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Abstract—The paper discusses the model identification, val-
idation and experimental testing of current-to-voltage dynamic
circuit models for a grid-connected MW-class battery. The model
refers to an utility-scale 720 kVA/560 kWh battery energy
storage system (BESS) and is used in a model predictive control
framework to forecast the evolution of the battery DC voltage as
a function of the current trajectory. The model is identified using
measurements from a dedicated experimental session where the
BESS is controlled with a pseudo random binary signal (PRBS)
to excite the system on a broad spectrum. The identified model
relies on the assumption that the battery is a single cell. To test
this assumption and assess the quality of predictions, we test
the model performance by using a second data set coming from
a real-life power system application, where the BESS is used
to dispatch the operation of a group of stochastic prosumers
(demand and PV generation). Experimental results show that the
root mean square voltage prediction error of the best performing
model (i.e. two time constant model, TTC) is less than 0.55% for
look-ahead times in the range 10 seconds-10 minutes and better
than persistence for all considered forecasting horizons.

I. INTRODUCTION AND CONTRIBUTIONS

Predictive control coupled with forecasting of local con-
sumption and generation is considered with increasing interest
to tackle the challenges related to power systems operations
with high proportion of production from renewables. In the
context of battery energy storage systems (BESSs), model
predictive control has been proposed to smooth, dispatch
and schedule generation and demand, see e.g. [1]–[4], while
efficiently handling BESS’s constraints, like managing the
battery state of charge (SOC) and respecting current and
voltage constraints on the DC bus.

In the existing technical literature, a considerable research
effort is devoted to identifying models of electrochemical
storage, with the main objective of improving the physical
representativeness of model parameters (i.e., an enabling factor
to model ageing processes), e.g., [5]–[9]. Another class of
models is the family of so-called equivalent circuit models,
see e.g. [10]–[12], which consists of an electric circuit with
multiple RC branches in series. In spite of some limitations
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given in the following section, they are widely adopted in prac-
tical applications because they are able to capture dynamics
quite accurately and, compared to more detailed models, are
tractable.

In this paper, we assess the prediction performance of
current-to-voltage equivalent circuit models in a practical
grid application. First, we identify equivalent circuit models
of an utility-scale BESS from experimental measurements.
The models are identified by applying grey-box modeling,
a methodology to identify and validate dynamic models of
a system incorporating its physical knowledge together with
measurements from a real device [13]. Second, we perform
an extensive validation of the models’ prediction performance
in a real-life grid application, where the BESS is controlled
by applying model predictive control (MPC) to provide active
power dispatch to the grid.

The contribution of this work is illustrating a state-of-the
art procedure to identify equivalent circuit models of batteries
and documenting their prediction performance in a practical
power system application.

This paper is organized as follows: Section II describes
the experimental framework, Section III the adopted grey-
box modelling strategy and identified models, Section IV
the results of the identification process, and Section V the
validation results. Finally, Section VI states the conclusions.

II. EXPERIMENTAL FRAMEWORK AND APPLICATION

The BESS for which dynamic prediction models are iden-
tified is a 560 kWh unit connected to the MV grid of
the EPFL campus through a 720 kVA four quadrant power
converter. The battery’s cells are installed in a temperature
controlled container. The main characteristics of the system are
summarized in Table I. The grid-connected BESS implements
active/reactive power set points, which are communicated over
Modbus with a non-deterministic refresh rate of approximately
500 ms. Through the same communication interface, measure-
ments of the voltage and current on the BESS’s DC bus and
estimations of the SOC are available.

The BESS is the controllable element of the “dispatchable
feeder” application, originally described in [3]. In a nutshell, it



TABLE I
SPECIFICATIONS OF THE EXPERIMENTAL BATTERY ENERGY STORAGE

SYSTEM

Parameter Unit Value

Nominal Power kVA 720
Energy Capacity Power kWh 560

Voltage at the AC connection point kV 20

Number of racks – 9 in parallel
Number of modules per rack – 15 in series

Cells configuration per module – 20s3p
Total number of cells – 8100
Cell minimum voltage V 1.7
Cell nominal voltage V 2.3

Cell maximum voltage V 2.7
Cell nominal capacity Ah 30

consists in dispatching the operation of a distribution network
node (with non-controllable distributed renewable generation
and non-shiftable demand) according to a pre-established tra-
jectory, called dispatch plan, i.e. a sequence of average power
flow value at 5 minute resolution determined the day before
operation according to prosumption forecasts and battery SOC.

As described in the following, the proposed models are iden-
tified from measurements taken from a dedicated experimental
session, where the BESS is operated in order to excite a wide
range of its dynamics. Therefore, models predictions are tested
by using the experimental data coming from the dispatchable
feeder application with the specific objective of assessing
model prediction performance in a real-life application.

III. GREY-BOX MODELING APPLIED TO EQUIVALENT
CIRCUIT MODEL IDENTIFICATION OF BATTERY SYSTEMS

Dynamic model identification is carried out by applying
grey-box modeling on voltage and current measurements on
the battery DC bus. Grey-box modeling is a set of rigorous and
systematic tools to identify and validate the model structure
and parameters from measurements. For our specific case, it
consists in the steps described in the following paragraphs.

a) Experiment design and measurement acquisition: A
series of dedicated off-line experiments are performed, where
the BESS real power flow is controlled with a pseudo random
binary signal (PRBS), a two levels square wave with on-off
periods of random durations capable of exciting a wide range
of system dynamics. Since model parameters are affected
by the C-rate, choosing an identification signal of similar
amplitude as the one used in the final application is the key to
achieve reliable voltage predictions. Also, model parameters
strongly depend on the BESS SOC. Therefore, we perform a
number of PRBS sessions where the BESS is kept in a specific
SOC interval (0-20%, 20-40%, 40-60%, 60-80%, 80-100%),
and, for each interval, a model is estimated. Measurements of
the current and voltage at the BESS DC terminals are acquired
through the battery Modbus interface at 1 second resolution.
They are shown in Fig. 1. Ideally, measurements should be

divided into a training and validation data set, the former used
to fit model parameters and perform preliminary validation
tests, and the latter for advanced validation. In this case, the
validation data set is composed of measurement coming from
the dispatchable feeder application, which allows validating
model prediction performance in practice, i.e. in a real power
system application.
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Fig. 1. Identification data set: PRBS active power reference (upper panel),
and DC voltage and current measurements (bottom panel).

b) Model Formulation: A set of mathematical relation-
ships is formulated to describe the physical process to model.
This constitutes the so-called candidate model. Battery voltage
models for control applications normally consist in electric
equivalent circuits, which trade detailed modelling of the
electrochemical reactions for increased tractability, see for
example [10], [11], [14]. The model structure we investigate
in this paper is inspired from the well-known two-time con-
stant (TTC) model. It consists in two series RC branches,
where the values of model parameters depend on the battery
SOC, cells temperature, and C-rate. In the proposed model,
the dependency between parameters and SOC is captured
by performing the parameter estimation for different SOC’s
ranges. 1colorblack In the proposed experimental setup, the
battery is installed in a temperature controlled environment.
By neglecting self-heating, we assume that the temperature
is uniform for all the cells and we do not model its impact
on the value of models’ parameters. The dependency of
models’ parameters on C-rate is neglected because the BESS
is operated with a similar C-rate as used in the real operation.
Models are formulated by adopting the stochastic continuous-
time state-space representation:

dx = Ac(✓)xdt+ Bc(✓)u(t)dt+Kc(✓)d! (1)
vk = Cxk +D(✓)uk + G(✓)gk, (2)

where vk is the model output and BESS terminal voltage,
x 2 Rn system state vector, n model order, Ac system
matrix, Bc input matrix, Kc input disturbance matrix, C output
matrix, D feedforward matrix, G measurement noise matrix,
gk i.i.d. (independent and identically distributed) standard



normal noise, u input vector, ! a n-dimension standard Wiener
process, and ✓ is the set of model parameters to estimate. The
terms associated to process and measurements noise vectors
Kc and G are necessary to implement Kalman filtering for
state reconstruction. This is required in practical applications
because the state vector x is a modelling abstraction, thus not
measurable.

c) Parameters estimation: Parameters of the candidate
model are estimated by applying maximum likelihood esti-
mation (MLE) on the model one-step-ahead prediction error,
implemented in the Matlab function greyest.

d) Model validation: Two validation tests are considered
in this modelling effort. First, we verify whether the candi-
date model can capture all the time dynamics contained in
the training data set by evaluating residuals correlation in
the model’s one-step-ahead prediction errors. These ideally
should not contain any predictable structure and be an i.i.d.
process. Second, for those parameters with a physical value,
we compare the output of the numerical estimation against the
empirical physical estimation.

e) Model extension: If the prediction errors are correlated
in time, an alternative model should be formulated by, e.g.,
increasing the order of the candidate model or adopting
an alternative mathematical description of the process. The
extended candidate model should be estimated and validated
by reiterating the procedures described at the points c) and d).
The model extension can be cross-validated against the older
model by applying, for example, the deviance test, to avoid
model overfitting due to the increased number of parameters.
Nevertheless, this last process is not performed here because
the autocorrelation analysis was conclusive already.

IV. MODELLING RESULTS AND DISCUSSION

When using 1 second sampled measurements to fit the
model, the traditional TTC model was found not capable of
absorbing all the dynamics contained in the training data set.
The best performing model is the third order linear circuit
shown in Fig. 2. It is a TTC model augmented with an
additional series RC branch and a controlled voltage source
E, described in details later in this section.
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Fig. 2. Best performing model when considering identification measurements
at 1 second resolution: v and i are the BESS terminal voltage and DC
current, respectively, while v

C1 , vC2 , vC3 are the state vector components
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and open circuit voltage E are parameters the values
of which are to identify from measurements as explained in the main text.

The autocorrelation function (ACF) of the third order
model’s prediction errors for the case of 40-60% SOC’s range
and 1 second measurements is shown in Fig. 3, where the

unitary value at zero time lag is omitted to better visualize the
remaining autocorrelation structure. As visible from Fig. 3,
all the ACF samples fall inside the 95% confidence level of
white noise’s autocorrelation (dashed lines), thus indicating
that the model is able to absorb short-term time dynamics. An
equivalent behaviour was observed for the other considered
SOC’s ranges.
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Fig. 3. Autocorrelation function (ACF) of model residuals (full line) and white
noise (dashed lines) at 95% confidence level. The component with unitary
value at zero time lag has been removed for a better visual rendering of the
remaining autocorrelation structure.

However, since in the practical control application, equiv-
alent circuit models might be applied at a lower pace, the
model identification is performed a second time considering
measurements at 10 seconds resolution. At this time interval,
two time constants were enough to capture all the dynamics
contained in the training data set. In other words, the additional
state of the third order model was found unnecessary because
it referred to dynamics which were not any longer observable
in the measurements at lower resolution. The best performing
model is shown in Fig. 4, where the controlled voltage source
E represents the open circuit voltage of the battery, which,
as known, depends on the battery SOC. Even if, in the
current modelling effort, the SOC was discretized into ranges
(i.e. 0-20%, 20-40%, 40-60%, 60-80%, 80-100%) to capture
the model parameters’ dependency on the battery SOC, the
variations of the open circuit voltage inside each range is still
present and modelling it as a constant value would result in
large errors. Therefore, we model it as a linear function of the
battery SOC:

E(SOC(t)) = ↵+ � · SOC(t), (3)

where ↵ and � are parameters to identify. The deterministic
skeleton of the state-space model is derived by applying
Kirchhoff laws to the circuit in Fig. 2. To include (3) in the
final state-space model, it is convenient to express the SOC
with the integral state:

˙SOC(t) =
1

3600Q
i(t) (4)

where Q is the total battery nominal capacity in Ampere-per-
hour, and form an augmented state space model, as shown
in the following. With reference to the stochastic state-space
description introduced in (1)-(2), let the model state and model



input be:

x(t) =
⇥
vC1(t) vC2(t) SOC(t)

⇤T (5)

u(t) =
⇥
i(t) 1

⇤T
. (6)

The augmented model matrices are:

Ac = �diag
✓

1

R1C1
,

1

R2C2
, 0

◆
(7)

Bc =

2

4
1
C1

0
1
C2

0
1
Q 0

3

5 (8)

Kc = diag(k1, k2, k3) (9)
C =

⇥
1 1 �

⇤
(10)

D =
⇥
Rs ↵

⇤
(11)

G = �g. (12)

where R1, C1, R2, C2, Rs,↵,� (i.e., values of the circuit
components), k1, k2, k3 (i.e. components of the system noise
matrix), and �g (i.e., standard deviation of the measurement
Gaussian noise) are the parameters to be estimated. The
estimated values of the model parameters are reported in the
first six columns of Table II as a function of the BESS SOC
range. As a further validation test, the last column of Table II
reports the estimated values of the model parameters for the
80-100% SOC range when the value of Rs is assigned instead
of being free. The series resistance Rs is empirically estimated
by evaluating the ratio

Rs =

����
�V

�I

���� , (13)

where �V is the instantaneous voltage variation occurring in
correspondence to a large step in the input current and �I is
the magnitude of such current step. As visible from the last
two columns of Table II, the parameters’ values before and
after assigning Rs are similar, denoting that the estimation
results are stable.

Table III compares, for each considered SOC range, the Rs’s
values obtained in the MLE-based model identification and
empirical estimation (13). Identified and empirical estimated
values are similar, thus denoting that the proposed identifica-
tion process is robust.
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Fig. 4. Best performing model when considering identification measurements
at 10 second resolution.

V. TESTING AND VALIDATION RESULTS

In this section, we test the prediction performance of the
considered models by using measurements from an existing
experimental setup, where the same BESS used for the iden-
tification experiment is utilized in a real life application to
dispatch the operation of a distribution feeder, as introduced
in Section II.

A. Prediction performance

We test the prediction performance of the identified models
on different forecasting horizons (i.e. 10, 30, 60, 120, 180,
300, 600 seconds) and compare it against a persistent predictor,
i.e. where the point predictions for the next time step is the
latest available observation. The performance metric is the
percentage root mean square of the voltage prediction error:

percentage RMSE (%) =

vuut 1

N

NX

i=1

 
Vi � b

Vi

Vi

!2

· 100, (14)

where Vi is the voltage measurements at time step i =
1, . . . , N , and bVi the voltage prediction.

Eq. (14) is computed for the proposed model and persistent
model considering a validation data set of 20 thousands cur-
rent/voltage measurements at 10 s resolution, corresponding to
2 contiguous days of battery operation. At each time step, the
correct set of parameters is chosen according to the measured
SOC. The model (7)-(12) is discretized and used to calculate
the voltage prediction as a function of the battery current value.
Kalman filtering is applied to estimate and propagate the value
of the state as a function of the observed battery voltage,
known from measurements.

The predictions of the proposed model and persistent model
are shown in Fig. 5. They refer to 10 minutes-ahead prediction
horizon and qualitatively show the better accuracy of the
former model.
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Fig. 5. Thirty seconds-ahead voltage predictions of equivalent circuit and
persistent models compared to the realization.

The comparison between the prediction performance of the
persistent model and proposed model is shown in Fig. 6, in
black and gray, respectively. It can be noted that the percentage
RMSE of the proposed model is small (less than 0.55%) and



TABLE II
ESTIMATED BESS VOLTAGE MODEL PARAMETERS FOR DIFFERENT SOC RANGES

SOC 0-20% 20-40% 40-60% 60-80% 80-100% 80-100% (R
s

= 0.016)
↵ 590 607.2 607.1 590 590 590
� 364.8 181.5 203.2 258.4 257.4 264.9
R

s

0.083 0.023 0.018 0.017 0.015 0.016
R1 0.262 8.76 · 10�3 7.29 · 10�3 8.78 · 10�3 8.65 · 10�3 8.82 · 10�3

C1 1383 2254 3177 3001 2682 2684
R2 3.63 · 10�5 2.55 · 10�4 2.28 · 10�5 3.06 · 10�4 4.61 · 10�5 2.42 · 10�5

C2 1 · 106 1 · 106 1 · 106 1 · 106 1 · 106 1 · 106

k1 -9.118 0.035 0.107 0.103 -0.115 -1.86
k2 9.199 15.85 0.037 -0.042 0.167 1.937
k3 2.5 · 10�5 �0.162 �4.95 · 10�3 3.09 · 10�5 1.2 · 10�4 3.61 · 10�5

�

2
g

1.998 0.215 0.035 0.025 0.035 0.05

TABLE III
VALUES OF R

s

: MAXIMUM LIKELIHOOD ESTIMATION (ML) VERSUS
EMPIRICAL ESTIMATION (ES)

SOC range 0-20% 20-40% 40-60% 60-80% 80-100%
MLE 0.083 0.022 0.018 0.017 0.015
ES 0.077 0.022 0.017 0.016 0.016

its predictions outperform those of the persistent model for all
the considered prediction horizons.
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Fig. 6. Percentage root mean square of the prediction errors of the equivalent
proposed model and persistent model for look-ahead-times from 10 seconds
to 10 minutes.

VI. CONCLUSIONS

We discussed grey-box modeling applied to the identifi-
cation of dynamic DC current-to-voltage equivalent circuit
models of grid-connected battery systems. Models are es-
timated from measurements using the information available
from a grid-connected 720 kVA/560 kWh battery. Models
are formulated using the stochastic state-space representation.
Their structure is inspired by the well-established TTC model,
a linear second order model that originally consists in a voltage
source, a series resistance and two parallel RC branches in
series. In linear models, Models’ parameters are known to
depend on SOC, C-rate and temperature values. To capture
the first dependency, we have identified several models, each

corresponding to a different SOC range (i.e., 0-20, 20-40, 40-
60, 60-80, 80-100%). For the second, parameters were iden-
tified for a value of C-rate similar to the one used in the real
application. 1colorblack Finally, the third was not modelled
explicitly because the experimental unit under consideration
is installed in a temperature controlled environment (i.e., a
common design choice for utility-scale battery systems) and
self-heating of cells was neglected.

Identification results show that when using measurements
sampled at 1 second resolution, a third order model was
necessary to capture early dynamics, whereas at 10 second,
a second-order model was enough to capture all the dynamics
contained in the measurements. In all the models, it has been
found useful to augment the state-space with an integral state
to represent the battery SOC and express the open circuit
voltage as its linear function.

Models’ prediction performance was tested and validated on
different look-ahead times (i.e., ranging from 10 seconds to
10 minutes) using data from a real power system applications
where the battery system is used to dispatch a distribution
system with stochastic injections. It was observed that the rel-
ative root mean square prediction error of the best performing
models is less than 0.55% for all look-ahead times and less
than persistent predictions.

1colorblack In spite of the simplicity of equivalent circuit
models, validation results in an experimental setting with an
utility-scale battery energy storage system showed that they
can deliver accurate predictions of the voltage on the DC bus
as a function of the demanded current. Due to their tractability
(inear), ease of identification, and ability of capturing voltage
dynamics, their use is convenient in control applications. A
limitation of the current modelling framework is that param-
eters’ values are piecewise constant according to the SOC’s
range, thus generating discontinuity in the estimation. The
hypothesis to curve-fit parameters’ values was in general not
viable as they lacked a well identifiable trend.
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