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Abstract

Ensemble forecasting resorts to multiple individual forecasts to pro-
duce a discrete probability distribution which accurately represents the
uncertainties. Before every forecast, a weighted empirical distribution
function is derived from the ensemble, so as to minimize the Continuous
Ranked Probability Score (CRPS). We apply online learning techniques,
which have previously been used for deterministic forecasting, and we
adapt them for the minimization of the CRPS. The proposed method
theoretically guarantees that the aggregated forecast competes, in terms
of CRPS, against the best weighted empirical distribution function with
weights constant in time. This is illustrated on synthetic data. Besides,
our study improves the knowledge of the CRPS expectation for model
mixtures. We generalize results on the bias of the CRPS computed with
ensemble forecasts, and propose a new scheme to achieve fair CRPS min-
imization, without any assumption on the distributions.

Introduction

The minimization of the CRPS is a common way to drive probabilistic forecasts
(Gneiting et al., 2005; Junk et al., 2015). From diagnostic tools to modeling tech-
niques, Gneiting and Katzfuss (2014) review the state of the art of probabilistic
forecasting. Using several forecasts, based on various models and perturbed
input data, is a common way to produce probabilistic forecasts (Leutbecher
and Palmer, 2008). The roots of this framework known as ensemble forecasting
is reviewed by Lewis (2005). Ensemble of forecasts is the raw material of the
techniques proposed in this paper.

Sequential aggregation targets optimal combinations, as thoroughly intro-
duced in the monograph Cesa-Bianchi and Lugosi (2006). These techniques,
also known under the scope of online learning, come with attractive theoretical
guarantees of performance. Stoltz (2010) and Mallet et al. (2009); Mallet (2010)
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summarized and tested these techniques on forecasts of respectively electricity
consumption and ozone concentrations. Usually focused on scalar forecasting,
sequential aggregation was applied to the Brier score and the quantile score
by respectively Vovk and Zhdanov (2009) and Biau and Patra (2011). In this
paper, we use sequential aggregation in order to target the best CRPS, with
theoretical guarantees that do not require any assumptions on the forecast or
observation distributions. In this sense, our method is a non-parametric post-
processing method. Our techniques generate weights for each ensemble member
so as to produce a linear opinion pool, also known as model mixture (Genest
and McConway, 1990; Clemen and Winkler, 1999). Ranjan and Gneiting (2010)
provide mathematical grounds on these combinations. Our technique was first
designed to work with an ensemble of scalar forecasts. Still, it can be applied
when a parameterized distribution is associated to each forecast.

In Section 1, we describe the mathematical background on the CRPS. We
provide contributions related to ensemble forecasting with discrete Cumulative
Distribution Functions (CDFs). Our contributions are mainly generalizations of
existing results to the case of combinations of forecasts with unequal weights, in
a probabilistic framework. We also provide a framework to work with classes of
members, compatible with fair probabilistic evaluations. In Section 2, we detail
online learning techniques, with adaptation for probabilistic ensemble forecast-
ing based on the CRPS. In Section 3, we illustrate the notions of Section 1 with
numerical experiments, and we demonstrate our algorithms with numerical ex-
amples. We summarize several useful identities involving CDFs in Appendix A.

1 Mathematical background

1.1 Bibliographical remarks

The evaluation of probabilistic forecasts is a long range discussion going on
since Winkler and Murphy (1968); Savage (1971); see Dawid (2008) for a de-
tailed bibliographical analysis, and more recently Gneiting and Raftery (2007)
and Candille and Talagrand (2005) for detailed analyses. The Brier score was
introduced by Brier (1950); Good (1952) to evaluate probabilistic forecasts for a
given threshold and a binary observation. The Continuous Ranked Probability
Score (CRPS) can be viewed as a continuous version of the Brier score (Epstein,
1969; Murphy, 1971) for any threshold.

1.2 The Continuous Ranked Probability Score (CRPS)

We want to forecast a scalar quantity y called the verification and we suppose
that y admits an underlying distribution that is described by the CDF F . The
CRPS is considered as a realization of a random variable, and it is defined as

CRPS(G, y) =

∫
(G−Hy)

2
, (1)
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where G is a CDF that is chosen by the forecaster in order to predict F , H is
the unit (or Heaviside) step function, and Hy(x) indicates a centered Heaviside
function H(x− y). The CRPS is negatively oriented, meaning that lower scores
imply better performance. Gneiting and Raftery (2007) show that the CRPS
may also be written as

CRPS(G, y) = E(|X− y|)− 1

2
E(|X−X′|) , (2)

where E is the expectation, and both X and X′ are two random variables drawn
from G. A decomposition of the average CRPS was introduced by Hersbach
(2000). The decomposition of scores into divergence and uncertainty terms is
explained in Bröcker (2009). The average CRPS is decomposed as follows:∫

CRPS(G, y)dF(y) =

∫
(G− F)

2
+

∫
F(1− F) , (3)

where y is integrated over the values defined by F (using Equation 29 of Ap-
pendix A). The CRPS is a strictly proper score, which means that it is mini-
mized on average if and only if the forecaster’s choice G is equal to F. This is
a straightforward observation from Equation 3.

The strict propriety of the CRPS can be compared to the non-strict propriety
of the square loss (Bröcker and Smith, 2007), which reads

(y − E(X))2 =

(∫
G−Hy

)2

, (4)

according to Equation 32 of Appendix A. We see that minimizing the square
loss and minimizing the CRPS (Equation 1) are rather different objectives, due
to the location of the square function inside or outside the integral expression.
The CRPS objective is more demanding, because in this case the integration is
applied to a positive function.

1.3 The ensemble CRPS

In the case of ensemble forecasting, the forecaster relies on an ensemble of M
members xm, m ∈ {1, . . . ,M}, to construct a CDF. The empirical CDF GE of
the ensemble is a step function with jumps of heights um (called weights) at

the members values xm. Thus we write GE(x) =
∑M

m=1 umH(x− xm). In order
to satisfy the definition of a CDF, the weights um should be nonnegative and
sum to one, so that they produce a convex combination. Such weight vectors
define the simplex PM of RM . The weights um are to be optimized in order to
minimize the CRPS.

The computation of the integral of Equation 1 is easy on step functions GE .
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When the CDF is a step function, we refer to the score as the ensemble CRPS:

CRPS(GE , y) =

M∑
m=1

um|xm − y| −
1

2

M∑
m,k=1

umuk|xm − xk| . (5)

The derivation of Equation 1 is detailed in Appendix B.
Without further information, the members are assumed to be i.i.d., thus

the forecaster may arguably choose all weights equal to 1/M . By definition,
a scoring rule depending on the verification y and i.i.d. members xm is fair
if the average score is minimized when the members and the verification are
sampled from the same distribution. Ferro et al. (2008) show that the ensemble
CRPS is unfair due to the finite size of the ensemble. In the next section,
we generalize this result to the case of unequal weights, with non identically
distributed members.

The bias of the score is an important topic in our optimization framework.
Indeed if our objective function is instrinsically biased, then the resulting prob-
abilistic forecast cannot be calibrated.

1.4 Bias of the ensemble CRPS with underlying mixture
model

We consider that the members xm are independent samples from the CDFs Gm,
and that y is fixed. The purpose of this section is to compare the score obtained
with the step function GE averaged according to the CDFs Gm and the score
obtained with the mixture model described by the average CDF G =

∑
umGm.

Taking the expectation with respect to the members xm, we show that

E(CRPS(GE , y)) =

∫
Hy − 2

M∑
m=1

umGmHy

+

M∑
m6=k

umukGmGk +

M∑
m=1

u2mGm , (6)

using Equation 29. The trick is that H2(x − xm) = H(x − xm), thus the av-
erage CRPS does not include G2

m terms but Gm terms instead. We conclude

by introducing the terms
∑M

m=1 umGm and
∑M

m=1 u
2
mG2

m in conjunction with
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Equation 30, 34 and 35:

E(CRPS(GE , y)) = E(|X− y|)− 1

2
E(|X−X′|)

+
1

2

M∑
m=1

u2m E(|Xm −X′m|) (7)

= CRPS(G, y) +
1

2

M∑
m=1

u2m E(|Xm −X′m|) , (8)

where X and Xm are random variables with CDFs G and Gm respectively. In
the expectation of the ensemble CRPS, the diagonal terms u2m E

(
|Xm −X′m|

)
are missing, because the spread of each member is assumed to be null. The
absence of the diagonal terms is the cause of the bias of the ensemble CRPS.

As a consequence, the minimization of the ensemble CRPS should not be
targeted because the solution of this optimization problem is not the underlying
CDF of the verification. There is no contradiction with the strict propriety of
the CRPS because, for the ensemble CRPS, the solution is only searched in a
subspace made of step functions.

In the case of equal weights with i.i.d. members, Fricker et al. (2013) detailed
in their Appendix why minimizing the ensemble CRPS is misleading as stated
above. Ferro et al. (2008) exhibit a fair adjusted CRPS score, which includes
correction terms to counteract the bias:

CRPSa(GE , y) =
1

M

M∑
m=1

|xm − y| −
1

2

M∑
m,k=1

|xm − xk|
M(M − 1)

(9)

= CRPS(GE , y)− 1

2M

M∑
m,k=1

|xm − xk|
M(M − 1)

. (10)

We see that rather than being a new score, the adjusted ensemble CRPS
is a better estimation of the original CRPS, where the underlying distributions
of the members are taken into account. In Equation 9, the dispersion of the
ensemble E(|X−X′|) is estimated by

∑M
m,k=1 |xm − xk|/(M(M − 1)). In other

terms, the bias terms u2m E(|Xm−X′m|) of Equation 7 are taking into account in
Equation 10 as E(|X−X′|)/M2, by considering that E(|Xm−X′m|) = E(|X−X′|).

1.5 Mixture model described by classes of members

We propose in this section a framework compatible with both ensemble forecast-
ing and unbiased scores. In a standard model mixture design, a forecaster will
assign weights to known parametric distributions (Raftery et al., 2005; Grimit
et al., 2006). We do not want to make assumptions on distributions, thus we
use a standard ensemble forecasting framework, where the members are usually
assumed to be sampled from unknown CDFs. The goal of this section is to show
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that despite the finite size of the ensemble, it is possible to use the CRPS by
counteracting the discretization-induced bias. This framework is close to what
is introduced in Fraley et al. (2010), however this previous work focused on
Bayesian Model Averaging (BMA), and did not include considerations on the
CRPS.

We assume that ensemble members are grouped into classes within which
members are i.i.d. In this new setting, a class C has a weight WC uniformly
distributed among its members. The weight um = WC/MC is assigned to the
mth member of the ensemble, assuming that it belongs to class C and that class
C has MC members. As an example, classes may be defined according to the
rank of the members. Assuming that 10 members are available, two classes may
be built by assigning the 5 members with the lowest values to the first class and
the remaining members to the second class.

We introduce the CRPS using the classes. We call this score the class CRPS,
and denote it

CRPSC(GC, y) =
∑
C∈C

WCÊ(|XC − y|)

− 1

2

∑
C,D∈C

WCWDÊ(|XC −X′D|) . (11)

The terms of the class CRPS are detailed below.
For the class C, with MC members xCc associated to the random variables

XC and X′C , we have

Ê(|XC − y|) =

MC∑
c=1

|xCc − y|/MC , (12)

Ê(|XC −X′D|) =

MC∑
c=1

MD∑
d=1

|xCc − xDd |/(MCMD) , (13)

where class D is different from class C, and

Ê(|XC −X′C |) =

MC∑
c,c′=1

|xCc − xCc′ |/(MC(MC − 1)) . (14)

This last quantity can be seen as the dispersion associated to the i.i.d. members
of class C. Note the bias correction of Ê(|XC−X′C |) with the factor MC(MC−1).

Now we show how the ensemble CRPS and the class CRPS are related. Sum-
ming among classes (which belong to the partition C of the set of the members),
we have ∑

C∈C

WC

MC∑
c=1

|xCc − y|/MC =

M∑
m=1

um|xm − y| . (15)

Then we sum inter- and intra-class dispersions to link them to inter-member
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differences |xm − xk|. The key point is that inter-member differences for i.i.d.
members are comprised in intra-class dispersions. We note that

W2
C

MC∑
c,c′=1

|xCc − xCc′ |
MC(MC − 1)

=
MC

MC − 1

MC∑
c,c′=1

(
WC

MC

)2

|xCc − xCc′ | , (16)

and MC/(MC − 1) = 1 + 1/(MC − 1) to obtain∑
C,D∈C

WCWDÊ(|XC −X′D|) =
∑

C 6=D∈C

WCWDÊ(|XC −X′D|)

+
∑
C∈C

W2
CÊ(|XC −X′C |)

=

M∑
m,k=1

umuk|xm − xk|+
∑
C∈C

1

MC − 1

MC∑
c,c′=1

W2
C

M2
C

|xCc − xCc′ |

=

M∑
m,k=1

umuk|xm − xk|+
∑
C∈C

W2
C

MC
Ê(|XC −X′C |)

=

M∑
m,k=1

umuk|xm − xk|+
M∑

m=1

u2mÊ(|XCm
−X′Cm

|) ,

where Cm is the class in which xm falls. To obtain the last equation, consider
that Ê(|XC −X′C |) is counted MC times.

Compared to the ensemble CRPS, the class CRPS admits M additional
terms corresponding to the dispersion of each member and resulting from the
classes definition:

CRPSC(GC, y) = CRPS(GE , y)− 1

2

M∑
m=1

u2m E(|XCm
−X′Cm

|) . (17)

In the case of a single class, the class CRPS is equal to the adjusted ensemble
CRPS described in Section 1.4.

The i.i.d. assumption on the members can be seen as too strong. The
exchangeability of the members is a relaxation of the i.i.d. assumption. By
definition, the joint distribution function of exchangeable members is invariant
under permutation of the arguments, thus the members are indistinguishable.
We refer the reader to Ferro (2014) for an analysis of fair scoring rules with
the exchangeability assumption. In a few words, the user must investigate the
(generally unknown) dependence structure and taylor the appropriate scoring
rule accordingly. The simple case of pairwise uncorrelated members is however
tractable. For the ensemble CRPS, the case of pairwise uncorrelated members is
in practice equivalent to the case of i.i.d. members, because the terms |xm−xk|
rely on pairwise correlations only. In the same way for the class CRPS, the
assumption of pairwise uncorrelated members within each class and independent
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members between classes leads to similar results than i.i.d. members. Under
the more general assumption of exchangeable members within each class, the
definition of Ê(|XC − X′C |) should take into account the dependence between
members.

Also note that these assumptions are only needed to counter the bias in the
ensemble CRPS. Our aggregation methods still remain applicable without such
correction. The theoretical bounds described in the next section do not rely
on any stochastic assumption on the prediction data and the verifications. The
assumptions of i.i.d. members and the use of the class CRPS should only guide
the choice of a loss function.

2 Online learning methods

2.1 Theoretical background

Up to this section, a single time t was considered. Now we introduce online
learning techniques. In this setting, the forecaster receives prediction data Dt

and wishes to produce the best prediction of yt. In our case, prediction data are
ensemble members and the algorithm gives a rule to compute the weights um,t

before each forecast time t. This rule takes into account only past information,
and is therefore called the update rule. The goal of a given online learning
algorithm is to provide the best possible weights according to a chosen loss
function, for example the ensemble CRPS

`CRPSE
t (u) =

∫ ( M∑
m=1

umHm,t −Hyt

)2

, (18)

written above for time t. The notation `t(u) emphasizes the importance of the
weights, as opposed to the ensemble members and the verifications which are
assumed to be given to the forecaster.

In practice, the algorithm reads

Initialization: u1;

For each time index t = 1, 2, ..., T

1. get prediction data Dt,

2. compute the forecaster’s choice with Dt and ut,

3. get the verification yt and compute ut+1, based on the update rule.

The initial weight vector u1 is arbitrarily set, e.g., to [1/M, . . . , 1/M ]>.
The performance of an update rule comes with theoretical guarantee, where

the forecaster’s results are assessed against a reference, which is usually the
best forecast with weights constant in time, called the oracle. An important
aspect of these theoretical guarantees is that they come without any stochastic
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assumption on the prediction data and the verifications. In this paper, the
theoretical guarantees are regret bounds of the form

T∑
t=1

`t(ut)− inf
u∈PM

T∑
t=1

`t(u) ≤ o(T ) , (19)

where `t is assumed to be bounded. The bound of `t can be arbitrarily small
or large, so that this restriction is compatible with essentially all real world
applications. Averaging the losses in time (i.e., dividing by T ) shows that
an algorithm giving the weights ut is guaranteed to perform at least as well
as any mixture model with weights constant in time and based on the same
prediction data. This includes any individual forecast and any subset ensemble
with uniform weights.

We now consider two algorithms: the online ridge regression and the ex-
ponentiated gradient method (EG). We introduce these methods in a general
framework, and we show how the methods can be applied to the case of the
CRPS. For the algorithm run with ensemble CRPS, a weight is explicitly given
to each member. The quantities |xm,t−yt| and |xm,t−xk,t| are explicitly used in
the minimization process. For the algorithm run with class CRPS, equal weights
are given to all the members within a class. The weights WC,t are computed

using the terms Ê(|XC,t − yt|) and Ê(|XC,t −XD,t|). Combining parameterized
distributions is also possible with online learning techniques. It necessitates to
compute the quantities E(|Xm,t − yt|) and E(|Xm,t − Xk,t|). These quantities
are tractable from the CDFs using Equation 30. They are computed in Grimit
et al. (2006) for a Gaussian mixture distribution.

2.2 Ridge regression

The approach of the ridge regression can be directly expressed in terms of min-
imization. The update rule for time t+ 1 and based on the loss ` is

ut+1 = argmin
w∈RM

λw>w +

t∑
t′=1

`t′(w) . (20)

The regularization term with parameter λ ≥ 0 controls the 2-norm of the weight
vector. It is possible to add discount factors in the sum of the past losses, in order
to give more importance to recent timesteps. At first sight, the ridge regression
does not constrain the weights to be positive or sum to one. In practice, for the
CRPS, we observed that these constraints are approximately satisfied after a
spin up period. Other regularization terms of the form λ(w−u1)>(w−u1) may
also be used with arbitrary reference vector u1 ∈ PM . The reader interested in
recent advances in online regularized regression is addressed to Orabona et al.
(2015).

For a given experiment length T , for any vector u ∈ PM , and if the CRPS
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Method Gradient loss

Ensemble CRPS ˜̀
m,t = |xm,t − yt| −

M∑
k=1

uk,t|xm,t − xk,t|+ yt −
M∑
k=1

uk,txk,t

Class CRPS ˜̀
C,t = Ê(|XC,t − yt|)−

∑
D∈C

WD,tÊ(|XC,t −XD,t|) + yt − Ê(Xt)

CRPS for general mixture models ˜̀
m,t = E(|Xm,t − yt|)−

M∑
k=1

uk,t E(|Xm,t −Xk,t|) + yt − E(Xt)

Table 1: Formulae of the loss gradients. Equations from Appendix A are used
for the simplifications. The terms of the form yt − E(Xt) do not impact the
computation of the weights for EG, because they are independent of the member
m or the class C.

losses `t(ut) are bounded, we have:

RT (u) =

T∑
t=1

`t(ut)−
T∑

t=1

`t(u) ≤ O (lnT ) , (21)

so that the so-called regret RT (u) is sublinear.
The Appendix C details technical aspects, such as the proof for the bound 21,

as well as guidelines to compute the weights. The ridge regression applied to
the square loss (E(X) − y)2 gives a similar regret bound in terms of square
losses. Our proof for the CRPS is inspired from the proof of the regret bound
for the square loss, concisely described by Cesa-Bianchi and Lugosi (2006). We
were helped by the work of Mallet et al. (2007), who demonstrated the case
of multiple verification locations (also called stations) for the square loss. Our
work transposes the results for the square loss with multiple locations to multiple
Brier score with different thresholds, and to the CRPS.

2.3 Exponentiated gradient

Let the learning rate η be strictly positive, EG follows a multiplicative update
rule of the form:

um,t+1 =
um,t exp

(
−η˜̀m,t

)
∑M

m′=1 um′,t exp
(
−η˜̀m′,t

) , (22)

where ˜̀
m,t =

∂`t
∂um

(u) . (23)
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This update relates to Bayesian inference (Catoni, 2004; Audibert et al., 2009).
The algorithm EG admits a formulation in terms of cost function minimization,
where the regularization function is the entropy function, also known as the
Kullback-Leibler divergence (Kivinen and Warmuth, 1997). The EG algorithm
reads:

ut+1 = argmin
w∈PM

M∑
m=1

wm ln(
wm

um,t
) + ηwm

˜̀
m,t . (24)

Examples of loss gradients are provided in Table 1. The loss gradient ˜̀m,t

of the CRPS has two main terms: (i) E(|Xm,t − yt|) accounting for the dis-
tance between the verification and the mth random variable Xm,t, and (ii) the
weighted sum of E(|Xm,t − Xk,t|) accounting for distances between Xm,t and
the Xk,t. The first term controls a deviation from the median of the underlying
distribution of the verifications, and the second term controls the dispersion of
the mixture model. On average (on the verifications), the loss gradients are null
if the verifications are correctly described by the forecaster’s CDF.

The advantage of using the loss gradients is described (at least) in Devaine
et al. (2013). In a few words, using the loss gradients makes the algorithm
competitive against the best convex combination with constant weights, whereas
simply using the loss `m,t = E(|Xm,t − yt|) − 0.5 E(|Xm,t − X′m,t|) would make
the algorithm compete only against the best member. We insist on the fact that
using the loss gradients provides the terms E(|Xm,t − Xk,t|) which are critical
for the control of the ensemble spread.

The theoretical guarantee for EG states that, if the loss function ` is convex
with respect to u and admits a subgradient, and if the losses ˜̀m,t are bounded
within a constant interval [−a, a], then we have:

sup

[
T∑

t=1

`t(ut)− inf
u∈PM

T∑
t=1

`t(u)

]
≤ lnM

η
+ η

a2

2
T , (25)

where the supremum is taken for all possible values of the members xm,t and
the verifications yt, and η is the learning rate (Devaine et al., 2013). For opti-
mized values of η proportional to 1/

√
T , the regret is sublinear. The theoretical

guarantee of Equation 25 is verified for the square loss and for the CRPS.

3 Numerical example

3.1 Simple model

We use the simple model described in Bröcker (2012). The model is supposed to
mimic local temperatures. We chose this model because the uncertainty terms
are known, consequently we can easily draw conclusions from numerical tests.

We built the verifications yt from the exact time series

at = (Asin(πω1t) +Bsin(πω2t))
2 , (26)

11



Table 2: Parameters of the numerical experiment.

s1 s2 A B ω1 ω2 T

0.3 0.3 1.68 0.336 1/365.25 1/11 730

combined with multiplicative and additive perturbation terms:

yt ∼ at(1 + s1N (0, 1)) + s2N (0, 1) . (27)

Each term N (0, 1) represents an independent Gaussian noise with zero mean
and a variance of one. The perturbation terms are sampled independently at
each timestep. The parameters are summarized in Table 2.

The members are sampled as

xm,t ∼ at(1 + s1N (0, dens)) + s2N (0, dens) (28)

analogously to the verification distribution, but the standard deviation dens
describing the perturbations terms may differ from its optimal value (i.e., 1).
The parameter dens is also referred to as the dispersion parameter.

3.2 Experiments without online learning

In this first experiment, ensembles are built for different values of the dispersion
parameter dens. The members are drawn independently, and the weights of the
members are taken constant and all equal to 1/M . As expected, the adjusted
ensemble CRPS gets the lowest value when the ensemble shows the correct
spread (i.e., for dens = 1), see Figure 1. On the contrary, the best (non adjusted)
ensemble CRPS is obtained for under-dispersed ensembles dens < 1. The shift
of the ensemble CRPS minimum from the ideal location dens = 1 is larger for
ensembles of small size, because the bias of the ensemble CRPS is proportional
to 1/M . This is a direct illustration of the bias due to the limited size of the
ensemble explained in Section 1.4.

3.3 Experiments with weight updates

Now we test online learning techniques and more specifically their ability to dis-
criminate between members. We build an ensemble of M = 10 members, that is
composed of two subensembles, or classes, of equal size. The first subensemble is
defined by the same distribution than the verifications. The second subensemble
follows a distribution controlled by dens. If dens = 1, then the whole ensemble
is correctly dispersed. In other words, half of the members follow the correct
distribution, while the second half can follow a different distribution.

An example of the temporal evolution of the weights is given in Figure 2. We
used the algorithm EG (η = 0.05) with the gradients of the ensemble CRPS.
At the middle of the experiment, we swap the dispersion parameters of the
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Figure 1: Ensemble CRPS (dotted gray) and adjusted ensemble CRPS (solid
black), for ensembles of various sizes (10, 20, 50) from light gray to dark gray.
The dispersion parameter (x-axis) is dens. The scores are averaged over nearly
200 years of data (73,000 timesteps). The (solid black) lines of the adjusted
CRPS are approximately at the same location for all ensemble sizes.

members. Correct members become incorrect members and conversely. The
members with incorrect dispersion parameter (dens = 1.5) see their weights
decrease on average. After the swap, the weights of the newly incorrect members
also decrease on average. The impact of the learning rate is shown in Figure 3,
where a larger value η = 0.2 leads to a faster evolution of the weights. Note the
difference of scales between Figures 2 and 3.

Now we show the average weight of the second subensemble parameterized
by dens for different learning algorithms. Here we did not include a change of
the dispersion parameter at mid-experiment. The first subensemble therefore
remains the correct one all the time. The discrimination procedure tests whether
the algorithm makes a difference between the subensembles and whether the
incorrect members are given lower weights than the correct members.

We show the importance of the CRPS gradients in EG for probabilistic fore-
casting. We show in Figure 4 the average weights of EG using: (i) `m,t = |xm,t−
yt|, using the CRPS without the gradients; or (ii) ˇ̀

m,t = 2(u>t xt − yt)xm,t,
using the gradients of the square loss (u>t xt − yt)2, instead of the CRPS gradi-

ents ˜̀m,t. We see that in either case, the members with the lowest dispersion
parameter are the most weighted. The members with the correct distribu-
tion receive the highest weights when the incorrect members are overdispersed
(dens > 1). Formulation (i) and (ii) do not tend to forecast the distribution
of the verifications, but only the mean or the median of the distribution of
the verifications. These formulations are therefore not suited for probabilistic
forecasting, as opposed to the CRPS gradients (see below). Note that we can
rewrite ˇ̀

m,t = (xm,t−yt)2− (xm,t−u>t xt)
2 plus terms independent of m. Thus

using the gradients (or equivalently trying to get the best combination) is a
diversification strategy compared to simply using (xm,t − yt)2.

Using the same representation, the algorithms EG and the ridge regression
are tested with the ensemble CRPS and the class CRPS, see Figure 5. The

13



0 50 100 150 200 250 300
Time

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

W
ei

gh
ts

  u
m
,t

Figure 2: Temporal evolution of the weights um,t, with learning rate η = 0.05.
The weights of members with correct dispersion are in black, and the weights
of members with the incorrect dispersion dens = 1.5 are in gray.
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Figure 3: Temporal evolution of the weights um,t, with learning rate η = 0.2.
The weights of members with correct dispersion are in black, and the weights
of members with the incorrect dispersion dens = 1.5 are in gray.
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Figure 4: Average cumulated weights of the members with (possibly) incorrect
dispersion parameter dens (x-axis). The black crosses indicate that the CRPS of
each member are used in EG (i). The light gray triangles indicate that the square
loss gradients are used in EG (ii). This figure shows that not using the CRPS
gradients favors the less dispersed members, even though they do not show the
correct dispersion. The experiment of roughly ten years is repeated 200 times
for each dispersion parameter. We used the learning parameters η = 0.05 and
λ = 0.5.
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Figure 5: Average cumulated weights of the members with (possibly) incorrect
dispersion parameter. Both learning algorithms based on the CRPS are tested:
EG (solid line) and ridge (dotted lined). The white circles indicate that the
algorithm is run for class CRPS (equal weights within the class) and the black
squares indicate that the weights are computed explicitly for each member.

algorithms based on the class CRPS show correct discrimination: whatever
the dispersion parameter of the wrongly dispersed members, the class with in-
correct dispersion shows smaller weights on average. The sum of the weights
attributed to the incorrect members stays below 0.5 (equal weights between the
two subensembles). On the contrary, the algorithms based on the ensemble
CRPS does not give a correct discrimination. When the dispersion parameter
dens is close to 0.70, the underdispersed members receive larger weights than
the correct members. We see that the minimization of the ensemble CRPS is
misleading for an ensemble of small size. We interpret these results as direct
consequences from the bias of the ensemble CRPS described in Section 1.4.

Conclusion

We introduced new tools for probabilistic forecasting using an ensemble of fore-
casts. Our algorithms use online learning techniques to produce forecast combi-
nations that tend to minimize the CRPS. In the long run, they guarantee that
the performance of the weighted ensemble is at least as good as the performance
of the best weighted ensemble with weights constant in time. This theoretical
guarantee holds without any assumptions on the distributions of the forecasts
and verifications. In this sense, our method is a non-parametric post-processing
method.

A new framework using classes of members is introduced in order to coun-
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teract the bias in the ensemble CRPS. With this framework and the proposed
algorithms, numerical tests showed that our online learning techniques tend to
give higher weights to the forecasts with the same distribution as the verifica-
tions.

The algorithms should now be tested against real data, in order to assess
their potential in operational applications against Bayesian model averaging
(BMA) or other post-processing techniques. The work of the forecaster is then
to obtain numerous forecasts to combine. The methods do not require any as-
sumptions on the forecasts to be applied (bias, spread, or any other stochastic
or deterministic assumptions). However, some good practices may be applied
to improve the overall performance. For example, the forecasts can be altered
before their inclusion in the ensemble, or additional forecasts may be derived
from the raw ensemble. Also, it is recommended to draw ensembles with enough
spread, so that they encompass the verifications. We argue that for most appli-
cations, the use of a multimodel ensemble combined with several post-processing
techniques is an efficient way to obtain an ensemble to be calibrated with our
algorithms. From a meteorological point of view, new members can be added
to the ensemble by using nearby grid-points or time-shifted forecasts. This ap-
proach may be particularly efficient to account for the ability of a forecasting
system to predict an event, but at the wrong time or location.

On theoretical side, a next step could be the inclusion of the uncertainty in
the verifications. Also, other non local strictly proper scoring rules could serve
as loss function.
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Appendix A Identities implying CDFs

Let the random variable Z be described by the probability density function K′

and the CDF K. We have for any real number x:

E(H(x− Z)) =

∫
K′(Z)H(x− Z)dZ = K(x) , (29)

or equivalently E(HZ) = K. The demonstration of the strict propriety of the
CRPS uses this property for the integration over the CDF of the verifications.

Let X and Z be two random variables described respectively by the CDFs G
and K. We have:

E(|X− Z|) =

∫
G(1−K) + K(1−G) . (30)
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For G = K, the above quantity is the Gini mean difference, which is thoroughly
introduced in the monograph of Yitzhaki and Schechtman (2012).

The product GK of CDFs is itself the CDF of the random variable max(X,Z).
This can be used to explain simply Equation 30, using:

2 max(a, b) = |a− b|+ a+ b , (31)

for any (a, b) ∈ R2, and

E(Z) =

∫ +∞

−∞
(H(x)−K(x))dx . (32)

Let G =
∑I

i=1 uiGi and K =
∑J

j=1 wjKj be CDFs of mixture models with
respectively I and J components, i.e., the Gi and Kj are CDFs, and the weight
vectors u and w respectively belong to the simplexes PI and PJ . Let X, Xi, Z
and Zj be random variables respectively following G, Gi, K, and Kj . We have

E(|X− Z|) =

I∑
i=1

J∑
j=1

uiwj E(|Xi − Zj |) , (33)

based on Equation 30. Indeed,

I∑
i=1

J∑
j=1

uiwj

∫
(Gi(1−Kj) + Kj(1−Gi))

=

∫ I∑
i=1

uiGi(1−
J∑

j=1

wjKj) +

J∑
j=1

wjKj(1−
I∑

i=1

uiGi)

= E(|X− Z|) ,

because the weights wi and uj respectively sum to one, and using the linearity
of integration.

It is straightforward to use Equation 33 to show to that

E (|X− y|) =

M∑
i=1

ui E (|Xi − y|) , (34)

and that

E
(
|X−X′|

)
=

M∑
i=1

ui E (|Xi −X|) =

M∑
i,j=1

uiuj E
(
|Xi −X′j |

)
, (35)

with X′ and X′j being random variables respectively described by G and Gj .
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Appendix B Computation of the ensemble CRPS

We have

CRPS(GE , y) =

∫  M∑
m,k=1

umukH(x− xm)H(x− xk)

−2

M∑
m=1

umH(x− xm)H(x− y) + H(x− y)

)
dx

=

M∑
m,k=1

umuk(Γ−max(xm, xk))

− 2

M∑
m=1

um(Γ−max(xm, y)) + Γ− y

= −
M∑

m,k=1

umuk max(xm, xk) + 2

M∑
m=1

um max(xm, y)− y ,

where Γ is the upper bound of the integral. Because the weights sum to one,
we get the last simplification.

We rewrite the above expression using Equation 31:

CRPS(GE , y) = −1

2

 M∑
m,k=1

umuk|xm − xk|+ 2

M∑
m=1

umxm


+

M∑
m=1

um|xm − y|+
M∑

m=1

um(xm + y)− y

=

M∑
m=1

um|xm − y| −
1

2

M∑
m,k=1

umuk|xm − xk| , (36)

because the weights um sum to one. We highlight the fact that the diagonal
terms u2m|xm−xm| are null, so that the double sum of Equation 36 is computed
for m 6= k.

The calculus of this section can also be written with expectations and random
variables using the content of Appendix A.

Appendix C Regret bound of the ridge regres-
sion with the CRPS

This section is written for general model mixtures Gm, t and for general CDF Ft

for the verifications. For simplicity, we assume that the integrals of the CRPS
can be computed on an interval [γ,Γ] of limited size. All the considered CDFs
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hit 0 at γ and 1 at Γ, which formalizes the assumption of bounded values for the
members and the verifications. Thus the considered CDFs verify

∫
Gm,t ≤ Γ−γ .

This appendix is structured as follows: (i) we exhibit an update rule between

ut+1 and ut; (ii) we bound the regret against a constant vector
∑T

t=1 `t(ut)−∑T
t=1 `t(u) by the regret against the best a posteriori vector

∑T
t=1 `t(ut) −∑T

t=1 `t(ut+1); (iii) we provide an interpretable regret bound by using the up-
date rule and the convexity of `t.

The CRPS has a quadratic form

`t(u) = u>
(∫

GtG
>
t

)
u− 2u>

∫
FtGt +

∫
F2
t , (37)

where Ft(x) = H(x− yt) and Gt(x) is the vector of the CDFs Gm,t(x).

The cost function Jt(u) = λu>u +
∑t

t′=1 `t′(u) is written in a quadratic
matricial form with:

Jt(u) = u>At+1u− 2u>bt+1 +

t∑
t′=1

∫
F2
t′ , (38)

where the vector bt is defined by:

bt =

t−1∑
t′=1

∫
Ft′Gt′ , (39)

and the matrix At of size M ×M is symmetrical positive-definite:

At = λIM +

t−1∑
t′=1

∫
Gt′G

>
t′ , (40)

with IM the identity matrix. The matrix At admits an inverse which is also
symmetrical positive-definite. Note the trivial recurrence relation Jt+1 = `t+1 +
Jt.

The weight ut+1 is by definition the minimizer of Jt. Simple derivation gives
the equality Atut = bt. In practice, the weights are found via matrix inversion.
Besides, a recurrence relation can be obtained. We successively deduce:

At+1ut+1 = bt+1 = bt +

∫
FtGt ,

= Atut +

∫
FtGt ,

=

(
At+1 −

∫
GtG

>
t

)
ut +

∫
FtGt .

The recurrence relation holds for any quadratic definition of the loss `, and is
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expressed as:

ut+1 − ut = A−1t+1

∫ (
Ft − u>t Gt

)
Gt

= −1

2
A−1t+1∇`t(ut) . (41)

Demonstration of the regret bound
We iteratively use the fact that ut+1 is the minimizer of Jt to get

JT (u) ≥ JT (uT+1) = `T (uT+1) + JT−1(uT+1)

≥ `T (uT+1) + JT−1(uT )

≥
T∑

t=1

`t(ut+1) + λu>1 u1 . (42)

The nonnegativity of λu>1 u1 gives:

T∑
t=1

`t(u) ≥
T∑

t=1

`t(ut+1)− λu>u . (43)

Thus the regret can be bounded:

RT (u) =

T∑
t=1

`t(ut)− `t(u)

≤ λu>u +

T∑
t=1

`t(ut)− `t(ut+1)

≤ λu>u +

T∑
t=1

(∇`t(ut))
>

(ut − ut+1)

= λu>u +
1

2

T∑
t=1

(∇`t(ut))
>
A−1t+1∇`t(ut) , (44)

where we have used Equation 43, the convexity of the functions `t and Equa-
tion 41. At this point of the demonstration, one may have the feeling that a
logarithm bound can be obtained, because the matrix At is a sum of t matrices,
and because the logarithmic function is the primitive of the inverse function.

We define Qt = A
−1/2
t+1 Gt and st = (u>t Gt − Ft), so that the symmetry of

A
−1/2
t+1 gives

1

2
(∇`t(ut))

>
A−1t+1∇`t(ut) = 2

(∫
stQt

)>(∫
stQt

)
.
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The inequality of Cauchy-Schwartz gives(∫
stQt

)>(∫
stQt

)
=

M∑
m=1

[(∫
stQt

)
m

]2

≤
M∑

m=1

∫
s2t

∫
[(Qt)m]2

=

∫
s2t

(∫
Q>t Qt

)
= `t(ut)

(∫
G>t A

−1
t+1Gt

)
. (45)

We continue with∫
G>t A

−1
t+1Gt = Tr

(∫
A−1t+1GtG

>
t

)
= Tr

(
A−1t+1

∫
GtG

>
t

)
= Tr

(
IM −A−1t+1At

)
≤ ln

detAt+1

detAt
. (46)

The first equality holds with the linearity of the integration and because z>1 Az2 =
Tr(Az2z

>
1 ) for any vectors z1, z2 and matrix A. The inequality holds because

A−1t+1At is positive definite and 1− 1/x ≤ lnx for any x > 0.
At this step of the proof, we have shown that:

RT (u) ≤ λu>u + 2

T∑
t=1

`t(ut) ln
detAt+1

detAt
. (47)

We assume that the losses `t(ut) are bounded by a > 0. Then we easily
reach:

RT (u) ≤ λu>u + 2a ln
detAT+1

λM
. (48)

The inequality of arithmetic and geometric means applied to the eigenvalues
of AT+1 leads to the conclusion

det(AT+1) ≤
(

TrAT+1

M

)M

=

(
Mλ+

∑T
t=1 Tr

∫
GtG

>
t

M

)M

≤
(
Mλ+MT (Γ− γ)

M

)M

, (49)
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from which we conclude that

RT (u) ≤ λu>u + 2aM ln

(
1 +

T (Γ− γ)

λ

)
≤ λu>u +O(lnT ) . (50)

We logically compete against any constant vector u on the simplex so that

sup
u∈PM

RT (u) ≤ O(lnT ) . (51)

�
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