
HAL Id: hal-01884574
https://hal.archives-ouvertes.fr/hal-01884574v2

Submitted on 23 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Closure properties of synchronized relations
María Emilia Descotte, Diego Figueira, Santiago Figueira

To cite this version:
María Emilia Descotte, Diego Figueira, Santiago Figueira. Closure properties of synchronized rela-
tions. International Symposium on Theoretical Aspects of Computer Science (STACS), Mar 2019,
Berlin, Germany. �10.4230/LIPIcs.STACS.2019.22�. �hal-01884574v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/217860171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01884574v2
https://hal.archives-ouvertes.fr

Closure properties of synchronized relations
María Emilia Descotte
LaBRI, Université de Bordeaux, France

Diego Figueira
CNRS & LaBRI, Université de Bordeaux, France

Santiago Figueira
CONICET & Universidad de Buenos Aires, Argentina

Abstract
A standard approach to define k-ary word relations over a finite alphabet A is through k-tape finite
state automata that recognize regular languages L over {1, . . . , k} × A, where (i, a) is interpreted as
reading letter a from tape i. Accordingly, a word w ∈ L denotes the tuple (u1, . . . , uk) ∈ (A∗)k in
which ui is the projection of w onto i-labelled letters. While this formalism defines the well-studied
class of rational relations, enforcing restrictions on the reading regime from the tapes, which we
call synchronization, yields various sub-classes of relations. Such synchronization restrictions are
imposed through regular properties on the projection of the language L onto {1, . . . , k}. In this way,
for each regular language C ⊆ {1, . . . , k}∗, one obtains a class Rel(C) of relations. Synchronous,
Recognizable, and Length-preserving rational relations are all examples of classes that can be defined
in this way.

We study basic properties of these classes of relations, in terms of closure under intersection,
complement, concatenation, Kleene star and projection. We characterize the classes with each
closure property. For the binary case (k = 2) this yields effective procedures.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory

Keywords and phrases synchronized word relations, rational, closure, characterization, intersection,
complement, Kleene star, concatenation

Acknowledgements Work supported by ANR project DELTA, grant ANR-16-CE40-0007, grant
PICT-2016-0215, and LIA INFINIS.

2 Closure properties of synchronized relations

1 Introduction

We study relations of finite words, that is, sets R ⊆ (A∗)k for a finite alphabet A and k ∈ N,
where (A∗)k is the cartesian product of k copies of A∗. The study of these relations dates
back to the works of Büchi, Elgot, Mezei, and Nivat in the 1960s [11, 16, 26], with much
subsequent work done later (e.g., [7, 13]). Most of the investigations focused on extending
the standard notion of regularity from languages to relations. This effort has followed the
long-standing tradition of using equational, operational, and descriptive formalisms — that
is, finite monoids, automata, and regular expressions — for describing relations, and gave
rise to three different classes of relations: Recognizable, Automatic (a.k.a. Regular [7] or
Synchronous [21, 13]), and Rational.

The above classes of relations can be seen as three particular examples of a much larger
(in fact infinite) range of possibilities, where relations are described by special languages
over extended alphabets, called synchronizing languages [19]. Intuitively, the idea is to
describe a k-ary relation by means of a k-tape automaton with k heads, one for each tape,
which can move independently of one another. In the basic framework of synchronized
relations, one lets each head of the automaton either move right or stay in the same
position. In addition, one can constrain the possible sequences of head motions by a suitable
regular language C ⊆ {1, . . . , k}∗. In this way, each regular language C ⊆ {1, . . . , k}∗
induces a class of k-ary relations, denoted Rel(C), which is contained in the class Rational
(due to Nivat’s Theorem [26]). For example, on binary relations, the classes Recognizable,
Automatic, and Rational are captured, respectively, by the languages CRec = {1}∗ · {2}∗,
CAut = {12}∗ ·{1}∗ ∪{12}∗ ·{2}∗, and CRat = {1, 2}∗. Roughly speaking, any other class that
can be defined through the ‘tape behavior’ of a multi-tape automaton will be also captured
by this framework. Other examples include length-preserving, or α-synchronous relations
[12]. However, it should be noted that other well-known subclasses of rational relations, such
as deterministic or functional relations, are not captured by the notion of synchronization.
In general, the correspondence between a language C ⊆ {1, . . . , k}∗ and the induced class
Rel(C) of synchronized relations is not one-to-one: it may happen that different languages
C,D induce the same class of synchronized relations. The problem of when two classes of
synchronized relations coincide, and when one is contained in the other has been only recently
solved for the case of binary relations [14], while the case for arbitrary k-ary relations remains
open. In this work we identify, among the infinitely many synchronized classes of relations,
which are those with good closure properties, in terms of paradigmatic operations such as
intersection, complement, concatenation, projection, or Kleene star.

Motivation

The motivation for identifying and studying well-behaved classes of word relations, besides
its intrinsic interest within formal language theory, stems from various areas. One motivation
comes from verification of safety and liveness properties of parameterized systems, where
relations describe transitions [1, 10, 24, 28]. Another one arises from the study of Automatic
Structures [8], where word languages and relations are used to describe infinite structures, and
good closure properties are necessary to obtain effective model checking of logics. Another
example is the study of formal models underlying IBM’s tools for text extraction into a
relational model [17]; where several classes of relations emerge (some outside Rational) with
differing closure properties. Yet another comes from graph databases, which are actively
studied as a suitable model for RDF data, social networks data, and others [2]. Paths in graph
databases are described by their labels and hence they are abstracted as finite words. These

M.E. Descotte, D. Figueira, and S. Figueira 3

paths need to be compared, for instance, for their degree of similarity, edit distance, or other
relations [3, 5, 25]. As a concrete link with the present work we consider CRPQs —a basic
query language for graph-structured data. As it was shown in [4], allowing rational relations
in CRPQs turns the query evaluation problem undecidable. There have therefore been efforts
towards finding subclasses of Rational relations that preserve decidability for CRPQs (e.g.
[5, 18, 6]), often exploiting an effective closure under intersection on the underlying subclass
of relations. Part of our motivation for studying closure under intersection stems from our
ambition, as future work, to characterize all synchronized classes of relations that can be
added to CRPQs while preserving decidability.

Contribution

Our main contribution is a characterization for each of the studied closure properties, the
main results can be summarized as follows.

B Theorem. For every regular C ⊆ 2
∗, it is decidable whether Rel(C) is closed under

intersection, complement, concatenation, Kleene star and projection.

While some of the characterizations we give are for arbitrary arity relations, we were only
able to show decidability for binary arity. Indeed, the decidability of these characterizations
relies, crucially, on the decidability of testing for inclusion between synchronized classes,
which has only been shown for binary relations [14].

We do not include closure under union since it can be easily seen that all classes defined
in this way are closed under union. The most involved result is closure under intersection.
The main property we will prove is that Rel(C) is closed under intersection if, and only
if, Rel(C) ⊆ Rel(D) for some D whose Parikh-image is injective (i.e., there are no two
distinct words of D with the same Parikh-image). Further, we show that this can be tested,
and such a language D can be effectively constructed, whenever possible. In the same vein,
we obtain that Rel(C) is closed under complement if, and only if, Rel(C) = Rel(D) for
some D with a bijective Parikh-image. (Observe that closure under complement implies
closure under intersection in view of the fact that all classes are closed under union.)

Related work

The formalization of the framework to describe synchronized classes of relations has been
introduced only recently [19]. As mentioned, the problem of containment between classes of
relations has been addressed in [14] for the binary case. The formalism of synchronizations
has been also extended beyond rational relations by means of semi-linear constraints [18] in
the context of querying graph databases.

The paper [9] studies relations with origin information, as induced by non-deterministic
(one-way) finite state transducers. Origin information can be seen as a way to describe
a synchronization between input and output words — somehow in the same spirit of our
synchronization languages — and was exploited to recover decidability of the equivalence
problem for transducers. The paper [20] pursues further this principle by studying “distortions”
of the origin information, called resynchronizations. The paper [29] studies the uniformization
problem for synchronized relations.

Organization

After a preliminary Section 2, we show the main result characterizing closure under intersection
in Section 3. In Section 4 we study closure under complement and another variant that

4 Closure properties of synchronized relations

we call “relativized complement”. In Section 5 we give characterizations for closure under
concatenation, Kleene star and projection. We conclude with Section 6. Detailed proofs of
all statements not included in the body can be found in the Appendix.

2 Preliminaries

We denote by N the set of non-negative integers. A,B denote arbitrary finite alphabets and
for k ∈ N, k ≥ 1, k denotes the k-letter alphabet {1, . . . , k}. For a word w ∈ A∗, |w| is its
length, and |w|a is the number of occurrences of symbol a in w.

Regular languages

We use standard notation for regular expressions without complement, namely, for expressions
built up from the empty set, the empty word ε and the symbols a ∈ A, using the operations
·, ∪, and ()∗. For economy of space and clarity we use the abbreviated notation ()n, ()<n,
()≥n, ()n∗, and ()∗n —the last two being shorthands for (()n)∗ and (()∗)n respectively.
We abuse the notation ()k to also denote the cartesian product of k copies of the same set
(typically (A∗)k) when there is no risk of confusion. We also identify regular expressions with
the defined languages; for example, we may write abbc ∈ a · b≥2 · (c ∪ d)∗, b(ab)∗ = (ba)∗b
and {a, b}∗ · c = (a ∪ b)∗ · c. The star-height of a regular expression is the maximum number
of nested Kleene stars ()∗. Given u = a1 · · · an ∈ A∗ and v = b1 · · · bn ∈ B∗, we write u⊗ v
for the word (a1, b1) · · · (an, bn) ∈ (A × B)∗. Similarly, given U ⊆ A∗, V ⊆ B∗, we write
U ⊗V ⊆ (A×B)∗ for the set {u⊗ v : u ∈ U, v ∈ V, |u| = |v|}. Given two languages L,L′ over
A, we write L ⊆reg L

′ to denote that L is a regular subset of L′.
A regular expression C ⊆ 2

∗ is concat-star, if it is of the form

C = C∗1u1C
∗
2u2 · · ·C∗nun, (?)

for n ∈ N, words u1, . . . , un, and regular expressions C1, . . . , Cn where none of the Ci’s
describes the empty language. The C∗i ’s from (?) are called components of the concat-star. A
concat-star expression like (?) is smooth if either n ≤ 2 or there are no `, s ∈ 2 and 1 ≤ i < n

such that Ci ⊆ `∗, Ci+1 ⊆ s∗. We say that a regular language L is concat-star (resp. smooth)
if it admits a concat-star (resp. smooth) expression.

Parikh-images and linear sets

The Parikh-image of w ∈ 2
∗ is the pair associating each symbol of 2 to its number of

occurrences in w, i.e. π(w) = (|w|1, |w|2). We naturally extend this to languages L ⊆ 2
∗

by letting π(L) def= {π(w) : w ∈ L} (⊆ N2). A language C ⊆ 2
∗ is Parikh-injective if for

every u, v ∈ C, if π(u) = π(v) then u = v; it is Parikh-surjective if π(C) = N2; and it is
Parikh-bijective if it is both Parikh-injective and -surjective. We will use the product order
(≤,N2), defined by (n,m) ≤ (n′,m′) iff n ≤ n′ and m ≤ m′. Given a vector x̄ ∈ N2 and
a set X = {x̄1, . . . , x̄n} ⊆ N2 (in our case, the Parikh-image of words from 2

∗), we define
the linear set generated by X and x̄ as 〈x̄, X〉 = {x̄ + α1 · x̄1 + · · · + αnx̄n : αi ∈ N}. For
economy of space we write 〈X〉 as short for 〈0̄, X〉, where 0̄ = (0, 0). Note that, in particular,
〈∅〉 = {0̄}. A semi-linear set is a finite union of linear sets. The following fact will be useful
in the next section.

I Lemma 1. For every semi-linear set V ⊆ N2 there exists a Parikh-injective language
C ⊆reg 2

∗ such that π(C) = V .

M.E. Descotte, D. Figueira, and S. Figueira 5

Two sets of vectors X,Y ⊆ N2 are independent if 0̄ 6∈ X ∪ Y and 〈X〉 ∩ 〈Y 〉 = {0̄};
otherwise they are dependent. We say that two languages over 2 are Parikh-independent
(resp. Parikh-dependent) if their Parikh-images are. We abuse notation and say that x̄ and ȳ
are (in)dependent whenever {x̄} and {ȳ} are (in)dependent, and likewise for words. We will
need the following simple observation later.

B Observation 2. If u and v are Parikh-independent, for every s, t, s′, t′ ∈ N, if π(usvs′) =
π(vtut′), then s′ = t and t′ = s.

Indeed, we have that s · π(u) + s′ · π(v) = t′ · π(u) + t · π(v). Let us assume that s′ ≤ t (the
case in which is ≥ is similar). Then t′ ≤ s and so we have (s− t′) ·π(u) = (t− s′) ·π(v) which
implies s− t′ = 0 = t− s′ since u and v are Parikh-independent. Then s′ = t and t′ = s.

2.1 Synchronized relations
A synchronization of a tuple (w1, . . . , wk) of words over A is a word over k× A such that
the projection onto A of positions labeled by i is exactly wi, for i = 1, . . . , k. For example,
the words (1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) are two possible synchronizations of the same
pair (ab, a). Every word w ∈ (k × A)∗ is a synchronization of a unique tuple (w1, . . . , wk)
of words over A, where for all i ∈ {1, . . . , k}, i|wi|⊗wi is the projection of w onto the
alphabet {i} × A. We denote such tuple (w1, . . . , wk) by JwKk and extend the notation to
languages L ⊆ (k×A)∗ by denoting the unique k-ary relation synchronized by L as JLKk

def=
{JwKk : w ∈ L}. In our previous example, J(1, a)(1, b)(2, a)K2 = J(1, a)(2, a)(1, b)K2 = (ab, a),
and J{(1, a)(2, a), (1, a)(2, b), (1, b)(2, a), (1, b)(2, b)}∗K2 is the equal-length relation on the
alphabet {a, b}.

In this setup, we define classes of relations by restricting the set of admitted synchroniza-
tions. One way of doing so is to fix a language C ⊆reg k

∗, called control language, and let L
vary over all regular languages over k× A whose projections onto k are in C. Thus, given
k ∈ N and C ⊆reg k

∗, we define the class of k-ary C-controlled relations as

Relk(C) def=
{

(JLKk,A) : L ⊆reg C ⊗A∗,A is a finite alphabet
}
.

Whenever k is clear from the context, we write JwK, JLK and Rel(C). For economy
of space, we write C =Rel D as short for Rel(C) = Rel(D), and we say that C is Rel-
equivalent to D. Similarly, we write C ⊆Rel D as short for Rel(C) ⊆ Rel(D) and we say
that C is Rel-contained in D. The definition makes explicit the alphabet used for each
relation, in contrast to previous definitions of synchronized classes [19, 14]. The reason for
this is that in particular we study closure under complement, which requires the alphabet
to be specified. However, we observe that synchronized classes are closed under taking
super-alphabets, and thus the alphabet can be often disregarded. We then write R ∈ Rel(C)
to denote (R,A) ∈ Rel(C) for some A.

B Observation 3. If (R,A) ∈ Rel(C) then (R,A′) ∈ Rel(C) for every A ⊆ A′. If
(R,A) ∈ Rel(C) then (R,AR) ∈ Rel(C), where AR ⊆ A is the set of symbols present in R.

Clearly, C ⊆reg D ⊆reg k
∗ implies C ⊆Rel D, but the converse does not hold: Rel2(CRec) =

Recognizable (Automatic = Rel2(CAut), but CRec 6⊆ CAut. Moreover, different control lan-
guages may induce the same class of synchronized relations. For any two regular C,D ⊆reg k

∗

it is decidable to test whether C ⊆Rel D in the case k = 2 [14], but for arbitrary k-ary
relations the decidability of the class containment problem is open. Henceforward, Rational
will denote the class Rel(2∗) of rational relations.

6 Closure properties of synchronized relations

We restate some properties from [14] that we will use throughout (the proofs in [14] are
for the case k = 2 but they can be easily generalized to arbitrary k). We will use the notation
R · S to denote the usual concatenation of relations, more specifically, given R,S ⊆ (A∗)k,
R · S = {(u · u′, v · v′) : (u, v) ∈ R and (u′, v′) ∈ S}.

I Lemma 4 (Lemma 2 of [14]). For every C,D,C ′, D′ ⊆reg k
∗,

1. if R ∈ Rel(C ·D), there are R1, . . . , Rn ∈ Rel(C), R′1, . . . , R′n ∈ Rel(D) such that
R =

⋃
iRi ·R′i;

2. if R ∈ Rel(C∗), there are R1, . . . , Rn ∈ Rel(C) and I ⊆reg {1, . . . , n}∗ such that
R =

⋃
w∈I Rw[1] · · ·Rw[|w|];

3. For every R ∈ Rel(C ∪D), there are R1 ∈ Rel(C), R2 ∈ Rel(D) such that R = R1∪R2.
4. if C ⊆ D, then C ⊆Rel D;
5. if C ⊆Rel D and C ′ ⊆Rel D

′, then C · C ′ ⊆Rel D ·D′ and C ∪ C ′ ⊆Rel D ∪D′;
6. if C ⊆Rel D, then C∗ ⊆Rel D

∗;
7. for every partition I, J of {1, . . . , k} such that C ⊆ I∗ and D ⊆ J∗, we have C ·D =Rel

D · C;
8. if C is finite, then C ·D =Rel D · C;
9. if C ⊆Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds.

The following decomposition lemma, which is an immediate consequence of [14, Proposi-
tion 3 plus Lemma 2 P7] and basic properties from Lemma 4, will be used throughout.

I Lemma 5. Every C ⊆reg 2
∗ is effectively Rel-equivalent to a finite union of smooth

languages, i.e. given C ⊆reg 2
∗, one can compute a finite set of smooth languages such that

C is Rel-equivalent to their union.

In addition to these, our characterization results make use of the following easy properties
of relations controlled by Parikh-injective and Parikh-bijective languages.

I Lemma 6. For any C ⊆reg k
∗ and L,M ⊆reg C ⊗A∗,

1. if C is Parikh-injective, and w,w′ ∈ C ⊗A∗, then JwK = Jw′K implies w = w′;
2. JLK ∪ JMK = JL ∪MK;
3. if C is Parikh-injective then JLK ∩ JMK = JL ∩MK and JLK \ JMK = JL \MK;
4. if C is Parikh-bijective then (A∗)k \ JLK = J(C ⊗A∗) \ LK;
5. if C is Parikh-surjective then 1∗ · · · k∗ ⊆Rel C.

Proof. The first two items follow immediately from definitions.
3. JL ∩MK ⊆ JLK ∩ JMK is always true. For the other containment, let (w1, . . . , wk) ∈

JLK∩ JMK, then there exist w ∈ L,w′ ∈M such that JwK = Jw′K = (w1, . . . , wk). Since C
is Parikh-injective, by item 1, w = w′ ∈ L∩M synchronizes (w1, . . . , wk) which concludes
the proof.
JLK \ JMK ⊆ JL \MK is always true. For the other containment, let w ∈ L \M . Then
JwK ∈ JLK. By way of contradiction, suppose that JwK ∈ JMK. In this case, there exists
w′ ∈M such that JwK = Jw′K. Since C is Parikh-injective, by item 1, M 63 w = w′ ∈M
which is a contradiction.

4. For ⊆, note that, since C is Parikh-surjective, (A∗)k = JC ⊗A∗K, and so the result follows
from the previous item.

5. We make use of closure under componentwise letter-to-letter relations (cf. Lemma 8 of
Section 2.2). Suppose C ⊆reg k

∗ is Parikh-surjective, and let R ∈ Rel(1∗ · · · k∗). As an
immediate consequence of Mezei’s theorem, we have the following:

M.E. Descotte, D. Figueira, and S. Figueira 7

B Claim 7. For every k, Rel(1∗ · · · k∗) = {
⋃
i∈I Li,1×· · ·×Li,k : I is finite and Li,j ⊆reg

A∗ for some finite alphabet A}.

Then R =
⋃
i∈I Li,1 × · · · × Li,k for a finite I and regular languages Li,j . For any i ∈ I

and j ∈ k consider Ti,j as the letter-to-letter relation Ti,j = {(u, v) : |u| = |v| and v ∈
Li,j} ∈ Rel((12)∗). Note that, by Parikh-surjectivity, U = (A∗)k = JC ⊗A∗K ∈ Rel(C)
and therefore U ◦ (Ti,1, . . . , Ti,k) = Li,1 × · · · × Li,k. Then, by closure under union
and componentwise letter-to-letter relations (Lemma 8), it follows that R =

⋃
i∈I U ◦

(Ti,1, . . . , Ti,k) ∈ Rel(C). J

2.2 Universal closure properties
There are some closure properties which are shared by all classes of synchronized relations,
that is, by every Rel(C) with C ⊆reg k

∗. We highlight the most salient ones.
An alphabetic morphism between two finite alphabets A,B is a morphism h : A∗ → B∗

between the free monoids such that h(a) ∈ B for every a ∈ A. Its application is extended to any
relation R ⊆ (A∗)k as follows h(R) = {(h(u1), . . . , h(uk)) : (u1, . . . , uk) ∈ R} ⊆ (B∗)k; and its
inverse is applied to S ⊆ (B∗)k as h−1(S) = {(u1, . . . , uk) : (h(u1), . . . , h(uk)) ∈ S} ⊆ (A∗)k.
A letter-to-letter relation is one from Rel((12)∗).

We define the following closure properties over classes C of k-ary relations.
C is closed under union if for all (R,A), (S,A) ∈ C, (R ∪ S,A) ∈ C;
C is closed under (inverse) alphabetic morphisms if for all (R,A) ∈ C and h : A∗ → B∗
(resp. g : B∗ → A∗) an alphabetic morphism, (h(R),B) ∈ C (resp. (g−1(R),B) ∈ C);
C is closed under componentwise letter-to-letter relations if for every (R,A) ∈ C and
(T1,A), . . . , (Tk,A) ∈ Rel((12)∗) the following relation over the alphabet A is also in C:
R ◦ (T1, . . . , Tk) def= {(u1, . . . , uk) : there is (v1, . . . , vk) ∈ R s.t. (vi, ui) ∈ Ti for every i}.
C is closed under recognizable projections if for all (R,A) ∈ C and (S,A) ∈ Rel(1∗ · · · k∗),
(R ∩ S,A) ∈ C.

I Lemma 8. For every k ∈ N and C ⊆reg k
∗, Rel(C) is closed under union, alphabetic

morphisms, inverse alphabetic morphisms, componentwise letter-to-letter relations, and
recognizable projections.

Proof. Closure under union follows from the fact that if L,L′ ⊆reg C ⊗A∗, then L ∪ L′ ⊆reg
C ⊗A∗ and JLK ∪ JL′K = JL ∪ L′K (Lemma 6). Closure under letter-to-letter relations
follows from the fact that, given L ⊆reg C ⊗A∗ and k letter-to-letter relations T1, . . . , Tk
over A, there exists L′ ⊆reg C ⊗A∗ such that JL′K = JLK ◦ (T1, . . . , Tk) (one can build
an automaton recognizing such language from the automata for L, T1, . . . , Tk). Since any
(inverse) alphabetic morphism can be implemented as a letter-to-letter relation, it follows that
Rel(C) is closed under (inverse) alphabetic morphisms. Finally, closure under recognizable
projections follows from closure under letter-to-letter relations and closure under union, since
for every R ∈ Rel(C) and S =

⋃
i∈I Li,1 × · · · × Li,k ∈ Rel(1∗ · · · k∗) (recall Claim 7) we

have that R ∩ S =
⋃
i∈I R ◦ (Ti,1, . . . , Ti,k) for Ti,j = {(w,w) : w ∈ Li,j}. J

3 Closure under intersection

We say that a class C of k-ary relations is closed under intersection if for all (R,A), (S,A) ∈ C,
(R∩S,A) ∈ C. In this section we show a decidable characterization of the languages C ⊆reg 2

∗

for which Rel(C) is closed under intersection. Further, for C ⊆reg 2
∗, if Rel(C) is closed

under intersection, it is effectively closed, that is, for every R,S ∈ Rel(C) over an alphabet

8 Closure properties of synchronized relations

A, one can compute R ∩ S as a synchronized relation, that is, as some L ⊆reg (2× A)∗ so
that JLK = R ∩ S. The main result is the following.

I Theorem 9. For every C ⊆reg 2
∗, Rel(C) is closed under intersection if, and only if,

C ⊆Rel D for some Parikh-injective D ⊆reg 2
∗.

At the end of this section we give an effective procedure to decide, given C ⊆reg 2
∗,

whether Rel(C) is closed under intersection. Decidability can be seen as the fact that the
set of languages C ⊆reg 2

∗ for which there is a Parikh-injective language D ⊆reg 2
∗ such

that C ⊆Rel D is both computably enumerable and co-computably enumerable. While
showing that it is c.e. is straightforward, proving co-c.e. involves all the developments of
this section. Concretely, we define some bad conditions that characterize all languages C
such that Rel(C) is not closed under intersection, and in this way we obtain that the set of
languages C ⊆reg 2

∗ which satisfy any of the bad conditions is c.e.

We will start by giving a sufficient condition for Rel(C) to be closed under intersection.
The following simple lemma (which was already proved in [19]) follows from Lemma 6.

I Lemma 10. If C ⊆reg 2
∗ is Parikh-injective, then Rel(C) is closed under intersection.

This lemma implies that any language which is Rel-equivalent to a Parikh-injective one
gives rise to a closed under intersection class. A natural question is whether the converse
holds but it doesn’t seem to. For instance, if C = 1∗2∗ ∪ (12)∗, Rel(C) is closed under
intersection but it seems unlikely that C is Rel-equivalent to a Parikh-injective language.

Another sufficient condition for Rel(C) to be closed under intersection is that C =Rel
D ∪ X for some Parikh-injective D,X ⊆reg 2

∗ such that X ⊆Rel 1∗2∗ (in fact, it can be
seen that injectivity of X is not really necessary). We will prove that this condition is also
necessary, and thus we will have another characterization of closure under intersection. This
is not obvious and we will prove a stronger statement, which we present below (Theorem 12).
Also, in particular, we will show that if Rel(C) is closed under intersection, we can compute
a Parikh-injective D ⊆reg 2

∗ such that C ⊆Rel D, which allows us in turn to compute the
intersection of two relations in Rel(C) as a synchronized relation.

For C ⊆reg 2
∗, we denote by Rel(C)∩ the closure under intersection of Rel(C), i.e.,

the smallest class of relations containing Rel(C) and being closed under intersection. We
present three properties on C ⊆reg 2

∗ that we call the bad conditions, which will characterize
the languages such that Rel(C) is not closed under intersection.

Bad conditions

For C ⊆reg 2
∗, consider the following properties:

(A) There exist u1, u2, v, z ∈ 2∗ such that

1. ui and v are Parikh-independent for i = 1, 2,
2. π(ui) ≥ (1, 1) for some i,
3. {u1, u2} and {v} are Parikh-dependent,
4. u∗1u∗2z ⊆Rel C and v∗z ⊆Rel C.

(B) There exist u, v, z ∈ 2∗ such that

1. u and v are Parikh-independent,
2. π(u) ≥ (1, 1) or π(v) ≥ (1, 1),
3. u∗v∗z ⊆Rel C and v∗u∗z ⊆Rel C.

M.E. Descotte, D. Figueira, and S. Figueira 9

(C) There exist u, v, w, z ∈ 2∗ such that

1. u ∈ 1∗ \ {ε}, w ∈ 2∗ \ {ε},
2. π(v) ≥ (1, 1),
3. u∗v∗w∗z ⊆Rel C or w∗v∗u∗z ⊆Rel C.

For example, 1∗(12)∗(122)∗ satisfies A for u1 = 1, u2 = 122, v = 12, z = ε; 1∗(12)∗1∗ satisfies
B for u = 1, v = 12, z = ε; and 1∗(12)∗2∗ satisfies C for u = 1, v = 12, w = 2, z = ε.

B Observation 11. The bad conditions are ⊆Rel-upward closed: If C ⊆Rel D and C satisfies
property A (resp. B, C), then D also satisfies property A (resp. B, C).

We can now present the characterization theorem.

I Theorem 12. For C ⊆reg 2
∗, the following are equivalent:

1. Rel(C) is closed under intersection (i.e. Rel(C)∩ = Rel(C));
2. Rel(C)∩ is definable (i.e. there exists D ⊆reg 2

∗ such that Rel(C)∩ = Rel(D));
3. Rel(C)∩ ⊆ Rational;
4. for all R,S ∈ Rel(C), R ∩ S ∈ Rational;
5. C does not satisfy any of the bad conditions;
6. there exist D,X ⊆reg 2

∗ Parikh-injective such that C =Rel D ∪X and X ⊆Rel 1∗2∗;
7. there exists D ⊆reg 2

∗ Parikh-injective such that C ⊆Rel D.

From 1⇔ 7 and transitivity of ⊆Rel, closure under intersection is ⊆Rel-downward closed:

I Corollary 13. For C,D ⊆reg 2
∗, if C ⊆Rel D and Rel(D) is closed under intersection,

then Rel(C) is closed under intersection.

We first explain the main proof strategy for obtaining Theorem 12, and present the three
key technical results we will need to prove (Propositions 14, 16 and 17).

Proof idea of Theorem 12

The proof strategy is by showing 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 1 on the one hand, and 6 ⇒ 7
⇒ 3 on the other hand. First observe that 1 ⇒ 2 ⇒ 3 ⇒ 4 are trivial. We next prove 6 ⇒ 1,
7 ⇒ 3 and 6 ⇒ 7.

For 6⇒ 1, suppose that C =Rel D∪X for some Parikh-injective languages D,X such that
X ⊆Rel 1∗2∗. Let R,S ∈ Rel(C). Then, by item 3 of Lemma 4, there exist R1, S1 ∈ Rel(D),
R2, S2 ∈ Rel(X) such that R = R1 ∪R2 and S = S1 ∪ S2. Note that:

R1 ∩ S1 ∈ Rel(D) ⊆ Rel(C) by Lemma 10 applied to D;
R2 ∩ S2 ∈ Rel(X) ⊆ Rel(C) by Lemma 10 applied to X; and
R1 ∩ S2, R2 ∩ S1 ∈ Rel(D) by closure under recognizable projections (Lemma 8).

It only remains to observe that R ∩ S = (R1 ∩ S1) ∪ (R1 ∩ S2) ∪ (R2 ∩ S1) ∪ (R2 ∩ S2) and
obtain that R ∩ S ∈ Rel(C) due to closure under union (Lemma 8).

On the other hand, 7 ⇒ 3 can be derived from 1 ⇒ 3. Indeed, suppose that C ⊆Rel D

for some Parikh-injective language D. By Lemma 10, Rel(D) is closed under intersection
and so, by 1 ⇒ 3, Rel(C)∩ ⊆ Rel(D)∩ ⊆ Rational.

For 6 ⇒ 7, suppose that C =Rel D ∪ X for some Parikh-injective languages D,X
such that X ⊆Rel 1∗2∗. By Lemma 1, closure under complement of semi-linear sets and
Parikh’s Theorem [27], it follows that there exists D̂ ⊆reg 2

∗ Parikh-injective such that
π(D̂) = N2 \ π(D). Note that D ∪ D̂ is Parikh-bijective. Since D ∪ D̂ is Parikh-surjective, by

10 Closure properties of synchronized relations

Lemma 6, item 5, X ⊆Rel 1∗2∗ ⊆Rel D ∪ D̂ and so, by Lemma 4, item 3 plus closure under
union of D ∪ D̂, we have C =Rel D ∪X ⊆Rel D ∪ D̂.

The main difficulty will lie on the proofs of 4 ⇒ 5 and 5 ⇒ 6. For 4 ⇒ 5, we will prove
the contrapositive statement:

I Proposition 14. If C ⊆reg 2
∗ satisfies any of the bad conditions, then there exist R,S ∈

Rel(C) such that R ∩ S 6∈ Rational.

To prove 5⇒ 6, we define some basic regular languages over 2 that we call basic injective.
A language C ⊆ 2

∗ is basic injective if it can be expressed as u∗v∗z for u, v, z ∈ 2∗ such that
if u, v 6= ε, then u and v are Parikh-independent. In particular this implies the following.

I Lemma 15. Every basic injective language is Parikh-injective.

Proof. Let C = u∗v∗z be basic injective. The cases in which u and/or v are empty are
straightforward. We will then assume that u and v are Parikh-independent. Suppose then
that π(urvsz) = π(ur′

vs
′
z) for some r, s, r′, s′ ∈ N. By Observation 2, r = r′ or s = s′ which

concludes the proof. J

Note that singleton sets and languages of the form u∗z for u an arbitrary word are basic
injective. The interest of basic injective languages stems from the fact that we can prove the
following two results, from which it is not hard to get 5 ⇒ 6.

I Proposition 16. If C ⊆reg 2
∗ does not satisfy any of the bad conditions, then C is

Rel-equivalent to a finite union of basic injective languages.

I Proposition 17. If C is a finite union of basic injective languages that are not Rel-
contained in 1∗2∗ and C does not satisfy any of the bad conditions, then C is Rel-equivalent
to a Parikh-injective regular language.

To show 5⇒ 6 from the two statements above, suppose that C does not satisfy any of the
bad conditions. By Proposition 16, C =Rel X

′ ∪D′, for X ′ =
⋃
i∈I Xi and D′ =

⋃
j∈J Dj ,

where I, J are finite, for every i ∈ I, Xi is basic injective and Xi ⊆Rel 1∗2∗, and for every
j ∈ J , Dj is basic injective and Dj 6⊆Rel 1∗2∗. Note that, from the definition of basic injective
plus [14, Proposition 7] plus basic properties from Lemma 4, it follows readily that for each
i ∈ I, there exist `, s, `′, s′ ∈ N such that Xi is Rel-equivalent to 1`∗1`′2s∗2s′ . Therefore X ′
is Rel-equivalent to a Parikh-injective language X such that X ⊆Rel 1∗2∗. On the other
hand, by Observation 11, since D′ ⊆Rel C and C does not satisfy any of the bad condition,
neither does D′. Hence, by Proposition 17, D′ is Rel-equivalent to a Parikh-injective regular
language D. Thus C =Rel X ∪D which concludes the proof.

We dedicate the rest of the section to prove Propositions 14, 16 and 17.

Proof idea of Proposition 14

We show the proof idea for condition A. The other two conditions follow a similar proof
strategy. Suppose that condition A holds, and consider the 3-letter alphabet A = {a1, a2, c}.
Let R,S be the following relations in (A∗)2:

R = J(u∗1⊗ a∗1) · (u∗2⊗ a∗2) · z⊗ c∗K, S = J(v∗⊗{a1, a2}∗) · z⊗ c∗K,

note that R,S ∈ Rel(C) by condition A.4. It is not hard to show that |R ∩ S| = ∞ due
to condition A.3. We show that R ∩ S 6∈ Rational. By means of contradiction, suppose

M.E. Descotte, D. Figueira, and S. Figueira 11

there is an automaton over the alphabet 2× A such that the language recognized by this
automaton synchronizes R ∩ S. Since the language is infinite, there is a non-trivial cycle
q0

w1−−→ q
w2−−→ q

w3−−→ qf inside some accepting run. By a pumping argument, it can be
seen that: 1) Jw2K is necessarily of the form (asi , ati) for some i, s, t partly due to A.2; 2)
(s, t) ∈ 〈{π(uj)}〉 for some j; and 3) (s, t) ∈ 〈{π(v)}〉. Since 2) plus 3) are in contradiction
with A.1, it follows that R ∩ S 6∈ Rational. J

Proof idea of Proposition 16

It can be seen that one can reduce to the case in which C is of the form w∗1 · · ·w∗nz with wi
and wi+1 Parikh-independent for all i = 1, . . . , n − 1. For this kind of languages, if n ≤ 2
the result follows trivially since they are already basic injective. A straightforward case
inspection shows that if n ≥ 3 then at least one of the bad conditions holds. J

Proof idea of Proposition 17

In order to prove Proposition 17 we show the following stronger statement, which gives a
characterization of closure under intersection based on the decomposition into basic injective
languages. We denote the commutative closure of a language C ⊆reg 2

∗ by [C]π = {w ∈ 2∗ :
π(w) ∈ π(C)}.

I Lemma 18. Given a finite set of basic injective languages {Bi} that are not Rel-contained
in 1∗2∗, the following are equivalent:
1. Rel(

⋃
iBi) is closed under intersection;

2. for all R,S ∈ Rel(
⋃
iBi), R ∩ S ∈ Rational;

3.
⋃
iBi does not satisfy any of the bad conditions;

4. for every i, j Bi ∪Bj does not satisfy any of the bad conditions;
5. for every i, j, Bi ∩ [Bj]π is regular and Bi ∩ [Bj]π ⊆Rel Bj;
6.
⋃
iBi =Rel C for some Parikh-injective C ⊆reg 2

∗.

Proposition 17 follows from Lemma 18 since it is its implication 3 ⇒ 6. In order to give
a proof for Lemma 18, we first define the following property, which is at the core of the next
lemmas. A pair of languages B1, B2, is said to verify the dichotomy property if either

B1 ∪B2 satisfies one of the bad conditions; or
B1 ∩ [B2]π is regular and B1 ∩ [B2]π ⊆Rel B2.

Note that B1∩ [B2]π may not be regular in general, for example if B1 = 1∗2∗ and B2 = (12)∗.
The main ingredient to prove Lemma 18 is given by the following statement.

I Lemma 19. Every pair of basic injective languages B1, B2 such that B1, B2 6⊆Rel 1∗2∗
satisfies the dichotomy property.

Proof of Lemma 18. 1⇒ 2 is trivial; 2⇒ 3 follows from the contrapositive of Proposition 14;
3 ⇒ 4 holds by Observation 11; and 4 ⇒ 5 follows from Lemma 19. For 5 ⇒ 6, we proceed
by induction on the number of basic injective languages in {Bi}. The base case is the
empty language, which is (vacuously) Parikh-injective. For the inductive step, consider a
union B ∪

⋃
iBi. First observe that, by Lemma 15, B is Parikh-injective. By inductive

hypothesis, there exists D ⊆reg 2
∗ Parikh-injective such that

⋃
iBi =Rel D. Also, since

B ∩ [
⋃
iBi]π =

⋃
iB ∩ [Bi]π, by hypothesis both B ∩ [

⋃
iBi]π and B \ [

⋃
iBi]π are regular,

and B ∩ [
⋃
iBi]π ⊆Rel

⋃
iBi. Now it only remains to observe that (B \ [

⋃
iBi]π) ∪ D is

Parikh-injective and Rel-equivalent to B∪
⋃
iBi. Finally, 6⇒ 1 follows from Lemma 10. J

12 Closure properties of synchronized relations

Decidability

We finally discuss briefly the decidability procedure to test whether a class Rel(C) is closed
under intersection.

I Proposition 20. It is decidable wether a given C ⊆reg 2
∗ is such that Rel(C) is closed

under intersection.

Proof idea. It follows by the equivalence 1 ⇔ 5 ⇔ 7 of Theorem 12, together with the fact
that the set of languages C ⊆reg 2

∗ for which there is a Parikh-injective language D ⊆reg 2
∗

such that C ⊆Rel D is computably enumerable; and the fact that the set of languages
C ⊆reg 2

∗ which satisfy any of the bad conditions is computably enumerable. J

Note that whenever Rel(C) is closed under intersection, it is effectively so: given
L1, L2 ⊆reg C ⊗A∗ it is possible to compute L ⊆reg (2×A)∗ with JLK = JL1K∩ JL2K. Indeed,
by the previous proposition we can compute some Parikh-injective D such that C ⊆Rel D.
By the results of [14], one can compute L′1, L′2 ⊆reg D⊗A∗ such that JL′1K = JL1K and
JL′2K = JL2K; and thus L = L′1 ∩ L′2 is such that JLK = JL1K ∩ JL2K due to injectivity of D
and Lemma 6.

4 Closure under complement

We say that a class C of k-ary relations is closed under complement if for every (R,A) ∈ C,
((A∗)k \ R,A) ∈ C. For every Relk(C) and alphabet A, note that there is a unique
largest relation (U,A) ∈ Relk(C) that contains all relations (R,A) ∈ Relk(C); this is
U = JC ⊗A∗Kk. Thus, a natural alternative definition for complement could take U , instead
of (A∗)k, as the universe. We say that Relk(C) is closed under relativized complement if
for all (R,A) ∈ Relk(C) we have (JC ⊗A∗Kk \ R,A) ∈ Relk(C). In this section, we give
effective characterizations of the languages C ⊆reg 2

∗ for which Rel(C) is closed under
complement and relativized complement.

Relativized complement

We show that closure under relativized complement, perhaps surprisingly, is equivalent to
closure under intersection, and therefore it is decidable whether Rel(C) is closed under
relativized complement for a given C ⊆reg 2

∗.

I Proposition 21. For C ⊆reg 2
∗, Rel(C) is closed under relativized complement if, and

only if, Rel(C) is closed under intersection.

Proof. For the left-to-right direction, let (R,A), (S,A) ∈ Rel(C). Recall that Rel(C) is
always closed under union and note that R∩S = JC ⊗A∗K\ ((JC ⊗A∗K\R)∪ (JC ⊗A∗K\S)),
and therefore (R ∩ S,A) ∈ Rel(C). For the right-to-left direction, let L ⊆reg C ⊗A∗. We
want to check that JC ⊗A∗K \ JLK ∈ Rel(C). By the characterization of the previous section
(Theorem 12, implication 1 ⇒ 6) we can assume that C = D ∪X, for X ⊆Rel 1∗2∗ and X,D
Parikh-injective. Then,

JC ⊗A∗K \ JLK = J(D ∪X)⊗A∗K \ JLK = (J(D⊗A∗) ∪ (X ⊗A∗)K) \ JLK

= (JD⊗A∗K ∪ JX ⊗A∗K) \ JLK = (JD⊗A∗K \ JLK) ∪ (JX ⊗A∗K \ JLK)
= J(D⊗A∗) \ LK︸ ︷︷ ︸

R

∪ JX ⊗A∗ \ LK︸ ︷︷ ︸
S

. (by Lemma 6, item 3)

Since R,S ∈ Rel(C), by Lemma 8, R∪S ∈ Rel(C), and thus JC ⊗A∗K\ JLK ∈ Rel(C). J

M.E. Descotte, D. Figueira, and S. Figueira 13

Note that if C ⊆ 2
∗ is Parikh-surjective, then JC ⊗A∗K = (A∗)2, and hence closure under

relativized complement and closure under complement coincide. Thus, by Proposition 21:

B Observation 22. If C ⊆ 2
∗ is Parikh-surjective, then Rel(C) is closed under complement

if, and only if, Rel(C) is closed under intersection.

Complement

Let Rel(C)c be the closure under complement of Rel(C), i.e., the smallest class closed
under complement containing Rel(C). The following lemma gives sufficient conditions for
our characterization.

I Lemma 23. For any C ⊆reg 2
∗,

1. if C is Parikh-bijective, then Rel(C) is closed under complement;
2. if Rel(C) is closed under complement, then C is Parikh-surjective.

Proof. For item 1, let L ⊆reg C ⊗A∗. By item 4 of Lemma 6, (A∗)2 \ JLK = JC ⊗A∗ \ LK ∈
Rel(C) which concludes the proof.

For item 2, let L = C ⊗{a}∗. Then (({a}∗)2 \ JLK, {a}) ∈ Rel(C) and so there exists
L′ ⊆reg C ⊗{a}∗ such that JL′K = ({a}∗)2 \ JLK. Then JL ∪ L′K = JLK ∪ JL′K = ({a}∗)2.
Therefore, the Parikh-image of the projection of L ∪L′ onto the first component must be Nk
and so C is Parikh-surjective since both L and L′ (and hence L ∪ L′) are ⊆reg C ⊗{a}∗. J

From Lemma 23 plus Observation 22, we have that Rel(C) is closed under complement
if, and only if, Rel(C) is closed under intersection and C is Parikh-surjective. At the end of
this section, we will use this to prove that closure under complement is a decidable property.

We now give a characterization for closure under complement without referring to closure
under intersection.

I Theorem 24. For C ⊆reg 2
∗, the following are equivalent:

1. there exists D ⊆reg 2
∗ Parikh-bijective such that C =Rel D;

2. Rel(C) is closed under complement (i.e. Rel(C)c = Rel(C));
3. Rel(C)c is definable (i.e. there is D ⊆reg 2

∗ such that Rel(C)c = Rel(D)).

Before proving the above theorem, we observe that we cannot obtain the third and fourth
equivalent statements that we have in Theorem 12.

I Lemma 25. There is C ⊆reg 2
∗ with Rel(C)c ⊆ Rational but Rel(C)c not definable.

Proof. Consider any language which is Parikh-injective but not Parikh-surjective, e.g. C =
(12)∗. Then, by item 2 of Lemma 23, plus Theorem 24, we have that Rel(C)c is not definable.
The result is then an immediate consequence of the following:

B Claim. If C ⊆reg 2
∗ is Parikh-injective, then Rel(C)c ⊆ Rational.

Indeed, by Parikh’s Theorem [27], π(C) is a semi-linear set and then so is N2 \ π(C) (see for
example [22]). By Lemma 1, N2 \ π(C) = π(D) for some Parikh-injective language D. It
follows then that C ∪D is Parikh-bijective and so, by Lemma 23, item 1, Rel(C ∪D) is
closed under complement. Then Rel(C)c ⊆ Rel(C ∪D) ⊆ Rational. J

Proof of Theorem 24. 1 ⇒ 2 follows from item 1 of Lemma 23; and 2 ⇒ 3 is trivial.
2 ⇒ 1: Suppose that Rel(C) is closed under complement. By Lemma 8, Rel(C)

is also closed under union and so under intersection. Therefore, by Theorem 12, there

14 Closure properties of synchronized relations

exist Parikh-injective languages D,X ⊆reg 2
∗ such that X ⊆Rel 1∗2∗ and C =Rel D ∪X.

It follows then that JD⊗A∗K ∈ Rel(C) and so R = (A∗)2 \ JD⊗A∗K ∈ Rel(C). Let
L ⊆reg (D ∪X)⊗A∗ be such that JLK = R. By definition of R, we get that L ⊆reg X ⊗A∗
and so X ′ = {u : ∃v such that u⊗ v ∈ L} ⊆reg X. Besides, also by definition of R, π(X ′) =
N2 \ π(D) and so D ∪X ′ is Parikh-bijective. It only remains to observe that C =Rel D ∪X ′:
⊇ is trivial and ⊆ follows from the fact that 1∗2∗ is Rel-contained in any Parikh-surjective
language (Lemma 6, item 5) and so X ⊆Rel D ∪X ′.

3 ⇒ 2: Let D ⊆reg 2
∗ such that Rel(C)c = Rel(D). Since Rel(D) is closed under

complement, by 2 ⇒ 1, we can assume wlog that D is Parikh-bijective. By means of contra-
diction, suppose that Rel(C) is not closed under complement. Therefore, by Observation 22,
either C is not Parikh-surjective or Rel(C) is not closed under intersection. We show that
in both cases we arrive to a contradiction. If Rel(C) is not closed under intersection, by
Theorem 12 (implication ¬1 ⇒ ¬4), there are R,S ∈ Rel(C) such that R ∩ S 6∈ Rational;
but since R ∩ S = (A∗)2 \ ((A∗)2 \ R ∪ (A∗)2 \ S) ∈ Rel(C)c = Rel(D) ⊆ Rational
(recall that Rel(D) is closed under union by Lemma 8), we have a contradiction. On
the other hand, if C is not Parikh-surjective, there exists x ∈ π(D) \ π(C). Let u ∈ D

be such that π(u) = x and let us consider the singleton relation R = {Ju⊗ a|u|K}. It is
clear that (R, {a, b}) ∈ Rel(D) = Rel(C)c. Then, either (R, {a, b}) or its complement
(({a, b}∗)2 \R, {a, b}) should be in Rel(C). But it is easy to see that both relations contain
a tuple with Parikh-image x̄: Ju⊗ a|u|K ∈ R and Ju⊗ b|u|K ∈ ({a, b}∗)2 \R. Since x̄ 6∈ π(C),
none of the relations is in Rel(C), which is a contradiction. J

Decidability

From Observation 22 and item 2 of Lemma 23, decidability of closure under complement
follows immediately: Rel(C) is closed under complement if, and only if, Rel(C) is closed
under intersection and C is Parikh-surjective. The former is decidable due to Proposition 20,
and the latter is decidable through Parikh’s Theorem, since universality for semi-linear sets
is decidable (see, e.g., [22]).

I Proposition 26. Given C ⊆reg 2
∗, testing whether Rel(C) is closed under complement is

decidable.

5 Closure under concatenation, Kleene star, and projection

In this section, we characterize languages C ⊆reg k
∗ such that Rel(C) is closed under

concatenation, Kleene star, and projection.
C is closed under concatenation if for all R,S ∈ C, R ·S ∈ C, where · is the component-wise
concatenation operation (e.g., {(a, ab), (b, a)} · {(b, c)} = {(ab, abc), (bb, ac)});
C is closed under Kleene star if for all R ∈ C, R∗ ∈ C for R∗ =

⋃
i∈NR

(i), where
R(0) = {(ε, . . . , ε)}, and R(i+1) = R ·R(i);
C is closed under projection if for all (R,A) ∈ C and K ⊆ k, (R|K ,A) ∈ C, where
R|K ⊆ A∗k is the projection of R onto the components in K (with ε in the other
components). For example, for R = {(aa, ab, b), (a, bbb, aab), (aa, ab, ba)} and K = {1, 2}
we have R|K = {(aa, ab, ε), (a, bbb, ε)}.

We now give characterizations for closure under concatenation and Kleene star. As we show,
closure under concatenation is in fact a necessary condition for closure under Kleene star.

I Proposition 27. For every C,C1, C2, C3 ⊆reg k
∗,

M.E. Descotte, D. Figueira, and S. Figueira 15

1. C1 · C2 ⊆Rel C3 iff for every R1 ∈ Rel(C1), R2 ∈ Rel(C2) we have R1 ·R2 ∈ Rel(C3);
2. Rel(C) is closed under concatenation iff C · C ⊆Rel C;
3. if Rel(C) is closed under Kleene star, then it is closed under concatenation; and
4. Rel(C) is closed under Kleene star iff C∗ ⊆Rel C.

Proof sketch. For the left-to-right direction of item 1, let L1 ⊆reg C1⊗A∗ and L2 ⊆reg
C2⊗A∗. Then we only have to observe that JL1K·JL2K = JL1 ·L2K ∈ Rel(C1 · C2) ⊆ Rel(C3)
as we wanted. The right-to-left direction follows from Lemma 8 together with property 1 of
Lemma 4. Note that item 2 is a particular case of item 1.

We now turn to item 3. For simplicity assume k = 2. Suppose Rel(C) is closed under
Kleene star, and take arbitrary R1, R2 ∈ Rel(C) over an alphabet A. Define R′i over
the alphabet A × {lsti, lsti} as the result of replacing every pair (a1 · · · an, b1 · · · bm) ∈ Ri
with ((a1, lsti) · · · (an−1, lsti)(an, lsti), (b1, lsti) · · · (bm−1, lsti)(bm, lsti)). Intuitively, lsti marks
the last symbols of tuples from Ri. It is easy to see that R′1, R′2 ∈ Rel(C) using closure
under componentwise letter-to-letter relations. Observe that R′1 · R′2 ⊆ (R′1 ∪ R′2)∗ and,
by closure under union and Kleene star, that (R′1 ∪ R′2)∗ ∈ Rel(C). Let L ⊆reg C ⊗ (A ×
{lst1, lst1, lst2, lst2})∗ such that JLK = (R′1∪R′2)∗. It is easy to see that there is L′ ⊆reg L such
that JL′K = R′1 ·R′2, and thus that R′1 ·R′2 ∈ Rel(C). Again by closure under component-wise
letter-to-letter relations we obtain that R1 ·R2 ∈ Rel(C), this time using the relation that
projects onto the first component.

Finally, we prove item 4. For the right-to-left direction, let R ∈ Rel(C) and take
L ⊆reg C ⊗A∗ such that JLK = R. Therefore R∗ = JLK∗ = JL∗K ∈ Rel(C∗) ⊆ Rel(C) as
wanted. For the converse, first observe that Rel(C) is also closed under concatenation due
to item 3. Let R ∈ Rel(C∗). By item 2 of Lemma 4, we have the following:

there are R1, . . . , Rn ∈ Rel(C) and I ⊆reg {1, . . . , n}∗ such that R =
⋃
w∈I Rw[1] · · ·Rw[|w|].

Consider any regular expression E denoting the language I above, and replace each occurence
of i ∈ {1, . . . , n} with Ri, in such a way that the resulting expression E′ denotes R. Then,
by finite application of closure under Kleene star, concatenation and union as given by E′,
we obtain that R ∈ Rel(C). J

For C ⊆reg k
∗ and K ⊆ k, let C|K be the projection of C onto the alphabet K (which is

also regular). We give the following characterization of closure under projection.

I Lemma 28. For every k ∈ N and C ⊆reg k
∗, Relk(C) is closed under projection iff

Relk(C|K) ⊆ Relk(C) for every K ⊆ k.

Decidability

For the binary case, by previous results [14], it is decidable to test whether a synchronized
class is included in another, and thus the characterizations for Kleene star and concatenation
are decidable. We leave the general case as an open question.

6 Concluding remarks and future work

We discuss the decidability of paradigmatic problems within Rel(C). First, note that the
emptiness problem for relations reduces to the emptiness problem for automata: JLK = ∅ if,
and only if, L = ∅ —and thus the emptiness problem is always decidable. Further, by the
results we have shown together with Lemma 6 we obtain the following.

I Lemma 29. For C ⊆reg 2
∗, if Rel(C) is closed under...

16 Closure properties of synchronized relations

...intersection, then equivalence and containment problems within Rel(C) are decidable;

...complement, then the universality problem within Rel(C) is decidable;

...Op, then the Op operation within Rel(C) is computable, for Op ∈ {intersection,
complement, concatenation, Kleene star, projection}.

Proof of Lemma 29. Given L,M ⊆reg C ⊗A∗, the containment problem between JLK and
JMK amounts to checking if JLK \ JMK is empty. Since Rel(C) is closed under intersection,
by Theorem 12, there exists a Parikh-injective language D such that C ⊆Rel D. Moreover,
our decidability proof, shows that we can effectively compute such language D. Therefore,
by the results on [14], we can effectively construct L′,M ′ ⊆reg D⊗A∗ such that JLK = JL′K,
and JMK = JM ′K. Then, by Lemma 6, item 3, JLK \ JMK = JL′K \ JM ′K = JL′ \M ′K and so
the containment problem within Rel(C) reduces to the emptiness problem within Rel(D).
The equivalence problem obviously reduces to the containment problem.

The universality problem for (JLK,A) amounts to checking whether (A∗)k \ JLK is empty.
Since Rel(C) is closed under complement, by Theorem 24, there exists a Parikh-bijective
language D such that C =Rel D. As before, we can effectively compute such language D,
and therefore, by the results on [14], we can effectively construct L′ ⊆reg D⊗A∗ such that
JL′K = JLK. By Lemma 6, item 4, we thus obtain (A∗)k \ JLK = (A∗)k \ JL′K = J(D⊗A∗)\L′K
and so the containment problem within Rel(C) reduces to the emptiness problem within
Rel(D).

We prove the last item only for intersection; similar (or simpler) arguments can be used
for all the other operations. Given L,M ⊆reg C ⊗A∗, with a similar argument than the one
used in the previous item, we can effectively construct a Parikh-injective language D and
L′,M ′ ⊆reg D⊗A∗ such that JLK = JL′K, and JMK = JM ′K. Then, by Lemma 6, item 3,
JLK ∩ JMK = JL′K ∩ JM ′K = JL′ ∩M ′K and the result follows. J

One can then conclude that classes of synchronized binary relations are generally “well-
behaved”: a) it is decidable to test whether a class is closed under Boolean connectives; b)
every synchronized class closed under intersection (resp. complement, etc.), is effectively
closed under intersection (resp. complement, etc.); c) every synchronized class which is closed
under Boolean connectives has decidable paradigmatic problems (in the sense of Lemma 29);
d) at least for the binary case, the characterizations for Kleene star and concatenation are
decidable.

We leave as future work the question of whether it is decidable to test if Rel(C) is closed
under Kleene star, concatenation and projection when C ⊆reg k. We also leave open the
characterization for closure under complement and intersection for k-ary relations. Although
it is conceivable that the same characterization for closure under intersection holds for
arbitrary arity relations, we were not able to show it — the main issue is that it is not clear
how to generalize the bad conditions to a k-ary alphabet, nor what would be the analog of
item 6 in Theorem 12.

B Conjecture 30. For every k ∈ N and C ⊆reg k
∗, Rel(C) is closed under intersection if,

and only if, C ⊆Rel D for some Parikh-injective D ⊆reg k
∗.

M.E. Descotte, D. Figueira, and S. Figueira 17

References
1 Parosh Aziz Abdulla, Bengt Jonnson, Marcus Nilsson, and Mayank Saksena. A survey of

regular model checking. In International Conference on Concurrency Theory (CONCUR),
pages 35–48, 2003.

2 Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM Comput. Surv.,
40(1), 2008.

3 Kemafor Anyanwu and Amit Sheth. ρ-queries: enabling querying for semantic associations
on the semantic web. In 12th International World Wide Web Conference (WWW’03), pages
690–699, 2003.

4 Pablo Barceló, Diego Figueira, and Leonid Libkin. Graph logics with rational relations. Logical
Methods in Computer Science (LMCS), 9(3:01), 2013. doi:10.2168/LMCS-9(3:1)2013.

5 Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. Expressive languages
for path queries over graph-structured data. ACM Trans. Database Syst., 37(4):31, 2012.

6 Pablo Barceló and Pablo Muñoz. Graph logics with rational relations: The role of word
combinatorics. ACM Trans. Comput. Log., 18(2):10:1–10:41, 2017. URL: https://doi.org/
10.1145/3070822, doi:10.1145/3070822.

7 Jean Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.
8 Achim Blumensath and Erich Grädel. Automatic structures. In Annual IEEE Symposium

on Logic in Computer Science (LICS), pages 51–62. IEEE Computer Society Press, 2000.
doi:10.1109/LICS.2000.855755.

9 Mikołaj Bojańczyk. Transducers with origin information. In International Colloquium on
Automata, Languages and Programming (ICALP), volume 8573 of Lecture Notes in Computer
Science, pages 26–37. Springer, 2014. doi:10.1007/978-3-662-43951-7.

10 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model checking.
In International Conference on Computer Aided Verification (CAV), pages 403–418, London,
UK, 2000. Springer-Verlag.

11 Julius Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

12 Olivier Carton. The growth ratio of synchronous rational relations is unique. Theor. Comput.
Sci., 376(1-2):52–59, 2007. URL: https://doi.org/10.1016/j.tcs.2007.01.012, doi:10.
1016/j.tcs.2007.01.012.

13 Christian Choffrut. Relations over words and logic: A chronology. Bulletin of the EATCS,
89:159–163, 2006.

14 María Emilia Descotte, Diego Figueira, and Gabriele Puppis. Resynchronizing classes of word
relations. In International Colloquium on Automata, Languages and Programming (ICALP),
Leibniz International Proceedings in Informatics (LIPIcs), pages 381:1–381:13. Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.381.

15 Samuel Eilenberg and Marcel-Paul Schützenberger. Rational sets in commutative monoids.
Journal of Algebra, 13(2):173–191, 1969.

16 Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata. IBM
Journal of Research and Development, 9(1):47–68, 1965. doi:10.1147/rd.91.0047.

17 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document Spanners:
A formal approach to information extraction. Journal of the ACM, 62(2):12:1–12:51, 2015.
doi:10.1145/2699442.

18 Diego Figueira and Leonid Libkin. Path logics for querying graphs: Combining expressiveness
and efficiency. In Annual IEEE Symposium on Logic in Computer Science (LICS), pages
329–340. IEEE Computer Society Press, 2015. doi:10.1109/LICS.2015.39.

19 Diego Figueira and Leonid Libkin. Synchronizing relations on words. Theory of Computing
Systems, 57(2):287–318, 2015. doi:10.1007/s00224-014-9584-2.

20 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence and
uniformisation problems for finite transducers. In International Colloquium on Automata,
Languages and Programming (ICALP), volume 55 of Leibniz International Proceedings in

http://dx.doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.1145/3070822
https://doi.org/10.1145/3070822
http://dx.doi.org/10.1145/3070822
http://dx.doi.org/10.1109/LICS.2000.855755
http://dx.doi.org/10.1007/978-3-662-43951-7
https://doi.org/10.1016/j.tcs.2007.01.012
http://dx.doi.org/10.1016/j.tcs.2007.01.012
http://dx.doi.org/10.1016/j.tcs.2007.01.012
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.381
http://dx.doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.1145/2699442
http://dx.doi.org/10.1109/LICS.2015.39
http://dx.doi.org/10.1007/s00224-014-9584-2

18 Closure properties of synchronized relations

Informatics (LIPIcs), pages 125:1–125:14. Leibniz-Zentrum für Informatik, 2016. doi:10.
4230/LIPIcs.ICALP.2016.125.

21 Christiane Frougny and Jacques Sakarovitch. Synchronized rational relations of finite and in-
finite words. Theoretical Computer Science, 108(1):45–82, 1993. doi:10.1016/0304-3975(93)
90230-Q.

22 Seymour Ginsburg and Edwin Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

23 Ryuichi Ito. Every semilinear set is a finite union of disjoint linear sets. J. Comput. Syst. Sci.,
3(2):221–231, 1969. doi:10.1016/S0022-0000(69)80014-0.

24 Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations for verifying infinite-
state systems. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 220–234. Springer, 2000.

25 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs:
simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

26 Maurice Nivat. Transduction des langages de Chomsky. Annales de l’Institut Fourier, 18:339–
455, 1968.

27 Rohit Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966. doi:
10.1145/321356.321364.

28 Anthony Widjaja To and Leonid Libkin. Algorithmic metatheorems for decidable LTL model
checking over infinite systems. In International Conference on Foundations of Software Science
and Computational Structures (FOSSACS), pages 221–236, 2010.

29 Sarah Winter. Uniformization problems for synchronizations of automatic relations on words.
In International Colloquium on Automata, Languages and Programming (ICALP), Leibniz
International Proceedings in Informatics (LIPIcs). Leibniz-Zentrum für Informatik, 2018. URL:
http://arxiv.org/abs/1805.02444.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://dx.doi.org/10.1016/S0022-0000(69)80014-0
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1145/321356.321364
http://arxiv.org/abs/1805.02444

M.E. Descotte, D. Figueira, and S. Figueira 19

A Missing proofs to Section 2

Before proving Lemma 1, we begin with a known normal form for semilinear sets.

I Lemma 31 ([15, 23]). For every semilinear set V ⊆ Nk there exist a finite I, and
x̄i ∈ Nk, Pi ⊆ Nk for every i ∈ I such that V =

⋃
i∈I x̄i + N · Pi, all Pi’s are linearly

independent sets, and (x̄i + N · Pi) ∩ (x̄j + N · Pj) = ∅ for all i 6= j.

B Lemma 1. For every semi-linear set V ⊆ N2 there exists a Parikh-injective language
C ⊆reg 2

∗ such that π(C) = V .

Proof. Let us assume that V is in the normal form given by Lemma 31. Note that, since
we are in dimension 2, every Pi has at most 2 vectors, namely Pi = {ȳi, z̄i} (where perhaps
ȳi = z̄i). For every linear set x̄i + N · Pi, consider words ui, vi, wi such that π(ui) = x̄i,
π(vi) = ȳi and π(wi) = z̄i (let us assume that vi = wi if ȳi = z̄i). Then it follows that
C =

⋃
i∈I v

∗
iw
∗
i ui is Parikh-injective and π(C) = V . J

B Missing proofs to Section 3

B Lemma 10. If C ⊆reg 2
∗ is Parikh-injective, then Rel(C) is closed under intersection.

Proof. Given L,M ⊆reg C ⊗A∗, note that L∩M ⊆reg C ⊗A∗, hence (JL∩MK,A) ∈ Rel(C).
Further, by Lemma 6, JL ∩MK = JLK ∩ JMK. Thus, (JLK ∩ JMK,A) ∈ Rel(C). J

B Proposition 14. If C ⊆reg 2
∗ satisfies any of the bad conditions, then there exist

R,S ∈ Rel(C) such that R ∩ S 6∈ Rational.

Proof. Case A. Suppose that condition A is satisfied. Consider the 3-letter alphabet A =
{a1, a2, c}. Let R,S be the following relations in (A∗)2:

R = J(u∗1⊗ a∗1) · (u∗2⊗ a∗2) · z⊗ c∗K, S = J(v∗⊗{a1, a2}∗) · z⊗ c∗K,

note that R,S ∈ Rel(C) by condition A.4. We show that |R∩S| =∞. Since by condition A.3
we have {u1, u2} and {v} are Parikh-dependent, let s1, s2, s3 ∈ N be such that π(us1

1 · u
s2
2) =

π(vs3) 6= 0̄. For x1, x2, x3 ∈ N, let Rx1,x2 ⊆ R (resp. Sx3 ⊆ S) be the subrelation obtained
by replacing each u∗1, u∗2 with ux1

1 , ux2
2 in the definition (resp. replacing v∗ with vx3). It

then follows that Rs1,s2 ∩ Ss3 6= ∅ and further R`·s1,`·s2 ∩ S`·s3 6= ∅ for every ` ∈ N. Since
π(us1

1 · u
s2
2) 6= 0̄, this implies that there is an infinite sequence of tuples in R∩S of increasing

size, and thus |R ∩ S| =∞.
We show that R ∩ S 6∈ Rational. By definition we have that

for every (w1, w2) ∈ R and ` ∈ 2, (|w1|a`
, |w2|a`

) ∈ 〈{π(u`)}〉, and (1)

for every (w1, w2) ∈ S,
∑

b∈{a1,a2}

(|w1|b, |w2|b) ∈ 〈{π(v)}〉. (2)

By means of contradiction, suppose R ∩ S ∈ Rational or, equivalently, that there is an
automaton over the alphabet 2× A such that the language recognized by this automaton
synchronizes R ∩ S. Since we have shown that R ∩ S is infinite, the automaton must
have a non-trivial cycle q0

w1−−→ q
w2−−→ q

w3−−→ qf inside some accepting run. In particular,
Jw1w3K ∈ R ∩ S. Let Jw2K = (as1

i1
, as2
i2

) with i1, i2 ∈ 2, s1, s2 ∈ N (it is easy to see that there
cannot be more than one symbol of A in any given component). First observe that i1 = i2,
since otherwise, due to item A.2, for some t ∈ 2 we have that π(ut) ≥ (1, 1), and in this case,
we would obtain that Jw1w3K ∈ R would contradict (1) for ` = t.

Since w2 6= ε, there is some r such that sr > 0. Therefore we have

20 Closure properties of synchronized relations

(s1, s2) ∈ 〈{π(uir)}〉, as otherwise we would obtain that Jw1w3K ∈ R would contradict
(1) for ` = i1 = i2; and
(s1, s2) ∈ 〈{π(v)}〉, as otherwise Jw1w3K ∈ S would contradict (2).

We therefore have that uir and v are Parikh-dependent, but this is not possible because of
condition A.1. The contradiction originates from assuming that R ∩ S ∈ Rational. Hence,
R ∩ S 6∈ Rational. Note that the proof above can be replicated using only two letters, by
replacing c with the letter a1 (at the price of making the proof less clean). We can therefore
conclude that condition A implies that Rel(C) is not closed under intersection, even when
restricted to two-letter alphabets.

Case B. For α1, α2 ∈ {a, b, ?} and w ∈ 2∗, let w(α1,α2) ∈ (2× {a, b})∗ denote the set of
words resulting from replacing in w each i ∈ 2 with (i, a) if αi ∈ {a, ?} and each i ∈ 2 with
(i, b) if αi ∈ {b, ?} —for example 112(a,?) = {(1, a)(1, a)(2, a), (1, a)(1, a)(2, b)}.

Now suppose that B holds. We will assume that |u|1, |v|1 > 0 (the other cases being
similar). Consider the following relations in Rel(C):

R = Ju∗(a,a) · v
∗
(b,b) · z(a,a)K ∈ Rel(u∗v∗z),

S = Jv∗(a,?) · u
∗
(b,?) · z(a,a)K ∈ Rel(v∗u∗z).

We show that the projection onto the first component of R ∩ S contains only words of the
form anbna|z|1 (Claim 32 below), and that it forms an infinite language (Claim 33 below),
implying that it is not regular and thus that R ∩ S 6⊆ Rational. (If, in turn, we had assumed
|u|2, |v|2 > 0, we would produce similar relations and obtain such a result but this time on
the second component.)

B Claim 32. {w1 : ∃w2, . . . , wk (w1, . . . , wk) ∈ R ∩ S} ⊆ {anbna|z|1 : n ≥ 0}.

Proof. By definition of R,S, any tuple in R ∩ S is of the form

Jus(a,a) · v
s′

(b,b) · z(a,a)K = Jwt · w′t′ · z(a,a)K

for some wt ∈ vt(a,?), w′t′ ∈ ut
′

(b,?), and s, s′, t, t′ ≥ 0, which imples Jus(a,a) · v
s′

(b,b)K = Jwtw′t′K.
Since by hypothesis u and v are Parikh-independent, applying Observation 2 we obtain
t = s′ and s = t′. Therefore, every tuple from R ∩ S is of the form Jus(a,a) · v

t
(b,b) · z(a,a)K =

Jwt ·w′s ·z(a,a)K. Let us now focus on the first component of any such tuple. Since in particular
the number of a’s in the first component of Jus(a,a) · v

t
(b,b) · z(a,a)K is equal to the number of

a’s in the first component of Jwt ·w′s · z(a,a)K, we have |us|1 = |vt|1. This means that the first
component of Jus(a,) · v

t
(b,) · z(a,)K is of the form anbna|z|1 for n = |us|1 = |vt|1. J

B Claim 33. |R ∩ S| =∞, and further {w1 : ∃w2 s.t. (w1, w2) ∈ R ∩ S} is infinite.

Proof. Since |u|1 > 0 and |v|1 > 0, there exist s, t > 0 such that |us|1 = |vt|1. Therefore,
Jus(a,a) ·v

t
(b,b)K = Jwt ·w′sK for some wt ∈ vt(a,?), w′s ∈ us(b,?). It then follows that R∩S contains

Jun·s(a,a) · v
n·t
(b,b)K = Jwnt · w

′n
s K for every n ≥ 0. Since |u|1 > 0, the projection onto the first

component yields an infinite language. J

By the last two claims, it follows that {w1 : ∃w2 s.t. (w1, w2) ∈ R ∩ S} is not regular.
Indeed, it is easy to see, by pumping arguments, that there cannot exist an automaton
accepting any infinite set inside {anbna|z|1 | n ≥ 0}. Then R ∩ S 6∈ Rational – if there would
be L ⊆reg (2×A)∗ such that JLK = R∩S, by projecting L onto the 1-labeled components, we
would have a regular language inside ({1}×A)∗ synchronizing {w1 : ∃w2 s.t. (w1, w2) ∈ R∩S}
and thus it would be regular.

M.E. Descotte, D. Figueira, and S. Figueira 21

Case C. Let us assume that u ∈ 1∗ and w ∈ 2∗, the other case is symmetric. Consider the
following relations over the alphabet A = {a, b, c}, using the same terminology as before.

R = J(u∗⊗ a∗) · (v∗⊗ b∗) · (w∗⊗ a∗) · z⊗ c∗K, S = Jv∗(a,b) · v
∗
(b,a) · z(c,c)K

Note that R,S ∈ Rel(C), and, that R consists of all pairs

(a|u|1·nb|v|1·mc|z|1 , b|v|2·ma|w|2·`c|z|2)

for n,m, ` ∈ N. By C.2 |v|1 > 0 and |v|2 > 0 and hence R has a linear dependence on the
number of b’s in the first and second component, and S has a linear dependence on the
number of as’ in the first component and the nuber of b’s in the second component. Thus,

R ∩ S = {(a|u|1·nb|v|1·mc|z|1 , b|v|2·ma|w|2·`c|z|2) :
n,m, ` ∈ N, (|u|1 · n, |v|2 ·m), (|v|1 ·m, |w|2 · `) ∈ 〈{π(v)}〉}

creates a linear dependence between the number of a’s and the number of b’s in the first
component. Since {w : (w,w′) ∈ R ∩ S} is infinite due to C.1 and sits inside a∗b∗c∗ by
definition, this implies that R ∩ S 6∈ Rational. J

To prove Proposition 16, we need to prove first the following technical lemmas (Lemmas 34,
35 and 36):

I Lemma 34. For every C ⊆reg 2
∗ having two Parikh-independent words and w ∈ 2∗, we

have that C∗w satisfies property A.

Proof. Let u, v ∈ C such that u and v are Parikh-independent. From this, it follows
easily that both uuv, uv and uvv, uv are Parikh-independent. It is also immediate that
π(uuv) ≥ (1, 1) (also π(uvv) ≥ (1, 1)), and that {uuv, uvv} and {uv} are Parikh-dependent.
It only remains to observe that (uuv)∗(uvv)∗w ⊆ C∗w and (uv)∗w ⊆ C∗w. J

I Lemma 35. For every two Parikh-dependent words u, v ∈ 2
∗ there exist n ∈ N and

z1, . . . , zn ∈ 2
∗ such that u∗v∗ =Rel

⋃n
i=1 v

∗zi. Moreover, π(zi) ∈ 〈{π(u)}〉 for every
i ∈ {1, · · · , n}.

Proof. Let l,m > 0 be such that l · π(u) = m · π(v). Then, by using the properties in
Lemma 4, we have

u∗v∗ = ul∗u<lv∗ =Rel v
m∗v∗u<l = v∗u<l =

l−1⋃
i=0

v∗ui

from where the result follows. J

I Lemma 36. For every C ⊆reg 2
∗ and x̄ ∈ N2 such that π(C) ⊆ 〈{x̄}〉, there exist n ∈ N

and words u, z1, . . . , zn ∈ 2∗ with Parikh-image in 〈{x̄}〉 such that C∗ =Rel
⋃n
i=1 u

∗zi.

Proof. Let u ∈ 2
∗ such that π(u) = x̄. We proceed by induction on the star-height s

of C∗ (the maximum number of nested Kleene-stars), for any given regular expression
representing C.

Base case s = 1: In this case, C = {u1, . . . , um} is finite. Then there exist r1, . . . , rm ∈ N
such that π(ui) = ri · π(u) for all i. Then, by using the properties in Lemma 4, we have

C∗ =Rel {ur1 , . . . , urm}∗ = ur1∗ · · ·urm∗.

We conclude by applying Lemma 35 repeatedly and again properties from Lemma 4.

22 Closure properties of synchronized relations

Inductive step: Suppose s > 1, and then without loss in generality (see Lemma 5 plus prop-
erties in Lemma 4) that C∗ = (

⋃
i C
∗
i,1 · · ·C∗i,nui)∗ where each Ci,j has star-height strictly

smaller than s Since π(C∗) ⊆ 〈{x̄}〉 we have, for each i, that π(ui) ∈ 〈{x̄}〉 and thus, by
property 9 of Lemma 4, ui =Rel u

`i for some `i ≥ 0. Then, by properties in Lemma 4, we
have that C∗ =Rel (

⋃
i C
∗
i,1 · · ·C∗i,nu`i)∗. We further have that π(Ci,j) ⊆ 〈{x̄}〉; indeed,

if there were some word v ∈ Ci,j with π(v) 6∈ 〈{x̄}〉, we would obtain a word vu`i with
π(vu`i) ∈ π(C∗) and π(vu`i) 6∈ 〈{x̄}〉, contradicting the hypothesis. We can therefore
apply the inductive hypothesis to each Ci,j which implies, together with the application of
some properties from Lemma 4, that C∗ =Rel D

∗ where D is a finite union of languages of
the form w∗1 · · ·w∗sz in which all words involved are powers of u. Then, applying Lemma 35
repeatedly (and, again properties from Lemma 4), we have that for some rj , tj > 0,
C∗ =Rel (

⋃m
j=1 u

rj∗utj)∗ =
⋃

1≤s≤m
⋃

1≤j1<···<js≤m u
rj1∗utj1∗ · · ·urjs∗utjs∗utj1 · · ·utjs

(where {j1, . . . , js} represents the disjuncts that are iterated at least once). Finally, by
Lemma 35 and properties from Lemma 4 again, we have the desired result. J

B Proposition 16. If C ⊆reg 2
∗ does not satisfy any of the bad conditions, then C is

Rel-equivalent to a finite union of basic injective languages.

Proof. We show the contrapositive, i.e., that every C ⊆reg 2
∗ that is not Rel-equivalent to

a finite union of basic injective languages satisfies at least one of the bad conditions. First
observe that, by Lemma 5 plus Observation 11, without loss in generality we can assume
that C is smooth. Also, by Lemma 34 plus Observation 11, if C has some component with
two Parikh-independent words, then it satisfies property A. Then we can assume without
loss in generality that the Parikh-image of every component of C lies inside the linear set
generated by just one vector. We can then apply Lemma 36 to each component, which
together with properties from Lemma 4, implies that C is Rel-equivalent to a finite union
of languages of the form w∗1 · · ·w∗nz. Then, since C is not Rel-equivalent to a finite union
of basic injective languages, there must exist at least one of those conjuncts w∗1 · · ·w∗nz
that is not Rel-equivalent to a finite union of basic injective languages. Therefore, by
Observation 11, without loss in generality we can assume that C is of the form w∗1 · · ·w∗nz.
Moreover, using also Lemma 35, we can assume that wi and wi+1 are Parikh-independent
for all i = 1, . . . , n− 1. Also, by inspecting the proofs of Lemmas 35 and 36, one can check
that the “smoothness” is not lost, i.e. either n = 2, w1 = 1p and w2 = 2q for some p, q ∈ N,
or for r = 1, 2, there is no i ∈ {1, . . . , n − 1} such that wi ∈ r∗ and wi+1 ∈ (3 − r)∗. For
this kind of languages, if n ≤ 2, the result follows immediately, since they are already basic
injective. For n ≥ 3, we proceed by case distinction according to the letters from 2 that are
used in each of the wi’s. Since we are going to prove that in every case at least one of the
bad conditions is satisfied, by Observation 11, we can assume without loss in generality that
our language is w∗1w∗2w∗3z, and w2 is Parikh-independent with both w1 and w3.

1. There exists r ∈ 2 such that w1 ∈ r∗, w3 ∈ (3 − r)∗ and π(w2) ≥ (1, 1). In this case,
condition C is satisfied.

2. There exists r ∈ 2 such that w1, w3 ∈ r∗ and π(w2) ≥ (1, 1). In this case, condition B is
satisfied.

3. We are neither in case 1 nor 2 and w1, w2, w3 are pairwise Parikh-independent. In this
case, condition A is satisfied: one only has to observe that, by basic linear algebra, for
any three pairwise independent vectors en N2, there is one of them such that its singleton
set is dependent with the set formed by the other two.

4. We are in none of the previous cases. Since w1 and w2 are Parikh-independent, we
necessarily have that w1 and w3 are Parikh-dependent. In this case, we will prove

M.E. Descotte, D. Figueira, and S. Figueira 23

that condition B is satisfied. Indeed, let w be a word of shortest possible length which
is Parikh-dependent with w1. Then there exist p, q ∈ N such that π(w1) = p · π(w)
and π(w3) = q · π(w). For r = lcm(p, q), by properties from Lemma 4, we have that
wr∗w∗2z ⊆Rel w

∗
1w
∗
2z ⊆ w∗1w∗2w∗3z and w∗2wr∗z ⊆Rel w

∗
2w
∗
3z ⊆ w∗1w∗2w∗3z. It only remains

to observe that
wr is Parikh-independent with w2, which follows from the fact that it is Parikh-
dependent with w1, and w1 is Parikh-independent with w2, and
π(w) ≥ (1, 1), which holds since otherwise we would be either in case 1 or 2.

Note that, by definition of smoothness plus the fact that there were no two consecutive
Parikh-dependent wi’s, we covered all the possible cases. J

The only missing link in the proof of Lemma 18 is the proof of Lemma 19, which requires
some effort. Before giving its proof, we show a reduction of the general problem into simpler
cases.

I Lemma 37. Let B1 =Rel
⋃
i∈I B1,i and B2 =Rel

⋃
j∈J B2,j . If the pair B1,i, B2,j satisfies

the dichotomy property for all i ∈ I, j ∈ J , then B1, B2 satisfies the dichotomy property.

Proof. If there exist i, j such that B1,i ∪B2,j satisfies any of the bad conditions, then it is
immediate that B1 ∪B2 satisfies the same condition by Observation 11. Otherwise, for every
i, j we have B1,i∩ [B2,j]π regular and B1,i∩ [B2,j]π ⊆Rel B2,j . Then B1∩ [B2]π =

⋃
i,j B1,i∩

[B2,j]π is regular. Moreover, B1 ∩ [B2]π =
⋃
i,j B1,i ∩ [B2,j]π︸ ︷︷ ︸

⊆RelB2,j

⊆Rel
⋃
j B2,j =Rel B2. J

Using the previous lemma, we will prove Lemma 19 gradually, starting from some
restricted cases.

Let B1 = u∗1u
∗
2u, B2 = v∗1v

∗
2v be two basic injective languages such that B1, B2 6⊆Rel 1∗2∗.

We say that they agree if for all i, j ∈ 2, if ui and vj are Parikh-dependent then ui = vj . We
say that they have the same tail if u = v. We first prove the case in which B1 and B2 agree
and have the same tail.

I Lemma 38. Every pair of basic injective languages B1, B2 that agree, have the same tail,
and are such that Rel(B1),Rel(B2) 6⊆ Recognizable satisfies the dichotomy property.

Proof. Let B1 = u∗1u
∗
2u, B2 = v∗1v

∗
2u and assume that B1 ∪B2 does not satisfy any of the

bad conditions. Let I = {i ∈ 2 : ∃j ∈ 2 s.t. ui = vj} = {i1, . . . , ir} for i1 < · · · < ir. For
each ` ∈ I, let j` ∈ 2 be the index such that ui` = vj`

(there is only one such index since B2
is basic injective), and let J = {j` : ` ∈ I}. We first prove

B1 ∩ [B2]π = u∗i1 · · ·u
∗
iru. (3)

Note that the ⊇-containment of (3) holds trivially. For the ⊆-containment, by means of
contradiction, we show that if B1 ∩ [B2]π) u∗i1 · · ·u

∗
ir
u then B1 ∪B2 would satisfy condition

A, which is in contradiction with our hypothesis. If this happens, in particular there is a
word us1

1 u
s2
2 u ∈ B1 ∩ [B2]π such that si > 0 for some i 6∈ I. Let Ī = 2 \ I (note that Ī 6= ∅)

and J̄ = 2 \ J (since |I| = |J |, we also have J̄ 6= ∅). Then there are t1, t2 ∈ N such that∑
i∈I

si · π(ui) +
∑
i∈Ī

si · π(ui) =
∑
i∈J

ti · π(ui) +
∑
i∈J̄

ti · π(vi).

Let I1 = {i ∈ I : si ≥ ti} and I2 = I \ I1. Then we have the following∑
i∈I1

(si − ti) · π(ui) +
∑
i∈Ī

si · π(ui) =
∑
i∈I2

(ti − si) · π(ui) +
∑
i∈J̄

ti · π(vi).

24 Closure properties of synchronized relations

Note that at least one of the sets I1, I2 or Ī has to be empty (they are pairwise disjoint
inside 2). But we assumed that Ī was not empty. Then either I1 or I2 is empty from which
it follows easily that condition A is satisfied by B1 ∪ B2 (recall that J̄ 6= ∅). For example,
if I2 = ∅, Ī 6= ∅, I1 6= ∅ and J̄ = {j0}, we have that u1, u2 is Parikh-dependent with vj0 ;
for some i π(ui) ≥ (1, 1) since B1 6⊆Rel 1∗2∗; u1 (resp. u2) is Parikh-independent with vj0

because otherwise we would have j0 ∈ J ; and both u∗1u∗2u ⊆Rel B1 ∪B2, v∗j0
u ⊆Rel B1 ∪B2.

We finish the proof by showing that if (3) holds, then B1 ∩ [B2]π ⊆Rel B2. Note that
the cases in which |I| = 0 or |I| = 1 are trivial. Suppose then that I = 2. If j1 < j2, the
result is trivial, and, if j1 > j2, we have a contradiction because B1 ∪ B2 would satisfy
condition B. J

We then allow tails to be different.

I Lemma 39. Every pair of basic injective languages B1, B2 that agree and such that
Rel(B1),Rel(B2) 6⊆ Recognizable satisfies the dichotomy property.

Proof. Let B1 = u∗1u
∗
2u, B2 = v∗1v

∗
2v. We are going to split the proof in four cases according

to the value of n ∈ {0, . . . , 4}, which is the number of non-empty words in {u1, v1, u2, v2}.
if n = 0, B1 = u,B2 = v. If π(u) = π(v) we have B1 ∩ [B2]π = {u} ⊆Rel B2; and if
π(u) 6= π(v) we have B1 ∩ [B2]π = ∅ ⊆Rel B2.
if n = 1, we have two cases to consider: B1 = u∗1u with u1 6= ε and B2 = v or B1 = u

and B2 = v∗1v with v1 6= ε. In both cases, it is immediate that B1 ∩ [B2]π is finite and so,
by property 9 of Lemma 4, B1 ∩ [B2]π ⊆Rel B2.
if n = 2, in case that B1 = u or B2 = v, B1 ∩ [B2]π is finite and we can use the
previous argument. Then we can assume that B1 = u∗1u and B2 = v∗1v for u1, v1 6= ε. If
B1 ∩ [B2]π = ∅, then the result is trivial. Otherwise, there exist s, t ∈ N such that

s · π(u1) + π(u) = t · π(v1) + π(v). (4)

Therefore, by properties from Lemma 4, one can check that

B1 = u∗1u
s
1u ∪

⋃
`<s

u`1u and B2 = v∗1v
t
1v ∪

⋃
`<t

v`1v =Rel v
∗
1u

s
1u ∪

⋃
`<t

v`1v,

the latter equality holding due to (4). By Lemma 37, it is enough to check that the result
holds for any two disjuncts from B1 and B2 respectively. Observe that each such pair
consists of two basic injective languages that satisfy the hypothesis of the lemma. For
the pair of disjuncts u∗1us1u and v∗1us1u, we can apply Lemma 38 since they have equal
tail. For all the other cases, we obtain pairs of basic injective languages with strictly less
amount of non trivial components in total, and thus we can use previous cases. In this
way we obtain that every pair of disjuncts satisfies the dichotomy property, and thus B1
and B2 too.
if n = 3, in case B1 ∩ [B2]π = ∅, the result is trivial. Otherwise, we have two different
cases to consider: B1 = u∗1u and B2 = v∗1v

∗
2v for u1, v1, v2 non-empty or B1 = u∗1u

∗
2u

and B2 = v∗1v for u1, u2, v1 non-empty. Suppose that B1 = u∗1u and B2 = v∗1v
∗
2v with

u1, v1, v2 6= ε. Then, there exist s, t1, t2 ∈ N such that

s · π(u1) + π(u) = t1 · π(v1) + t2 · π(v2) + π(v). (5)

Therefore, by properties from Lemma 4, one can check that

B1 = u∗1u
s1
1 u ∪

⋃
`<s

u`1u and B2 =Rel v
∗
1v
∗
2u

s
1u ∪

2⋃
i=1

⋃
`<ti

v∗3−iv
`
iv,

M.E. Descotte, D. Figueira, and S. Figueira 25

the latter equality holding due to (5). By Lemma 37, it is enough to check that the result
holds for any two disjuncts from B1 and B2 respectively. Observe that each such pair
consists of two basic injective languages that satisfy the hypothesis of the lemma. For
the pair of disjuncts u∗1us1u and v∗1v∗2us1u, we can apply Lemma 38 since they have equal
tail. For all the other cases, we obtain pairs of basic injective languages with strictly less
amount of non trivial components in total, and thus we can use previous cases. In this
way we obtain that every pair of disjuncts satisfies the dichotomy property, and thus B1
and B2 too.
if n = 4, in case B1∩[B2]π = ∅, the result is trivial. Otherwise, there exist s1, s2, t1, t2 ∈ N
such that

s1 · π(u1) + s2 · π(u2) + π(u) = t1 · π(v1) + t2 · π(v2) + π(v) (6)

Therefore, by properties from Lemma 4, one can check that

B1 = u∗1u
∗
2u
s1
1 u

s2
2 u∪

2⋃
i=1

⋃
`<si

u∗3−iu
`
iu and B2 =Rel v

∗
1v
∗
2u

s1
1 u

s2
2 u∪

2⋃
i=1

⋃
`<ti

v∗3−iv
`
iv,

the latter equality holding due to (6). By Lemma 37, it is enough to check that the result
holds for any two disjuncts from B1 and B2 respectively. Observe that each such pair
consists of two basic injective languages that satisfy the hypothesis of the lemma. For
the pair of disjuncts u∗1u∗2u

s1
1 u

s2
2 u and v∗1v∗2us1u

s2
2 u, we can apply Lemma 38 since they

have equal tail. For all the other cases, we obtain pairs of basic injective languages with
strictly less amount of non trivial components in total, and thus we can use previous
cases. In this way we obtain that every pair of disjuncts satisfies the dichotomy property,
and thus B1 and B2 too.

J

Finally, we prove Lemma 19 by lifting the unnecessary ‘agree’ condition.

B Lemma 19. Every pair of basic injective languages B1, B2 such that B1, B2 6⊆Rel 1∗2∗
satisfies the dichotomy property.

Proof. Let B1 = u∗1u
∗
2u, B2 = v∗1v

∗
2v. We proceed by induction on the cardinality n of the

set

{i ∈ 2 : there is j ∈ 2 s.t. ui 6= vj and ui and vj Parikh-dependent}

(i.e., the number of ‘disagreements’). The base case n = 0 is already proved in Lemma 39.
For the inductive step, let i, j ∈ 2 be such that ui and vj are Parikh-dependent but ui 6= vj .
Then there is a word w ∈ 2∗ and p, q ∈ N such that π(ui) = π(wp) and π(vj) = π(wq). Let
r = lcm(p, q). Assume that i = j = 1 (other cases are analogous). Then, it follows that

B1 =Rel
⋃
`< r

p

wr∗u∗2u
`
1u and B2 =Rel

⋃
`< r

q

wr∗v∗2v
`
1v.

Notice that each disjunct is a basic injective language that satisfies the hypothesis of the
lemma. By Lemma 37, it is enough to check that the dichotomy property holds for any pair of
disjuncts from B1 and B2 respectively. Any such pair of languages has one less disagreement
because now the first word of the first language of the pair agrees with the first word of the
second language. Then, we can use the inductive hypothesis and the dichotomy property for
B1 and B2 follows. J

26 Closure properties of synchronized relations

Before proving Proposition 20, we show some preliminary results.

I Lemma 40. The problem of whether a language L ⊆reg A∗ is Parikh-injective is decidable.

Proof. Suppose A = {a1, . . . , an} and let Â = {â1, . . . , ân} be the alphabet where we replace
every symbol with its ‘marked’ version. For every w ∈ A∗ let ŵ ∈ Â∗ be the result of replacing
every ai with âi in w. Given a pair of words u = b1 · · · bm ∈ A∗ and u′ = b′1 · · · b′m′ ∈ Â∗ such
that m = m′, let u⊕ u′ denote the word b1b′1 · · · bmb′m ∈ (A ∪ Â)∗. It is not hard to see that
S = {u⊕ v̂ : u, v ∈ L, |u| = |v|, u 6= v} is a regular language over A ∪ Â. Let Z ⊆ NA∪Â be
the semi-linear set Z = {x̄ : x̄(ai) = x̄(âi) for every i}. If follows that L is Parikh-injective
if, and only if, π(S) ∩ Z = ∅, and that the latter is decidable by effectiveness of intersection
of semi-linear sets. J

I Lemma 41. The set of languages C ⊆reg 2
∗ for which there is a Parikh-injective language

D ⊆reg 2 such that C ⊆Rel D is computably enumerable.

Proof. This proposition follows from Lemma 40 plus the fact that checking Rel-containment
is decidable [14]. J

I Lemma 42. The set of languages C ⊆reg 2
∗ which satisfies any of the bad conditions is

computably enumerable.

Proof. This proposition also follows easily from the fact that Rel-containment is decid-
able [14]. J

B Proposition 20. It is decidable wether a given C ⊆reg 2
∗ is such that Rel(C) is closed

under intersection.

Proof. By the equivalence 1 ⇔ 7 of Theorem 12, we obtain that the problem is c.e.
(Lemma 41) and, by the equivalence 1 ⇔ 5 of the same theorem, we obtain that it is
co-c.e. (Lemma 42). We conclude then that it is decidable. J

C Missing proofs to Section 5

B Proposition 27. For every C,C1, C2, C3 ⊆reg k
∗,

1. C1 · C2 ⊆Rel C3 iff for every R1 ∈ Rel(C1), R2 ∈ Rel(C2) we have R1 ·R2 ∈ Rel(C3);
2. Rel(C) is closed under concatenation iff C · C ⊆Rel C;
3. if Rel(C) is closed under Kleene star, then it is closed under concatenation; and
4. Rel(C) is closed under Kleene star iff C∗ ⊆Rel C.

Proof. Items 1 and 2. For the left-to-right direction, let L1 ⊆reg C1⊗A∗ and L2 ⊆reg
C2⊗A∗. Then we only have to observe that JL1K·JL2K = JL1 ·L2K ∈ Rel(C1 · C2) ⊆ Rel(C3)
as we wanted. The right-to-left direction follows from Lemma 8 together with property 1 of
Lemma 4. Note that item 2 is a particular case of item 1.

Item 3. We now turn to item 3, since we will use this item to prove item 4. Suppose
Rel(C) is closed under Kleene star, and take arbitrary R1, R2 ∈ Rel(C) over an alphabet
A. We define relations R′1, R′2 as the result of the component-wise application of some
letter-to-letter relations T1, T2 to R1, R2, respectively. For each i = 1, 2 let Zi be the regular
language (lsti)∗ · lsti∪{ε} over the binary alphabet {lsti, lsti}, where lsti will intuitively stand

M.E. Descotte, D. Figueira, and S. Figueira 27

for “not the last letter of a pair from Ri” and symbol lsti for “the last letter of a pair from
Ri”. For each i ∈ {1, 2}, we define Ti ⊆ A∗ × (A× {lsti, lsti})∗ as

Ti = {(u, v) ∈ A∗ × (A× {lsti, lsti})∗ : v ∈ u⊗Zi} ∈ Rel((12)∗).

For example, T1 associates aab with (a, lst1)(a, lst1)(b, lst1). Consider the component-wise
application of T1 and T2 to R1 and R2 respectively, that is: R′1 = R1 ◦ (T1, T1) and
R′2 = R2 ◦ (T2, T2). For example, if (aab, b, ba) ∈ R1 then

((a, lst1)(a, lst1)(b, lst1), (b, lst1), (b, lst1)(a, lst1)) ∈ R′1.

By closure under component-wise letter-to-letter relations we have that R′1, R′2 ∈ Rel(C)
over the alphabet A× {lst1, lst1, lst2, lst2}.

Observe that R′1 · R′2 ⊆ (R′1 ∪ R′2)∗ and, by closure under union and Kleene star, that
(R′1 ∪R′2)∗ ∈ Rel(C). Let L ⊆reg C ⊗ (A×{lst1, lst1, lst2, lst2})∗ such that JLK = (R′1 ∪R′2)∗.
We show that there is L′ ⊆reg L such that JL′K = R′1 ·R′2, and thus that R′1 ·R′2 ∈ Rel(C).
Consider the language

S = {w ∈ (k× (A× {lst1, lst1, lst2, lst2}))∗ : JwK ∈ (A∗⊗ (Z1 · Z2))k}.

Note that S is regular, and that JL ∩ SK = R′1 · R′2. Since L ∩ S ⊆reg
C ⊗ (A × {lst1, lst1, lst2, lst2})∗, it follows that R′1 · R′2 ∈ Rel(C). Again by closure un-
der component-wise letter-to-letter relations we obtain that R1 · R2 ∈ Rel(C), this time
using the relation that projects onto the first component: R1 ·R2 = (R′1 ·R′2) ◦ (T, T) for

T = {(v, u) ∈ (A× {lst1, lst1, lst2, lst2})∗ × A∗ : v ∈ u⊗ (Z1 · Z2)} ∈ Rel((12)∗).

Item 4. For the right-to-left direction of 4, let R ∈ Rel(C) and take L ⊆reg C ⊗A∗
such that JLK = R. Therefore R∗ = JLK∗ = JL∗K ∈ Rel(C∗) ⊆ Rel(C) as wanted. For the
left-to-right direction, first observe that Rel(C) is also closed under concatenation due to
item 3. Let R ∈ Rel(C∗). By property 2 of Lemma 4, we have the following:

there are R1, . . . , Rn ∈ Rel(C) and I ⊆reg {1, . . . , n}∗ such that R =
⋃
w∈I Rw[1] · · ·Rw[|w|].

Consider any regular expression E denoting the language I above, and replace each occurence
of i ∈ {1, . . . , n} with Ri, in such a way that the resulting expression E′ denotes R. Then,
by finite application of closure under Kleene star, concatenation and union as given by E′,
we obtain that R ∈ Rel(C). J

B Lemma 28. For every k ∈ N and C ⊆reg k
∗, Relk(C) is closed under projection iff

Relk(C|K) ⊆ Relk(C) for every K ⊆ k.

Proof. The left-to-right direction follows from the fact that every relation (JLK,A) ∈
Relk(C|K) is the projection of a relation in Relk(C) onto the components K. Indeed, let
M ⊆reg (k×A)∗ the greatest language such thatM |K = L. Now consider L′ = M ∩(C ⊗A∗).
It follows that L′ is regular and JL′K|K = JLK. The right-to-left direction follows from the
fact that the projection onto K of any relation R ∈ Relk(C) is a relation of Relk(C|K).
Indeed, one can take an automaton recognizing a language that synchronizes R and replace
all transitions labeled by an element from (k \K)× A with an ε-transition. J

	Introduction
	Preliminaries
	Synchronized relations
	Universal closure properties

	Closure under intersection
	Closure under complement
	Closure under concatenation, Kleene star, and projection
	Concluding remarks and future work
	Missing proofs to Section 2
	Missing proofs to Section 3
	Missing proofs to Section 5

