D1) = arg infd∈D0

Π(d | D1)

arg infd∈D0
I ({d} ∩ D1)− I (D1) + I = arg infd∈D0

Π({d} ∩ D1)−Π(D1) + Π

arg infd∈D0 ∩D1
I (d)− I (D1) + I = arg infd∈D0 ∩D1

Π(d)−Π(D1) + 0

arg infd∈D0 ∩D1
I (d) = arg infd∈D0 ∩D1

Π(d)

arg inf(q,p)∈D0 ∩D1
I (Q = q ,P = p) = arg inf(q,p)∈D0 ∩D1

Π(Q = q ,P = p)

arg inf(q,p)∈D0 ∩D1
I (Q = q |P = p) + I (P = p)− I = arg inf(q,p)∈D0 ∩D1

Π(Q = q |P = p) + Π (P = p)−Π

arg inf(q,p)∈D0 ∩D1
I (Q = q |P = p) + I (P = p) = arg inf(q,p)∈D0 ∩D1

Π(Q = q |P = p) + Π (P = p) ,

12



which can only hold for every D0 ∈ Q⊗P and non-empty D1 ∈ Q⊗P if q 7→ Π(Q = q |P = p)+Π (P = p)

is a monotonic increasing, linear function of q 7→ I (Q = q |P = p)+I (P = p). Thus, q 7→ Π(Q = q |P = p)

is a monotonic increasing, linear function of q 7→ I (Q = q |P = p), which is in turn a monotonic increasing,

linear function of q 7→ rdndcp (q) according to equation (10). It follows that q 7→ Π(Q = q |P = p) is a

monotonic increasing, linear function of q 7→ rdndcp (q). That means there are a real number c0 and a

positive number c1 such that

Π(Q = q |P = p) = (rdndcp (q)− c0) c1 (17)

for all q ∈ Q. By equations (11) and (13) ,

0 = Π = Π(Q×P |P = p) = Π (Q ∈ Q |P = p) = infq∈Q Π(Q = q |P = p) = (infq∈Q rdndcp (q)− c0) c1,

implying that c0 = infq∈Q rdndcp (q). Substituting that into equation (17), with Π = 0, provides formula

(10) with c1 as the constant of proportionality.

Since min-plus probability distributions are the simplest versions of equivalent incoherence functions, all

incoherence functions in the rest of the paper are min-plus probability distributions and for that reason are

called incoherence distributions. Likewise, every conditional incoherence function that is also a conditional

min-plus probability distribution is called a conditional incoherence distribution. As a further simplification,

the constant of proportionality in equation (10) is set to 1.

Limiting attention to incoherence distributions has another advantage: it facilitates applications of the-

orems in an extensive theoretical and applied mathematics literature on min-plus probability (e.g., Akian

et al., 1994; Quadrat, 1998) and other, equivalent forms of idempotent probability (e.g., Puhalskii, 2001),

including max-plus probability (e.g., Akian et al., 1994; Quadrat, 1995; Fleming et al., 2010; Fitzpatrick,

2013). Theories equivalent in wide generality include ranking function theory in the philosophy literature

(Spohn, 2012) and, in the case of conditional possibility equivalent to I (D0 ∩D1) = I (D0 | D1) + I (D1),

possibility theory in the fuzzy logic literature (e.g., De Baets et al., 1999; Lapointe and Bobée, 2000).
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3 A derivation of generalized maximum entropy for statistics ap-

plications

By equation (4) of Definition 1, minimizing the conditional incoherence distribution given a source distribu-

tion results in the same coding distributions as minimizing redundancy with respect to that distribution. If

that source distribution is only known to lie in a set P0, then we instead minimize the conditional incoherence

distribution given that the source distribution is in P0.

Proposition 1. Assume p 7→ I (P = p) is constant, that is, I (P = •) ≡ 0. For any non-empty P0 ∈ P,

arg infq∈Q I (Q = q |P ∈ P0) = arg infq∈Q infp∈P0
rdndcp (q) .

Proof. By equations (8), (9), and (10), there is a real number c such that

I (Q = q |P ∈ P0) = I (Q = q ,P ∈ P0)− I (P ∈ P0)

= infp∈P0
I (Q = q,P = p)− I (P ∈ P0)

= infp∈P0
I (Q = q |P = p) + I (P = p)− I (P ∈ P0)

= infp∈P0
I (Q = q |P = p) + 0− I (P ∈ P0)

∝ infp∈P0
rdndcp (q)− infq′∈Q rdndcp (q

′) + c

Instead of minimizing conditional incoherence over coding distributions given a set of source distributions,

we can instead minimize conditional incoherence over source distributions given a set of coding distributions.

Example 4. Example 1, continued. To indicate whether the null hypothesis is true, let θ = θ (0) = 0

if ψ = 0 and θ = θ (ψ) = 1 if ψ 6= 0, where ψ is a scalar parameter of interest. The set of posterior

distributions of θ satisfying the set of assumptions leading to p (0) as the posterior probability’s lower bound

is P =
{
(π0, 1− π0) : π0 ∈

[
p (0) , 1

]}
, where (π0, 1− π0) is the Bernoulli distribution with probability π0 or

1− π0 of an outcome of 0 or 1.

14



Let C denote either a confidence density function of ψ or an objective Bayes posterior density function of

ψ, where either density is with respect to the Lebesgue measure. C ’s underlying assumption that ψ 6= 0 with

probability 1 (Example 1) may be interpreted as its estimating θ to be arbitrarily close to 1. For example,

given an arbitrarily small ε > 0, the estimate of θ could be found by minimizing the expected squared error

loss over [0, 1− ε] with respect to C :

arg min
θ̂∈[0,1−ε]

Eψ∼C

((
θ̂ − θ (ψ)

)2)
= arg min

θ̂∈[0,1−ε]

∫ ∞

−∞

(
θ̂ − θ (ψ)

)2
C (ψ) dψ

= arg min
θ̂∈[0,1−ε]

lim
δ↓0

∫ −δ

−∞

(
θ̂ − 1

)2
C (ψ) dψ +

∫ δ

−δ

(
θ̂ − 0

)2
C (ψ) dψ +

∫ ∞

δ

(
θ̂ − 1

)2
C (ψ) dψ

= arg min
θ̂∈[0,1−ε]

∫ ∞

−∞

(
θ̂ − 1

)2
C (ψ) dψ = arg min

θ̂∈[0,1−ε]

(
θ̂ − 1

)2
= 1− ε.

Thereby estimating θ to be 1 − ε is equivalent to specifying the Bernoulli distribution (ε, 1− ε) as qC , the

coding distribution of θ for an arbitrarily small ε > 0. The designation of qC as a coding distribution and

the members of P as source distributions agrees with Section 2.1’s arguments that fiducial distributions in

some sense estimate Bayesian posterior distributions.

Which of the fully Bayesian posterior distributions in P should be used given that qC = (ε, 1− ε) is

chosen as a coding distribution? Equation (3) answers, “Those that minimize conditional incoherence given

Q = qC ”:

cohrnt (P ∈ P |Q = qC ) = {p′ ∈ P : I (P = p′ |Q = qC ) = infp∈P I (P = p |Q = qC )} .

Assuming the marginal incoherence of each coding distribution and source distribution is constant, that is,

15



I (Q = •) ≡ 0 and I (P = •) ≡ 0, equations (9) and (10) lead to

I (P = p |Q = qC ) = I (P = p,Q = qC )− I (Q = qC )

= I (Q = qC |P = p) + I (P = p)− I (Q = qC ) (18)

= I (Q = qC |P = p) + 0− 0

∝ rdndcp (qC )− infq′∈Q rdndcp (q
′)

= Ep

(
log

p

qC

)
− infq′∈Q E p

(
log

p

q ′

)

= Ep

(
log

p

(ε, 1− ε)

)
− infπ′

0
∈[0,1] Ep

(
log

p

(π′
0, 1− π′

0)

)
= Ep

(
log

p

(ε, 1− ε)

)
.

Since ε is arbitrarily small, the most coherent distribution is

lim
ε↓0

cohrnt (P ∈ P |Q = qC ) = lim
ε↓0

arg inf
p∈P

Ep

(
log

p

(ε, 1− ε)

)

= lim
ε↓0

arg inf
(π′

0
,1−π′

0)∈{(π0,1−π0):π0∈[p(0),1]}
E (π′

0
,1−π′

0)

(
log

(π′
0, 1− π′

0)

(ε, 1− ε)

)

= lim
ε↓0

arg inf
(π′

0
,1−π′

0)∈{(π0,1−π0):π0∈[p(0),1]}
π′
0 log

π′
0

ε
+ (1− π′

0) log
1− π′

0

1− ε

=

(
lim
ε↓0

arg inf
π′

0
∈[p(0),1]

π′
0 log

π′
0

ε
, 1− lim

ε↓0
arg inf

π′

0
∈[p(0),1]

π′
0 log

π′
0

ε

)

=
(
p (0) , 1− p (0)

)
,

which is the posterior distribution for which the posterior probability of the null hypothesis is p (0), the

lower bound. For example, if p (0) = 10−7, then 10−7 is the most coherent choice of a posterior probability

of the null hypothesis.

Since rdndcp (qC ) is minimized as a function of p rather than as a function of qC , what is minimized is

relative entropy rather than redundancy or reverse relative entropy. Minimizing relative entropy is commonly

called maximum entropy since − rdndcp (q) is the Shannon entropy of p up to a constant if Θ is finite and

q is uniform. Other applications of maximum entropy to blend Bayesian and frequentist inference appear in

Bickel (2015), which justified maximum entropy on the basis of a minimax framework (Topsøe, 1979) rather

than the minimum incoherence framework. N
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Equation (18) is analogous to Bayes’s theorem, with the constraint on the coding distribution (Q = qC in

this case) corresponding to the observed data, I (P = p |Q = qC ) to the posterior probability, I (P = p) to

the prior probability, and I (Q = qC |P = p) to the probability of the observation given a parameter value.

For conditional incoherence distributions, equation (10) ensures that the analog of the likelihood function is,

up to a constant term, the redundancy given Q = q as a function of the distribution defining the expectation

value:

p 7→ rdndcp (q)− infq′∈Q rdndcp (q
′) .

The following corollary and its proof generalize the analogy to conditioning on sets of coding distributions

rather than a single coding distribution. The max-plus probability analog of Bayes’s theorem has been applied

to the control of unmanned vehicles (Fitzpatrick, 2013); see also the possibility analog in Lapointe and Bobée

(2000).

Theorem 2. For any D0 ∈ Q⊗P and non-empty D1 ∈ Q⊗P,

I (D0 | D1) = I (D0) + I (D1 | D0)− I (D1) (19)

and, if I (P = •) ≡ 0, then, for any non-empty P0 ∈ P and non-empty Q0 ∈ Q,

arg infp∈P0
I (P = p |Q ∈ Q0) = arg infp∈P0

infq∈Q0
rdndcp (q) . (20)

Proof. Consider any p ∈ P0. According to equation (9),

I (P = p |Q ∈ Q0) = I (P = p,Q ∈ Q0)− I (Q ∈ Q0) ,

from which equation (19) follows. By I (P = •) ≡ 0 and equations (8), (9), and (10), there is a real number

c such that

I (P = p |Q ∈ Q0) = I (P = p |Q ∈ Q0) = I (Q ∈ Q0 |P = p) + I (P = p)− I (Q ∈ Q0)

= infq∈Q0
I (Q = q |P = p) + 0− I (Q ∈ Q0)

∝ infq∈Q0
rdndcp (q)− infq′∈Q rdndcp (q

′) + c .
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Equation (20) is the “generalization of the maximum entropy principle” of Csiszár (1985, p. 88), where

“maximum entropy” refers to minimum relative entropy, infp∈P0
rdndcp (q). Equation (20) is “generalized”

from the case that Q0 = {q} for a single coding distribution q to a Q0 containing more than one coding

distribution. In that sense, generalized maximum entropy applies to indeterminate uncertainty beyond the

indeterminate uncertainty already handled by maximum entropy.

The relevance of Theorem 2 to applied statistics is clearest in the Q0 = {q} case, as in Example 4 and

the next example.

Example 5. Let q denote the posterior distribution according to the initial Bayesian model. In light of

new information, the scientist has the insight that the Bayesian model should be such that its posterior

distribution is a member of some non-empty P0 ∈ P. Then, since the initial model’s posterior distribution

is a coding distribution (§2.1), the updated model given the insight is

q∗ = arg infp∈P0
I (P = p |Q = q) = arg infp∈P0

rdndcp (q)

by equation (20). Thus, if the insight added no new information since q ∈ P0, then q = q∗; otherwise, q∗ is an

similar to q as possible without violating the insight corresponding to P0. That maximum-entropy approach

to model revision had also been derived from the ideal Cromwell’s rule defined under large deviations (Bickel,

2018b). N

4 Hierarchical incoherence from source distributions that are cod-

ing distributions

Let R denote a set of standard probability distributions on the same domain as the distributions in P

and Q, and let R be the power set of R. Let R : R×Q×P → R, Q : R×Q×P → Q, and P :

R×Q×P → P denote the functions such that R ((r , q, p)) = r , Q ((r , q , p)) = q, and P ((r , q, p)) = p for

all r ∈ R, q ∈ Q, and p ∈ P. Consider I , a min-plus probability distribution on R⊗Q⊗P, the power

set of R×Q×P, such that (Q0,P0) 7→ I (Q ∈ Q0,P ∈ P0) is an incoherence distribution and (R0,Q0) 7→
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I (R ∈ R0,Q ∈ Q0 |P ∈ P0) is an incoherence distribution for every non-empty P0 ∈ P. Since incoherence

distributions are min-plus probability distributions that are also incoherence functions, I (Q ∈ •,P ∈ •) is a

min-plus probability distribution such that

I (Q = q |P = p) = rdndcp (q)− infq′∈Q rdndcp (q
′) (21)

for all r ∈ R and q ∈ Q, and I (R ∈ •,Q ∈ •|P ∈ P0) is a min-plus probability distribution such that

I (R = r |Q = q,P ∈ P0) = rdndcq (r)− infr ′∈R rdndcq (r
′) , (22)

for each r ∈ R, each q ∈ Q, and each non-empty P0 ∈ P, as equation (10) with 1 as the constant of

proportionality requires.

According to that hierarchical structure, the source distributions in P are estimated by the coding distri-

butions in Q, which in turn are source distributions estimated by the coding distributions in R. Minimizing

incoherence then guides inference conditional on some of the distributions, as in the next result.

Theorem 3. Assume I (P = •) ≡ 0 and I (Q = •) ≡ 0. For any non-empty R0 ∈ R and non-empty

P0 ∈ P,

arg infq∈Q I (Q = q |R ∈ R0,P ∈ P0) = arg infq∈Q (infp∈P0
rdndcp (q) + infr∈R0

rdndcq (r)) .

Proof. Consider any non-empty R0 ∈ R and P0 ∈ P. Substitutions using equation (8), equation (9),

I (P = •) ≡ 0, and I (Q = •) ≡ 0 yield

I (Q = q |R ∈ R0,P ∈ P0) = I (Q = q |P ∈ P0) + I (R ∈ R0 |Q = q,P ∈ P0) + c′,

= I (Q = q) + I (P ∈ P0 |Q = q) + I (R ∈ R0 |Q = q,P ∈ P0) + c′′

= 0 + infp∈P0
I (P = p |Q = q) + infr∈R0

I (R = r |Q = q,P ∈ P0)

= infp∈P0
(I (P = p) + I (Q = q |P = p)) + infr∈R0

I (R = r |Q = q ,P ∈ P0) + c′′′

= infp∈P0
(0 + I (Q = q |P = p)) + infr∈R0

I (R = r |Q = q ,P ∈ P0) + c′′′,
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where c′, c′′, and c′′′ are real numbers, from the last term in equation (19), that are constant for all q ∈ Q.

By equations (21)-(22), there is a real number c such that, for all q ∈ Q,

I (Q = q |R ∈ R0,P ∈ P0) = infp∈P0
rdndcp (q) + infr∈R0

rdndcq (r) + c .

In the simplest cases, R0 and P0 consist of one distribution each.

Example 6. Example 2, continued. Let p denote the posterior distribution of θ according to Bayes’s theorem

with the prior N
(
0, (1/8)

2
)
. By Theorem 3, the blended posterior distribution is

q̃ := arg infq∈Q I (Q = q |R = N(2, 1) ,P = p) = arg infq∈Q rdndcp (q) + rdndcq (N (2, 1)) ,

where Q =
{
qσ0

: σ0 > 0
}

is the set of posterior distributions of θ that Bayes’s theorem induces from the

priors in
{
N
(
0, σ2

0

)
: σ0 > 0

}
. The function plotted in the left-hand side of Figure 2 is

σ0 7→ I
(
Q = qσ0

|R = N(2, 1) ,P = p
)
,

the minimum of which is achieved at σ̃0, yielding q̃ = q σ̃0
. N

Example 6’s use of the Bayesian posterior distribution from the prior N
(
0, (1/8)

2
)

as a source distribution

and N(2, 1) as a coding distribution is justified in Section 2.1, which conversely implies that, in the next

example, N(2, 1) is a source distribution and N
(
0, (1/8)2

)
is a coding distribution. That switch explains

the discrepancy seen in Figure 1.

Example 7. Example 3, continued. Let r denote the posterior distribution of θ according to Bayes’s

theorem with the prior N
(
0, (1/8)

2
)
. By reasoning analogous to that of Example 6, the updated posterior

distribution is

q∗ := arg infq∈Q I (Q = q |R = r ,P = N (2, 1)) = arg infq∈Q rdndcN(2,1) (q) + rdndcq (r) ,
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Figure 2: The conditional incoherence I
(
Q = qσ0

|R = r ,P = p
)

as a function of σ0, the standard deviation
of θ under the prior. Left plot: p is the fully Bayesian posterior, r is the confidence distribution or objective
Bayes posterior, and I

(
Q = q σ̃0

|R = r ,P = p
)
= 0. Right plot: r is the fully Bayesian posterior, p is the

objective Bayes posterior, and I
(
Q = qσ∗

0

|R = r ,P = p
)
= 0. Note that σ∗

0 < σ̃0, as claimed in Section 1.

where Q =
{
qσ0

: σ0 > 0
}

remains the same. The function plotted in the right-hand side of Figure 2 is

σ0 7→ I
(
Q = qσ0

|R = r ,P = N(2, 1)
)
,

the minimum of which is achieved at σ∗
0 , yielding q∗ = qσ∗

0

. N
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A Generalized maximum expected utility under indeterminate un-

certainty

What if maximum expected utility or, equivalently, minimum expected loss, replaced minimum redundancy

in the framework of Section 2? Consider a set A of possible actions and A, its power set. Let Π denote the

min-plus probability distribution on A⊗P, the power set of A×P, and let Π (•|•) denote the conditional
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min-plus probability distribution on (A⊗P)× (A⊗P) such that

Π(A = a |P = p) = E p (ℓa)− infa′∈A Ep (ℓa′) ∀ a ∈ A, p ∈ P , (23)

where (θ, a) 7→ ℓa (θ) is a loss function on Θ×A.

Minimizing a 7→ Π(A = a |P = p) is more elegant than minimizing equation (10), at least in the eyes

of those more familiar with expected loss than with redundancy. Indeed, the equivalent of Section 2.1’s

identification of estimates and coding distributions would not be needed were equation (23) adopted, for

optimal estimates are already defined in decision theory as actions that minimize expected loss.

However, replacing redundancy with expected loss suffers from two drawbacks. First, when A consists of

probability density functions on Θ, it does not lead to maximum entropy, even under θ 7→ ℓa (θ) = − log a (θ),

the proper scoring rule recommended by Bernardo (1979) for a probability density a (θ); contrast Theorem

2. That is unfortunate since maximum entropy is highly desirable for its unique satisfaction of important

invariance properties (Shore and Johnson, 1980; Johnson and Shore, 1983; Csiszár, 1991; Paris, 1994). The

equation behind this drawback is

arg infp∈P0
Π (P = p |A ∈ A0) = arg infp∈P0

infa∈A0
Ep

(
log

1

a

)
, (24)

where A0 is a set of probability density functions on Θ. Since the argument of the expectation function

does not depend on p, equation (24) differs from equation (20). Equation (24) is an immediate consequence,

given ℓa (θ) = − log a (θ) for all θ ∈ Θ, of the following counterpart to Theorem 2.

Theorem 4. For any D0 ∈ A⊗P and non-empty D1 ∈ A⊗P,

Π(D0 | D1) = Π (D0) + Π (D1 | D0)−Π (D1)

and, if Π(P = •) ≡ 0, then, for any non-empty P0 ∈ P and non-empty A0 ∈ A,

arg infp∈P0
Π(P = p |A ∈ A0) = arg infp∈P0

infa∈A0
E p (ℓa) .

The proof is essentially the same as that of Theorem 2.
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The second drawback is that equation (23) seems to lead to overly optimistic estimates in view of the

this analog of Proposition 1.

Proposition 2. Assume p 7→ Π(P = p) is constant, that is, Π(P = •) ≡ 0. For any non-empty P0 ∈ P,

arg infa∈A Π(A = a |P ∈ P0) = arg infa∈A infp∈P0
Ep (ℓa) . (25)

Equation (25) takes the action that minimizes expected loss with respect to the distribution that mini-

mizes expected loss. That is the same action produced by the Hurwicz criterion (Hurwicz, 1951) that has 0 as

the parameter controlling the degree of pessimism. That minimin criterion, called the “maximax criterion”

when replacing loss with utility, is typically dismissed for its extreme optimism (e.g., Perakis and Roels,

2008).
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