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Comparison of the global dynamics for two chemostat-like
models: random temporal variation versus spatial heterogeneity.

G. Lagasquie, S. Madec

January 31, 2019

Abstract
This article is dedicated to the study and comparison of two chemostat-like competition models

in a heterogeneous environment. The first model is a probabilistic model where we build a PDMP
simulating the effect of the temporal heterogeneity of an environment over the species in competition.
Its study uses classical tools in this field. The second model is a gradostat-like model simulating the
effect of the spatial heterogeneity of an environment over the same species. Despite the fact that
the nature of the two models is very different, we will see that their long time behavior is globally
very similar. We define for both model quantities called invasion rates which model the growth rate
of a species when it is near to extinction. We show that the signs of these invasion rates essentially
determine the long time behavior for both systems. In particular, we exhibit a new type of bistability
with a stable coexistence steady state and a stable semi-trivial steady state.

1 Introduction
The model of chemostat is a standard model of competition of several species for a single resource in an
open environment. Its studies as well as that of its many variants have been widely explored since fifty
years. One can read Smith and Waltman’s book [32] and recent survey [36] which give a view over the
complexity and variability of this research domain. There are numerous applications for the chemostat.
For example, in population biology, the chemostat serves as a first approach for the study of natural
systems . In industrial microbiology, the chemostat offers an economical production of micro-organisms.

In this article, we consider two species u and v competing for a single resource R.
The evolution of these different concentrations in a simple chemostat ε is given by the equations:

Ṙ(t) = δr(R0 −R(t))− U(t)fu(R(t))− V (t)fv(R(t))
U̇(t) = U(t) (fu(R(t))− δu)
V̇ (t) = V (t) (fv(R(t))− δv)

(1)

together with the initial conditions U(0) > 0, V (0) > 0 R(0) ≥ 0.
Here, we denote U(t), V (t) and R(t) the concentrations of the species u, v and the resource R ; δr, δu

and δv the dilution rates of R, u and v respectivly. R0 is the constant input concentration of the resource
in the vessel. For each species w ∈ {u, v}, the map R 7→ fw(R) is the consumption function and verifies
fw(0) = 0. Thus, the per capita growth rate of the species w is fw(R)− δw. Note that according to the
models, fw can have different expressions. We assume here that fw is increasing.
Under various assumptions on the dilution rates δ and the function fw, the chemostat (1), is known to
satisfy the principle of exclusive competition (PEC) which states that when several species compete for
the same (single) resource, only one species survives, the one which makes ’best’ use of the resource. The
PEC has been first proven for equals dilution rates δr = δu = δv and Monod’s consumption function (see
(2)) in [19]. This has been generalized for different dilution rates and Monod’s function in [19] and for
any increasing function and same dilution rate in [1]. It is yet unknown if the CEP holds true for general
increasing functions fw if the assumption on the dilution rates is relaxed. See [38] for one of the last
advance on this topic.

Though some natural observations and laboratory experiences support the principle of exclusive com-
petition [15, 11], the observed population diversity within some natural ecosystems seems to exclude it
[20, 30]. In order to take account of the biological complexity without excluding the specificity of the
chemostat, various models has been introduced ([24, 27, 14] for more examples).
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The observed biodiversity could first be explained by the temporal fluctuations of the environment.
This idea has been explored in the ecology literature (see for example [9, 10]). Applied to the chemostat,
this idea gave [33] where the authors study the general gradostat with a periodic resource input. However,
temporal fluctuations of an environment are most likely random. From this assumption comes the idea
of studying an environment fluctuating randomly between a finite number of environments. In [3], the
authors gives a complete study for a two-species Lotka-Volterra model of competition where the species
evolve in an environment changing randomly between two environments and prove that coexistence is
possible.

In order to take account of the biological complexity without excluding the specificity of the chemostat,
Lovitt and Wimpenny introduced the gradostat model which consists in the concatenation of various
chemostats where the adjacent vessels are connected in both directions, [25, 11]. The resource output
occurs in the first and last chemostats of the chain and those in between exchange their contents.

The case where two species evolve in two interconnected chemostats is understood in various cases
[21, 31]. See also [34, 13, 29, 16, 28] for more references on the general gradostat. The spatial heterogeneity
has been also studies with partial differential equations models, see for instance [7, 8, 17]

Some other chemostat-like model has been introduced to take account of the temporal heterogeneity.
See [23, 5, 33] with non autonomous deterministic model and in [6, 37] with stochastic models. In this
article, we study the effect of heterogeneity through two different chemostat ε1 and ε2. For a given
chemostat εi we take the most simple model of chemostat : δr = δu = δv := δ is the common dilution
rate for each species and the dilution rate of the resource and we choose the most common expression for
fw which is Monod’s one:

fw(R) = awR

bw +R
. (2)

where aw is the maximum growth rate for the species w and bw is ’half-velocity constant’ of the species
w. .

The evolution of these different concentrations in the simple chemostat εi is then given by the equa-
tions: 

Ṙ(t) = δ(R0 −R(t))− U(t)fu(R(t))− V (t)fv(R(t))
U̇(t) = U(t) (fu(R(t))− δ)
V̇ (t) = V (t) (fv(R(t))− δ)

(3)

The so-called ’break-even concentration’

R∗w =
{

bwδ
aw−δ if aw > δ

+∞ if aw ≤ δ,

is the concentration of resource satisfying fw(Rw) = δ (if possible). The quantity R∗w can be interpreted
as the minimal concentration of resource needed by the species w to have its population growing. The
species which needs the less resource to survive in the environment is the best competitor.

It is well known that the simple chemostat satisfies the principle of exclusive competition : only the
best competitor survives. The following theorem illustrates this statement (see [18, 19]).

Theorem 1.1 (Competitive Exclusion Principle (CEP)). Suppose that R∗u < R0 (u is able to survive)
and R∗u < R∗v (u is the best competitor). The solutions of (3) satisfy:

lim
t→+∞

(R(t), U(t), V (t)) = (R∗u, R0 −R∗u, 0).

Remark 1.2. Let us write:
Σ(t) = R(t) + U(t) + V (t).

Considering that the dilution rate is the same for every species and the resource, it is easy to see that Σ
satisfies the differential equation:

Σ̇(t) = δ(R0 − Σ(t)).
It comes that Σ(t) = R0 + e−δt(Σ(0)−R0) −→

t→+∞
R0.

Using that Σ(t)→ R0, it is classical (see the appendix F in [32]) that the asymptotic dynamics of the
system (3) is given by the dynamics of the reducted system{

U̇(t) = U(t) (fu(R0 − U(t)− V (t))− δ)
V̇ (t) = V (t) (fv(R0 − U(t)− V (t))− δ)

(4)
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Hence, the assumption that the dilution rates are the same for every species and the resource is a
very strong hypothesis which allows to do the variable change R(t) = R0 − U(t) − V (t). This is the key
ingredient in [1] to prove the CEP for general increasing consumption functions and same dilution rates.

In this paper, we consider two chemostats ε1 and ε2. For j ∈ {1, 2}, the parameters of the chemostat
εj are denoted (Rj0, δj , aju, ajv, bju, bjv). In all the article, the subscripts of a parameter or a variable make
always reference to the species and the exponents make always reference to the environment. For a
species w ∈ {u, v}, we set w ∈ {u, v} \ {w} the other species. With these two chemostats, we build two
competition models. The first model is a probabilistic one. In this model the chemostat where the two
species and the resource evolve is alternating randomly between ε1 and ε2. Assuming that the species
and resource lives in ε1 at t = 0, we wait a random exponential time of parameter λ1 before switching the
chemostat to ε2. Then, we wait an other independent random exponential time of parameter λ2 before
switching back to ε1, and so on.

The goal here is to model time variations of the environment the species and resource evolve in.
Mathematically, we build here a random process which study is totally different from the gradostat
model. In [3], the authors study a similar process for a Lotka-Volterra competition model and we claim
that it is possible to adapt their techniques to the slightly more difficult chemostat switching competition
model. The second model is a gradostat-like model where the two chemostats ε1 and ε2 are connected
and trade their content at a certain rate λ. Mathematically, this model is a system of 3 × 2 differential
equations which modelizes spatial heterogeneity in a biosystem (see [25] for some mathematical results
on the behavior of such system). The goal of this article is to compare the long time behavior of the
dynamics of these two different systems. For each model we give a mathematical definition for what we
will call the invasion rate of the species, denoted Λw for the species w in the probabilistic case1. Given
the mathematical difference between the two models, the definition of these invasion rates is different for
each model. However, we show that for each model, the signs of Λu and Λv essentially determine the
state of the system at the equilibrium, and thus the long time dynamics. The precise results are stated
in the section 2 for the probabilistic model and in the section 3 for the deterministic model.

We show (under an additional assumption for the probabilistic case) that, if ΛuΛv > 0, then for any
positive initial condition only the two following behavior can happen for the two models.

• If Λu < 0 and Λv < 0 there is extinction of either species u or species v This configuration will be
called the exclusive bistability.

• If Λu > 0 and Λv > 0 there is persistence of both species (persistence means that lim inf
t→+∞

U(t) > 0
and lim inf

t→+∞
V (t) > 0).

In contrast, when ΛuΛv < 0, the possibilities for the long time dynamics are not exactly the same for
the two models. For instance, if Λu > 0 and Λv < 0. Then in the probabilistic model for any positive
initial condition their is extinction of species v with probability 1, but for the deterministic model there
is either

• Extinction of species v (for almost all positive initial condition).

• Extinction of species v or coexistence (depending on the initial condition). This situation is called
the odd2 bistability.

Consequently, comparing the two models will be essentially done by comparing the evolution of these
invasion rates according to the parameter λ. An analytical and a numerical comparison of these invasion
rates is done in section 4. In particular, we show, for the two models, that even if the two environments
are favorable to the same species, then the two species may coexist or, worse, the other species is the
only survivor.

For a more fluid reading , the technical proofs are postponed to section 5.

2 Random temporal variation : model and main results.
2.1 The probabilistic model : a PDMP system
As stated before, we pick two environments ε1 and ε2 and we model the environmental variation of a
biosystem by randomly switching the chemostat the two species and the resource evolve in. This idea

1 In the deterministic case the invasion rate of the species w is note Γw. However, we only refer to Λw in this introduction.
2We choose this term since this situation is ounter intuitive and is difficult to see in numerical simulations.

3



and its mathematical resolution has been introduced in [3]. In this previous article, the authors exhibit
counter-intuitive phenomenon on the behavior of a two-species Lotka-Volterra model of competition where
the environment switches between two environments that are both favorable to the same species. Indeed,
they show that coexistence of the two species or extinction of the species favored by the two environments
can occur.

We consider the stochastic process (Rt, Ut, Vt) defined by the system of differential equations:
Ṙt = δIt(RIt0 −Rt)− Utf Itu (Rt)− Vtf Itv (Rt)
U̇t = Ut(f Itu (Rt)− δIt)
V̇t = Vt(f Itv (Rt)− δIt)

(5)

where (It) is a continuous time Markov chain on the space of states E = {1, 2}. We note λ1 and λ2 the
jump rates. Starting from the state j, we wait an exponential time of parameter λj before jumping to the
state j. The invariant probability measure of (It) is λ2

λ1+λ2 ∆1 + λ1

λ1+λ2 ∆2 (where ∆j is the Dirac measure
in j).

Let us note the jump rates: λ1 = sλ and λ2 = (1 − s)λ with s ∈ (0, 1) and λ > 0. Parameter
s (respectively 1 − s) can be seen as the proportion of time the jump process (It) spends in state 2
(respectively 1). The parameter λ will be seen as the global switch rate of (It).

The process (Zt) = (Rt, Ut, Vt, It) is what we call a Piecewise Deterministic Markov Process (PDMP)
as introduced by Davis in [12].

Let us call:

K =
{

(r, u, v) ∈ R3
+ ,

min(R1
0, R

2
0)

2 ≤ r + u+ v ≤ 2 max(R1
0, R

2
0)
}
,

and
M = K × {1, 2}.

According to remark 1.2, Zt will reach M in finite time for any initial condition Z0 ∈ R3
+ × {1, 2} and

then stays in M . We can then assume that Z0 ∈ M and, as a consequence, M is as the state space of
the process (Zt).

We will call the extinction set of species w the set:

M0,w = {(r, u, v, i) ∈M , w = 0},

and the extinction set:
M0 = M0,u ∪M0,v

and the total extinction set:
M0,u,v = M0,u ∩M0,v.

It is clear that the process (Zt) leaves invariant all the extinction sets and the interior set M \M0.
In order to describe the behavior of the process (Zt) when Z0 ∈ M \M0, [3] suggests to study the

invasion rates of species w defined as:

Λw =
∫ (

f1
w(R)− δ1) dµw̄(R, 1) +

∫ (
f2
w(R)− δ2) dµw̄(R, 2),

where µw̄ is an invariant probability measure of (Zt) on M0,w \M0,u,v.

Remark 2.1. The idea behind the definition of the invasion rate Λu (same for Λv) is the following.
From (5) comes:

U̇t
Ut

= f Itu (Rt)− δIt = A(Zt)∫
U̇t
Ut
ds =

∫
A(Zs)ds

1
t

logUt = 1
t

∫
A(Zs)ds.

Formally, the ergodic theorem allows to write:

1
t

logUt →
∫
A(z)dµ(z),
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where µ is an invariant probability measure for the process (Zt). If µv is an invariant probability measure
of (Zt) on M0,u, we define Λu =

∫
A(z)dµv(z). By Feller continuity (see [2]) it comes that Λu can be

seen as the exponential growth rate of Ut when Ut is close to zero. Hence, if Λu > 0 the concentration
of u tends to increase from low values and if Λu < 0 the concentration of u tends to decrease from low
values.

2.2 Dynamics of the PDMP model
We are interested in the long time behavior of the concentration of the species u and v. In [3], the authors
show that the signs of the invasion rates characterizes the long time behavior of the randomly switched
Lotka-Volterra model of competition. It is expected to have the same result in the chemostat case. We
expect the three following behavior for the concentration of the species u and v:

Definition 2.2. (i) Species w ∈ {u, v} goes to extinction if Wt → 0 almost surely for any initial
condition Z0 ∈M \M0.

(ii) We have coexistence of the two species when neither of the two species goes to extinction for any
initial condition Z0 ∈M \M0.

(iii) We have exclusive bistability if their is a probability one that one of the two species tends to zero
for any initial condition Z0 ∈M \M0.

In the case (ii) above, as in [3], it is expected that the process (Zt) restricted toM \M0 has an unique
invariant probability measure Π supported by M \M0 and the empirical occupation measure3 of (Zt)
converge weakly to Π.

The proof of this results use basically the fact that the process (Zt) restricted to M0,w is a one
dimensional process which has a unique positive measure on M0,w \M0,u,v. However, their is a main
difference between the Lotka-Volterra model of [3] and our chemostat model. Unlike than for the Lotka-
Volterra model, it is not true here that the process restricted to M0,w is positively invariant because it
is possible that M0,u,v is a global attractor of (Zt) restricted to M0,w (the species w may not be able to
survive, even without competition). In this case, the only invariant probability measure on M0,w will be
supported by M0,u,v.
Hence, we first study the single species cases, which will be use by using the fact that the process (Zt)
restricted toM0,u,v does posses a unique invariant probability measure µ0, that can be use to discriminate
between the case when the species w may survive or not alone (see theorem 2.3).

When the two species are able to survive, everything is similar to [3] and we may study the case of
two species (see theorem 2.7). This precaution being taken, the proofs for theorem 2.3 and theorem 2.7
follow to a few details the same path as in [3] and are then omitted. Note that these proofs uses some
renewal theory arguments coupled with the analytic properties of the invasion rates.

2.2.1 Long time behavior when only one species is introduced

Assume that species w is not in the system (Wt = 0). Then (Zt) belongs to M0,w and we denote again
(Zt) = (Rt,Wt, It). (Zt) satisfies: {

Ṙt = δIt(RIt0 −Rt)−Wtf
It
w (Rt)

Ẇt = Wt(f Itw (Rt)− δIt)
(6)

In order to emphasize the fact that species w is absent of the system, let us define:

Λ0
w =

∫ (
f1
w(R)− δ1) dµ0(R, 1) +

∫ (
f2
w(R)− δ2) dµ0(R, 2),

where µ0 is the unique invariant probability measure of the process (Zt) restricted toM0,u,v (see theorem
4.1).

The following first result is similar to the main result in [3] but for only one species.

Theorem 2.3. The sign of the invasion rate Λ0
w characterizes the evolution of the species w on M0,w:

3Let us recall that the empirical occupation measure of (Zt) is the measure Πt given by Πt =
1
t

∫ t

0
δZsds. Hence, for a

borel set A, Πt(A) is the proportion of time spent by (Zs) in A up to time t.
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1. If Λ0
w < 0 species w goes to extinction: Wt → 0 almost surely.

In that case, the only invariant probability measure of (Zt) restricted to M0,w is µ0 which is sup-
ported by M0,u,v.

2. If Λ0
w > 0 species w survives with probability one.

More precisely : there exists a unique invariant probabily measure µw of (Zt) restricted to M0,w \
M0,u,v and the empirical occupation measure of (Zt) (restricted to M0,w) converges weakly to µw.

2.2.2 Long time behavior when two species are introduced

Assume that that Λ0
w > 0. It follows that (Zt) has an invariant probability measure µw on M0,w \M0,u,v.

The invasion rates are then defined by:

Λw =
∫ (

f1
w(R)− δ1) dµw(R, 1) +

∫ (
f2
w(R)− δ2) dµw(R, 2),

Now, we assume4 that R1
0 = R2

0 = R0. According to remark 1.2, the sum Σt → R0 as t→ +∞. As a
consequence, the long-time behavior of (Zt) is obtained by assuming that Σt = R0 in (5).

It follows that the study of the process (Zt) can now be reduced to the study of the process (Z̃t) =
(Ut, Vt, It) where It is like before and Ut and Vt satisfy the following competition system :{

U̇t = Ut(f Itu (R0 − Ut − Vt)− δIt)
V̇t = Vt(f Itv (R0 − Ut − Vt)− δIt).

(7)

Note that if the consumption functions are linear (which is not the case here), this system is a lotka-
volterra competition system. This similarity is the reason why we make the assumption R1

0 = R2
0. The

strategy of the proofs for two species is then very similar to the strategy of [3].
In order to express our main theorem, we need the additional assumption 2.5 which refers to the

averaged which is defined below.

Definition 2.4. Formally, let εs = (1− s)ε1 + sε2 the averaging of the two chemostats ε1 and ε2. The
associated differential system modelizing the behavior of the different concentrations in εs is given by:

Ṙ = δ(R0 −R)− Ufu(R)− V fv(R)
U̇ = U(fw(R)− δ)
V̇ = V (fw(R)− δ)

(8)

Where δ = (1− s)δ1 + sδ2, fw = (1− s)f1
w + sf2

w and:

R0 = (1− s)δ1R1
0 + sδ2R2

0

δ
.

Despite the fact that the averaged consumption functions fw are not Monod functions in general, they
are increasing functions verifying fw(0) = 0. Thus the PEC holds for εs. More precisly, we can then
define the break even concentration for the averaged system : rw = fw

−1(δ). The best competitor in εsis
the species with the lowest rw. The averaged chemostat εs is said to be unfavorable to a species w ∈ {u, v}
if w is not the best competitor in εs, that is if W (t)→ 0 as t→ +∞.

Assertion 2.5. Denote (Hw) the assertion which is true if and only if one ∃s ∈ (0, 1) such that the
averaged chemostat εs is unfavorable to the species w (see the definition 2.4 for a precise definition of the
averaged chemostat).

Remark 2.6. The assertion (Hw) is needed for the points 1 and 2 of the theorem 2.7. The proofs of this
points need to find an explicit trajectory such that the species w goes to zero.

If the assertion (Hw) is true then either :
4Under this assumption, one has (see section 5.1) the simple expression dµ0(R, j) = (1 − s)∆(R0,1) + s∆(R0,2) (where

∆R0 is the dirac function at R0) which yields the simple formula :

Λ0
w = (1− s)f1

w(R0)− δ1) + s(f2
w(R0)− δ2).
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(i) if s ∈ (0, 1), the species w is the best competitor at the limit λ→ +∞ in a weighted average of the
two chemostats εs = (1− s)ε1 + sε2 (see the remark 2.4),

(ii) if s ∈ {0; 1}, the species w is the best competitor in a given chemostat εs+1 (here, the average
chemostat is nothing but one of the two initial chemostats).

In the case (i), an explicit trajectory consists to switch very quickly between the two chemostat, obtaining
in turn an average deterministic dynamics for which W (t) → 0. In the case (ii), an explicit trajectory
consists to follow the dynamics of the chemostat εs+1 for which W (t)→ 0.
In both case, an easy an explicit an easy computation can insure that (Hw) holds.
Let us finish this remark by notice that if the maps λ → Λw(λ) are increasing then the assertion (Hw)
can be dispensed, see the section 4. Unfortunately, we are not able to proof the monotony of these maps.

Once again, the signs of the invasion rates Λu, Λv essentially describe the long time behavior of the
process:

Theorem 2.7. Assume that Λ0
u > 0 and Λ0

v > 0. Assume also that R1
0 = R2

0. We refer to the definition
2.2 for a precise definition of the above vocabulary.

1. If Λu > 0 and Λv < 0 and (Hv) is true then species v goes to extinction.

2. If Λu < 0 and (Hu) is true and Λv > 0 then species u goes to extinction.

3. If Λu < 0 and Λv < 0 then there is a probability one that one of the species goes to extinction. We
say that it is a situation of exclusive bistability.

4. If Λu > 0 and Λv > 0 then there is coexistence of both species.

Remark 2.8. The details of the proofs of theorems 2.3 and 2.7 are given in the last chapter of the phd
thesis of the first autor: [22].

See section 4 for a numerical investigation over the signs of these invasion rates. We show numer-
ically that for any couple of signs (x, y) ∈ {+,−} there exists pair of chemostats ε1, ε2 such that
(Sign(Λu), Sign(Λv)) = (x, y).

Moreover, ε1 and ε2 may be chosen both favorable to u (Rju < Rjv for j = 1, 2) or both favorable to v
(Rju > Rjv for j = 1, 2) or one favorable to u and the other to v ( (R1

u −R1
v)(R2

u −R2
v) < 0 for j = 1, 2).

In particular, it is possible to pick chemostats ε1 and ε2 both favorable to the species u such that for
some values of the switching rate λ, Λu < 0: switching between two environments favorable to species u
can surprisingly make it disappear (see figure 4-a).

3 Spatial heterogeneity : model and main results
3.1 The deterministic model : a gradostat-like system
The gradostat model is obtained by connecting the two chemostats ε1 and ε2 and allowing them to trade
their content.

Note Vj the volume of the chemostat εj and Q the volumetric flow rate between the two vessels and
U j(t) the concentration of the species u in the chemostat εj . It comes:{ ˙(U1V1)(t) = −QU1(t) +QU2(t)

˙(U2V2)(t) = QU1(t)−QU2(t).

Which implies the following differential equations on the concentrations:
U̇1(t) = − Q

V1U
1(t) + Q

V1U
2(t)

U̇2(t) = Q

V2U
1(t)− Q

V2U
2(t).

(9)

We will denote λj = Q
Vj . Similarly, we denote V j(t) the concentration of the species v in the chemostat

j and Rj(t) the concentration of the resource in the chemostat j. We will also denote {j, j} = {1, 2}.
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The evolution of the gradostat is described by the following system of differential equations:
Ṙj(t) = δj(Rj0 −Rj(t))− U j(t)f ju(Rj(t))− V j(t)f jv (Rj(t)) + λj(Rj(t)−Rj(t))

U̇ j(t) = U j(t)(f ju(Rj(t))− δj) + λj(U j(t)− U j(t))

V̇ j(t) = V j(t)(f jv (Rj(t))− δj) + λj(V j(t)− V j(t)).

(10)

The part with λj in factor comes from the transfer equation (9) and the other part comes from the
chemostat equation (3).

Let us write R(t) =
(
R1(t)
R2(t)

)
, U(t) =

(
U1(t)
U2(t)

)
, V (t) =

(
V 1(t)
V 2(t)

)
, R0 =

(
R1

0
R2

0

)
, δ =

(
δ1

δ2

)
and

fw(R) =
(
f1
w(R1)
f2
w(R2)

)
. Moreover, set λ1 = sλ and λ2 = (1 − s)λ with λ > 0 and s ∈ (0, 1) and K =(

−s s
1− s s− 1

)
. By convention

(
w
x

)(
y
z

)
=
(
wy
xz

)
. With this notations, the system (10) reads shortly:

Ṙ(t) = δ(R0 −R(t))− U(t)fu(R(t))− V (t)fv(R(t)) + λKR(t)
U̇(t) = U(t)(fu(R(t))− δ) + λKU(t)
V̇ (t) = V (t)(fv(R(t))− δ) + λKV (t).

(11)

The initial value belongs to the set (R∗+ × R∗+)3.

Set Σj(t) = Rj(t) +U j(t) + V j(t). The vector Σ(t) =
(

Σ1(t)
Σ2(t)

)
satisfies the linear differential system:

Σ̇(t) = (λK −∆) Σ(t) + δR0,

where ∆ =
(
δ1 0
0 δ2

)
.

The matrix ∆ − λK has two real positive eigenvalues. Hence we may set Σ =
(

Σ1

Σ2

)
:= (∆ −

λK)−1(δR0) and we have

lim
t→+∞

Σ(t) = Σ

Since every trajectory is asymptotic to its omega limit set, it is important to study the system on this
set.

As a consequence, in all the following our attention will be focused on the system:{
U̇(t) = U(t)(fu(Σ− U(t)− V (t))− δ) + λKU(t)
V̇ (t) = V (t)(fv(Σ− U(t)− V (t))− δ) + λKV (t).

(12)

With initial condition in the set (R∗+×R∗+)2. The appendix F of [32] shows that the long time dynamics
of (10) is completely given by the dynamics of (12).

3.2 Dynamics of the gradostat like model
We are interested in the long time behavior of the solution of this differential system. It is proven in
[32, 21], using strongly the monotonicity of the system, that any solution of (12) converges to a stationary
equilibrium when the consumption functions f jw do not depend on the vessel εj . Their proofs are mainly
based on the study of the existence and stability of stationary solutions and on general results about
monotone system due to Hirsch (see the appendix B and C in [32] and the references therein).

This strategy is still working in the case of vessel-dependent consumption function f jw, the main
additional difficulty being that the structure of the stationary solutions is richer when the functions
f jw do depend on j. We do a complete description of the stationary solution detailed in section 5.
This description relies on the construction of different functions defined on the interval [0, R1

0] which
intersections in a certain domain of the plane [0, R1

0]×[0, R2
0] gives the existence and stability of stationary

solutions for (12).
The main idea of the construction of these functions is the following:
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1. If the species w survives at the equilibrium, then 0 is the principal eigenvalue of the matrix Aw(R) =
fw(R)− δ + λK which implies that R = (R1, R2) belongs to the graph of a function Fw.

2. If the species w survives (without competition) then W = R0 −R is the principal eigenfunction of
Aw(R) and then R = (R1, R2) belongs to the graph of a function gw.

In section 5, it is show how the relative position of the four curves R2 = gw(R1) and R2 = Fw(R1)
(w ∈ {u, v}) give a graphical understanding of the existence of the steady states and their stability. See
the figure 1.

3.2.1 Long time behavior when only one species is introduced

Assume that w is not in the system (W (t) = 0). In this particular case, it is possible to study the behavior
of the system. Without competition, the differential equation describing the evolution of the system is:

Ẇ (t) = W (t)(fw(Σ−W (t))− δ) + λKW (t) (13)

with initial condition W (0) ∈ R∗+ × R∗+.
It can be proven like in [32] that any trajectory of this previous differential equation goes to a stationary

point. Let us call E0 = (0, 0), E0 is the trivial stationary point of the system (13) and its linear stability
characterizes the dynamics of (13):

Theorem 3.1 ([32] chapter 5 lemma 4.2 and 4.3 page 113). The global dynamics of the system (13) is
as follows.

• If E0 is linearly stable, then it is the only stationary point and any trajectory is attracted by E0 for
any initial condition in R∗,2+ .

• If E0 is linearly unstable, then there exists a unique stationary point Ew = (W 1,W 2) ∈ R∗+ × R∗+.
Moreover Ew is a global attractor for the system (13) in R∗+ × R∗+.

Note that a stationary point for equation (13) satisfies the equation:

Fw(W ) = W (fw(Σ−W )− δ) + λKW = 0.

The Jacobian matrix of Fw taken at E0 is:

Aw =
(
f1
w(Σ1)− δ1 − λ1 λ1

λ2 f2
w(Σ2)− δ2 − λ2

)
. (14)

We define the invasion rate Γ0
w of the species as the maximum eigenvalue of the matrix Aw:

Γ0
w = 1

2

(
f1
w(Σ1)− δ1 + f2

w(Σ2)− δ2 − λ1 − λ2 +
√

(f1
w(Σ1)− δ1 − f2

w(Σ2) + δ2)2 + 4λ1λ2
)

(15)

Theorem 3.1 yields:

Corollary 3.2. The sign of Γ0
w characterizes the behavior of the system (13):

• If Γ0
w < 0 there is extinction of the species w: lim

t→+∞
W (t) = 0.

• If Γ0
w > 0 there is persistence of the species w. More precisely: lim

t→+∞
W (t) = Ew ∈ R∗+ × R∗+.

3.2.2 Long time behavior when two species are introduced

For sake of comparison with the probabilistic case, we set R0 = R1
0 = R2

0 even if computations are possible
when these two quantities are different. The system (12) being strongly monotone (see proposition 3.7),
the theorem C.9 from Hirsch [32] implies that for almost all initial condition, the solutions tends to a
stationary point. Thus, the study of the existence and stability of the steady states is crucial in the
understanding of the dynamics of (12).

From R1
0 = R2

0 = R0, we have Σ =
(
R0
R0

)
and a stationary solution of (12) satisfyies:

H(U, V ) = 0⇔
{
U(fu(R0 − U − V )− δ) + λKU = 0
V (fv(R0 − U − V )− δ) + λKV = 0.

(16)
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E0 := (0, 0, 0, 0) is the trivial stationary equilibrium. The Jacobian matrix of H at E0 reads:

dH(E0) =
(
Au 0
0 Av

)
where Aw is defined in (14).

If both Au and Av have negative eigenvalues then E0 is a locally attractive stationary point. with
w = u and σ = (R0, R0)T . The consumption functions f jw being increasing, the solution (U, V ) of (12)
are controlled5 by the solution Ũ and Ṽ of the single species system (13). From corollary 3.2 we infer
that 0 ≤ W (t) ≤ W̃ (t) → 0 if γw < 0. It follows that E0 is a global attractor in R4

+ and in particular,
their is no other non negative steady state.

If Au has at least one positive eigenvalue, then E0 is not locally attractive. As a consequence,
theorem 3.1 from the previous subsection gives the existence of a unique semi-trivial stationary equilibrium
Eu = (U, 0). Likewise, if Av has at least one positive eigenvalue, we define Ev = (0, V ) as the other semi-
trivial stationary equilibrium.

Moreover, arguments similar to the ones in [32] chapter 5 yield

Proposition 3.3. • If Eu and Ev does not exists, then E0 is a global attractor.

• Let {w,w} = {u, v}. If Ew exists and Ew does not exists, then Ew is a global attractor.

Hence, the most interesting case holds when both Eu and Ev exists. In that case, it is possible to
have coexistence stationary solutions which may be stable or unstable.

Define the following matrix:

Mw(Rw) =
(
f1
w(R1

w)− δ1 − λ1 λ1

λ2 f2
w(R2

w)− δ2 − λ2

)
. (17)

We show in section 5.2.1 that the stability of the semi-trivial equilibrium Ew is given by the sign of the
eigenvalues of Mw(Rw).

Definition 3.4. Let Γw be the maximum eigenvalue of the matrix Mw(Rw). We call Γw the invasion
rates of the species w.

Remark 3.5. Let us explain the designation “invasion rate” for Γu. If Γu > 0, it means that the semi-
trivial equilibrium Eu = (U1, U2, 0, 0) is unstable. Consequently, according to previous remark, it means
that (0, 0) is un unstable equilibrium for the differential system:

V̇ (t) = V (t) (fv(R0 − U − V (t))− δ) + λKV (t).

Hence, if V (0) is small enough, then t 7→ V (t) is increasing on (0, τ) at an exponential speed Γu. In other
words, v invade the environment. At the contrary, if Γu < 0, the semi-trivial equilibrium Eu is stable
and from a small initial value V (0), we have ‖V (t)‖ ≤ CetΓu for some constant C > 0. In particular
V (t)→ (0, 0).

The signs of the invasion rates Γw give the stability of the semi-trivial equilibrium Ew but determine
also the existence and stability for coexistence stationary equilibrium. In section 5.2.1 we give a full
characterization of the stationary solution and their stability.

Moreover, following [32] appendix B, we can show that the system (12) has a monotonic structure.

Definition 3.6. Let ≤K be an order in R4 defined by (x1, x2, x3, x4) ≤K (y1, y2, y3, y4) if and only if
x1 ≤ y1, x2 ≤ y2 and x3 ≥ y3, x4 ≥ y4. We defined <K by replacing all the signs ≤ by the sign <.
Consider the smooth differential system in R4 : (E) xi = fi(x1, x2, x3, x4), i = 1, 2, 3, 4. recall that the
flow φt : R4 → R4 of this system is defined by φ(x0) = x(t) where x(t) = (xi(t))i is the solution of (E)
such that x(0) = x0.
The system (E) is be monotone with respect to the order ≤K if x ≤k y implies φt(x) ≤K φt(y) for any
t ≥ 0.
It is strongly monotone with respect to ≤K if f x ≤k y and x 6= y implies φt(x) <K φt(y) for any t ≥ 0.

5For instance, let Ũ verifying the system (13) we have fu(R0 − Ũ − V ) ≤ fu(R0 − Ũ) for any V ∈ R2
+. Let (U, V ) be a

solution of (12) with Ũ(0) = U(0). By comparison, it follows that U(t) ≤ Ũ(t). From the corollary 3.2, we have Ũ(t)→ 0
and then U(t)→ 0. The same argument shows that V (t)→ 0.

10



It is classical that such a competition system is monotone.

Proposition 3.7 ([32] corollay B.5. p 265). The system (12) is strongly monotone with respect to ≤K .

Proof. for {i, j} = {1, 2} and w ∈ {u, v}, define F iw(u1, u2, v1, v2) = W i(fw(R0−ui−vi)−δi)+λi(wj−wi).
Following [32], the system is monotone because

∀(i, j) ∈ {1, 2}2 and {w, w̄} = {u, v}, ∂F iw
∂w̄k

≤ 0

∀{i, j} = {1, 2} and w ∈ {u, v}, ∂F iw
∂wj

≥ 0.

The strong monotonicity is due to the fact that the Jacobian matrix at every point (U, V ) is irreducible.

This monotonic structure is a very strong property which reduces the possibilities for the global
dynamics of the system. In particular, for almost every initial condition, the trajectory of the solutions
of (12) goes to a stationary equilibrium (see [32], appendix C). Hence, using the result from the section
5 and the same arguments that the ones stated in [32] page 143, we obtain theorem 3.8 which describes
the possible dynamics of (12).

Theorem 3.8. Assume that the two semi-trivial stationary equilibrium Eu and Ev exist.

1. If Γv > 0 and Γu > 0, then the solutions of (12) go to the unique coexistence equilibrium E∗ which
is linearly stable for almost every initial condition.

2. If Γv < 0 and Γu < 0, then there exists an unstable coexistence solution Ecu. Moreover, the solutions
of (12) go either to Eu or to Ev (for almost every initial condition) depending on the location of
the initial value according to the basin of attraction of the two semi-trivial equilibrium. We say that
it is a situation of exclusive bistability.

3. Let {w,w} = {u, v} and suppose that Γw < 0 and Γw > 0. Then either :

(a) There is not coexistence stationary equilibrium. In that case, any solution of (12) converges
to Ew for almost every initial condition.

(b) There exist two coexistence stationary equilibrium : one stable Ecs and one unstable Ecu. Any
trajectory of (12) go either to Ecs or to Ew (for almost every initial condition) depending on
the location of the initial value according to the basin of attraction of the two stable equilibria.
We say that it is a situation of odd bistability.

Remark 3.9. As it is proven in [32], the cases 2. and 3.b are impossible if the consumption functions
does not depend on the vessels εj. We show in figure 1 that every cases may happen in general.

4 Comparison of the invasion rates between the two models
In section 2, a definition for the invasion rates in the probabilistic case is given and it is proven that the
signs of the invasion rates characterize the long time behavior of the probabilistic model. Recall that in
this case, we defined the invasion rates by :

Λw =
∫ (

f1
w(R)− δ1) dµw(R, 1) +

∫ (
f2
w(R)− δ2) dµw(R, 2),

where µw is the invariant probability measure of (Zt) on M0,w \M0,u,v.
In section 3, the invasion rates Γw in the gradostat model are defined as the maximum eigenvalue of

a two dimensional matrix and the theorem 3.8 shows that the sign of these invasion rates characterize
(essentially) the behavior of the solutions of the gradostat model.

In this section, we aim to give a qualitative comparison of the two definition of the invasion rates in
order to discuss the similarities and the differences of the two models we considered.
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a - Typical coexistence case. Rc is associated b - Typical bi-stable case. Rc is associated to
to a globally stable coexistence stationary an unstable coexistence stationary
equilibrium. Eu and Ev are unstable. equilibrium. Eu and Ev are stable.

c - Typical extinction case. Ev is stable, d - Rare bi-stable case. Rcs is associated
Eu is unstable and there is no coexistence to a stable equilibrium. Rcu is associated to
steady state. Species u goes to extinction. an unstable equilibrium. Eu is stable,

Ev is unstable.

Figure 1: The graph of the functions Fw and gw, w ∈ {u, v} are sufficient to describe the global dynamics
of (12). The precise definitions of the functions Fw and gw a are given in section 5 as well than the
proofs of their interpretations. A semitrivial solution Eu = (Ru, U, 0) ∈ R2 × R2 × R2 corresponds to an
intersection R2

u = Fu(R1
u) = gu(R1

u) with 0 < Rju < R0 for j = 1, 2. Moreover, Eu is asymptotically stable
if Fu(R1

u) < Fv(R1
u). Similar conditions hold for Ev = (Rv, 0, V ). A coexistence solution Ec = (Rc, Uc, Vc)

corresponds to an intersection R2
c = Fu(R1

c) = Fv(R1
c) which verifies the inequalities R1

w < R1
c < R2

w and
R2
w < R2

c < R2
w for {w,w} = {u, v}. Depending on the relative position of Fu and Fv, there may be zero

coexistence steady state (figure (c)), one (figures (a) and (b)) or even two (figure d). If the (graph of
the) function Fw are never tangent, the stability of the steady states switch when we count them starting
from the top left to the upper right. For example on figure (a), Eu is unstable, Ec is stable and Ev is
unstable.

4.1 Comparison of the invasion rates in the one species case
Let us first look at the one species case. The following theorem deals with the probabilistic definition of
the invasion rate of species w.

Theorem 4.1. Let us assume that R1
0 < R2

0 and set γj = λj

δj . The process (Zt) has a unique invariant
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probability measure µ0 when it is restricted to M0,u,v. The invasion rate of species w is given by:

Λ0
w = γ1 + γ2

λ1 + λ2E [Φ(B)] .

Where B is a random variable following a Beta law of parameters (γ1, γ2) and:

Φ(x) = δ2(1− x)
(
f1 ((R2

0 −R1
0)x+R1

0
)
− δ1)+ δ1x

(
f2 ((R2

0 −R1
0)x+R1

0
)
− δ2) .

The uniqueness of the invariant probability measure is fairly obvious given the definition of the process
(Zt) restricted toM0,u,v. Its explicit expression allows to obtain the announced expression for the invasion
rate Λ0

w. The computation of the invariant probability measure is postponed to the last section 5.1.1 of
this article.

Recall that the jump rates of the Markov process (It) on the state space {1, 2} are given by: λ1 = sλ
and λ2 = (1− s)λ with λ ∈ R and s ∈ (0, 1).
Proposition 4.2. The invasion rate Λ0

w =
(
s
δ1 + 1−s

δ2

)
E [Φ(B)] is monotone according to the variable λ.

Once again the proof of this statement requires heavy computation and is postponed to section 5.1.2.
This analytical property on the invasion rate is used in the proof of theorem 2.3.

An explicit expression of the invasion rate in the deterministic case is given in (15). We compute the
limits as λ→ 0 and λ→ +∞ of these invasion rates.
Proposition 4.3. The behavior of the two model is the same when λ is large enough.

lim
λ→+∞

Λ0
w = lim

λ→+∞
Γ0
w = (1− s)

(
f1
w(R∞)− δ1)+ s

(
f2
w(R∞)− δ2)

where R∞ = (1−s)δ1R1
0+sδ2R2

0
(1−s)δ1+sδ2 .

The behavior of the two model is not the same the same when λ is small enough.

lim
λ→0

Λ0
w = (1− s)

(
f1
w(R1

0)− δ1)+ s
(
f2
w(R2

0)− δ2) ,
lim
λ→0

Γ0
w = max

(
f1
w(R1

0)− δ1, f2
w(R2

0)− δ2) .
Remark 4.4. Though these results are easily obtained by a simple computation, the fact that the limits of
the invasion rates are the same when λ goes to +∞ is the consequence of some already known results on
the averaging of vector fields. Under some condition over the switching vector fields, it is proven in [35]
that a process built from switching between the different vector fields converges in law to the deterministic
solution of the aggregated system of the vector fields defined in 2.4.

We see that the behavior of the two models is very different for small λ and very similar for large λ.

• If λ→ +∞, then in both model, the system is well mixed and can be approximate by the averaged
chemostat which is homogeneous and satisfy the PEC (see definition 2.4). The invasion rate in the
homogeneous case is easy to compute and is exactly the limit of both Λ0

w and Γ0
w.

• If λ = 0 then the for both models, the system corresponds to two unconnected chemostats and the
invasion rate in a chemosta εj is given by f jw(Rj0)− δj . But when λ→ 0, the limits of the invasion
rates keep a trace of the way the two chemostats exchange information. It is then more accurate
two think about the case of very small positive λ.

– In the deterministic model, the essential of the dynamics occurs simultaneously in the two
chemostat and there is a very small exchange between the two chemostat. It is enough that
the species survive in one of the two chemostat to be presents in the domain (at a very small
concentration in the other chemostat). It is why the limit is given by a max. In particular, for
the species w to go to extinction, it is necessary that both chemostat are unfavorable to w.

– By contrast, in the PDMP model the dynamics occurs in each chemostat one after another
and stay a long time on each of them. Hence, there is then an average of the invasion rate in
both chemostat weighted by the proportion of time s and 1 − s the dynamics is given by ε1
or by ε2. This is why the limit is a weighted average. In particular, for the species w to go to
extinction, it is sufficient that one of the two chemostat εj is unfavorable to w if the dynamics
follows more likely εj .

Numerical simulations are presented in 2 for two sets of data Π1 and Π2 defined in the table 1.
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Π1 Π2
(a1, a2) = (1.1, 2) (a1, a2) = (1.1, 2)
(b1, b2) = (0.4, 4) (b1, b2) = (0.05, 2)
(δ1, δ2) = (1, 1) (δ1, δ2) = (1, 1)

(R1
0, R

2
0) = (10, 1) (R1

0, R
2
0) = (0.55, 2.1)

Table 1: Set of data used in figure 2. The set Π1 correspond to a case where ε1 is favorable to the species
( a

1R1
0

b1+R1
0
− δ1 > 0) and ε2 is unfavorable to the species ( a

2R2
0

b2+R2
0
− δ2 < 0). Π2 correspond to a case where

both ε1 and ε2 are favorable to the species.

Figure 2: Comparisons of the zero level lines for Γ0 and Λ0 for the two sets of data Π1 and Π2. The
color blue makes reference to Λ0 (probabilistic invasion rate) and the red color makes reference to Γ0

(deterministic invasion rate). In each zone of this figure, the sign of the pair (Λ0,Γ0) is constant and
is plainly indicated by a pair of signs. Note that in the case Π1, the map λ → Γ0

w(λ, s) may not be
monotonous. For s = 0.5 for instance, γ0

w(λ, 0) is positive for a small lambda, then positive for λ ≈ 1
and then positive again for large λ. Such a phenomena is impossible for the probabilistic model for the
invasion rate being monotonous. Note that in the case Π2, both chemostat are favorable to the species
but if s is neither to small nor to large, and λ large enough, then the species goes to extinction. Finally,
note that in both case we have the embedding {(λ, s),Γ0

w(λ, s) > 0} ⊂ {(λ, s),Λ0
w(λ, s) > 0}. This seems

to shows that the species survives more likely in the deterministic model than in the probabilistic one.

14



4.2 Comparison of the invasion rates in the two species case
We now have a qualitative discussion on the behavior of the invasion rates when two species are introduced
in our models. Recall that it is assumed here that R1

0 = R2
0.

Theorem 4.5. Let w ∈ {u, v} and assume that Λ0
w̄ > 0. There exists a unique invariant probability

measure µw̄ of (Zt) restricted to M0,w \M0,u,v.
The invasion rates Λw is computable and its explicit expression is given by:

Λw =
∫
hw(x)gw(x)eλHw(x)dx∫
gw(x)eλHw(x)dx

.

Where:

hw(x) = (f2
w(R0 − x)− δ2)|f1

w(R0 − x)− δ1|+ (f1
w(R0 − x)− δ1)|f2

w(R0 − x)− δ2|
|f1
w(R0 − x)− δ1|+ |f2

w(R0 − x)− δ2|

gw̄(x) =
(
|f1
w̄(R0 − x)− δ1|+ |f2

w̄(R0 − x)− δ2|
) |f1

w̄(R0 − x)− δ1||f2
w̄(R0 − x)− δ2|

x

and

Hw̄(x) = −(ν1
w̄β

1
w̄ + ν2

w̄β
2
w̄) log(x) + ω1

w̄α
1
w̄ log

(
(b1w̄ +R0 − x)|f1

w̄(R0 − x)− δ1|
)

+ ω2
w̄α

2
w̄ log

(
(b2w̄ +R0 − x)|f2

w̄(R0 − x)− δ2|
)
.

The constants are defined by:

αjw̄ = ajw̄

ajw̄ − δj
, βjw̄ = 1 + R0

bjw̄
, ν1

w̄ = s

δ1
R1
w̄

R0 −R1
w̄

, ν2
w̄ = 1− s

δ2
R2
w̄

R0 −R2
w̄

.

The proof of this theorem is very computational and follows closely the proof of theorem 4.1. We will
omit it. A complète proof may be find in [22]. This expression for the probabilistic invasion rate is rather
heavy but allows us to do some simulations.

For the deterministic case, the invasion rates Γw is defined in 3.4 as the maximal eigenvalue of the
matrix Mw(Rw) which is defined in (17) and where Rw is the resource concentration at Ew. Though Rw
verifies a second degree polynomial, and can be explicitly expressed (see section 5.2.1), the complexity of
its expressions does not make it interesting to give it formally. However its explicit expressions is used
in the numerical simulations.

Proposition 4.6. The behavior of the two models is the same for λ large enough.

lim
λ→+∞

Λw = lim
λ→+∞

Γw = (1− s)
(
f1
w(R∞w )− δ1)+ s

(
f2
w(R∞w )− δ2) .

where R∞w is the unique positive solution of the equation:

(1− s)
(
f1
w(R)− δ1)+ s

(
f2
w(R)− δ2) = 0.

The behavior of the two models is not the same for λ small enough:

lim
λ→0

Λw = (1− s)
(
f1
w(R1,∗

w )− δ1
)

+ s
(
f2
w(R2,∗

w )− δ2
)
,

lim
λ→0

Γw = max
(
f1
w(R1,∗

w )− δ1, f2
w(R2,∗

w )− δ2
)
.

where

Rj,∗w =
bjwδ

j

ajw − δj
is the solution of the equation f jw(R)− δj = 0,

that is the break even concentration of the species w on the chemostat j.

Let us now compare the probabilistic and the deterministic dependance of the invasion rates with
respect to λ and s within the two models on particular example. In all the following figures, the blue
color is associated to the species u whereas the red color is associated to the species v. The different
couple of signs give the couple of signs of the invasion rates (Λu,Λv) in the probabilistic case and (Γu,Γv)
in the deterministic case.
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a - Typical coexistence situation. b - Typical bistability sitation.
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Figure 3: Both species is the best competor in one vessels. The middle plots represents fw in both vessels.
a - An appropriate averaged ratio between the vessels leads coexistence (a1

u, a
2
u, a

1
v, a

2
v) = (4.2, 4, 2.1, 2),

(b1u, b2u, b1v, b2v) = (5, 5, 0.5, 0.5), (δ1, δ2) = (1.9, 1.5) and R0 = 8. b - The role of species are reversed
between the vessels. For the probabilistic model, there is either exclusion or bistability. The same holds
for the deterministic case, exept that small diffusion permits coexistence. (a1

u, a
2
u, a

1
v, a

2
v) = (4.2, 2, 2.1, 4),

(b1u, b2u, b1v, b2v) = (5, 0.5, 0.5, 5), (δ1, δ2) = (1.7, 1.5) and R0 = 8.

a - Two vessels favorable to the species u. b -Odd bistability in the deterministic model.
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Figure 4: Two interesting situations. a - The two vessels are favorable to the same species. The mid-
dle plots represents fw in both vessels. Depending on λ and s, each situation may occurs for both
models (extinction of u or v, exclusive bistability or coexistence). (a1

u, a
2
u, a

1
v, a

2
v) = (3.5, 2.5, 1.25, 7),

(b1u, b2u, b1v, b2v) = (8.75, 0.125, 1.125, 3.75), (δ1, δ2) = (1, 2) and R0 = 7. b - A situation like in figure 3-a
with an odd bistable area in the deterministic model (the probabilistic model behaves like the one figure
3-a). The left plots represents fw in both vessels. We show only the deterministic model and make a zoom
on the odd bistable area in a (+,−) area. This zone corresponds to the case 3-(b) in the theorem 3.8.
(a1
u, a

2
u, a

1
v, a

2
v) = (3.7, 3.6, 4.4, 2.5), (b1u, b2u, b1v, b2v) = (1.55, 3.55, 3.6, 0.4), (δ1, δ2) = (2.5, 1.1) and R0 = 20.

Remark 4.7. In all the figure, the zeros level sets of Γu, Γv, Λu and λv have the same vertical asymptotes
since the two models are described by the same averaged chemostat εs as λ→ +∞ and that εs satisfy the
PEC.
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Remark 4.8. Numerically, the invasion rates Λw seem to have a monotonous behavior according to λ
just like in the case n = 1. Sadly the complexity of their expressions does not allow us to prove it. We
will conjecture it. Under this conjecture, we do not need the assumption Hw in the theorem 2.7.
Ours numerical examples shows that this is not the cases for the deterministic model, even for n = 1 (see
figure 2-a, 3-b and 4-b).

4.3 Concluding remarks
Let us conclude on the similarities and differences between the two models we studied in this chapter.
For each models we gave a definition of the invasion rates of the introduced species which depend only
on the parameters of the systems. Despite the differences of their mathematical nature, theorem 2.7 and
3.8 show that the long-time behaviors of the two models essentially depend on the signs of the invasion
rates. Hence, we compared the two models by comparing the behavior of the invasion rates according
to the parameters (s, λ) (where λ1 = sλ and λ2 = (1 − s)λ). In the probabilistic case, (λ1, λ2) are
the parameters of the Markov chain governing the switching between the environments whereas in the
deterministic case, (λ1, λ2) are the exchange parameters between the two vessels.

From the previous theorems and numerical simulations come the following similarities between the
two models:

• When the invasion rates are positive (resp. negative) for u and v, the probabilistic system and
the deterministic system are in a coexistence state (resp. bistable state). Moreover, we proved
numerically that it is possible to have bistability with two introduced species and two vessels. This
numerical result is similar to the result of [16] where they proved in their particular case (dilutions
rates and consumption functions not depending on the vessel, two introduced species) that at least
three vessels are needed for the existence of an unstable coexistence equilibrium.

• The limits of the invasion rates when λ goes to infinity are the same for both models. We saw
that the reason behind this result is the averaging phenomenon occurring when λ is large enough
implying that both systems behave like the averaged chemostat εs. Graphically, we see that the zero
contour lines of the invasion rates are really alike for λ large enough and have the same asymptote
when λ goes to infinity.

The main differences between our competition models are the following:

• In the probabilistic model, when the invasion rates have opposite signs, only one species survives,
the one with the positive invasion rate. However, in the deterministic model, when the invasion
rates have opposite signs, it is possible for the system to be in an “odd” bistable state where one of
the stable stationary equilibrium is a coexistence equilibrium an the other a semi-trivial solution.

• The most important difference between the two models occurs when λ is close to zero because the
limits of the invasion rates when λ goes to zero are different. We can interpret this difference by
the difference of nature between the two models when λ is very small. For the probabilistic model,
λ very small implies that the process follows for a very long time the flow of each chemostat ε1

and ε2 and the invasion rates measures the averaging of the behavior of each flows. But in the
deterministic case, when λ is very small, there are almost no exchanges between the two vessels
implying that the system almost behaves like two isolated chemostats with a very small diffusion
between them.

We give here a little discussion over the parameter restrictions we did on our models. First, note
that the most important parameters involved in the heterogeneity of our two models are the quantities
Rjw which are the minimum resource quantities needed by species w to survive in the vessel j (when the
vessels are isolated). Recall that Rjw is solution of the equation:

f jw(R)− δjw = 0

where f jw are the consumption functions and δjw the dilution rates. As a consequence, allowing the
consumption functions or the dilution rates to depend on w and j is the easiest way to allow the parameters
Rjw to be different according to w and j.

Note that in the probabilistic model we had to assume that the resource entries Rj0 are equal in order
to reduce the system and do some computations. But this hypothesis is not necessary in the deterministic
model where we claim that the computations are still possible. In fact, in [32], the authors model the
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environment heterogeneity with a different resource input for each vessel, and thanks to this heterogeneity,
a coexistence stationary equilibrium may appear. In our case, we model the environment heterogeneity
by taking vessel dependent consumption functions and dilution rates.

In this paper, we decided that only the consumption functions will depend on w and j while the
dilution rates only depend on the vessel j. This hypothesis is crucial because it allows us to reduce the
systems of differential equations (thanks to the variable Σ) into a monotone system, ultimately leading
to the long-time behavior theorems. However, it was not a natural choice in the deterministic model
because in the gradostat applications, the consumption functions do not depend on the vessels but only
on the species. As a consequence, this hypothesis took us away from the gradostat context (and its
application in the industry for example) to bring us in a more theoretical ecological study of the spatial
heterogeneity.

Nonetheless, the approach with the functions Fw and gw might lead to the proof of the existence and
stability of the stationary equilibria of the gradostat-like model when the dilution rates also depend on
the species and can be the subject of some future work.

5 Mathematical proofs
5.1 Computation of the invariant probability measures in the probabilistic

case
We show in this subsection how to compute the invariant probability measures announced in theorem 4.1
and 4.5.

5.1.1 Proof of the theorem 4.1

Proof. Recall that only one species is introduced in our system. The invasion rate Λ0
w is defined by:

Λ0
w =

∫ (
f1
w(R)− δ1) dµ0(R, 1) +

∫ (
f2
w(R)− δ2) dµ0(R, 2)

where µ0 is an invariant probability measure of the process (Zt) restricted M0,u,v. On M0,u,v, (Zt) =
(Rt, 0) satisfies:

Ṙt = δIt(RIt0 −Rt).
Its infinitesimal generator is given for any good functions φ by:

Lφ(r, i) = δi(Ri0 − r)φ′(r, i) + λ1(φ(r, i)− φ(r, i)).

It is clear that for t large enough, (Rt) belongs to [R1
0, R

2
0]. By compacity, there exists an invariant

probability measure for (Rt) and it is unique because the process is recurrent.
The unique invariant probability measure µ0 satisfies:

∀φ,
∫
Lφ(r, i)dµ0 = 0. (18)

We search µ0 of the shape µ0(dR, j) = ρj(R)1jdR. It gives in (18):∫ R2
0

R1
0

(
δ1(R1

0 −R)φ′(R) + λ1(φ(R, 2)− φ(R, 1))
)
ρ1(R)dR+

∫ R2
0

R1
0

(
δ2(R2

0 −R)φ′(R) + λ2(φ(R, 1)− φ(R, 2))
)
ρ2(R)dR = 0.

(19)

Assume that φ(x, j) = φ(x). It gives in (19):∫ R2
0

R1
0

(
δ1(R1

0 −R)φ′(R)
)
ρ1(R)dR+

∫ R2
0

R1
0

(
δ2(R2

0 −R)φ′(R)
)
ρ2(R)dR = 0.

An integration by parts gives:[
δ1(R1

0 −R)φ′(R)ρ1(R)
]R2

0
R1

0
+
[
δ2(R2

0 −R)φ′(R)ρ2(R)
]R2

0
R1

0

−
∫ R2

0

R1
0

φ(x)
(
(δ1(R1

0 −R)ρ1(R))′ + (δ2(R2
0 −R)ρ2(R))′

)
dR = 0.
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It seems “natural” that ρj(Rj0) = 0 according to the dynamics of the process (Rt, It). Assuming this, a
classic density argument gives:

δ1(R1
0 −R)ρ1(R) + δ2(R2 −R)ρ2(R) = K.

From ρj(Rj0) = 0 we have K = 0 which yields:

δ1(R1
0 −R)ρ1(R) + δ2(R2 −R)ρ2(R) = 0. (20)

Now, assume that φ(R, 1) = φ(R) and φ(R, 2) = 0. Plugging this in (19) and integrate by parts yields∫ R2
0

R1
0

φ(R)
(
−(δ1(R1

0 −R)ρ1(R))′ − λ1ρ1(R) + λ2ρ2(R)
)
dR.

By the same density argument as before, we obtain

−(δ1(R1
0 −R)ρ1(R))′ − λ1ρ1(R) + λ2ρ2(R) = 0

that is
−δ1(R1

0 −R)ρ′1(R) + δ1ρ1(R)− λ1ρ1(R) + λ2ρ2(R) = 0.
Equation (20) gives:

ρ2(R) = δ1(R−R1
0)

δ2(R2 −R)ρ
1(R).

As a consequence, ρ1 satisfies the differential equation:

ρ′1(R) + ρ1(R)
(

1
R−R1

0
− λ1

δ1(R−R1
0) + λ2

δ2(R2
0 −R)

)
= 0. (21)

Solving (21) gives the explicit expression for ρ1:

ρ1(R) = C(R−R1
0)

λ1
δ1 −1(R2

0 −R)
λ2
δ2 .

Hence,

ρ2(R) = C
δ1

δ2 (R−R1
0)

λ1
δ1 (R2

0 −R)
λ2
δ2 −1,

where C is a constant. The value of C is determined by the fact that µ0 is a probability measure:∫ R2
0

R1
0

ρ1(R)dR+
∫ R2

0

R1
0

ρ2(R)dR = 1.

As a consequence:

C

∫ R2
0

R1
0

(
(R−R1

0)
λ1
δ1 −1(R2

0 −R)
λ2
δ2 + δ1

δ2 (R−R1
0)

λ1
δ1 (R2

0 −R)
λ2
δ2 −1

)
dR = 1.

This explicit expression of µ0 allows us to compute Λ0
w:

Λ0
w = Cδ2

∫ R2
0

R1
0

(f1
w(R)−δ1)(R−R1

0)
λ1
δ1 −1(R2

0−R)
λ2
δ2 dR+Cδ1

∫ R2
0

R1
0

(f2
w(R)−δ2)(R−R1

0)
λ1
δ1 (R2

0−R)
λ2
δ2 −1dR

Set x = R−R1
0

R2
0−R1

0
, γj = λj

δj and gjw(x) = f jw((R2
0 −R1

0)x+R1
0), we obtain

Λ0
w = C(R2

0 −R1
0)γ

1+γ2
∫ 1

0

[
δ2(g1

w(x)− δ1)(1− x) + δ1(g2
w(x)− δ2)x

]
xγ

1−1(1− x)γ
2−1dx

One can recognize a part of the density of the Beta law of parameters (γ1, γ2). Using the same variable
change for the expression of C and some classical properties of the beta function (like B(x, y) = B(y, x)
and B(x, y + 1) = y

x+yB(x, y)), the expression of Λ becomes:

Λ0
w = γ1 + γ2

λ1 + λ2

∫ 1

0

[
δ2(g1

w(x)− δ1)(1− x) + δ1(g2
w(x)− δ2)x

] xγ1−1(1− x)γ2−1

B(γ1, γ2) dx
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Set Φ(x) = δ2(g1
w(x)− δ1)(1− x) + δ1(g2

w(x)− δ2)x, then:

Λ0
w = γ1 + γ2

λ1 + λ2E [Φ(B)] (22)

where B is a random variable following a Beta law of parameter (γ1, γ2).

Remark 5.1. The proof for theorem 4.5 uses the same idea except that it requires more heavy computa-
tions. We omit it for the sake of readability of this article. See [22] chapter 3 for details.

5.1.2 Proof of the proposition 4.2

Our expression of the invasion rate is similar to the one the authors of [26] obtained for the invasion rates
defined in the Lotka-Volterra switching system introduced in [3]. In order to study the invasion rate they
use the following property:

Proposition 5.2. (Convex order between Beta laws). Assume that X and X ′ are two random variables
following Beta laws of parameters (a, b) and (a′, b′). If a < a′, b < b′ and a

a+b = a′

a′+b′ then for any convex
function φ:

E[φ(X ′)] ≤ E[φ(X)].

We will use this proposition in order to prove the following proposition:

Proposition 5.3. The invasion rate Λ0
w is monotone according to the variable λ.

Proof. We proved that:

Λ0
w = γ1 + γ2

λ1 + λ2E [Φ(B)] .

Recall that γ1(s, λ) = sλ
δ1 and γ2(s, λ) = (1−s)λ

δ2 . Proposition 5.2 ensures that if B and B′ are random
variables following Beta law of parameters (γ1(s, λ), γ2(s, λ)) and (γ1(s, λ′), γ2(s, λ′)) with λ < λ′ then
for any convex function φ:

E[φ(B′)] ≤ E[φ(B)].
As a consequence, establishing the convexity (or concavity) of the function Φ can give the monotonicity
of Λ according to the global switching rate λ.

Recall that:

Φ(x) = δ2(1− x)
(
f1
w

(
(R2

0 −R1
0)x+R1

0
)
− δ1)+ δ1x

(
f2
w

(
(R2

0 −R1
0)x+R1

0
)
− δ2) .

Here the convexity (or concavity) of Φ is not clear and will be checked by straight computation. Set
αj = ajw

δj , β
j = bjw

R2
0−R1

0
and r = R1

0
R2

0−R1
0
. It comes:

Φ(x) = δ1δ2
(

(1− x)
(
α1(x+ r)
β1 + x+ r

− 1
)

+ x

(
α2(x+ r)
β2 + x+ r

− 1
))

.

Set t = x+ r (t ∈ [r, 1 + r]). It comes:

g(t) = Φ(t)
δ1δ2 = (1 + r − t)

(
α1t

β1 + t
− 1
)

+ (t− r)
(

α2t

β2 + t
− 1
)
.

A straight forward computation gives the derivatives of g:

g′(t) = (1 + r − t) α1β1

(t+ β1)2 −
α1t

β1 + t
+ (t− r) α2β2

(t+ β2)2 + α2t

β2 + t

and
g′′(t)

2 = −α
1β1(1 + r + β1)(t+ β1)3 + α2β2(r + β2)(t+ β1)3

(t+ β1)3(t+ β2)3 .

Set L1 = α1β1(1 + r + β1) and L2 = α2β2. It comes:

h(t) = g′′(t)
2 (t+ β1)3(t+ β2)3

= (L2 − L1)t3 + 3
(
β1L2 − β2L1) t2 + 3

(
(β1)2L2 − (β2)2L1) t+ (β1)3L2 − (β2)3L1.
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Set L = L2

L1 and β = β1

β2 , it comes:

h(t) = (β2)3

(
(L− 1)

(
t

β

)3
+ 3(Lβ − 1)

(
t

β

)2
+ 3(L(β)2 − 1)

(
t

β

)
+ L(β)3 − 1

)
.

The study of the polynomial P = (L − 1)X3 + 3(Lβ − 1)X2 + 3(L(β)2 − 1)X + L(β)3 − 1 will give the
sign of the second derivative of Φ.

Lemma 5.4. P has a unique root on R and its expression is:

X0 =
∣∣∣∣β − 1
L− 1

∣∣∣∣ (−L 1
3 − L 2

3

)
− Lβ − 1

L− 1 .

Moreover, X0 < 0.

Proof. This result is proven by a computation of the roots of the polynomial P . It comes that P has a
unique root and it is negative.

It comes from this previous lemma that the second derivative of Φ has a constant sign on [0, 1] implying
that Φ is either convex or concave on [0, 1]. So Λ0

w is monotonous according to 5.2.

5.2 Proof of the results for the deterministic model
5.2.1 A graphical characterization of the equilibria and their stability

In this section, we construct a graphical approach in the plan (R1, R2) which contains all the information
about the non negative stationary solution and their stability. This approach is based on the construction
of four functions Fw and gw, w ∈ {u, v} described below.

For the sake of simplicity we set

Xj
w(Rj) = f jw(Rj)− δj . (23)

Any non-negative stationary equilibrium (U, V ) of the differential equation (12) are solution of the
system (16): {

Au(R)U = 0
Av(R)V = 0

(24)

where, according to remark 1.2, we have R = R0 − U − V ∈ [0, R0] and the matrices Aw(R) are defined
by

Aw(R) =
(
X1
w(R)− λ1 λ1

λ2 X2
w(R)− λ2

)
.

Recall that for any w ∈ {u, v}, we denoteW ∈ {U, V } the concentration of the species w. IfW 6=
(

0
0

)
in (24), it implies that det (Aw(R)) = 0 which reads explicitly:(

X1
w(R1)− λ1) (X2

w(R2)− λ2) = λ1λ2. (25)

It follows that the set of points (R1, R2) for which the species w may survive is a one dimensional curve.
It appears that this curve is the graph of a decreasing function Fw defined on a domain Dw:

(R1, R2) verifies (25) ⇔ R1 ∈ Dw and R2 = Fw(R1).

Moreover, these functions Fw may be explicitly computed as it is stated in the proposition 5.5.

Proposition 5.5. Let w ∈ {u, v} and g : x 7→ g(x) = λ2 + λ1λ2

x−λ1 . Define:

Dw = {r ∈ [0, R0], X1
w(r)− λ1 < 0} and Fw =

(
X2
w

)−1 ◦ g ◦X1
w.

Now, suppose that there exists a non-negative solution (U, V ) of (24) such that W ∈ {U, V } is non
zero. Then

R1 ∈ Dw and R2 = Fw(R1)
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Remark 5.6. The functions Xj
w being increasing and the function g being decreasing, the identity X2

w ◦
Fw = g ◦ X1

w implies that the functions Fw are strictly decreasing on their definition set. Moreover it
exists (m1

w,m
2
w,m

3
w,m

4
w) ∈ R4 such that:

Fw(x) = m1
wx+m2

w

m3
wx+m4

w

.

The explicit formula of these parameters is useful in order to obtain numerical examples but it is not
needed in the theoretical purpose, hence, we then omit it.

Proof. First, assume that there exists a non-negative stationary equilibrium (U, V ). The resource con-
centration is given by R = R0 − U − V . Then, for W ∈ {U, V } non zero we have:

Aw(R)W = 0. (26)

With this notation, (26) reads {(
X1
w(R1)− λ1)W 1 + λ1W 2 = 0

λ2W 1 +
(
X2
w(R2)− λ2)W 2 = 0.

(27)

Since W 1 ≥ 0 and W 2 ≥ 0, we obtain W 1 > 0 and W 2 > 0 which yields:(
X1
w(R1

u)− λ1) < 0.

Moreover, (27) implies that 0 is an eigenvalue of Aw(R) implying that det (Aw(R)) = 0 which reads
explicitly: (

X1
w(R1)− λ1) (X2

w(R2)− λ2) = λ1λ2 (28)

Finally, we define
Dw = {r > 0, X1

w(r)− λ1 < 0}

and the function Fw such that:(
X1
w(R1)− λ1) (X2

w(Fw(R1))− λ2) = λ1λ2

The function X2
w being injective, the function Fw reads shortly :

Fw =
(
X2
w

)−1 ◦ g ◦X1
w

wherein we have set the function g as:

g(x) = λ2 + λ1λ2

x− λ1 .

At this step, we see that it is necessary that R = (R1, R2) belongs to the graph Cw = {(r, Fw(r)), r ∈
Dw} for the species w ∈ {u, v} to survive. But this is not a sufficient condition. Indeed, the definition of
the functions Fw correspond to the fact that 0 is an eigenvalue6 of the matrix Aw(R).

The analysis of the corresponding eigenvector will give us sufficient conditions for a point of the curve
to be a semi-trivial equilibrium (proposition 5.8) or a coexistence equilibrium (proposition 5.10).

For instance, assume that (U, V ) is a non-negative equilibrium of (24). If W ∈ {U, V }) is non zero,
then R = (R1, R2) ∈ Cw and W is a positive eigenvector of the matrix Aw(R) for the eigenvalue 0. It
follows that there exists some scalar µw > 0 such that:

W = µw

(
λ1

−(X1
w(R1)− λ1)

)
. (29)

6Indeed, on Dw the eigenvalue 0 is the principal eigenvalue of Aw(R), and by the Perron-Frobenius theorem, it is
associated to a positive eigenvector which is nothing but W .
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In the case of the semi-trivial solution, we have
(
R1

R2

)
= R = R0 −W and it comes that:

R2 = R0 + 1
λ1 (R0 −R1)

(
X1
w(R1)− λ1) .

This lead us to define, for w ∈ {u, v}, the functions gw (defined on Dw) by:

gw(r) = R0 + 1
λ1 (R0 − r)

(
X1
u(r)− λ1) .

Lemma 5.7. Let w ∈ {u, v}. The function gw is increasing on the set Dw. Moreover, if the semi-trivial

stationary equilibrium Ew exists then the resource concentration Rw =
(
R1
w

R2
w

)
associated to Ew satisfies

gw(R1
w) = R2

w.

Proof. The fact that gw(R1
w) = R2

w follows from the very definition of gw. A direct computation gives

g′w(r) = −X
1
w(r)− λ1

λ1 + (R0 − r)
X1′
w (r)
λ1 .

Since X1
w(r)− λ1 < 0 for r ∈ Dw, it comes that gw is increasing on Dw.

We can now state the graphical characterization of the semi-trivial solution.

Proposition 5.8. Let w ∈ {u, v}. The semi-trivial solution Ew exists if and only if there exists R1
w ∈ Dw

such that Fw(R1
w) = gw(R1

w) := R2
w. In that case Ew is unique and the resource concentration at Ew is

Rw = (R1
w, R

2
w).

Proof. The characterization of Rw is a direct consequence of the proposition 5.5 and the lemma 5.7. The
uniqueness follows from the fact that r 7→ gw − Fw is increasing on Dw.

Now, let us study the case of the coexistence stationary equilibrium. From the proposition 5.5, if there
exists a coexistence solution, that is a positive solution (Uc, Vc) to (24), then there exists R1

c ∈ Du ∩Dv

such that
Fu(R1

c) = Fv(R1
c) = R2

c .

According to remark 5.6, we obtain the following lemma.

Lemma 5.9. Suppose that Fu 6= Fv. Then there are at most two coexistence stationary equilibrium for
the gradostat.

There are at most two intersections between the curves of F1 and F2 but these intersections are not
necessarily associated to a positive solution of (24). Indeed, if Fu(R1) = Fv(R1) then the coefficients of
the eigenvectors are not necessarily of the same signs.

The following proposition gives a good location for an intersection between the curves of Fu and Fv
to be associated with an admissible stationary equilibrium solution of (24).

Proposition 5.10. Let Rc be an intersection between the curves of Fu and Fv. Rc is associated to an
admissible coexistence stationary equilibrium if and only if:(

R1
u −R1

v

) (
R2
u −R2

v

)
< 0,

and Rc is in the rectangle K defined as:

K = [min(R1
u, R

2
v),max(R1

u, R
1
v)]× [min(R2

u, R
1
v),max(R1

u, R
2
v)].

Proof. Let us define, for each semi-trivial equilibrium the following sets of [0, R0]2:

Kw = {(R1, R2) ∈ [0, R0]2,
(
R1
w −R1) (R2

w −R2) < 0}.

We first prove that any intersection Rc between the curves of Fu and Fv is in Ku ∩Kv. Recall that
Rw is the associated resource concentration for the stationary equilibrium Ew. According to (26), Rc is
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associated to a stationary coexistence equilibrium only if det(Au(Rc)) = 0 and det(Av(Rc)) = 0. But we
also know that det(Au(Ru)) = 0 and det(Av(Rv)) = 0 which finally implies that:(

X1
u(R1

c)− λ1) (X2
u(R2

c)− λ2) =
(
X1
u(R1

u)− λ1) (X2
u(R2

u)− λ2) ,(
X1
v (R1

c)− λ1) (X2
v (R2

c)− λ2) =
(
X1
v (R1

v)− λ1) (X2
v (R2

v)− λ2) .
The fact that the functions Xj

w(Rj)− λj are increasing gives us that necessarily Rc ∈ Ku ∩Kv.
From the equation (29) coupled to the fact that Rc = R0 − Uc − Vc, it comes that the values of the

concentration (Uc, Vc) associated to Rc are given by:

Uc = µu

(
λ1

−(X1
u(R1

c)− λ1)

)
and Vc = µv

(
λ1

−(X1
v (R1

c)− λ1)

)
(30)

where the coefficients µu and µv are given by:

µw = 1
X1
w(R1

c)−X1
w(R1

c)
(
gw(R1

c)−R2
c

)
.

We know that X1
w(R1

c) − λ1 < 0 for each i. As a consequence, (Uc, Vc) is an admissible coexistence
stationary equilibrium if and only if µu > 0 and µv > 0. Hence, if Rc is associated to an admissible
coexistence stationary equilbrium, we have:

min
(
gu(R1

c), gv(R1
c)
)
≤ R2

c ≤ max
(
gu(R1

c), gv(R1
c)
)
.

Consequently, Rc is associated to an admissible equilibrium if and only if,

Rc ∈ Θ = Ku ∩Kv ∩
{

(R1, R2) ∈ [0, R0]2, min
(
gu(R1), gv(R1)

)
≤ R2 ≤ max

(
gu(R1), gv(R1)

)}
(31)

Recall that the functions gw are defined by:

gw(R) = R0 + (R0 −R)X
1
w(R)− λ1

λ1 .

We just saw that if Rc is associated to an admissible coexistence stationary equilibrium, then Rc ∈ Θ (it
is the condition (31)). Consequently, properties on the functions gw allows the following statements:

If
(
R1
u −R1

v

) (
R2
u −R2

v

)
> 0, it can be checked that Θ = ∅, implying that Rc does not exist.

If
(
R1
u −R1

v

) (
R2
u −R2

v

)
< 0, then Θ ⊂ K where K is the rectangle defined by:

K = [min(R1
u, R

2
v),max(R1

u, R
1
v)]× [min(R2

u, R
1
v),max(R1

u, R
2
v)].

Corollary 5.11. Assume that Rc is associated to an admissible coexistence stationary equilibrium. Then:

R1
u < R1

v ⇔ X1
u(R1

c) > X1
v (R1

c).

Proof. Assume that R1
u < R2

v. Proposition 5.10 implies that R2
u > R2

v. The functions gw are increasing
on the set [R1

u, R
2
v] and gu(R1

1) > gv(R1
2) because gw(R1

w) = R2
w. As a consequence,

gv(R1
c) < R2

c < gu(R1
c).

In the proof of the proposition 5.10, we calculated the coexistence stationary equilibrium associated to
Rc and found out that Uc and Vc satisfy (29) where

µw = 1
X1
w(R1

c)−X1
w(R1

c)
(
gw(R1

c)−R2
c

)
.

Since Uc > 0 and Vc > 0, we have µu > 0 and µv > 0 which yields X1
u(R1

c) > X1
v (R1

c).

To summarize, we can tell if an intersection Rc between the curves of Fu and Fv is associated to an
admissible coexistence stationary equilibrium. Now, we state a criteria for the existence of coexistence
stationary equilibrium according to the stability of the semi-trivial equilibrium Eu and Ev.

Proposition 5.12. The semi-trivial equilibrium Ew is stable if and only if Fw(R1
w) > R2

w.
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Proof. The stability of Ew can be read on the Jacobian of H evaluated in Ew. For sake of simplicity we
give the proof for Eu. A straightforward computation gives:

DH(U, 0) =
(
A B
0 C

)
where,

A =
(
X1
u(R1

u)− λ1 − U1f1′
u (R1

u) λ1

λ2 X2
u(R2

u)− λ2 − U2f2′
u (R2

u)

)
and

C =
(
X1
v (R1

u)− λ1 λ1

λ2 X2
v (R2

u)− λ2

)
.

Using the facts that (
X1
u(R1

u)− λ1) (X2
u(R2

u)− λ2) = λ1λ2,

and Xi
u(Riu)−λi < 0, a simple computation shows that the real part of the eigenvectors of A are negative.

As a consequence, Eu is stable if and only if the eigenvectors of C have negative real part which gives
the announced inequality (recall that Fv = (X2

v )−1 ◦ g ◦X1
v and g(x) = λ2 + λ1λ2x

x−λ1 ).

5.2.2 Proof of the theorem 3.8

Proof. Let us assume that R1
u < R1

v. The existence of coexistence stationary equilibrium is a simple
consequence of proposition 5.12 and the intermediate value theorem. Let us prove it if Eu and Ev are
both stable, then according to proposition 5.12, Fw(R1

w) > R2
w for each i. Since R2

w = Fw(R1
w), it comes

that:
Fu(R1

v)− Fv(R1
v) > 0 and Fv(R1

u)− Fu(R1
u) > 0.

Hence, the intermediate value theorem implies that Fu and Fv have an odd number of intersections.
According to proposition 5.9, there are at most two intersections between the curves of Fu and Fv. As a
consequence there exists a unique R1

c ∈ [R1
u, R

1
v] such that Fu(R1

c) = Fv(R1
c). Since the functions Fw are

decreasing, one can check that R2
u > R2

v and that R2
c ∈ [R2

v, R
2
u]. Hence, proposition 5.10 implies that

Rc is associated to an admissible coexistence stationary equilibrium. Figure 1 comes as an illustration
for this statement.

The stability of the coexistence stationary equilibrium is more difficult to obtain. The Jacobian matrix
of H evaluated in (Uc, Vc) reads:

DH(Uc, Vc) =


X1
u − λ1 − β1

u λ1 −β1
u 0

λ2 X2
u − λ2 − β2

u 0 −β2
u

−β1
v 0 X1

v − λ1 − β1
v λ1

0 −β2
v λ2 X2

v − λ2 − β2
v


where:

Xj
w = f jw(Rjc)− δj < 0 and βjw = U j,cw f j′w (Rjc) > 0.

Note that DH(Uc, Vc) is an irreducible matrix and it can be written:

DH(Uc, Vc) =
(
A B
C D

)
,

where A and D are irreducible square matrices with positive off diagonal elements and B and C are
diagonal matrix with negative diagonal elements.

Let s(DH(Uc, Vc)) be the maximum real part of the eigenvalues of DH(Uc, Vc). Following [32], we
now use a very strong following property dealing with these kind of matrices (which can be found in [4]):
Defined

DH(Uc, Vc) =
(
A −B
−C D

)
.

Then s(DH(Uc, Vc)) < 0 if and only if (−1)kdk > 0 for k ∈ {1, 2, 3, 4}, where di is the i-th principal
minor of DH(Uc, Vc).

As a consequence, the signs of d1, d2, d3 and d4 characterize the stability of DH(Uc, Vc). Firstly, we
have d1 = X1

u − λ1 − β1
u < 0. Next, we have:

d2 =
∣∣∣∣X1

u − λ1 − β1
u λ1

λ2 X2
u − λ2 − β2

u

∣∣∣∣ = −β1
u(X2

u − λ2)− β2
u(X1

u − λ1) + β1
uβ

2
u > 0.
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An other straightforward computation gives:

d3 =

∣∣∣∣∣∣
X1
u − λ1 − β1

u λ1 β1
u

λ2 X2
u − λ2 − β2

u 0
β1
v 0 X1

v − λ1 − β1
v

∣∣∣∣∣∣
= −β1

uβ
1
v(X2

u − λ2 − β2
u) + (X1

v − β1
v − λ1)d2

= −β1
u(X2

u − λ2)(X1
v − λ1)− β2

u(X1
u − λ1)(X1

v − λ1) + β1
uβ

2
u(X1

v − λ1) + β2
uβ

1
v(X1

u − λ1) < 0

Obtaining the sign of d4 requires heavy computations. A straight computation, similar to the one in
[32] gives:

Lemma 5.13.
d4 = µuµvλ

1λ2f2′
u f

1′
v

X1
u − λ1

X1
v − λ1

(
X2
u −X1

v

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.

Proof. A straightforward computation gives:

d4 =

∣∣∣∣∣∣∣∣
X1
u − λ1 − β1

u λ1 β1
u 0

λ2 X2
u − λ2 − β2

u 0 β2
u

β1
v 0 X1

v − λ1 − β1
v λ1

0 β2
v λ2 X2

v − λ2 − β2
v

∣∣∣∣∣∣∣∣
= β2

vD1 − λ2D2 + (X2
v − λ2 − β2

v)d3

Where,

D1 =

∣∣∣∣∣∣
X1
u − λ1 − β1

u β1
u 0

λ2 0 β2
u

β1
v X1

v − λ1 − β1
v λ1

∣∣∣∣∣∣
= −β2

u(X1
u − λ1)(X1

v − λ1) + β2
uβ

1
u(X1

v − λ1) + β2
uβ

1
v(X1

u − λ1)− β11λ1λ2

and,

D2 =

∣∣∣∣∣∣
X1
u − λ1 − β1

u λ1 0
λ2 X2

u − λ2 − β2
u β2

u

β1
v 0 λ1

∣∣∣∣∣∣
= −λ1β1

u(X2
u − λ2)− λ1β2

u(X1
u − λ1) + λ1β1

uβ
2
u + λ1β2

uβ
1
v .

By making good use of the relation (X1
w − λ1)(X2

w − λ2) = λ1λ2, one can check that:

d4 = β1
uβ

2
v

[(
X2
u − λ2) (X1

v − λ1)− λ1λ2]+ β2
uβ

1
v

[(
X1
u − λ1) (X2

v − λ2)− λ1λ2] .
From (X1

w − λ1)(X2
w − λ2) = λ1λ2, we infer

d4 =
(
X1
v −X1

u

) (
β1
uβ

2
v

(
X2
u − λ2)− β2

uβ
1
v

(
X2
v − λ2)) .

Recall that βjw = U j,cw f j′w (Rjc). According to proposition 30,

Wc = µw

(
λ1

−(X1
w − λ1)

)
.

and the coefficients µw are positive. From this relation comes that:

β1
uβ

2
v = −µuµv(X1

v − λ1)f1′
u (R1

c)f2′
v (R2

c) and β2
uβ

1
v = −µuµv(X1

u − λ1)f2′
u (R2

c)f1′
v (R1

c).

For the sake of simplicity we will note f j′w for f j′w (Rjc). It comes:

d4 = µuµv(X1
u −X1

v )
(
f1′
u f

2′
v

(
X2
u − λ2) (X1

v − λ1)− f2′
u f

1′
v

(
X1
u − λ1) (X2

v − λ2)) .
Using once again the relation (X1

w − λ1)(X2
w − λ2) = λ1λ2 gives:

d4 = µuµvλ
1λ2X

1
v − λ1

X1
u − λ1 f

2′
u f

1′
v

(
X2
u −X1

v

)(f1′
u f

2′
v

f2′
u f

1′
v

−
(
X1
u − λ1

X1
v − λ1

)2)
.
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We are going to express the derivatives of the functions f jw using the functions Fw. It starts from a
realtion we already proved:

(X1
w(R1)− λ1)(X2

w(R2)− λ2) = λ1λ2 ⇔ R2 = Fw(R1).

It comes that:
(X1

w(R1)− λ1)(X2
w(F (R1))− λ2) = λ1λ2.

Derivating by R1 gives:
f1′
w (R1)

f j′w (Fw(R1))
= −F ′w(R1) X1

w(R1)− λ1

X2
w(Fw(R1))− λ2 .

Since R2
c = F1(R1

c) = F2(R1
c) it comes that:

f1′
u f

2′
v

f2′
u f

1′
v

= F ′1(R1
c)

F ′2(R1
c)

(
X1
u − λ1

X1
v − λ1

)2

.

Hence,

d4 = µuµvλ
1λ2f2′

u f
1′
v

X1
u − λ1

X1
v − λ1

(
X2
u −X1

v

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.

As a direct consequence, the sign of d4 is given by the sign of the quantity:

sign(d4) =
(
X2
u −X1

v

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.

Moreover corollary 5.11 gives us a better understanding of this sign:

sign(d4) =
(
R1
v −R1

u

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.

Let us assume that R1
v − R1

u > 0 (the proof is the same if we suppose that R1
v − R1

u < 0). We will now
show how the stability of the semi-trivial equilibrium Eu and Ev influence the stability of the coexistence
stationary equilibrium when it exists.

If Eu and Ev are stable, then according to proposition 5.12, we have:

Fu(R1
v)− Fv(R1

v) > 0 and Fv(R1
u)− Fu(R1

u) > 0.

And we already know that there exists a unique intersection between the curves of Fu and Fv in the
interval [R1

u, R
1
v]. A simple analytic consequence of these facts is that F ′v(R1

c) < F ′u(R1
c) and since the

functions Fw are decreasing it comes that:

F ′u(R1
c)

F ′v(R1
c)
− 1 < 0.

Thus d4 < 0 which implies that the unique coexistence equilibrium is unstable.
This reasoning also proves the stability property of the coexistence stationary equilibrium in the other

cases which concludes the proof.
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