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ABSTRACT 

The interaction of (3–Aminopropyl)triethoxysilane (APTES) with pulsed late Ar-O2 afterglow 

is characterized by the synthesis of OH, CO and CO2 in the gas phase as main by-products. 

Other minor species like CH, CN and C2H are also produced. We suggest that OH radicals are 

produced in a first step by dehydrogenation of APTES after interaction with oxygen atoms. In 

a second step, the molecule is oxidized by any O2 state, to form peroxides that transform into 

by-products, break thus the precursor C–C bonds. If oxidation is limited, i.e. a low duty cycle, 

fragmentation of the precursor is limited and produced nanoparticles keep the backbone 

structure of the precursor, but contain amide groups produced from the amine groups initially 

available in APTES. At high duty cycle, silicon-containing fragments contain some carbon 

and react together and produce nanoparticles with a non-silica-like structure. 
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INTRODUCTION 

The elaboration of new functional coatings on inorganic surfaces by biomimetic using green 

technologies can be considered as a real breakthrough in the world of metallic alloys 

manufacturers. In particular, biological molecules strongly chemically bonded to a metallic 

surface could provide to a flat product interesting features such as natural lubricant, anti-

biocorrosion or antifouling properties [1–5]. However, any broad development of these 

revolutionary “biocoatings” requires an excellent control at nanoscale of the chemical 

functional groups that constitute the coating. 

Plasma deposition processes are well known to produce improved surface stability, controlled 

chemical functionality and topography [6–10]. They can be considered as the best industrial 

technique platform to realize, on each type of inorganic surfaces – and especially on metallic 

surfaces – an inorganic/organic interlayer for the covalent bonding of biomolecules [11–13]. 

Plasma polymerisation is a process able to produce conformal, pin-hole free, highly cross-

linked polymers. The main interest of this process here is to offer the advantage of not only 

providing a high adhesion level with the native oxide/hydroxide layer of the metallic surface 

but also assisting the chemical deposition of a stable layer with highly reactive chemical 

groups to further promote the immobilization of biomolecules. Both features are nevertheless 

controlled by the choice of the precursor that must be designed so as to include suited 

chemical groups. 

Among the different functional groups, primary amines (–NH2) are interesting owing to their 

high reactivity towards biomolecules. Thus, NH2-rich polymeric materials can react with 

biomolecules through the formation of covalent bonds with carboxyl group present in 

biomolecules such as peptide, enzyme or proteins [14]. Amino-alkoxysilane compounds are 

widely used in wet chemistry [15] for surface functionalization of oxide materials, particularly 

for silicon dioxide. Indeed, alkoxy groups can react with hydroxyl groups present on the 
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surface of many oxidized materials, and especially metallic alloys, thus forming –M–O–Si 

covalent bonds with the surface. Thus, a dense siloxane SiOxCyHz layer with a high density of 

–NH2 groups can combine low permeation and immobilization of biomolecules. 

Because of the complexity of plasma polymerization process, it is a challenging task to induce 

polymerisation of amino-alkoxysilane by creation of Si-O-Si bonds while keeping –NH2 

group as such. A strategy chosen by some groups consists in a two-step polymerisation or 

copolymerisation process. For instance, a two-step plasma process has been used by Jampala 

et al. [16]. They use HMDSO polymerization in order to deposit a siloxane layer followed by 

the deposition of pp-ethylenediamine to deposit amino-functionalised coating on stainless 

steel substrate. These authors noticed that, whereas pp-ethylenediamine readily delaminated 

from stainless steel substrate, the deposition of an intermediate pp-HMDSO layer strongly 

enhanced the adhesion of the amino-functionalized plasma polymer. The interest of a 

copolymerisation process has also been highlighted by other authors for the deposition of 

aminated coatings on specific polymer surfaces [17–20]. In these works, APTES, i.e. 

aminopropyltriethoxysilane ((C2H5O)3-Si-CH2-CH2-CH2-NH2), was used as a monomer for 

the deposition of a siloxane layer. The group of D.E. Williams showed that the deposition of 

plasma polymerized ethylenediamine film on cyclo-olefin polymer had a weak adherence. 

This adherence, as well as the amine surface density, is significantly increased by using 

copolymerization of EDA and APTES [17, 18]. These authors pointed out that the siloxane 

network is essential to ensure an efficient amine functionalization. 

Avoiding multi-step processes and/or multiple precursors use is a real challenge. Growing in a 

single step, a siloxane-based thin film functionalized with primary amines using a single 

amino-alkoxysilane precursor is still under investigation. However, only few articles deal with 

this issue [5, 19–22], and the majority of these studies point out a rather low amine density of 

the as-grown thin films and/or do not produce obvious evidences of efficient –NH2 
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functionalization. Indeed, Gubala et al. [19] point out interesting results using APTES as 

unique precursor but they obtained a lower density compared to the APTES-EDA copolymer 

thin film [18]. In addition, these articles are focused on the synthesized thin films and do not 

deal with plasma polymerisation. 

In this work, we explain how oxygen active species created in a plasma afterglow, and more 

precisely oxygen atoms, react with APTES. 

EXPERIMENTAL METHOD 

The experimental set-up is depicted in figure 1. A surface wave-driven plasma is ignited in a 

fused silica tube (5 mm inner diameter) by exposure to 2.45 GHz microwaves launched with a 

surfatron. The microwave power is set constant at 250 W. The pressure was measured 

upstream and downstream the flow (points E and A respectively in figure 1). All the 

treatments were carried out at 1500 Pa (downstream pressure in A), the upstream pressure 

being 2000 Pa. The maximum pumping speed of the primary pump was 40 m3 h−1. The 

mininum vacuum pressure was 10−2 mbar. An Ar–8.7vol.% O2 mixture, flowing at 1150 

sccm, is used as plasma gas. In point C (see figure 1), the plasma tube reaches a 1.2 meter 

long fused silica tube (16 mm inner diameter) crossed over its whole length by an infrared 

beam used to probe the afterglow in situ. Liquid APTES (99.0% purity from Sigma Aldrich) 

was contained in a temperature-controlled bubbler. Its vapour was transported to the afterglow 

by an argon flow (30 sccm) through a fused silica tube (5 mm inner diameter and 30 cm in 

length) connected to the main tube at point B. The APTES partial pressure was determined 

using the following Antoine’s formula established from experimental data obtained by 

probing the FTIR absorption signal of pure APTES evaporated at temperatures ranging from 

300 K to 390 K: 
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where Ps is the vapour pressure (in Pa), Pref the standard pressure (101325 Pa) and T the 

temperature (K). At 300 K, Ps / Pref = 4.23×10−3 and the APTES flow rate was 0.13 sccm in 

the Ar-O2 afterglow. 

The light emitted by the afterglow was analysed by optical emission spectroscopy (OES). It 

was collected with an optical fibre connected to 550 mm focal length monochromator (Jobin–

Yvon TRIAX 550) equipped with a 100 grooves mm−1 grating for survey spectra in the range 

[250–900 nm] and a 1,800 grooves mm−1 grating to record specific transitions with high 

spectral resolution. The spectrometer was coupled with a HORIBA Jobin–Yvon i-Spectrum 

Two iCCD detector. Each measurement was averaged over 20 spectra. 

In the pulse mode, the discharge was run with a period of 100 ms, the duty cycle varying 

between 10 and 90%. The average velocity in the afterglow tube was easily deduced from 

time-resolved OES measurement. A value of 7.1 ± 0.1 m s−1 was found. 

FTIR spectroscopy was performed with a commercial Agilent FTIR 680 spectrometer. The 

infrared beam leaving the spectrometer goes through lenses and collimators to get a parallel 

beam (16 mm in diameter). This optical arrangement decreases the intensity of the exiting 

beam by one order of magnitude typically. The infrared beam was next sent through a KBr 

window in the afterglow (single pass) and detected by a remote liquid-nitrogen cooled 

mercury-cadmium-telluride (MCT) detector which was protected from the afterglow by 

another KBr window. To minimize the influence of water and CO2, the infrared path outside 

the afterglow was continuously flushed by clean, dry and carbon-free air. Absorption spectra 

were recorded in the range [500–4000 cm−1] with a spectral resolution of 2 cm−1. Reference 

spectra (i.e. either without gas and plasma or with gas but without plasma) were acquired 

before each acquisition to determine the absorption spectra in afterglow conditions. Each 
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measurement was averaged over 100 scans in continuous mode to improve the signal-to-noise 

ratio. 

Nanoparticles were collected on an aluminium substrate located just before the pumping unit. 

Transmission electron microscopy (TEM) investigation was performed on as-grown 

nanoparticles with a JEOL ARM 200F – Cold FEG TEM/STEM running at 200 kV (point 

resolution 0.19 nm) fitted with a GIF Quantum ER. Scanning Electron Microscopy (SEM) 

was made with a Philips XL 30. FTIR measurements on nanoparticles were performed with a 

commercial Agilent FTIR 680 spectrometer in attenuated total reflection (ATR) mode. 

Spectra were acquired in the range [500–4000 cm−1] with a spectral resolution of 4 cm−1
. 

X-ray photoelectron spectroscopy (XPS) measurements were performed with a Thermo VG 

Microlab350 spectrometer using a non-monochromated Al K α and Mg Kα dual anode as X-

ray source operated at 300 W and a Spherical Sector Analyser. Survey spectra to identify 

elements on the surface were recorded in steps of 1 eV at a 100 eV pass energy. High-

resolution spectra of separate photoelectron lines (C 1s, O 1s, Si 2p and N 1s) were taken by 

steps of 0.05 eV at a constant pass energy of 20 eV. The normal operation pressure was 

5×10−9 mbar. The photoelectron take-off angle (TOA) was normal to the surface of the 

samples. The sample surface covered by the analysis is 2×5 mm2. Spectra processing (atomic 

concentrations, curve fitting, etc.) was done after the removal of a Shirley type background 

with the CasaXPS software. Samples were introduced in the spectrometer readily after plasma 

treatment in order to limit contamination from ambient air storage and directly analysed. 

RESULTS AND DISCUSSION 

Optical emission spectroscopy 

The Ar–O2 afterglow, run in the continuous mode, was characterized with and without 

APTES by OES (figure 2). Observed transitions are reported in Table 1. Without APTES, the 
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visible light from the afterglow is very weak and only visible in the dark with the naked eye. 

Besides a non-negligible contribution due to the ( )0",0',OH 22 =Π→=Σ+ vXvA  at 306 nm, 

the green line of atomic oxygen at 557.7 nm due to the ( )DSO 11 →  transition, called the 

green line and the atmospheric band of O2 due to the ( )−+ Σ→Σ gg Xb 31
2O  transition at 762 nm 

could be also recorded with the highest iCCD gain (the OH emission saturates in these 

conditions – see supplemental material 1). Indeed, the two latter transitions arise from 

metastable states produced by the following mechanism: 

 O + O + O → O(1S) + O2 (a) 

 O + O + M → ( )+Σ gb1
2O  + M (b) 

and are then very weak in intensity. Light being recorded with an optical fiber, concentrations 

are determined with respect to its position (defined within two mm typically), regardless of 

the spatial gradients that extend over much larger distances (several tens of cm). 

To determine the concentration of oxygen atoms, the NO-titration method was applied. This is 

a two-step method described in ref. [23]: In a first step, optical calibration is performed by 

mixing an Ar-N2 afterglow and a Ar–1.4vol.%NO mixture introduced instead of the Ar–

APTES mixture (point B in figure 1). The same arrangement is introduced in a second step to 

determine the concentration of oxygen atoms at the mixing point of the Ar–1.4vol.%NO 

mixture with the Ar–O2 afterglow (point B in figure 1). This method leads to [O] = 

5.4±1.0×1015 cm−3. 

Thanks to this value, the absolute concentrations of all emitting species, provided they are 

intense enough, could be determined with an accuracy of about 30%. Thus, the concentration 

of the ( )0',O 1
2 =Σ+ vb g  emitting states leading to the atmospheric band could be determined: 

( )[ ]0',O 1
2 =Σ+ vb g  = 5.1±2.0×1011 cm−3. This value is consistent with the O atom 
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concentration reported previously. Indeed, these two concentrations are connected through 

process (b). To determine the O atom concentration from the ( )0',O 1
2 =Σ+ vb g  state, we used 

the model presented in [24]. It gives [O] = 3.2±1.0×1015 cm−3. We found [CH(A)] = 

9.2±3.0×106 cm−3, [CN(B)] = 2.6±0.8×105 cm−3 and [OH(A)] = 2.0±0.5×108 cm−3 when the 

afterglow is run in the continuous mode. The rotational spectrum of the atmospheric band was 

used to determine the gas temperature (as supplemental material 2). A temperature of 330±5 

K was found, confirming the low temperature of the afterglow. 

When APTES is added to the afterglow, new transitions are observed. They are listed in Table 

1. Besides OH emission which increases strongly (by about one order of magnitude), 

emissions of non-oxidized molecules, CH and CN, are found (see high-resolution spectra 

provided as supplemental material 3). The green line and the atmospheric band are no 

longer visible in these conditions. 

CH comes naturally from APTES. The origin of the chimiluminescence band of CH(A) was 

clarified by Devriendt et al. [25] after the reference work by Grebe et al. [26]. It would be due 

to the following reaction: 

 ( ) ( ) COCHHCO 22
2 +∆→Σ+ +

gg AX  (c) 

with 11101.1 −×=ck  cm3 s−1 at 300 K and 

 ( ) ( ) 2
22

22 COCHHCO +∆→Σ+ +
gg AX  (d) 

with 14106.3 −×=dk cm3 s−1 at 290 K [27]. A less probable origin of CH(A) is [28]: 

 ( ) COCHOHC 2
2 +∆→+ gA  (e) 

because no emission of the Swan system due to C2 excited states is observed in our 

conditions, contrary to data reported in [27]. 
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Kinetics of CH(A) – only the ground state is considered here – is associated with the 

following spontaneous emission and quenching processes: 

 ( ) ( ) νhCHCH 22 +Π→∆ ug XA  (f) 

 ( ) ( ) MCHMCH 22 +Π→+∆ ug XA  (g) 

The radiative lifetime of CH(A) is 540 ns [28]. The quenching rates by Ar and O2 are given 

by Chen et al. [29]: 13102.5 −×=Ar
gk  cm3 s−1 et 11102.22 −×=O

gk  cm3 s−1. Applying the quasi-

steady state approximation (processes c, d, f and g), one finds: 

 [ ] [ ] [ ]( ) ( )[ ]
[ ] [ ]2

1
)(2

2 OO

CHOAr
HC

2

dc

ACH
O
g

Ar
g

kk

Akk

+
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This leads to [C2H] = 1.3±3.0×108 cm−3. The APTES concentration being 3.9×1013 cm−3, the 

production of C2H radicals is a negligible reaction pathway. 

The presence of CN molecules is necessarily due to the nitrogen atom present in the amine 

group and to one carbon atom coming from the precursor, but not mandatorily the one 

attached to amine group. To the best of our knowledge, the only mechanism accounting for 

the emission of the CN violet system in an argon-oxygen afterglow is [30]: 

 ( ) ( )BX CNOCNOO 2 +→++  (h) 

Indeed, the reaction of N with CH for example, or with C and a third body is highly unlikely, 

nitrogen atoms being not present as such in oxygen afterglows. The rate constant of process 

(h) is given with a high uncertainty: ( ) 3110303 −×−=hk  cm6 s−1 [30]. 

The loss mechanisms of the CN(B) state are the following spontaneous emission and 

quenching processes: 

 ( ) ( ) νhCNCN +→ XB  (i) 

 ( ) ( ) MCNMCN +→+ XB  (j) 
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The radiative lifetime of CN(B,v=0) is =CN(B)τ 66.6 ns [31]. The quenching rate by Ar is given 

by [32]: 11100.1 −×=Ar
jk  cm3 s−1. For O2, we took the same value as N2 [32]: 

11105.22 −×=O
jk  cm3 s−1. 

Applying the quasi-steady state approximation (processes h, i and j), one finds: 

 [ ] [ ] [ ]( ) ( )[ ]
[ ]2

1
CN(B)2

O

CNOAr
CN

2

h

O
j

Ar
j

k

Bkk −++
=

τ
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This gives: [CN] = (0.56 or 5.6)×1011 cm−3, according to the chosen value of kh, which is at 

best a hundredth of the APTES concentration. Then, the production of CN radicals is a minor 

reaction pathway. 

The origin of the OH chimiluminescence is well-known from works on acetylene combustion. 

It is due to the following excitation process: 

 O2 + CH(X) � OH(A) + CO (k) 

Carl et al. [33] give for a temperature in the range [296-511] K: 

 







−×= −

)(

84
exp1006.1 13

KT
kk  

i.e. at 300 K, 14100.8 −×=kk  cm3 s−1. The loss mechanisms of OH(A) are the following 

spontaneous emission and quenching processes: 

 OH(A) + M � OH + M (l) 

 OH(A) � OH (m) 

where M=Ar or O2. The rate constants of the quenching processes by these species are 

respectively 14108.8 −×=Ar
lk  cm3 s−1 [34] and 11100.82 −×=O

lk  cm3 s−1 [35]. For spontaneous 

emission, we consider only the v’=0 level with τOH(A)=800 ns [34]. 

Applying the quasi-steady state approximation (processes k, l and m), one finds: 
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This gives: [CH] = 3.0×1011 cm−3, which is also a hundredth of the APTES concentration. 

Then, the production of CH radicals can also be considered as a minor reaction pathway. 

FTIR spectroscopy 

FTIR measurements were performed in the range [500–4000 cm−1] without and with APTES 

(Figure 3). In table 2, the functional groups in gaseous APTES were identified by comparison 

of FTIR data with those reported in the literature [36–47]. 

The absorption band at 785 cm−1 corresponds to NH2 wagging [38]. This mode has been 

further confirmed by isotope exchange studies where a red shift of 145 cm−1 was observed for 

the ND2 wagging mode [38]. This assignment is particularly important because, together with 

the shoulder at 2745 cm−1 which is attributed by White and Tripp [40] to Si–OH…NH2, these 

peaks are the only way to follow the NH2 group through reaction processes. Indeed, other 

bands like νs (N–H) around 3305 and 3350 cm−1 are not detected in our case. The absorption 

band at 1615 cm−1 represents the bending vibration of aliphatic amine (N–H) groups [39] but 

it is extremely weak and this absorption band cannot be kept to follow the evolution of the 

NH2 group in the APTES molecule. It is also true for the band at 3219 cm−1 which is due to 

CH2-NH2 [36]. The band at 785 cm−1 is higher (typically a tenth of the peak at 1065 cm−1, for 

instance) and characterized by a broad profile. 

The band at 878 cm−1 is due to CH3 rocking mode [42]. Si–O–C, Si–O in APTES and Si–O–

C2H5 contribute to bands centred at 1110, 1065 and 958cm−1 [40, 42, 47, 48]. CH2 rocking is 

observed at 1176 cm−1 [41, 42] whereas H–C–H bending is characterized by bands at 1475 

and 1449 cm−1 [36, 43]. The absorption band at 1241 cm−1 corresponds to the asymmetric 

stretching of SiO–CH2 [42]. CH2 bending is observed at 1391 cm−1 and corresponds to a CH2 
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group distant from Si [38, 39]. Si–O overtones are visible at 2264 and 2116 cm−1 [45]. 

Combinations bands centred at 1938 cm−1 are due to Si–O and ρ CH3 [44]. Vibrations at 2987 

cm−1, 2939 cm−1, 2899 cm−1 and 2870 cm−1 are commonly assigned to symmetric and 

asymmetric stretching of CH2 and CH3 [41, 45]. Finally, the absorption band at 3674 cm−1 is 

assigned to free OH [45], which is likely present because of some ageing of the precursor. 

When the plasma is turned on, new contributions appear (figure 3). A very broad band centred 

at 3234 cm−1 spans from 3050 to 3550 cm−1. It is attributed to normal "polymeric" OH stretch 

(>C=O…H–O) [45, 47]. Absorption bands at 2140 cm−1 and 1744 cm−1 are attributed to CO 

molecules and C=O stretching respectively [42]. At 2348 cm−1, the characteristic absorption 

of CO2 is easily identified. The contribution at 667 cm−1 is clearly due to δ CO2 [46]. 

The interaction of the APTES with the Ar-O2 afterglow is characterized by the formation of 

ketones resulting from the interaction of oxygen with carbon atoms of the precursor and the 

synthesis of CO and CO2 as gaseous by-products. In the present conditions, the APTES 

concentration is roughly divided by a factor of 3 in afterglow when the plasma is ignited. It is 

also true for the amine group. 

Evolutions in pulse mode 

In pulse mode, it is possible to follow the time-resolved emission of emitting species. In 

figure 4, the time evolutions of CH, CN and OH normalized transitions together with the 

control pulse are depicted. After plasma ignition, active species are transported downstream to 

react with APTES. The delay of ~20 ms observed before emissive species start rising is 

caused by this transfer step. Next, a steady state is reached within 10 ms, leading to a plateau 

in emission. When the plasma is turned off, an overshoot in intensity is clearly visible for all 

species. This phenomenon is attributed to a sudden pressure variation. When the plasma stops, 

the gas is no longer heated, which leads to a pressure rise until pumping overcomes this 
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effect. The intensity of the overshoot is all the more reduced as the pressure decreases 

(unreported results), which supports this assumption. Taking the value of the intensity of each 

transition 50 ms after the rising edge of the pulse, i.e. in the middle of the plateau, we observe 

the behaviour described in figure 5 as a function of the duty cycle. Transition intensities 

evolve similarly, increasing first up to DC=40-50%, reaching next a maximum from DC=40-

50 to 60, and slightly decreasing beyond DC=60%. 

FTIR absorption spectra were recorded as a function of the duty cycle. In figure 6, the most 

intense absorption bands are reported (see Supplemental material 4 for details). The CH 

absorption band that characterizes the non-oxidized APTES molecule decreases when the 

duty cycle increases. Oxidation of organosilicon compound is known to follow such a trend, 

the increase in the duty cycle leading to higher oxidation level and to a transition from plasma 

polymer to inorganic material [48–50]. Here, the transition occurs near DC=60%, in 

agreement with results obtained by time-resolved emission spectroscopy. 

Nanoparticles synthesis 

Thin film deposition on the reactor wall is a relatively slow process in the present condition 

because of the low partial pressure of the precursor. The deposition rate is about 150 ng mm−2 

min−1 and then, no significant drift of the afterglow parameters is observed if the inner wall of 

the tube is cleaned between successive experiments. A thorough description of thin film 

deposition will be provided in a forthcoming publication. Here, emphasis is placed on the 

synthesis of nanoparticles in the gas phase. The process is about one order of magnitude 

slower than thin film deposition and strongly dependant on the duty cycle. After a two-hour 

treatment, nanoparticles collected on an aluminium substrate were analysed by scanning 

electron microscopy, transmission electron microscopy and FTIR absorption spectroscopy. In 

figure 7, SEM images of micrometric powders made of agglomerates of primary nanoparticles 

are depicted for two duty cycles: 20% and 70%. We notice that nanoparticles collected at low 
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duty cycle exhibit a highly-porous structure contrary to those collected at high duty cycle, 

which look like denser. Corresponding TEM images show however similar features: 

agglomerates have diameters of ~200 nm and are made of an assembly of amorphous 

nanoparticles with diameters of a few nanometres. These results are quite similar to those 

presented by Roth et al. with other organosilicon precursors [51]. 

FTIR analysis of nanoparticles shows also strong changes in absorption bands (figure 8 and 

table 3) as a function of the duty cycle. We observe in figure 9, that FTIR absorbance spectra 

of the nanoparticles exhibit similar features with decaying intensity when the duty cycle 

increases – see supplemental material 5 for a deconvolution of the bands between 1800 and 

800 cm−1 –. First, the Si–O–C2H5 absorption band in APTES appears at 950 cm−1. It is a 

footprint of the precursor together with bands at 1169 and 1083 cm−1 designated hereafter as 

"Si–O in APTES" [42]. At 1376 cm−1, δ CH2 bonds are likely. The contribution at 1441 cm−1, 

is assigned to δ C–O–H. δ NH2 (the amide II band) in primary amides appears as a shoulder at 

1620 cm−1 of the peak at 1698 cm−1 [46]. The contribution at 1698 cm−1 is attributed to ν CO 

(amide I band) vibration, but not to pure ketones commonly found at 1730 cm−1 [46]. 

Vibrations at 2930 cm−1 and 2870 cm−1 are convolutions of respectively symmetric and 

asymmetric stretching of CH2 and CH3 [41, 45]. The absorption band with its maximum at 

3250 cm−1 and spanning over the range [3120–3350 cm−1] is assigned to νs and νas NH2. 

Indeed, primary amides display two strong NH2 stretching bands, i.e. asymmetric stretching at 

3360–3340 cm−1 and symmetric stretching at 3190–3170 cm−1 [42]. Finally, the other very 

broad band centred at 3500 cm−1 spans from 3350 to 3680 cm−1 is attributed to OH stretch 

[42]. EDX analyses of the powders (see supplemental material 6) confirm the presence of 

nitrogen at low duty cycle. 

The striking feature is the change in the nanoparticle composition as the duty cycle increases. 

The carbon content becomes weaker but non-negligible, even at DC=70% (see supplemental 
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material 6) compared to 20%, leading to nanoparticles principally made of Si–O–C chains. 

XPS spectra confirm this trend (figure 10). We clearly observe the presence of nitrogen, even 

though the signal becomes noisy beyond DC=50%. N–C bonds (contribution at 400.1 eV) 

dominate but nitrogen can be also slightly oxidized (weaker contribution at 402.0 eV). Si–O–

C chains are mainly found at 101.9 eV, the silica-like form of silica appearing as a shoulder at 

103.6 eV. The O(1s) signal is interpreted accordingly as being the sum of 3 different peaks: -

C=O at 533.1 eV, O–H at 531.8 eV and O–Si at 530.3 eV. Concerning the C(1s) signal, it is 

worth mentioning here that no significant C=O contribution, expected around 287 eV, was 

found. This fourth contribution could have been enforced, but this would have led to a minor 

peak. Besides, the relatively broad contribution at 288.7 eV likely contains a mixture of O–

C=O and N–C=O contributions. C–O and C–(C,H) bonds are associated with peaks at 285.6 

and 284.6 eV respectively. So, all in all, XPS data confirm well FTIR results. 

The longer oxidation process of APTES leads to an inorganic material instead of a plasma 

polymer-like material, a feature that is common to most organosilicon compounds. FTIR 

spectra show that the C–O–H and Si–O–C absorption bands at 1441 and 950 cm−1 

respectively are still present, but the main Si–O contributions at 1169 and 1083 cm−1 are 

barely observed. Obviously, the C–Si≡O3 environment, present in APTES, is strongly 

affected by the duty cycle increase. Concerning the band at 950 cm−1, we cannot exclude a 

contribution of Si–OH. However, it should be accompanied by the presence of the OH 

vibration band at 3500 cm−1, which is not observed. So, this contribution is certainly minor. 

No intense contribution is found in the range [1000-1200] cm−1 in the present conditions, 

showing that nanoparticles are not silica-like. 

To sum up, the synthesized nanoparticles are amorphous. They have a plasma polymer-like 

structure with a silicon backbone and a high amount of amide groups at low duty cycle. At 

high duty cycle, the nanoparticles still contain some carbon and are not silica-like. 
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Mechanisms at stake 

As described previously, the synthesis of C2H, CH and CN radicals is very limited. As no N–

O bond could be observed, the amine group is assumed to be affected to a limited extent by 

oxygen, which explains the formation of primary amides in the coating especially at low duty 

cycle. 

The initiation step of APTES decomposition is attributed to atomic oxygen. To the best of our 

knowledge, contrary to O atoms [52-55], the singlet state O2(a
1∆g) has never been identified 

as a reactive species with regards to dehydrogenation of organosilicon compounds. Afterglow 

studies with TEOS [52-54] and HMDSO [48, 53] all reinforce this conclusion. 

Wrobel et al. [52] showed, in the case of a remote oxygen Plasma-CVD process, that the 

growth rate of silica film from TEOS is proportional to the concentration of atomic oxygen. 

The abstraction of the hydrogen atom from the TEOS molecule is a major reaction to the 

precursor decomposition. The value of the overall kinetic constant of oxygen atoms with 

TEOS molecules kO at room temperature strongly differs according to the authors. kO was 

reported to be equal to 6×10−15 cm3 s−1 by [56], 4×10−14 cm3 s−1 by Janča et al. [53] and 

4×10−13 cm3 s−1 by Sanogo and Zachariah [57]. So, these values are not helpful to evaluate the 

reactivity of oxygen atoms with respect to TEOS, a molecule which is relatively similar to 

APTES. Levedakis et al. [54] used a remote microwave plasma and compared the predicted 

oxygen atom concentrations with corresponding deposition rates. They found out that the 

overall SiO2 deposition reaction is largely controlled by the concentration of oxygen atoms. 

Finally, Georg et al. [55] proposed that a major reason for thin films improvement of 

roughness and homogeneity is the enhanced oxidation of unwanted carbohydrogen 

compounds in the HMDSO molecules by atomic oxygen. 

We infer from the synthesis of >CO…OH bonds (figure 3c) and the production of C=O in the 

precursor and/or its fragments that after OH abstraction by O atoms (process n), O2 (in any 
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state, including the singlet state in this case) reacts with the as-formed radical to produce a 

peroxide, whose lability leads to the scission of C–C bonds according to a mechanism of the 

following kind: 

 −−−+→−−−+
••

222 CHHCHOCHCHO  (n) 

 −−+=−→−−






−→−−−+
•••

2222 CHHOOCCHHOOCCHHCO  (p) 

Further chemical processes between APTES fragments are not accessible without time-

resolved FTIR measurements. The description of the processes will require new 

investigations. Nevertheless, when the duty cycle increases, fragmentation of the precursor 

increases since oxidation proceeds longer. Then, reactions between shorter silicon radicals, 

still attached to carbon-containing groups, occur. This leads to a plasma-polymer material 

characterized by a non-negligible amount of carbon. 

The fact that nanoparticles are not silica-like at high duty cycle shows the specificity of 

chemical reactions in the gas phase with regard to surface processes at the reactor wall. 

Indeed, we know from other experiments, which are not reported here, that in our conditions 

silica-like coatings are obtained on the reactor wall at high duty cycle. Carbon etching by 

oxygen is much more efficient on the growing coating than on the formed nanoparticles. The 

reason for this is still to be clarified. 

CONCLUSION 

The interaction of (3–Aminopropyl)triethoxysilane with a pulse late Ar-O2 afterglow is 

characterized by the synthesis of OH, CO and CO2 in the gas phase as main by-products. 

Other minor species like CH, CN and C2H are also produced. We suggest that OH radicals are 

produced in a first step by dehydrogenation of APTES after interaction with oxygen atoms. In 
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a second step, the molecule is oxidized by any state of O2, i.e. not only the ground state but 

also the singlet state of oxygen, for instance. The as-formed peroxides transform into by-

products, break thus the C–C bonds in the precursor. If oxidation is limited, thanks to a low 

duty cycle, fragmentation of the precursor is limited and nanoparticles produced out of them 

have a composition comparable to the precursor, even though the original –NH2 groups are 

efficiently converted into amide groups. At high duty cycle, silicon-containing fragments 

contain also some carbon and react together and produce nanoparticles with a non-silica-like 

structure at least in our experimental conditions. 

It turns out that, in the present condition, a high retention level of amines in the precursor is 

not possible, even in pulsed conditions. Although afterglows are soft media, the behaviour of 

oxygen atoms toward APTES is defined once and for all and cannot be adjusted by simply 

changing the duty cycle. In this sense, pulsed plasmas are likely more suited to this purpose 

thanks to electronic collisions which should offer a more controllable way to define the 

dissociation pathway of APTES by acting on the electron energy. 
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FIGURE CAPTION 

Figure 1: The experimental setup. 

Figure 2: Low-resolution optical emission spectra of the Ar-O2 afterglow with and without 

APTES. 

Figure 3: Gas phase FTIR spectra of the Ar-APTES flow without (red) and with (black) the 

Ar-O2 afterglow. Resolution: 2 cm−1. a) Infrared region: from 1700 to 500 cm−1. b) Infrared 

region: from 2600 to 1700 cm−1. The signal obtained with the Ar-O2 afterglow was divided by 

a factor of 2 to better scale the figure and show details of the other signal recorded without the 

afterglow. c) Infrared region: from 4000 to 2600 cm−1. 

Figure 4: Time evolution of CH, CN and OH normalized transitions together with the control 

pulse (Duty cycle = 60%, P = 15 mbar, W = 250 W, plasma gas flowrates: Ar =1050 sccm, 

O2= 100 sccm. Precursor flowrates: Ar =30 sccm, APTES = 0.13 sccm). 

Figure 5: Evolution of CH, CN and OH transitions taken 50 ms after the pulse rising edge as 

a function of the duty cycle (same conditions as in figure 4). 

Figure 6: Evolution of the most intense FTIR absorption bands as a function of the duty cycle 

(same conditions as in figure 4). 

Figure 7: TEM and SEM images of nanoparticles collected on an aluminium substrate at duty 

cycles equal to 20% and 70%. 

Figure 8: FTIR spectrum of solid nanoparticles collected in the gas phase at duty cycle equal 

to 20%. Infrared region: from 3750 to 750 cm−1. Resolution: 2 cm−1. 

Figure 9: FTIR spectra of solid nanoparticles collected in the gas phase at different duty 

cycles (from 20 to 70%). Infrared region: from 3750 to 750 cm−1. Resolution: 2 cm−1. 

Figure 10: O(1s), N(1s), C(1s) and Si(2p) XPS spectra of nanoparticles collected on an 

aluminium substrate for different duty cycles. 
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Table 1: List of the transitions observed by optical emission spectroscopy in the Ar-O2 

afterglow with and without APTES. 

Table 2: Vibrational groups and their corresponding frequencies observed in the APTES flow 

with (bold) and without Ar-O2 afterglow. 

Table 3: Main vibrational groups and their corresponding frequencies observed in 

nanoparticles produced from APTES for different duty cycles (from 20 to 70%). 
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Figure 1: The experimental setup. 
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Figure 2: Low-resolution optical emission spectra of the Ar-O2 afterglow with and without APTES. 
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Figure 3a: Gas phase FTIR spectra of the Ar-APTES flow without (red) and with (black) the Ar-O2 afterglow. Resolution: 2 cm−1. a) Infrared 

region: from 1700 to 500 cm−1. 
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Figure 3b: Gas phase FTIR spectra of the Ar-APTES flow without (red) and with (black) the Ar-O2 afterglow. Resolution: 2 cm−1. b) Infrared 

region: from 2600 to 1700 cm−1. The signal obtained with the Ar-O2 afterglow was divided by a factor of 2 to better scale the figure and show 

details of the other signal recorded without the afterglow. 
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Figure 3c: Gas phase FTIR spectra of the Ar-APTES flow without (red) and with (black) the Ar-O2 afterglow. Resolution: 2 cm−1. c) Infrared 

region: from 4000 to 2600 cm−1. 
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Figure 4: Time evolution of CH, CN and OH normalized transitions together with the control 

pulse (Duty cycle = 60%, P = 15 mbar, W = 250 W, plasma gas flowrates: Ar =1050 sccm, 

O2= 100 sccm. Precursor flowrates: Ar =30 sccm, APTES = 0.13 sccm). 
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Figure 5: Evolution of CH, CN and OH transitions taken 50 ms after the pulse rising edge as 

a function of the duty cycle (same conditions as in figure 4). 
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Figure 6: Evolution of the most intense FTIR absorption bands as a function of the duty cycle 

(same conditions as in figure 4). 
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Figure 7: TEM and SEM images of nanoparticles collected on an aluminium substrate at duty 

cycles equal to 20% and 70%. 
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Figure 8: FTIR spectrum of solid nanoparticles collected in the gas phase at duty cycle equal 

to 20%. Infrared region: from 3750 to 750 cm−1. Resolution: 2 cm−1. 
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Figure 9: FTIR spectra of solid nanoparticles collected in the gas phase at different duty cycles (from 20 to 70%). Infrared region: from 3750 to 

750 cm−1. Resolution: 2 cm−1. 
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Figure 10: O(1s), N(1s), C(1s) and Si(2p) XPS spectra of nanoparticles collected on an aluminium substrate for different duty cycles. 
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Condition Species Transition System name Intensity ∆v 

w
/o

 A
P

T
E

S
 

OH OH (A2Σ+, v' → X2Π, v'') Å system moderate ∆v = 0 

O O (1S → 1D) Green line Very weak  

O2 O2 (b
1Σg

+, v' → X3 Σg
−, v'') Atmospheric band Very weak ∆v = 0 

w
/ A

P
T

E
S

 

OH OH (A2Σ+, v' → X2Π, v'') Å system Strong ∆v = −1, 0 

CN CN (B2
Σ

+, v' → X2
Σ

+, v'') CN violet Moderate ∆v = −1, 0, +1 

CH CH (A2
∆g, v' → X2

Πu, v'') CH 4300Å Moderate ∆v = 0 

Table 1: List of the transitions observed by optical emission spectroscopy in the Ar-O2 afterglow with and without APTES. 
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Assignments Frequency Ref. Assignments Frequency Ref. Assignments Frequency Ref. 

ν H2O 3890 cm−1 [45] ν CO2 2348 cm−1 [42] νas SiO−CH2 1241 cm−1 [42] 

Si-OH 3674 cm−1 [45] ν CO 2140 cm−1 [42] ρ CH2 1176 cm−1 [41, 42] 

>CO...O−H 3234 cm−1 [46, 47] Si−O overtones 2116 & 2264 cm−1 [45] νas Si−O−C 1110 cm−1 [40] 

νs CH3 2987 cm−1 [45] Si−O + ρ CH3 1938 cm−1 [44] Si−O in APTES 1065 cm−1 [37, 38, 42] 

νs CH2 2939 cm−1 [41, 45] ν C=O 1744 cm−1 [42] Si−O−C2H5 958 cm−1 [42] 

νas CH3 2899 cm−1 [45] δ NH 1615 cm−1 [39] ρ CH3 878 cm−1 [42] 

νas CH2 2870 cm−1 [41, 45] δ H−C−H 1449 & 1475 cm−1 [36, 43] ω NH2 785 cm−1 [38] 

Si–OH…NH2 2745 cm−1 [40] δ CH2 (distant from Si) 1394 cm−1 [38, 39] δ CO2 667 cm−1 [46] 

Table 2: Vibrational groups and their corresponding frequencies observed in the APTES flow with (bold) and without Ar-O2 afterglow. 
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Assignment Comment Frequency Ref. Assignment Comment Frequency Ref. 

Si–O–C2H5 strong 943 cm−1 [42] ν CO (amide I) strong 1698cm−1 [46] 

Si–O in APTES shoulder 1083 cm−1 [42] νas CH3  2851 cm−1 [41, 45] 

Si–O in APTES strong 1169 cm−1 [42] νs CH3  2930 cm−1 [41, 45] 

δ CH2 shoulder 1376 cm−1 [36, 43] νs NH2 ; νas NH2 very broad 3120-3350 cm−1 [46] 

δ C–O–H strong 1441 cm−1 [46] ν OH very broad 3350-3680 cm−1 [46] 

δ NH2 (amide II) shoulder 1620 cm−1 [46]     

Table 3: Main vibrational groups and their corresponding frequencies observed in nanoparticles produced from APTES for different duty cycles 

(from 20 to 70%). 
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SUPPLEMENTAL MATERIALS 



 46 

 

 

Supplemental material 1: a) OES spectrum of the Ar-O2 post-discharge showing principally 

the OH emission at 306 nm. b) Detail of the atmospheric band (an argon line due to an 

unwanted reflection from the plasma is present in the middle of the spectrum and must be 

removed for any simulation of the rotational spectrum). c) Detail of the green line. 

a) 

b) c) 
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Supplemental material 2: Modelling of the rotational spectrum of the ∆v = 0 transition at 

762 nm of the atmospheric band to determine the gas temperature (the argon line appearing in 

the spectrum has been removed). 
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a) 

b) 
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Supplemental material 3: a) OES spectrum showing the OH emission at 306 nm in the Ar-

O2 post-discharge with APTES. b) Idem for CN at 388 nm. c) Idem for CH at 432 nm 

c) 
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Supplemental material 4: Evolution of FTIR spectra recorded in an APTES–Ar–O2 

afterglow for various duty cycle (resolution 8 cm−1, P = 15 mbar, W = 250 W, flowrates: Ar 

=1050 sccm, O2= 100 sccm, Ar =30 sccm, APTES = 0.13 sccm) 
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Supplemental material 5: Deconvolution of absorption bands between 1800 and 800 cm−1 

for nanoparticles grown in an APTES–Ar–O2 afterglow (resolution 8 cm−1, DC=20%, P = 15 

mbar, W = 250 W, flowrates: Ar =1050 sccm, O2= 100 sccm, Ar =30 sccm, APTES = 0.13 

sccm). 
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Supplemental material 6: EDX analyses of powders collected on an aluminium substrate for 

duty cycles equal to 20 and 70%. (P = 15 mbar, W = 250 W, flowrates: Ar =1050 sccm, O2= 

100 sccm, Ar =30 sccm, APTES = 0.13 sccm) 


