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SUMMARY 22 

GBF1 is a host factor required for hepatitis C virus (HCV) replication. GBF1 functions as 23 

a guanine nucleotide exchange factor (GEF) for G-proteins of the Arf family, which 24 

regulate membrane dynamics in the early secretory pathway and the metabolism of 25 

cytoplasmic lipid droplets. Here we established that the Arf-GEF activity of GBF1 is 26 

critical for its function in HCV replication, indicating that it promotes viral replication by 27 

activating one or more Arf family members. Arf involvement was confirmed with the use 28 

of two dominant-negative Arf1 mutants. However siRNA-mediated depletion of Arf1, 29 

Arf3 (class I Arfs), Arf4 or Arf5 (class II Arfs), which potentially interact with GBF1, did 30 

not significantly inhibit HCV infection. In contrast, the simultaneous depletion of both 31 

Arf4 and Arf5, but not of any other Arf pair, imposed a significant inhibition of HCV 32 

infection. Interestingly, the simultaneous depletion of both Arf4 and Arf5 had no impact 33 

on the activity of the secretory pathway and induced a compaction of the Golgi and an 34 

accumulation of lipid droplets. A similar phenotype of lipid droplet accumulation was 35 

also observed when GBF1 was inhibited by brefeldin A. In contrast, the simultaneous 36 

depletion of both Arf1 and Arf4 resulted in secretion inhibition and Golgi scattering, two 37 

actions reminiscent of GBF1 inhibition. We conclude that GBF1 could regulate different 38 

metabolic pathways through the activation of different pairs of Arf proteins.  39 

40 
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INTRODUCTION 41 

Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus of the Flaviviridae 42 

family. Like other positive RNA viruses, HCV genome is replicated in the cytoplasm of its 43 

host cell. During HCV replication, internal membranes of the cell are rearranged and 44 

these rearranged membranes likely are replication sites of the viral RNA genome. HCV-45 

induced membrane rearrangements have been named membranous web (Egger et al., 46 

2002). They include double membrane vesicles (DMV) and clusters of small single 47 

membrane vesicles of ER origin (Ferraris et al., 2010; Romero-Brey et al., 2012). DMV 48 

have also been observed in cells replicating RNA viruses of other families, including 49 

Picornaviridae (Limpens et al., 2011; Belov et al., 2012) and Coronaviridae (Knoops et al., 50 

2008; Ulasli et al., 2010), but not with other viruses of the Flaviviridae family (Welsch et 51 

al., 2009; Gillespie et al., 2010; Schmeiser et al., 2014).  52 

GBF1, a major regulator of membrane dynamics in the early secretory pathway, has 53 

recently emerged as a host factor involved in the replication of several viruses of the 54 

Picornaviridae (Belov et al., 2008; Lanke et al., 2009), Coronaviridae (Verheije et al., 55 

2008), and Flaviviridae (Goueslain et al., 2010; Carpp et al., 2014) families. GBF1 is a 56 

brefeldin A (BFA)-sensitive guanine nucleotide exchange factor (GEF) for G-proteins of 57 

the Arf family (Claude et al., 1999). Arfs recruit and activate a number of effectors, which 58 

function in vesicular transport, phospholipid metabolism, actin cytoskeleton regulation 59 

and lipid droplet metabolism (Donaldson and Jackson, 2011; Wright et al., 2014). There 60 

are 6 Arfs and 16 Arf-like proteins in mammalian cells. Arfs are divided into three 61 

classes based on sequence homology. Class I contains Arf1-3, class II contains Arf4 and 62 

Arf5, and Arf6 constitutes the sole member of class III (Donaldson and Jackson, 2011; 63 

Wright et al., 2014). As an ArfGEF, GBF1 shows selectivity for Arfs of classes I and II 64 

(Claude et al., 1999; Szul et al., 2007). GBF1 is a large protein of 206 kDa containing 6 65 
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conserved domains (Bui et al., 2009). The GEF activity is catalyzed by the Sec7 domain. 66 

Our knowledge of the functions of the other conserved domains of GBF1 is still scarce 67 

(Bui et al., 2009; Belov et al., 2010; Bouvet et al., 2013).  68 

The mechanism of action of GBF1 in viral infection is not yet understood. Several lines of 69 

evidence indicate that GBF1 is required (Verheije et al., 2008; Goueslain et al., 2010; 70 

Carpp et al., 2014) and/or is recruited to viral replication complexes (Verheije et al., 71 

2008; Richards et al., 2014) at the onset of viral replication, but not at later time points. 72 

It is generally assumed to function as an ArfGEF activating Arf1, which in turn would 73 

recruit the COP-I coatomer, a molecular machinery involved in intracellular transport, 74 

which has also been reported to be required for the replication of several positive strand 75 

RNA viruses, including HCV (Gazina et al., 2002; Cherry et al., 2006; Tai et al., 2009; 76 

Wang et al., 2012). Accordingly, a GBF1-Arf1-COP-I pathway has been proposed to play a 77 

role in the replication of HCV (Matto et al., 2011; Zhang et al., 2012; Farhat et al., 2013) 78 

and other viruses (Wang et al., 2014). However, a direct functional link between GBF1 79 

activation and COP-I function in HCV replication has not been experimentally 80 

demonstrated. For instance, in poliovirus infection, the transient recruitment of GBF1 at 81 

replication complexes is not coupled to COP-I recruitment (Richards et al., 2014), 82 

suggesting the existence of distinct functions for GBF1 at viral replication complexes and 83 

in the secretory pathway of the cell. Indeed, GBF1 may primarily function in poliovirus 84 

infection by activating or recruiting other cellular effectors essential for viral replication 85 

in an Arf1-independent manner (Belov et al., 2010). During HCV replication, the 86 

activation by GBF1 of an Arf1 effector different from COP-I, the phosphatidylinositol 4-87 

kinase III β, has been proposed to be involved in HCV replication (Zhang et al., 2012). 88 

However the involvement of this kinase during HCV replication is still controversial (Tai 89 

et al., 2009; Vaillancourt et al., 2009; Berger et al., 2009; Borawski et al., 2009; Trotard et 90 
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al., 2009). Other possibilities for GBF1 function during viral replication include the 91 

activation of other members of the Arf family or mechanisms unrelated to Arf activation. 92 

For example, the mechanism of action of GBF1 during poliovirus replication has been 93 

demonstrated not to depend on its catalytic Sec7 domain and therefore on its GEF 94 

activity (Belov et al., 2010). In this study, we investigated the mechanism of action of 95 

GBF1 in HCV replication. Our data support a model in which class II Arf proteins mediate 96 

GBF1 function. 97 

 98 

RESULTS 99 

Role of the Sec7 domain of GBF1 in HCV infection.  It has recently been reported that 100 

GBF1 but not Arf activation is required for poliovirus replication (Belov et al., 2010), 101 

suggesting that GBF1 may have other functions than Arf activation during a viral 102 

infection. More specifically, a catalytically inactive GBF1 truncation mutant lacking the 103 

Sec7 domain has been reported to be sufficient for rescuing poliovirus replication from 104 

BFA inhibition. To investigate if GBF1 could also function in a Sec7-independent manner 105 

in HCV replication, we expressed a series of GBF1 truncation mutants (figure 1A) in 106 

Huh-7 cells and infected them with HCV in the presence of BFA. We used a dose of 50 107 

ng/ml BFA, which decreases HCV infection about 10 times and has minimal cytotoxic 108 

effects in Huh-7 cells during the time scale of the HCV infection assay (Goueslain et al., 109 

2010). We previously showed that BFA has no impact on HCV entry and inhibits the 110 

replication step of the HCV life cycle (Goueslain et al., 2010). GBF1 construct expression 111 

and HCV infection were probed by immunoblotting at 30 hpi. At this time, only cells 112 

initially infected are positive (Afzal et al., 2014), implying that the impact of BFA 113 

inhibition of progeny virion release on HCV protein expression is negligible. 114 
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BFA treatment had no impact on the expression of GBF1 constructs (figure 1B). In the 115 

absence of BFA, similar E1 expression levels were observed with all GBF1 constructs, 116 

indicating that none of these constructs had any dominant-negative effect on HCV 117 

infection. In the presence of BFA, E1 expression levels were reduced about 10-20 times 118 

in untransfected cells or in cells expressing YFP. HCV infection was partially rescued in 119 

cells expressing full-length wild-type or M832L BFA-resistant constructs, whereas the 120 

E794K inactive mutant was unable to rescue HCV infection in the presence of BFA, as 121 

previously reported (Goueslain et al., 2010). Importantly, unlike for poliovirus, all the C-122 

terminal deletion constructs including GBF1(1-710), which lacks a Sec7 domain, were 123 

unable to rescue HCV infection in these complementation experiments (figure 1B and C). 124 

Therefore, these results support a Sec7-dependent function of GBF1 in HCV infection. 125 

As a control, we also quantified the impact of GBF1 constructs on the secretion of human 126 

serum albumin (HSA) by BFA-treated Huh-7 cells. A well-established function of GBF1 is 127 

the control of membrane dynamics in the early secretory pathway, and this function 128 

relies on Arf activation. Therefore, HSA secretion is a marker of GBF1-mediated Arf 129 

activation in these experiments. The treatment of Huh-7 cells with 50 ng/ml BFA 130 

decreased albumin secretion in control mock-, or YFP-transfected cells (figure 1D). As 131 

expected, wild type and M832L GBF1 constructs partially restored albumin secretion, 132 

but none of the other constructs did. These results indicate a similar requirement of 133 

GBF1 domains for HCV infection and for Arf activation and are consistent with a 134 

requirement of ArfGEF activity to promote HCV infection. 135 

 136 

Arf1 dominant negative mutants inhibit HCV infection.  Our results with GBF1 137 

truncation mutants suggested that the activation of at least one BFA-sensitive Arf family 138 

member is required for HCV infection. We further investigated this question using two 139 
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different mutants of Arf1 affecting either GDP exchange (T31N) or GTP hydrolysis 140 

(Q71L). When overexpressed, these two constructs act as dominant negative mutants in 141 

a protein transport assay and block the intracellular traffic at different steps of the early 142 

secretory pathway (Dascher and Balch, 1994). Arf mutants were expressed as EGFP or 143 

mCherry fusion proteins in Huh-7 cells and the cells were infected with HCV. The 144 

infection was monitored by immunofluorescence (figure 2A) and the percentage of 145 

fluorescent cells infected was quantified. As expected, the expression of the T31N 146 

mutant, which has a BFA-like effect, strongly inhibited HCV infection (figure 2B). The 147 

Q71L mutant, which is locked in the active, GTP-bound form, also strongly inhibited HCV 148 

infection, and the wild type Arf1 construct had a moderate impact compared to EGFP 149 

and mCherry controls. On the other hand, Arf1 constructs did not have any effect on 150 

adenovirus infection, indicating that the effects observed with HCV did not result from 151 

any cytotoxic effects of Arf1 constructs. These results confirmed the involvement of an 152 

Arf family member in HCV infection.  153 

 154 

Role of Arf family members in HCV infection.  The results with dominant negative 155 

mutants of Arf1 suggest that Arf1 and/or other Arf family members are involved in HCV 156 

infection. We used siRNA technology to determine which Arf proteins are specifically 157 

involved in HCV infection. Given the BFA sensitivity of HCV infection, we focused our 158 

study on class-I and class-II Arfs. Arf1, Arf3, Arf4 and Arf5 (human cells have no Arf2) 159 

were targeted with pools of 4 siRNAs, except for Arf1, which was targeted by 2 siRNAs 160 

only, because we found that the commercial Arf1 pool contains 2 individual siRNAs also 161 

targeting Arf3 (supplementary figure 1). Surprisingly, the depletion of each Arf protein 162 

resulted in a moderate (30-35%) inhibition of HCV infection (figure 3A). To assess the 163 

extent of siRNA-mediated Arf depletion, we quantified mRNAs by quantitative RT-PCR. 164 
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The depletions were specific and reached 87% inhibition for Arf1 and about 95% 165 

inhibition for the other Arfs (figure 3B). We also observed an up-regulation of Arf4 166 

expression upon Arf1 and to a lesser extent Arf3 depletion, suggesting the existence of 167 

compensatory mechanisms regulating the expression of Arf family members. 168 

Arfs may have overlapping functions, and it has been reported that the depletion of 169 

different pairs of Arfs results in specific phenotypes (Volpicelli-Daley et al., 2005). 170 

Therefore we considered that a specific pair of Arfs could be involved in HCV infection. 171 

For this reason, we also depleted pairs of Arfs. Again, higher levels of Arf4 mRNA were 172 

observed upon Arf1+Arf3 depletion or Arf1+Arf5 depletion, confirming the up-173 

regulation of Arf4 in Arf1-depleted cells (figure 3B). Interestingly, HCV infection was 174 

decreased down to 17±8% in cells depleted of both Arf4 and Arf5, whereas the 175 

depletion of other pairs did not significantly decrease more HCV infection than single Arf 176 

depletions (figure 3A). These results indicate a special importance of class-II Arfs in HCV 177 

infection. 178 

To rule out off-target effects, Arf4 or Arf5 were expressed in siRNA-treated cells. Arf 179 

proteins of murine origin were expressed in Huh-7 cells simultaneously depleted of both 180 

Arfs. Immunoblot analysis confirmed Arf5 expression (figure 3C). However, Arf4 181 

expression could not be confirmed due to the lack of reactivity toward murine Arf4 of 182 

the antibody. HCV infection was partially restored in Arf4-expressing cells and in Arf5-183 

expressing cells (figure 3D). We also observed a slight decrease of HCV infection in cells 184 

transfected with Arf4 in the control condition (figure 3D). The expression of Arf4 or Arf5 185 

in double-depleted cells increased HCV infection up to levels similar to those observed 186 

in cells depleted of a single Arf protein (figure 3A). In contrast, no rescue of HCV 187 

infection was observed in cells transfected with siRNAs to PI4KA, as expected (figure 188 

3D).  189 
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To determine if the replication step of the HCV life cycle is affected by the simultaneous 190 

depletion of class-II Arfs, siRNA-transfected Huh-7 cells were electroporated with an in 191 

vitro-transcribed recombinant ∆E1E2 JFH1 genomic RNA expressing a Renilla luciferase 192 

reporter. Measuring luciferase activity over a 72-h time course assessed replication. 193 

Luciferase activity was not inhibited at 4h post electroporation, and was reduced about 194 

9 times in cells depleted of Arf4 and Arf5 at 48 and 72 h post electroporation (figure 3E), 195 

indicating an inhibition of HCV replication with no impact on the initial translation level 196 

of HCV RNA.  197 

We also investigated HCV entry in Huh-7 cells simultaneously depleted of both class II 198 

Arfs using HCVpp. As controls, we used VSV-Gpp, which rely on endocytosis and pH-199 

dependent fusion for entry, like HCVpp, and RD114pp, which enter by a pH-independent 200 

mechanism. All pseudoparticles were similarly inhibited by the double depletion of Arf4 201 

and Arf5 (supplementary figure 2), indicating a post-fusion inhibition of pseudoparticle 202 

entry. Therefore, we cannot conclude on the function of class II Arfs during the entry 203 

step of the HCV life cycle. 204 

 205 

Class II Arfs are not recruited in HCV replication complexes.  The intracellular 206 

localization of Arf4 and Arf5 in Huh-7 cells was analyzed by immunofluorescence 207 

confocal microscopy. Cells were transfected with expression vectors for Arf4-GFP or 208 

Arf5-GFP. Both Arf4-GFP and Arf5-GFP were observed in Golgi-like perinuclear 209 

structures together with a diffuse staining of the cytosol and the nucleus 210 

(supplementary figure 3), which is consistent with the dual localization of Arf proteins 211 

as membrane-associated and soluble proteins. Arf4- and Arf5-positive perinuclear 212 

structures were also labeled with an antibody to GM130 (supplementary figure 3A), 213 

indicating that they are localized in the cis-Golgi. Interestingly, Arf4 and Arf5 214 

perinuclear structures also colocalized with GBF1 (supplementary figure 3B). 215 
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In infected cells, the localization of Arf4-GFP and Arf5-GFP was compared to that of NS3 216 

and NS5A, two markers of HCV replication complexes. We did not observe any major 217 

change of Arf4 and Arf5 patterns (supplementary figure 4), except in Arf4-GFP 218 

expressing cells, where the Golgi appears less structured. This tendency toward a less 219 

compact Golgi was also observed in non-infected cells (supplementary figure 3).  Very 220 

few levels of colocalization of Arfs and NS3 (supplementary figure 4A) or NS5A 221 

(supplementary figure 4B) were observed, indicating that class II Arfs are not 222 

permanently recruited to HCV replication complexes. 223 

 224 

Impact of Arfs depletion on the secretory pathway.  To get insight into a mechanism of 225 

action of the pair of class-II Arfs, we analyzed their involvement in the regulation of 226 

secretion. Following depletion of different pairs of Arfs, we monitored the secretion of 227 

serum albumin and VLDL-associated apolipoprotein E (apoE), two proteins expressed 228 

and constitutively secreted by Huh-7 cells. Albumin and apoE secretion were inhibited 229 

in cells with reduced levels of both Arf1 and Arf4, but were not affected by the depletion 230 

of any other pair of Arfs, including Arf4 and Arf 5 (figure 4A). These results indicate that 231 

the simultaneous depletion of class II Arfs has no functional impact on the secretory 232 

pathway.  233 

To further examine the impact of their depletion on the secretory pathway, we also 234 

investigated the morphology of cellular compartments. We observed a more compact 235 

Golgi morphology in cells simultaneously depleted of Arf4 and Arf5 than in control cells 236 

using the cis-Golgi marker GM130 (figure 4B). In contrast, the depletion of Arf1 and Arf4 237 

resulted in a fragmentation of the cis-Golgi, as previously reported for HeLa cells 238 

(Volpicelli-Daley et al., 2005). A similar scattered Golgi phenotype was observed upon 239 

GBF1 depletion (figure 4B) or after a BFA treatment (data not shown). We did not 240 
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observe any morphological change in cells depleted of other pairs of Arfs 241 

(supplementary figure 5). A compaction of the Golgi complex was also observed in class 242 

II Arfs-depleted cells with other markers. In these cells, GBF1 and ERGIC53, two proteins 243 

located both in the cis-Golgi and the ERGIC, and TGN46, a marker of the trans-Golgi 244 

network, all showed a more compact localization (figure 4B), indicating that the effect is 245 

not restricted to the cis-Golgi. Again, the depletion of Arf1 and Arf4 or of GBF1 resulted 246 

in a scattered pattern of ERGIC53, GBF1 and TGN46 (figure 4B). No other Arf pair 247 

produced similar phenotypes of scattered or compacted patterns with any of the 248 

markers (data not shown). These results indicate that the pair of class II Arfs does not 249 

contribute to the Golgi scattering effect of GBF1 inhibition.  250 

 251 

Impact of class II Arfs depletion on the lipid droplets.  In addition to its role as a 252 

regulator of the early secretory pathway, GBF1 is also known to regulate lipid droplets 253 

(Guo et al., 2008; Beller et al., 2008; Soni et al., 2009), a cellular compartment playing a 254 

critical role in the HCV life cycle. Given the lack of effect of class II Arfs on the secretory 255 

pathway, we also investigated the morphology of lipid droplets after Arf depletion. Lipid 256 

droplets were stained with BODIBY493/503 and the Golgi was also labeled with an 257 

antibody to GM130 to verify the effect of Arf4 and Arf5 depletion. In cells simultaneously 258 

depleted of Arf4 and Arf5, lipid droplets were larger than in control cells and were 259 

packed together at the periphery, often in one extension of the cell, unlike in control 260 

cells where smaller lipid droplets were usually scattered throughout the cytoplasm 261 

(figure 5A). A similar effect was observed in cells treated for 24 hours with a low dose of 262 

BFA (figure 5B), or in cells depleted of GBF1 (data not shown), suggesting that the action 263 

of the pair of class II Arfs on lipid droplets is regulated by GBF1. Importantly, the 264 

depletion of other Arf pairs did not result in a similar phenotype of accumulation of 265 
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enlarged lipid droplets. Lipid droplets were very similar to controls for all depletions 266 

except for the pair Arf1 and Arf4, and to some extent the pair Arf3 and Arf4, the 267 

depletion of which resulted in a reduced number of enlarged lipid droplets 268 

(supplementary figure 5). This result suggests that the pair of class II Arfs could 269 

participate in GBF1-mediated regulation of lipid metabolism. 270 

 271 

DISCUSSION 272 

In this study we investigated the mechanism of action of GBF1 in HCV infection. Our 273 

results suggest that GBF1 functions in HCV infection by activating class II Arfs. This is 274 

different from what has been reported for in poliovirus, for which its GEF activity and 275 

Arf activation are not required (Belov et al., 2010). A series of GBF1 truncation mutants 276 

inactive for regulating the secretory pathway of the cell, including a construct lacking a 277 

Sec7 domain, were shown to complement BFA inhibition of poliovirus replication. Here 278 

we showed that unlike poliovirus, the same series of GBF1 mutants do not support HCV 279 

replication, clearly indicating a difference of action for GBF1 in poliovirus and HCV 280 

replication. This requirement for GEF activity was confirmed with the use of Arf1 281 

dominant negative mutants. 282 

The function of GBF1 in HCV replication is also different from its function in membrane 283 

traffic, as already suggested by our previous study of BFA resistant cell lines (Farhat et 284 

al., 2013). Indeed our results suggest that GBF1 may act by activating different pairs of 285 

Arf proteins for the control of HCV replication and of protein secretion. The pair Arf1-286 

Arf4 mediates GBF1 control of the secretory pathway, as already reported (Volpicelli-287 

Daley et al., 2005), whereas the pair Arf4-Arf5 mediates GBF1 function in HCV 288 

replication. Recently, Arf4 and Arf5 have also been reported to be involved in dengue 289 

virus infection, although for this virus, the function of this pair of Arfs was suggested to 290 
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be involved in the assembly step (Kudelko et al., 2012). Interestingly, the depletion of 291 

Arf4 was reported to protect cells from BFA toxicity, and this effect also depends on 292 

GBF1, Arf1 and Arf5 (Reiling et al., 2013). 293 

Based on siRNA experiments, previous studies, including our own, suggested an 294 

involvement of Arf1 in HCV replication (Matto et al., 2011; Zhang et al., 2012; Farhat et 295 

al., 2013) that we did not observe in this study. However, in none of these previous 296 

studies were the results of siRNA depletions confirmed by re-expressing Arf1, in order 297 

to rule out off-target effects. Off-target effects are always a potential pitfall with siRNA 298 

experiments, as exemplified by our finding that the commercial siRNA pool targeting 299 

Arf1 also inhibits Arf3 expression. Reducing siRNA concentration may help to reduce 300 

off-target effects. Using a more efficient transfection agent allowed us to decrease siRNA 301 

concentration from 80 nM double transfections previously used down to 20 nM single 302 

transfections in this study, with better depletion results on control proteins (data not 303 

shown). With these new experimental conditions, Arf1 depletion resulted in a lower 304 

inhibition of HCV replication (from about 50% in our previous study (Farhat et al., 305 

2013) down to about 30% inhibition in this study) despite efficient reduction of Arf1 306 

mRNA expression. All single Arf depletions similarly yielded low levels of inhibition of 307 

HCV infection, in line with the reported lack of phenotype of single Arf depletion 308 

(Volpicelli-Daley et al., 2005). In contrast, we found a stronger inhibition of HCV 309 

infection when cells were simultaneously depleted of both Arf4 and Arf5. This finding is 310 

not inconsistent with the inhibition of HCV infection by Arf1 dominant negative mutants, 311 

because trans dominant phenotypes often result from interactions with regulators (like 312 

Arf-GEFs and Arf-GAPs in this case). This suggests that Arf1, Arf4 and Arf5 share 313 

common regulators, as also indicated by their common inhibition by BFA. 314 
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Specific phenotypes were already reported for different pairs of Arfs (Volpicelli-Daley et 315 

al., 2005). In our study, the depletion of Arf4 and Arf5 displayed a BFA-like effect on 316 

lipid droplets morphology and on HCV infection that the pair Arf1-Arf4 did not. On the 317 

other hand, the depletion of the Arf1-Arf4 pair resulted in a BFA-like inhibition of HSA 318 

and ApoE secretion, whereas the depletion of the Arf4-Arf5 pair did not. Cells depleted 319 

of Arf1 and Arf4 also displayed a scattered Golgi very similar to what is observed in 320 

BFA-treated cells or in cells depleted of GBF1, whereas cells depleted of Arf4 and Arf5 321 

had a more compact Golgi morphology than control cells. This effect is not mimicked by 322 

GBF1 inhibition, but is rather reminiscent of cells treated with latrunculin B, an inhibitor 323 

of actin polymerization (Valderrama et al., 2001; Dippold et al., 2009). Therefore, the 324 

Arf4-Arf5 pair could potentially activate an effector involved in the regulation of the 325 

actin cytoskeleton. Alternatively, we can also speculate that this effect could result from 326 

an alteration of the metabolism of phosphoinositides, because actin fibers are linked to 327 

Golgi membranes by PI4P-interacting protein GOLPH3 (Dippold et al., 2009). Taken 328 

together these results suggest that GBF1 fulfills its different cellular functions by 329 

activating different pairs of Arfs, which in turn control different aspects of the cellular 330 

metabolism.  331 

An intriguing question is how each pair of Arfs controls specific pathways. This appears 332 

to be a common feature of G-proteins of the Arf family (Panic et al., 2003; Setty et al., 333 

2003; Volpicelli-Daley et al., 2005; Cohen et al., 2007). A redundancy of action is the 334 

simplest explanation, although it is quite difficult to match this model with the diversity 335 

of phenotypes observed with the depletion of different pairs of BFA-sensitive Arfs 336 

(Volpicelli-Daley et al., 2005). Another model for Arf pair specificity could be the 337 

formation of Arf dimers, at the site of interaction with effectors. However, such a kind of 338 

interactions has not yet been reported for any Arf effector to our knowledge. It is also 339 
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possible that the recruitment or the activation of one Arf would depend on the activation 340 

of the other one. Different models compatible with this possibility have been proposed 341 

(Cohen et al., 2007; Chun et al., 2008). A cascade of recruitment has been reported for 342 

other Arf family members (Panic et al., 2003; Setty et al., 2003; Cohen et al., 2007; 343 

Christis and Munro, 2012). This hypothesis would be more compatible if similar 344 

phenotypes were observed in cells depleted of either protein and in double depleted 345 

cells. However, if the selectivity of the system were not stringent, then it could be 346 

compatible with an inhibition only visible in double depleted cells. It would be 347 

interesting to determine if such a mode of action actually occurs for Arf1-Arf4 and Arf4-348 

Arf5 pairs. 349 

In conclusion, our results indicate that the role of GBF1 in HCV replication is mediated 350 

by its ArfGEF activity and is potentially related to a function of regulation of lipid 351 

metabolism, rather than of regulation of the protein secretory pathway. Interestingly, 352 

two members of the Arf family, class II Arf4 and Arf5, appear to be of special importance 353 

for mediating GBF1 function in HCV replication. Although very little is known about the 354 

specific functions of class II Arfs, data from our study and from another group 355 

(Takashima et al., 2011) suggest their involvement in the control of lipid metabolism, as 356 

evidenced by the abnormal morphology of lipid droplets in cells depleted of both Arf4 357 

and Arf5. However, their mechanism of action is unknown. A role for the drosophila Arf1 358 

homologue Arf79F in controlling the localization of enzymes of the triglyceride 359 

metabolism to oleic acid-induced lipid droplets was recently described (Wilfling et al., 360 

2014). It is not yet clear how this might relate to our results with class II Arfs-depleted 361 

cells, because the depletion of Arf1 reduced the size of lipid droplets in drosophila cells, 362 

instead of increasing it as we observed for simultaneous depletion of both Arf4 and Arf5 363 

in Huh-7 cells. Further studies will be needed to determine the nature of the enzymes or 364 
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transporters involved in lipid metabolism that are effectors of Arf4 and Arf5. These 365 

proteins may constitute host factors critical for the replication of HCV and potentially 366 

other RNA viruses. 367 

 368 

EXPERIMENTAL PROCEDURES 369 

Reagents.  Dulbecco's modified Eagle's medium (DMEM), phosphate-buffered saline 370 

(PBS), goat and fetal calf sera (FCS), BODIBY 493/503 and 4',6-diamidino-2-371 

phenylindole (DAPI) were purchased from Life Technologies. Mowiol 4-88 was from 372 

Calbiochem. Protease inhibitors mix (Complete) was from Roche. Other chemicals were 373 

from Sigma. 374 

Antibodies.  Mouse anti-E1 mAb A4 (Dubuisson et al., 1994) was produced in vitro by 375 

using a MiniPerm apparatus (Heraeus) as recommended by the manufacturer. Mouse 376 

anti-NS5A mAb 9E10 (Lindenbach et al., 2005) was kindly provided by C. M. Rice (The 377 

Rockefeller University). Mouse anti-NS3 mAb 1848 was from Virostat. Rabbit anti-378 

human Arf4 mAb (ab171746) was from Abcam. Mouse anti-Arf5 mAb 1B4 was from 379 

Abnova. Sheep anti-TGN46 was from Serotec. Mouse anti-GBF1 and anti-GM130 mAbs 380 

were from Transduction Laboratories. Mouse anti-β-tubulin mAb (TUB 2.1) was from 381 

Sigma. Mouse anti-HSA (ZMHSA1) was from Invitrogen. Goat anti-HSA (507313) was 382 

from Calbiochem. Mouse anti-GFP mAb was from Roche. Alexa 555-conjugated donkey 383 

anti-sheep IgG antibody was from Life Technologies. Peroxidase-conjugated goat anti-384 

mouse, and anti-sheep IgG, and cyanine 3-conjugated goat anti-mouse IgG were from 385 

Jackson Immunoresearch.  386 

DNA constructs.  GBF1 deletion mutants were described previously (Niu et al., 2005; 387 

Belov et al., 2010). WT Arf1, Q71L and T31N mutants were kindly provided by B. 388 

Hoflack (Technische Universität Dresden, Germany). Arf coding sequence was excised 389 
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from pGEM2 plasmids using HindIII and BamHI and subcloned in pEGFP-N1 (Clonetech) 390 

between the same sites to generate Arf1-GFP constructs. To generate Arf1-mCherry 391 

constructs, the GFP coding sequence was excised with AgeI and NotI and replaced by 392 

mCherry coding sequence PCR-amplified using primers 393 

GATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAG and 394 

AGAGTCGCGGCCGCTCTACTTGTACAGCTCGTCCATG. Arf4-GFP and Arf5-GFP constructs 395 

were as previously described (Chun et al., 2008) and were obtained through Addgene. 396 

To generate expression vectors for mouse Arf4 and Arf5 used in rescue experiments, the 397 

coding sequences were PCR-amplified from mouse 11-day embryo Marathon-Ready 398 

cDNA (Clonetech) using primers CTTAAGCTTCCGCCATGGGCCTCACCATC and 399 

GTAGGATCCTTAACGTTTTGAAAGTTCATTTGAC (Arf4) or 400 

CTTAAGCTTCCGCCATGGGCCTCACGGTG and GTAGGATCCCTAGCGCTTTGACAGCTCGT 401 

(Arf5), and inserted in pCEP4 between HinDIII and BamHI sites. All constructs were 402 

verified by sequencing. 403 

Cell culture.  Huh-7 (Nakabayashi et al., 1982) cells were grown in Dulbecco’s modified 404 

Eagle’s medium (DMEM), high glucose modification, supplemented with glutamax-I and 405 

10% FCS.  406 

HCVcc.  The virus JFH1-CSN6A4 used in this study was based on JFH1, and contained cell 407 

culture adaptive mutations (Delgrange et al., 2007) and a reconstituted A4 epitope in E1, 408 

as previously described (Goueslain et al., 2010). The plasmid pJFH1-CSN6A4 was 409 

linearized with XbaI and treated with the Mung Bean Nuclease (New England Biolabs). 410 

In vitro transcripts were generated using the Megascript kit according to the 411 

manufacturer’s protocol (Ambion). Ten micrograms of in vitro transcribed RNA were 412 

delivered into Huh-7 cells by electroporation as described (Kato et al., 2003). For virus 413 

production, electroporated cells were passaged 3 days after electroporation and grown 414 
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to confluence. The culture medium was collected every day, titrated, aliquoted and 415 

stored at -80°C. For infection assays, sub-confluent naïve Huh-7 cells grown in a P24 416 

well were incubated with 50 µl of this virus preparation diluted to 200 µl of medium for 417 

2 hours (M.O.I. ~0.5), and the inoculate was replaced with fresh culture medium. In 418 

order to reach near 100% infected cells in experiments with Arf1 mutants, cells were 419 

infected with 200 µl of undiluted HCVcc stock with a higher titre, (M.O.I. ~5). In all 420 

experiments, infections were scored at 30 hpi. 421 

Adenovirus.  A recombinant defective adenovirus expressing a green fluorescent 422 

protein (EGFP) was as previously described (Farhat et al., 2013). Cells were infected for 423 

1 hour at 37°C, and fixed for 20 minutes with PFA 3% at 16 hours post-infection. 424 

DNA transfection.  Twenty-four hours before transfection, cells were seeded in 24-well 425 

clusters to reach ~70% confluence the next day. Cells were transfected with 0.5 μg of 426 

plasmid DNA mixed with Trans-IT LT1 reagent following the instructions of the 427 

manufacturer (Mirus). Cells transfected with pCEP4-based constructs were co-428 

transfected with pPUR (clonetech) at a 1:20 ratio, and selected for with 5 µg/ml 429 

puromycin for 3 days, and cultured with no puromycin for 4 days before siRNA 430 

transfection. 431 

RNA interference.  RNA interference experiments were carried out with pools of four 432 

different synthetic double-stranded siRNAs to the same target (on-target plus smart 433 

pool reagents from Dharmacon). Due to an off-target effect with the pool against Arf1 we 434 

used a mix of 2 individual siRNAs (J-011580-05-0005 & J-011580-08-0005). The control 435 

used in this study was the on-target plus non-targeting siRNA #1 (D-001810-01-20).  436 

For siRNA transfection, 3 μl of lipofectamine RNAi MAX (Life Technologies) were added 437 

to 0.5 ml of D-PBS and incubated for 3 min. In a 6-well plate, 2.5 μl of siRNA at 20μM 438 

were spotted in the center of a well. In case of double siRNA transfection, 1.25 µl of each 439 
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siRNA was used. Then, the diluted transfection reagent was added to the siRNA and the 440 

mixture was incubated for 30 min at room temperature. At the end of this incubation, 441 

2.5 105 freshly trypsinized cells in a volume of 2 ml of culture medium were added to the 442 

transfection mix and the cells were returned to 37°C. Cells were trypsinized 24 h later 443 

and seeded on glass cover slips, and analyzed by immunofluorescence 3 or 4 days after 444 

siRNA transfection. For quantifying HCV infection, siRNA-treated cells were infected 48 445 

h after trypsinization. Just before infection, extra wells of cells treated with each siRNA 446 

were used to extract RNA for quantifying the depletion efficiency. Infected cells were 447 

stained with anti-E1 mAb A4 and DAPI at 30 hpi and HCV-infected were counted. At 448 

least 5000 cells were counted per experiment for each condition. 449 

Immunoblotting.  Cells were rinsed 3 times with cold PBS, and lysed at 4°C for 20 min 450 

in a buffer containing 50 mM TrisCl, pH 7.5, 100 mM NaCl, 2 mM EDTA, 1% Triton- X, 451 

0.1% SDS, 1 mM PMSF, and a mix of protease inhibitors (Complete). Insoluble material 452 

was removed by centrifugation at 4°C. The protein content was determined by the 453 

bicinchoninic acid method as recommended by the manufacturer (Sigma), using bovine 454 

serum albumin as the standard. The proteins were then resolved by SDS-PAGE and 455 

transferred onto nitrocellulose membranes (Hybond-ECL; Amersham) using a Trans-456 

Blot apparatus (Bio-Rad). Proteins of interest were revealed with specific primary 457 

antibodies, followed by species-specific secondary antibodies conjugated to peroxidase. 458 

Proteins were visualized using enhanced chemiluminescence (ECL Plus, GE healthcare). 459 

The signals were recorded using a LAS 3000 apparatus (Fujifilm). Quantification of 460 

unsaturated signals was carried out using the gel quantification function of ImageJ. 461 

Immunofluorescence microscopy.  Indirect immunofluorescence labeling was 462 

performed as previously described (Rouillé et al., 2006). Lipid droplets were stained 463 

with BODIBY 493/503 (0.5 µg/ml; Invitrogen) for 10 min at room temperature. Nuclei 464 
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were stained with DAPI. For colocalization experiments, confocal microscopy was 465 

carried out with an LSM780 confocal microscope (Zeiss) using a 63X oil immersion 466 

objective with a 1.4 numerical aperture. Signals were sequentially collected using single 467 

fluorescence excitation and acquisition settings to avoid crossover. Images were 468 

processed using Adobe Photoshop software CS4. 469 

BFA rescue experiments.  Cells were transfected with GBF1 mutants and then infected 470 

with JFH1-CSN6A4 48 h post transfection in the presence of 50 ng/ml of BFA, or the 471 

corresponding volume of ethanol (BFA solvent). Cells were lysed at 30 hpi and the 472 

expression levels of HCV E1 (A4) were measured by Western blot. The expression level 473 

of each mutant with ethanol was set to 100%. The relative expression of HCV E1 of the 474 

BFA treated samples was normalized to the ethanol control.  475 

Secretion assays.  Sub-confluent cell cultures grown in 12-well plates were incubated 476 

for 24 h in 1 ml of complete culture medium. Culture media were collected and 477 

centrifuged to remove cells debris. Cells were rinsed with PBS, and lysed for 20 min on 478 

ice. The HSA concentration in the supernatants and lysates was determined by ELISA, 479 

using human serum albumin (HSA) as a standard, as described (Snooks et al., 2008). 480 

Apolipoprotein E was quantified using a commercial ELISA kit from Mabtech. The 481 

percentage of secretion was calculated as the percentage of HSA/apoE in the medium 482 

divided by the total amount of HSA/apoE in the medium and the lysate.   483 

Replication assay.  The construct used for the replication assay (HCVcc-Rluc/∆E1E2) 484 

was as previously described (Goueslain et al., 2010). Huh-7 cells were electroporated 485 

with HCVcc-Rluc/∆E1E2 in vitro transcribed RNA and seeded in 24-well plates. The 486 

luciferase activity was measured 4 h, 24 h, 48 h and 72 h post-electroporation using the 487 

Renilla luciferase assay system kit from Promega.  488 
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Quantitative RT–PCR.  Total RNA was extracted from siRNA-transfected and control 489 

cells using Nucleospin RNA II extraction kit (Macherey-Nagel), which includes a DNAse I 490 

treatment. cDNA was obtained from RNA using the High Capacity cDNA Reverse 491 

transcription kit (Life Technologies) in a final volume of 20 µl. Quantitative RT–PCR 492 

analysis was performed using the Taqman® pre-designed gene expression assay 493 

approach (Applied Biosystems), using 1 µl of cDNA and premade probes designed by the 494 

manufacturer. The ratio of the mRNA level of each gene to that of large ribosomal 495 

protein P0 (RPLP0) endogenous control mRNA was calculated by the ∆∆Ct method 496 

(Livak and Schmittgen, 2001), and a value of 100 was assigned to control siRNA-497 

transfected cells. Each experiment was performed in triplicate and repeated three times.  498 

HCVpp.  The luciferase-based HCV-pseudotyped retroviral particles (HCVpp) infection 499 

assay was performed as previously described (Op De Beeck et al., 2004). 500 
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FIGURES LEGENDS 693 

 694 

Figure 1. Activity of GBF1 truncation mutants in HCV replication. (A) Schematic 695 

representation of GBF1 deletion constructs. Conserved domains are indicated in grey 696 

and black. (B) Huh-7 cells were transfected with the indicated constructs, infected 16 h 697 

later in the presence or the absence of BFA (50 ng/ml) and lysed 30 hpi. BFA was added 698 

during the 2-h infection and was present throughout the experiment. Cell lysates were 699 

analyzed by immunoblotting with antibodies to E1 (top), GFP (middle) or tubulin 700 

(bottom). (C) Quantification of E1 signals. For each construct, the expression of E1 in the 701 

presence of BFA is expressed as a percentage of its expression in the absence of BFA. 702 

Values are means ± SD of 3 independent experiments. (D) Transfected Huh-7 cells were 703 

incubated for 24 h with 50 ng/ml BFA and the amounts of HSA in cell lysates and culture 704 

media were quantified by ELISA. Values are means ± SD of 3 independent experiments 705 

and are expressed as percentage of secretion. –BFA, mock-transfected cells incubated in 706 

the absence of BFA. 707 

 708 

Figure 2. Effect of T31N and Q71L of Arf1 mutants on HCV infection. (A) Huh-7 cells 709 

were transfected with plasmids expressing Arf1-GFP (WT), Arf1 T31N-GFP or Arf1 710 

Q71L-GFP, and infected with HCV 16 hours after transfection. The cells were fixed at 30 711 

hpi and infected cells were labeled with an anti-E1 antibody (red). Cells expressing Arf1 712 

constructions were detected by GFP fluorescence (green). Each field is presented in 713 

duplicate, with an image corresponding to the infection at the top and the image 714 

corresponding to merged signals at the bottom, to facilitate the visualization of the red 715 

staining. Arrows indicate cells expressing fluorescent fusion proteins. (B) Huh-7 cells 716 

expressing GFP or mCherry (FP) or Arf1 constructs fused to GFP or mCherry were 717 
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infected with HCV and the infection was quantified in at least 100 fluorescent cells per 718 

experiment for each construct (black series). For mock-transfected cells, the infection in 719 

the total population was quantified. A similar analysis was performed with an 720 

adenovirus expressing GFP in cells expressing the mCherry constructs (grey series). The 721 

results are averages of 3 independent experiments (± SD), * P<0.05, *** P<0.001. 722 

 723 

Figure 3. Impact of Arf proteins depletion on HCV replication. (A) Huh-7 cells were 724 

transfected with indicated siRNA, infected with HCV or adenovirus at 72 h post 725 

transfection, fixed at 30 hpi and processed for detection of infected cells by 726 

immunofluorescence. Infection of non-targeting siRNA-treated samples is expressed as 727 

100% (*** P<0.001, 1-way ANOVA). (B) Total RNA was extracted from siRNA-728 

transfected cells at 72 h post transfection, and the indicated mRNAs were quantified by 729 

RT-qPCR. mRNA amounts in non-targeting siRNA-treated samples are expressed as 730 

100%. (C) pCEP4, pCEP4-Arf4m or pCEP4-Arf5m (both from mouse) transfected Huh-7 731 

cells were transfected with indicated siRNA and analyzed by immunoblotting at 3 days 732 

post transfection using Arf4, Arf5 and tubulin antibodies. Note that the anti-Arf4 733 

antibody does not detect the transfected murine Arf4. (D) pCEP4, pCEP4-Arf4m or 734 

pCEP4-Arf5m-transfected Huh-7 cells were transfected with indicated siRNA and 735 

infected with HCV 3 days later. Cells were fixed at 30 hpi, labeled with an anti-E1 736 

antibody and the number of infected cells was counted. The number of infected cells in 737 

pCEP4/non-targeting siRNA-transfected cells was expressed as 100%. Error bars 738 

represent standard error of the means (SEM) from 4 independent experiments (** 739 

P<0.01, *** P<0.001, pCEP4-Arf vs pCEP4, 2-way ANOVA). (E) Huh-7 cells were 740 

transfected with indicated siRNAs and electroporated 3 days post transfection with a 741 

recombinant HCV genome containing a deletion in E1E2 and expressing Renilla 742 
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luciferase. Samples were harvested for luciferase assay at 4, 24, 48, and 72 h post 743 

electroporation. Error bars indicate standard errors of the mean for 3 independent 744 

experiments performed in triplicate. 745 

 746 

Figure 4. Impact of Arf pair depletion on the secretory pathway.  (A) Huh-7 cells 747 

transfected with the indicated siRNA were seeded in 12-well plates, and cultured for 24 748 

h. The amounts of human serum albumin (HSA) and of apolipoprotein E (apoE) in the 749 

conditioned culture media and in cell lysates were quantified with an ELISA assay and 750 

expressed as percentage of secretion. Error bars represent standard deviation of 3 751 

independent experiments performed in duplicate (*** P<0.001, 1-way ANOVA). (B) Huh-752 

7 were transfected with indicated siRNAs and fixed 72 h later. Cells were fixed and 753 

processed for immunofluorescent detection of ERGIC53, GBF1, GM130 and TGN46 754 

(white). Nuclei were stained with DAPI (blue). Representative confocal images are 755 

shown. Bar, 20 µm. 756 

 757 

Figure 5. Impact of Arf4 and Arf5 depletion on lipid droplets. (A) Huh-7 cells were 758 

transfected with indicated siRNAs and fixed 72 h later. Cells were fixed and processed 759 

for immunofluorescent detection of GM130 (red). Lipid droplets were stained with 760 

BODIBY 493/503 (green) and nuclei with DAPI (blue). (B) Huh-7 cells were cultured for 761 

24 h in the presence or the absence of BFA (50 ng/ml), and processed for the detection 762 

of lipid droplets and nuclei. Representative confocal images are shown. Bars, 20 µm. 763 

 764 

LEGENDS TO THE SUPPLEMENTARY FIGURES 765 

 766 
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Figure S1. Off-target effect of Arf1 siRNA pool. Huh-7 cells were transfected with 767 

indicated siRNA and total RNA was extracted 24 h post transfection. Arf1 and Arf3 768 

mRNAs were quantified by RT-qPCR and mRNA amounts in non-targeting siRNA-treated 769 

samples are expressed as 100%. 770 

 771 

Figure S2. Impact of class II Arf proteins depletion on HCVpp, VSV-Gpp and 772 

RD114pp entry. Huh-7 cells were transfected with indicated siRNA and infected with 773 

HCVpp, VSV-Gpp or RD114pp 3 days post transfection. Samples were harvested for 774 

luciferase assay at 48 hpi. Error bars indicate standard deviation for 3 independent 775 

experiments performed in triplicate. 776 

 777 

Figure S3. Immunofluorescence analysis of Arf4 and Arf5 intracellular localization 778 

in non infected Huh-7 cells. Huh-7 cells transfected with Arf4-GFP or Arf5-GFP 779 

expression plasmids were processed for immunofluorescent detection of GM130 (A) or 780 

GBF1 (B). Representative confocal images of transfected cells are shown together with 781 

the merge image. Bars, 20 µm. 782 

 783 

Figure S4. Immunofluorescence analysis of Arf4 and Arf5 intracellular localization 784 

in infected Huh-7 cells. Huh-7 cells infected with HCV and transfected with Arf4-GFP or 785 

Arf5-GFP expression plasmids were processed for immunofluorescent detection of NS3 786 

(A) or NS5A (B). Representative confocal images of transfected cells are shown together 787 

with the merge image. Bars, 20 µm. 788 

 789 

Figure S5. Impact of the depletion of different Arf pairs on lipid droplets. (A) Huh-7 790 

were transfected with indicated siRNAs and fixed 72 h later. Cells were fixed and 791 
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processed for immunofluorescent detection of GM130 (red). Lipid droplets were stained 792 

with BODIPY 493/503 (green) and nuclei with DAPI (blue). Representative confocal 793 

images are shown. 794 
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Figure 1. Activity of GBF1 truncation mutants in HCV replication. (A) Schematic representation of GBF1 
deletion constructs. Conserved domains are indicated in grey and black. (B) Huh-7 cells were transfected 

with the indicated constructs, infected 16 h later in the presence or the absence of BFA (50 ng/ml) and lysed 

30 hpi. BFA was added during the 2-h infection and was present throughout the experiment. Cell lysates 
were analyzed by immunoblotting with antibodies to E1 (top), GFP (middle) or tubulin (bottom). (C) 

Quantification of E1 signals. For each construct, the expression of E1 in the presence of BFA is expressed as 
a percentage of its expression in the absence of BFA. Values are means ± SD of 3 independent experiments. 

(D) Transfected Huh-7 cells were incubated for 24 h with 50 ng/ml BFA and the amounts of HSA in cell 
lysates and culture media were quantified by ELISA. Values are means ± SD of 3 independent experiments 
and are expressed as percentage of secretion. –BFA, mock-transfected cells incubated in the absence of 

BFA.  
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Figure 2. Effect of T31N and Q71L of Arf1 mutants on HCV infection. (A) Huh-7 cells were transfected with 
plasmids expressing Arf1-GFP (WT), Arf1 T31N-GFP or Arf1 Q71L-GFP, and infected with HCV 16 hours after 
transfection. The cells were fixed at 30 hpi and infected cells were labeled with an anti-E1 antibody (red). 

Cells expressing Arf1 constructions were detected by GFP fluorescence (green). Each field is presented in 
duplicate, with an image corresponding to the infection at the top and the image corresponding to merged 
signals at the bottom, to facilitate the visualization of the red staining. Arrows indicate cells expressing 

fluorescent fusion proteins. (B) Huh-7 cells expressing GFP or mCherry (FP) or Arf1 constructs fused to GFP 
or mCherry were infected with HCV and the infection was quantified in at least 100 fluorescent cells per 

experiment for each construct (black series). For mock-transfected cells, the infection in the total population 
was quantified. A similar analysis was performed with an adenovirus expressing GFP in cells expressing the 
mCherry constructs (grey series). The results are averages of 3 independent experiments (± SD), * P<0.05, 

*** P<0.001.  
166x61mm (300 x 300 DPI)  
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Figure 3. Impact of Arf proteins depletion on HCV replication. (A) Huh-7 cells were transfected with indicated 
siRNA, infected with HCV or adenovirus at 72 h post transfection, fixed at 30 hpi and processed for detection 
of infected cells by immunofluorescence. Infection of non-targeting siRNA-treated samples is expressed as 

100% (*** P<0.001, 1-way ANOVA). (B) Total RNA was extracted from siRNA-transfected cells at 72 h post 
transfection, and the indicated mRNAs were quantified by RT-qPCR. mRNA amounts in non-targeting siRNA-
treated samples are expressed as 100%. (C) pCEP4, pCEP4-Arf4m or pCEP4-Arf5m (both from mouse) 
transfected Huh-7 cells were transfected with indicated siRNA and analyzed by immunoblotting at 3 days 
post transfection using Arf4, Arf5 and tubulin antibodies. Note that the anti-Arf4 antibody does not detect 
the transfected murine Arf4. (D) pCEP4, pCEP4-Arf4m or pCEP4-Arf5m-transfected Huh-7 cells were 

transfected with indicated siRNA and infected with HCV 3 days later. Cells were fixed at 30 hpi, labeled with 
an anti-E1 antibody and the number of infected cells was counted. The number of infected cells in 

pCEP4/non-targeting siRNA-transfected cells was expressed as 100%. Error bars represent standard error of 
the means (SEM) from 4 independent experiments (** P<0.01, *** P<0.001, pCEP4-Arf vs pCEP4, 2-way 
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ANOVA). (E) Huh-7 cells were transfected with indicated siRNAs and electroporated 3 days post transfection 
with a recombinant HCV genome containing a deletion in E1E2 and expressing Renilla luciferase. Samples 
were harvested for luciferase assay at 4, 24, 48, and 72 h post electroporation. Error bars indicate standard 

errors of the mean for 3 independent experiments performed in triplicate.  
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Figure 4. Impact of Arf pair depletion on the secretory pathway.  (A) Huh-7 cells transfected with the 
indicated siRNA were seeded in 12-well plates, and cultured for 24 h. The amounts of human serum albumin 

(HSA) and of apolipoprotein E (apoE) in the conditioned culture media and in cell lysates were quantified 

with an ELISA assay and expressed as percentage of secretion. Error bars represent standard deviation of 3 
independent experiments performed in duplicate (*** P<0.001, 1-way ANOVA). (B) Huh-7 were transfected 
with indicated siRNAs and fixed 72 h later. Cells were fixed and processed for immunofluorescent detection 

of ERGIC53, GBF1, GM130 and TGN46 (white). Nuclei were stained with DAPI (blue). Representative 
confocal images are shown. Bar, 20 µm.  
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Figure 5. Impact of Arf4 and Arf5 depletion on lipid droplets. (A) Huh-7 cells were transfected with indicated 
siRNAs and fixed 72 h later. Cells were fixed and processed for immunofluorescent detection of GM130 

(red). Lipid droplets were stained with BODIBY 493/503 (green) and nuclei with DAPI (blue). (B) Huh-7 cells 

were cultured for 24 h in the presence or the absence of BFA (50 ng/ml), and processed for the detection of 
lipid droplets and nuclei. Representative confocal images are shown. Bars, 20 µm.  
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