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A Quasi-brittle Fracture FE model for vertebrae bone with 

an experimental validation  

The purpose of this study is to present a numerical treatment of a quasi-brittle damage 

constitutive model to help surgeons while making decision for patient suffering from 

fractures. Most of the presented material models, found in the literature which deals 

with damage, are complex and they depend on a large number of parameters. Therefore, 

the simplicity of the model introduced in this work to describe the damage of vertebra 

(healthy or pathologic) reveals its real efficiency to predict the crack localization for 

different types of vertebrae.   

A quantitative computed tomography (QCT)-based finite element method 

(FEM) model is developed within the framework of continuum damage mechanics 

(CDM). It describes both the initiation and the progressive propagation of cracks which 

will help predicting the fracture of a human vertebrae by reproducing the experimental 

failure of four cadaveric lumbar vertebral bodies (female=1, male=3, age = 82 ± 9 

years) under quasi-static compressive loading paths.  

To achieve this goal, different steps have been taken to propose a new bone 

damage law. First, the six CT scanned vertebra experimental data obtained is presented. 

Then, a theoretical damage model is introduced. The damage initiation prediction 

results and crack progressive propagations are presented. Finally, the proposed models 

with different elastic modulus estimation comparison show a good agreement between 

the numerical and the experimentally measured force- displacement curves as well as 

the damage localization. The numerical models are implemented into the finite element 

code (ABAQUS).  
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Introduction 

The motivation of this research is to provide valuable improvement for the surgical 

diagnosis and aims at reducing healthy and osteoporotic vertebrae fractures, as well. 

The originality of this paper is the quasi-brittle law simplicity describing the bone 

damage in such cases like cars’ crash or severe fall. 

In this study, numerical models are developed and implemented in order to 

identify vertebral fracture over expected experimentally compression load ranges. 

Thanks to this study, answers are given to questions about the damage affecting 

vertebral bodies, such as the ultimate load magnitude as well as the damage state of all 

vertebrae. 

The osteoporosis that is affecting more and more people (man and woman) is a 

disease which characterized by the bones ‘weakness that increases the risk of their 

breaking. It is an age-related disease which causes progressive skeletal disorder 

characterized by a low bone mass and microarchitectural alterations increasing bone 

fragility and susceptibility to fracture [1].This causes pain and a significant loss of 

mobility. Vertebral fractures are the most [2] common type of osteoporotic fracture and 

they are associated to the decreasing quality of life [3] and to the substantial morbidity 

[4]. 



Clinically speaking, osteoporosis is diagnosed using the dual-energy X-Ray 

absorptiometry (DXA) [2, 5, 6]. The system measures the bone mineral density (BMD). 

The fracture risk is assumed to be highly correlated with the value measured by the 

DXA. Osteoporosis is defined for bones with a BMD between 833 and 648 mg/cm
2
 

(equivalent to a T-score between -1.0 and -2.5), whereas if a BMD is above 833 mg/cm
2
 

(T-score above -1.0), they are considered as healthy. Experts give osteoporosis 

medications with a BMD less than 648 mg/cm
2
 (T-score less than −2.5). It is also 

noteworthy that DXA is submitted to restrictions for the assessment of bone fragility 

and osteoporosis diagnosis [7]. DXA is based on 2D and not 3D measurements and used 

only for porous bone information and not for compact bone. It is known that 

microarchitecture alteration is currently included in the definition of osteoporosis [1]. 

From a numerical point of view, several FE model describing damage and fractures for 

bone structure are proposed in the literature. Most of these works introduce linear and 

non-linear isotropic and anisotropic finite element (FE) models. Each work presents a 

new model with some answers about the best way to predict bone structures damage. 

Doblaré et al [8] present a study of the proximal femoral extremity remodeling based on 

an anisotropic bone model and state that the evolution of bone microstructure internal 

variables can be formulated following the Continuum Damage Mechanics (CDM) 

principles. 

They show that a good similarity is obtained between numerical and 

experimental results. The same authors present [9] another work for both hard and soft 

tissues. A damage-bone remodeling theory presented in [10] shows that under constant 

load, the three unit bone bars structure exhibit  inhomogeneous strains which strongly 

depend upon the manner in which the microdamage is distributed 

To emphasize the distinct damage behavior in tension and compression, Garcia 

& al presented in [11] 3D anisotropic constitutive equations. For the sake of simplicity, 

Hambli et al ([12], [13]) presented in these two works respectively a simple finite 

element (FE) model coupled with quasi-brittle damage model for the proximal femoral 

fracture prediction based on orthotropic behavior and a numerical FE-based model with 

an element deletion to describe the cracks propagation. Many Quantitative computed 

tomography (QCT)-based finite element (FE) voxel models have been presented to 

predict ultimate force of human lumbar vertebrae under axial compression. As 

mentioned in [14], no clear choice of the failure criterion to adopt for the bone tissue 

has been found to predict fracture risk of bones. In that work, a combined experimental-

numerical approach has been used to build up a subject-specific finite element models 

which are able to accurately predict failure patterns of bones. In [15] a theoretical model 

formulated within the framework of continuum damage mechanics and based on fabric 

tensor is proposed. A good correlation between experimental and numerical results has 

been found. The authors of [16] proposed an original bone remodeling law coupled to 

trabecular bone plasticity for the simulation of orthodontic tooth movements by using a 

phenomenological approach of anisotropic Continuum Damage Mechanics. Over the 

last decades, developments in (3D) have provided possibilities for measuring a variety 

of structural indices to characterize bone microarchitecture.  However, standard 

mechanical tests did not provide easily the elastic constants due to the small size of 

specimens of human bone. The dependency of microarchitecture on bone’s mechanical 

properties has been presented in [17, 18]. The authors showed that the elastic constants, 

specifically the young’s modules are clearly correlated with the tissue morphology bone 

coefficient BV/TV. The results presented in [19] indicate that there is no universal 

modulus–density relationship for on-axis loading. The authors suggest that the site-

specificity in apparent modulus–density relationships may be attributed to the 



differences in architecture. In [15], authors showed that there is a strong correlation 

between cumulated permanent strain and elastic modulus which indicate that these 

variables affect the damage process. For isotropic cellular materials, a basic model 

consists of a power relationship of the Lamé constants with respect to volume fraction 

[20]. For anisotropic materials, an averaging method was developed by Cowin et al in 

[21] to identify the type of elastic symmetry and express the dependency of the elastic 

constants toward the volume fraction in [22]. 

In general, most of the articles found in the literature show how it is important to 

provide a precise diagnosis of fracture state (magnitude and localization) and how to 

give different answers for different types of bone (healthy or not), and how to establish 

behavior model to quantify the bone fracture. However, they showed controversies in 

different conclusions on the same topic.  

As it has been reported in [12, 13] a quasi-brittle damage model coupled to an 

orthotropic behavior law can predict the proximal femur fracture. In [46], the authors 

present a study to predict the failure of human vertebra based only the strength level and 

failure patterns. 

Our model based on a simple isotropic damage law gives a unified and reliable 

answer to different quality of bones and precisely predict the ultimate fracture load as 

well as the damage localization for vertebra. 

Studies found in the literature followed different approaches to estimate the 

Young modulus. For example, authors of [15, 33] reported that the mechanical behavior 

of trabecular bone is mainly governed by its tissue modulus and morphology, i.e. bone 

volume fraction (BV/TV) especially in the case of small strain. In studies [ 47, 48, 49, 

50] , authors adopted  elasticity– apparent density relationships to build FE models.  

In the present work, three simple methods proposed in different works in the 

literature computing the Young’s modulus E (MPa) that have been implemented in the 

numerical model in order to compare them and to show their performance toward 

reproducing the initiation and the propagation of the damage. The first method is based 

on the” grey value “. The second method has been proposed by Yang et al in [22]. 

Finally, the third one is presented by Hernandez in [23]. These three methods are going 

to be presented in the next section. 

 Method 1: Many researchers such as Jacobs et al [24], Keyaketal [25], Helgason 

et al [26], Madi et al. [27], Tawara et al [28], and Jovanovici et al [29], 

Gislanson et al [30] showed that the Young's modulus for each finite element 

depends on the apparent density for each bone voxel (E = f ()), which in its turn 

was calculated on the basis of CT images. Relationship between the apparent 

density and CT values (HU: Hounsfield Units or GV: gray values) is also 

calibrated. The chosen formula can be expressed as: 

 

E = 3500 ρ2.2                                                                                                                                             (1) 

 

 Method2: In [22], Yang et al propose a dependent orthotropic Hooke’s model 

for cancellous bone based on the identification of the elastic constants of 

trabecular bone in function of volume fraction (BV/TV).  

 

         
  

  
 
   

                                                                               (2) 

 



Where ET is the slope obtained from the experimental curves (see Figure.3) 

 
 

 Method 3: In [23], Hernandez et al present the used parameters to predict bone 

material properties with power law functions of the form: 

 

                                                                                                                                             (3) 

 

Where y is the strength or elastic modulus, x a parameter (i.e apparent density) 

and a and b are empirical constants derived from experimental data. They propose the 

following relationship where the x on the preceding power function is the bone volume / 

total volume ratio (BV/TV):  

        
  

  
 
    

                                                                             (4) 

 
In what follows the material, the experimental method and the numerical models 

with the obtained results are going to be detailed. The first one introduces the procedure 

to obtain data and geometry of the six CT scanned lumbar vertebra, followed by the 

experimental curves obtained for the vertebrae tested under compression till fracture. As 

pointed out previously, Continuum Damage Mechanics ‘CDM’ framework is chosen 

since it is the most appropriate constitutive framework to reproduce the bone structure 

failure as it will be detailed in section 2.In the third part, the boundary and load 

conditions are presented. The simulations of different cases are detailed in section 4 for 

the sake of a comparison between theoretical and experimental results. 

 

1. Material and Method 

 
1.1 Sample preparation 

Six lumbar vertebrae obtained from four donors (female=1, male=3, age = 82 ± 9 

years [range: 63 – 91]) were CT scanned by using a GE Medical Systems scanner 

available in La Timone University hospital, (Marseille. DICOM images files 

generated by the scanner are constituted by pixels with different gray intensities). 

The investigations were approved by research ethics board at the University 

Hospital.  

 Step 1: 3D reconstruction has been accomplished using the technique of density 

segmenting with the research software Mimics 17.0. The generation of the 

surface and volume meshes was made by the research software 3Matic 

9.0.0.231.  It was used to create a triangular mesh on the surface of the vertebra, 

and to generate the volume mesh with linear tetrahedral elements (C3D4, six 

degrees of freedom per node). The volume mesh was imported again in Mimics, 

in order to assign the material parameters based on the Hounsfield Units ‘HU’ or 

Units Gray values on the scanned images. The density  and the young Modulus 

E are obtained at the end of this step and the geometry is used in the finite 

element simulation. 

 Step 2: Through the software Image J combined with the software Bone J, the 

architectural parameters were extracted: BV/TV (Bone Volume over Total 



volume; i.e. bone volume fraction), Tb.Th (trabecular thickness), Tb.Sp 

(Trabecular Spacing) and Tb.N (Trabecular Number). These parameters were 

also used in the finite element computations. 

 

In Figure 1, the flow chart summarizes the protocol established to create FE models 

from CT data using material properties is presented following the steps detailed 

previously. 

 

1.2 Experimental Mechanical Compression test 

 

One of the most used classifications of type of trauma is the one introduced by Magerl 

[31] based on the morphological analysis of lesion. The called type A is attributed to the 

compression injury. It is subdivided into three types (Group A1 fracture on the top of 

the vertebra; A2 Group fracture separation; A3 Group, burst-fracture [32]. To reproduce 

the trauma produced by cars’ crash or severe fall, compression of lumbar vertebra 

investigations were performed on six lumbar vertebrae obtained from four human 

cadavers. An INSTRON 5566 device was used for the compression test. Vertebrae with 

embedded epoxy resin were placed between the jaws (Figure 2a). Resin was maintained 

during the entire test enabled vertebrae to be set in the vertical axis of the compression 

device. A velocity of 5 mm/min was imposed during the test. The failure load (in kN) 

and displacement were measured. During the mechanical test, the mean failure load was 

(2.4kN). The initial crack always occurred in the middle of the vertebra .Experimental 

ultimate load, final displacement, BMD for all vertebrae are reported in Table 1. 

The next picture (Figure 2b) taken during the compression of one of the 

specimens, show clearly that the failure occurs in the middle of the vertebra with the 

wedge fracture which is close to the group A3 with a reduction of the height of the 

vertebra. 

In Figure 3, the experimental data obtained for the six specimens are reported. 

The value of the tangent modulus ET used in the second method for young’s modulus 

estimation 2 (Eq.2) are mentioned in the same curves. The maximum value (ET= 39 

MPa) is obtained for the specimen 3-L2, whereas the lowest one (ET= 7 MPa) is 

obtained for the specimen 2-L2. It seems clear that this value depends on the 

classification of vertebra (healthy or osteoporotic). Indeed, specimen 3, which is 

reported as healthy, has a BMD of 0.884, whereas, specimen 2, which is reported as 

osteoporotic, has a BMD of 0.616. The load-displacement curves obtained for three 

different vertebrae (L2, L3, L4) taken for the same donor (specimen 3), showed the 

same tendency with a variation in the fracture load magnitude [33].Indeed, taken in the 

same segment, the different lumbar vertebrae will not have the same orientation with 

respect to the vertical axis of the standing or sitting position. Therefore the same 

compression forces will act differently on them depending on the position of the 

vertebra in the spine segment. 

In order to reproduce the obtained experimental data as the localization of the crack, 

the state of damage , the ultimate load failure, a new CDM model coupled with the three  

young modulus (equations1, 3, 4) is presented in the next section. 

 

2. Bone constitutive models 

2.1. Constitutive framework: A quasi brittle damage law 
The approach of irreversible thermodynamics with internal variables (Chaboche 

[34], Germain [35], Krajcinovic [36], Saanouni [37], Lemaitre [38], Kachanov 



[39]), is chosen to present a coupled damage elastic model to describe the 

initiation and the accumulation of the damage in bone structure, more precisely 

the vertebra. 

In this work, the damage behavior law describing a quasi-brittle behavior is 

proposed using an isotropic Continuum Damage Mechanics (CDM) based on 

Marigo modeling of the damage for brittle and quasi-brittle material behavior 

[40]. This theory is formulated to describe the progressive degradation of 

material (CDM) models. 

The new energy based model is described throughout state variable (external and 

internal).The state variables describing the constitutive equations are represented 

by the external and the observable variables, respectively the elastic strain tensor 

  and the Cauchy stress tensor  . For the sake of simplicity, damage is supposed 

isotropic described by a couple of scalar internal variables (D, Y) where Y is 

damage associated variable.  

The effective variables   and   including the damage effect which are defined in 

the framework of the elastic strain equivalence assumption are presented hereafter. The 

expression of the stored elastic energy density is given by: 

 

         
 

 
                                                                                                    (5) 

 

Where   is the symmetric fourth-rank tensor of elastic properties of the virgin 

(not affected by damage) material which in the isotropic case can be written in terms of 

the well-known Lame’s constants  and  according to:  

 

A 1 1 2 1    
 

   
 

      
      

  

           
 

 

           Where 1 is the second-rank identity (Kronecker) tensor while 1  is a fourth-rank 

unit tensor.  

According to the theory of Marigo, the free energy per unit mass      depends 

only on the two state variables namely the elastic strain tensor and the damage. 

The state laws  and Y are classically derived from the state potential are obtained from 

the free energy by:  

 

   
  

   
                                                                                                             (6.1) 
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The damage criterion (or damage yield function) is described by Y: 

         
 

 
     

 

                                                                                  (8) 

  , s and m are the material parameters. 



The parameters s and m are related to the damage “hardening” of the material. It 

is here to be noticed that the damage yield function (8) can describe the initiation of 

micro-cracks starting from undamaged state (D=0).  

In the present model, the dissipation potential  is reduced to the yield function 

f (associative theory): 

      
 

 
                                                                              (9)  

            The evolution laws derived from the dissipation potential are : 

     
  

  
   

  

  
                                                                                      (10) 

For this approach, the coupling between damage and elasticity is completed with 

the following damage evolution law. 

    
 

 

  

 
   
 

                                                                                                   (11) 

With: 

e eY : :   & &
                                                                                                    (12) 

The   above presented model emphasizes on the fact that the damage evolution is 

the influent parameter since it will affect the young modulus degradation as well as the 

evolution of the Cauchy stress. It will implicitly produce the damage propagation. 

Solving the nonlinear problem described by equations (6, 7,8,9,10,11 and 12) in order to 

determine the unknowns of the problem is performed through an approximation of these 

variables in total time interval                                
   . t is the 

increment between two successive time steps. This approximation is done for every 

integration point related to every finite element following the robust finite element 

method. 

Thus knowing the initial variables at tn, the discretized problem is solved giving 

the final solution at the final time tn+1.The discretization leads to the following 

expressions of the problem variables at tn+1=tn+t, the end of the step time: 

 

                  
 
   

      
   

                                                     (13) 
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From this last equation the “admissible” value of the damage variable is deduced 

as:       
     

 

 
  

 
                                                                                           

 



In this isotropic damage modeling, some remarks can be made: 

 If the scalar variable describing damage D=0, then the material state is described 

by the classical isotropic elastic model. 

 If the fracture condition of the critical value of D=1 is reached. D=0.999 is then 

assigned to theoretical damage value for numerical consideration and the state of 

final fracture. 

We will call the damage prediction combined with the first method (eq 1) model 1, 

the one that is coupled with the second method (eq2), model 2.  Finally, the damage 

model associated with the third method (eq 4) will be called model 3. 

These three damage models and the cracks propagation technique have been 

implemented into the FE code Abaqus/Standard via the user subroutine VMAT which 

uses an explicit integration method to solve the nonlinear problem. 

 

3. Simulations 

 Boundary and Loading conditions 

In general, the fracture of the vertebra occurs when the bone is subjected to a high 

compression load. A compressive pressure is applied then to the upper surface and the 

lower surface is constrained, (Figure4). The computations were carried out using the kill 

element method. This method simulates the propagation direction by setting the 

stiffness matrix to zero when the critical damage value (D=0.999) is reached inside an 

element of the mesh. This leads to the distribution of the stress state in the damage area. 

The pressure loading the vertebra is calculated from the experimental load obtained 

throughout the previous testing presented in section 1. 

 

4. Results 

 

As mentioned previously, the purpose of this work is to predict effectively the damage 

localization as well as the ultimate fracture strength for different specimens tested 

experimentally and presented in section 1.2. The ultimate strength load value obtained 

experimentally was applied for the three numerical models presented in section 2.1. The 

nonlinear analysis showed that the localized damaged zones were found to be different 

for each model. The results of the fitting of computed and experimental data are 

described in the next paragraph. The parameters Y0, m and s used in equation (11) have 

been chosen for every vertebra to best fit the experimental data.  

The predicted load–displacement curves based on the variation of the young’s 

modulus models (model1, model 2, model 3) presented in figure 5 have been obtained 

for the specimen 2-L2 and specimen 3-L2. The two chosen curves have been selected 

among the six experimental ones from figure 3. They have the highest and the lowest 

value of ultimate loads. The figure showed a similarity between the experimentally 

quasi- brittle failure and the numerical obtained results obtained and the best results are 

found when the quasi-brittle law is combined with for the Hernandez law (model 3) for 

the healthy vertebra (specimen 3-L2). It showed also that the predicted crack path with 

different stages of damage localization for the same vertebra. It is obvious that the two 

curves fit when damage reaches the value of 0.22 which means that the two curves tend 

to be similar when the damage starts to grow. The ultimate fracture load under 

compression (3.8±0.21 KN) that occurs for the critical value D=0.52. Indeed, for 

compression the critical damage can be reduced to the value D= 0.5 [41].  The strong 

damage accumulation occurs in inner of the vertebra as mentioned in [11] leading to the 



crush of the vertebral body as observed experimentally (Figure1b).The numerical curve 

obtained by model 2 showed a similarity in the value of the ultimate fracture load (4.79 

± 0.91 KN) but with a permanent shift toward the experimental curve. For the 

osteoporotic vertebra (specimen 2-L2) the comparison between the numerical result 

predicted by the model 1 and the experimental data (0.682 ±0.265 KN) shows a good 

agreement. However, the damage localization in that case is on the top of the vertebra 

(Figure 5). A better similarity is obtained for the same osteoporotic vertebra from the 

model 2 with crack localization in the middle of the vertebra as it will be detailed in 

Figure 6. 

Table 3 summarizes the obtained computed ultimate loads for the six vertebrae. 

The standard deviation SD for the models 1, 2 and 3 were respectively included in the 

intervals [0.265; 2.14], [0.027; 0.91], and [0.048; 0.446]. Model 3 is then the most 

accurate one since it gives the lowest difference in comparison with the experimental 

data. 

           Figure 6 shows that in case we choose model 1, the damage localization is on the 

top of the vertebra with low value of critical damage [0.177; 0.392]. When we choose 

model 2 and 3, a good localization is obtained [0.478; 0.57]; i.e. in the middle of the 

vertebra (as observed experimentally). The choice of model 1 leads to a localization 

zones located on the top of vertebrae for all computed cases. 

From the latest results, it is concluded that the choice of model 1 (apparent density 

based Young’s modulus model) is more relevant for the osteoporotic vertebra; however 

it gives a localization on the top of the specimen.  Numerical model3 expressing 

exclusively the dependency of Young’s modulus on the tissue morphology bone 

fracture BV/TV is suitable for healthy vertebra (good crack localization). The choice of 

model 2 (including the value of ET and BV/TV) did give the acceptable results for both 

vertebra cases (osteoporotic or healthy) with good damage localization.  

 

5. Discussion  

 

The aim of this work was to develop a simple quasi-brittle model to describe the process 

of vertebral fracture and to compare it to the experimental load-displacement curves. 

Constitutive equations were developed using a CDM model to be the best to fit to the 

experimental data. The results of the numerical investigation showed the capabilities of 

the proposed FE element model to describe and predict the localization of vertebra 

failure based on the choice of the right modulus, parameters of the evolution damage 

law (Yo, s, m) which are hard to obtain experimentally. The accuracy of the results is 

improved by the use of the BM/TV ratio measured for each vertebra. The quasi brittle 

isotropic models which are so simplistic can then predict plausibly the compression of 

bones. The results show that the numerical force-displacement curve using the proposed 

behavior laws are adequate. This is due to the quasi-brittle isotropic models that made 

plausible prediction about the results related to the experimental force-displacement 

curve. The obtained results in this work clearly indicate the dependency of Young’s 

modulus model on the vertebra classification. Adjustment of models can be then applied 

depending on the BMD of every specific studied case. 

It has to be noticed that the numerically predicted load-displacement curves was 

different from the experimental curves when the value of D was very low. This means 

that the damage models overestimate the damage at the beginning of the load-

displacement curves. The presented numerical models based on an isotropic elastic 

behavior for bone structure give some good quantities and qualitative results. A 

correlation between micro and macro mechanisms is suitable to better understand the 



whole physical process of damage in order to enhance the damage modeling. Other 

behavior models should be then chosen like the ones proposed in [42] based on 

crushable foam plasticity models (an approximation of Tsai-Wu yield function). In 

addition, for vertebrae highly affected by osteoporosis, 3matic  presents some limitation 

on the quality of the bone structure meshing. Besides, it is the continuum level is largely 

depending on both elements size and orientation and accordingly the mesh size should 

be accurately determined for each type of material [43, 44, and 45]. Another limitation 

of this study was the inclusion of only six samples. This was due to the complexity to 

generate finite elements meshes. Further studies including more appropriate FE meshing 

algorithm are indeed necessary to treat the mesh dependency problem. However, despite 

these limitations, the CDM modeling did show some real potential to predict the right 

localization of fracture for different types of vertebra (healthy or osteoporosis). 

 

6. Conclusion 

 

The purpose of this work was to develop and validate a simple FE model based on 

continuum damage mechanics in order to simulate the complete force–displacement 

curve of lumbar vertebra failure. The quasi-brittle law prediction bone failure 

corroborates the experimental response of vertebral bone failure under a quasi-static 

compression loading. The obtained results show important similarities for both models 

(model 2 and 3) for healthy vertebra and the significant differences emerged for model 

1. For osteoporotic vertebrae, the model 1 seems to be more appropriate. Despite these 

differences, the potential of the CDM model combined with the right young modulus 

law is proved through the computed results. In general, concerning FE simulations, the 

combination of the parameters like geometry and BV/TV (QCT) and the BMD 

measurement (DXA) did improve the numerical results. 
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Table 1. : Failure values for the six lumbar  vertebrae. 

 

Specimen vertebra 

 

BMD 

(g/cm2) 

Load 

(KN) 

Displacement 

(mm) 

1 L2(healthy) 1.016 1.615 7 

2 L2(Osteoporotic) 0.616 1.057 9.87 

3 L2(healthy) 0.884 3.501 4.6 

3 L3(healthy) 0.938 3.074 9.14 

3 L4(healthy) 0.881 2.839 5.77 

4 L2 (Osteoporotic) 0.819 2.437 8.4 

SD 0.136 0.924 2.037 

 

Table 2.1 :  Material properties for bone used for the simulation (specimen 2–L2) 

 

GR : E = 3500 ρ2.2 

 Density (g/cm3) Young ’s Modulus (MPa) Poisson ratio 

Cortical bone 0.64-2.09 1330-17859 0.3 

Concellous bone 0.04-0.41 4-517 0.3 

Yang´s Law : E = 1240 * ET * (BV/TV) 1.80 

 Density 

(g/cm3) 

BV/TV Young ‘s Modulus (MPa) Poisson ratio ET 

Vertebra 0.03-1.74 0.3 993.89 0.3 7 

Hernandez´s Law : E = 84370*(BV/TV) 2.58 

 Density 

(g/cm3) 

BV/TV Young ‘s Modulus (MPa) Poisson ratio 

Vertebra 0.03-1.74 0.3 3777.12 0.3 

 

 

 

 

 

 

 

 



 

 

 

 

Table 2.2 : Material properties for bone used for the simulation (specimen 3–L2) 

 

GR : E = 3500 ρ2.2 

 Density (g/cm3) Young’s  Modulus (MPa) Poisson ratio 

Cortical bone 0.619-1.89 1219-14299 0.3 

Cancellous bone 0.05-0.414 6-505 0.3 

Yang´s Law : E = 1240 * ET * (BV/TV) 1.80 

 Density 

(g/cm3) 

BV/TV Young’s  Modulus 

(MPa) 

Poisson ratio ET 

Vertebra 0.05-1.89 0.3 5537.38 0.3 39 

Hernandez´s Law : E = 84370*(BV/TV) 2.58 

 Density 

(g/cm3) 

BV/TV Young Modulus (MPa) Poisson ratio 

Vertebra 0.05-1.89 0.3 3777.12 0.3 

Resin 1.2  4220 0.4 

 

 

Table 3: Ultimate computed load (SD) for the six specimens 

 Specimen 1-

L2 

Specimen 2-

L2 

Specimen 3-

L2 

Specimen 3-

L3 

Specimen 3-

L4 

Specimen 4-

L2 

Numerical 

(Model 1) 

1.037(0.408) 0.682 

(0.265) 

0.467(2.145) 1.131(1.373) 1.898(0.665) 0.759(1.17) 

Numerical 

(Model 2) 

2.074 

(0.324) 

0.977(0.056) 4.796(0.915) 3.035(0.027) 3.576(0.5211) 1.478(0.661) 

Numerical 

(Model 3) 

1.712 

(0.068) 

1.274 

(0.153) 

3.805(0.215) 3.142(0.048) 1.782(0.446) 1.782(0.446) 

 



 

Figure 1 : Flow chart showing the protocol established to create FE models from CT 

data using material properties. 

 

Figure 2 a : Lumbar vertebra before failure. The resin is placed at the top and the 

bottom of the vertebral body. 

 

 
 

 

 

Figure 2b:  Lumbar vertebra after failure. Localization of the fracture at the middle of 

the vertebral body. 
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Figure  3 : Experimental load vs. displacement for the six specimens with the indication 

of each vertebra tangent modulus ET (MPa) and the value of   every specimen BMD. 

 

Figure 4: Vertebra Load and boundary conditions (Meshing of the specimen 3-L2 using 

81473  linear tetrahedral elements)  

 

 



Figure 5: Experimental and computed load vs displacement curves during the 

compression of two vertebrae with the two different numerical models. Damage 

distribution at different displacement values as predicted with model 2 for the specimen 

2-L2 and with model 3for specimen 3-L2. 

 

 

 
                    

 

 

 

 

 

 

 

 

 

 



 

Figure 6: CT- Scan and F-E results for the six specimens: Damage localization zones 

when the ultimate experimental load is reached for the three models. 

 

         CT Scan                Model 1    Model 2        Model 3 

 

Specimen 1-L2   
  BMD= 1.016     D=0.198421              D= 0.494499       D=0.463816 

Specimen 2-L2   
  BMD=0.616                  D=0.245839              D=0.47808                        D=0.508358 

Specimen 3-L2  
  BMD=0.884      D= 0.392711                   D=0.48731                        D= 0.532372 

Specimen 3-L3  
  BMD=0.938      D=0.296613                     D=0.498718                        D=0.545477 

Specimen 3-L4  
  BMD=0.881                    D=0.229773               D=0.507447                       D=0.578852  

Specimen 4-L2  
  BMD=0.819                     D=0.177753               D=0.499651       D=0.487286 


