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Abstract 

The self-excited vibrations due to the regenerative effect, commonly known as chatter, are 

one of the major problems in machining processes. They cause a reduction in the surface 

quality and in the lifetime of mechanical elements including cutting tools. Furthermore, 

the experimental investigations of chatter suppression techniques are difficult in a real 

machining environment, due to repeatability problems of hard to control parameters like 

tool wear or position dependent dynamic flexibility. In this work, a mechatronic 

hardware-in-the-loop (HIL) simulator based on a flexible structure is proposed for 

dimensionless study of chatter in orthogonal cutting. Such system reproduces 

experimentally, on a simple linear mechanical structure in the laboratory, any stability 

situation which can be used to test and optimize active control devices. For this purpose, a 

dimensionless formulation is adopted and the delay related to the phase lag of the actuator 

and the controller employed on the HIL is compensated. 
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1 INTRODUCTION 

The presence of self-excited vibration, also known as chatter, in machining processes is a 

classic problem that limits material removal capability. The presence of these vibrations on 

machines is disastrous since they prevent obtaining the required surface finishes and decrease the 

lifetime of tools and mechanical components of the machine. 

The principal reason of chatter onset is the regenerative effect, which was defined by Tobias 

[1] and Tlusty [2] as a complex phenomenon affected by machining characteristics (spindle 

speed, depth of cut…) and dynamic properties of the machine (stiffness and mass distribution, 

damping…). Later on, Merrit [3] presented the problem as a feedback loop, clarifying the 

understanding of the problem. All these theoretical and experimental developments were focused 

on continuous processes such as turning operations. More recently, studies about milling 

processes have been performed ([4]-[6]). In these investigations, the stability lobe diagrams 

define the limiting values for machining parameters in order to assure a stable cut. Therefore, 

such diagrams are usually employed to optimize the material removal rate. 

Many researchers have proposed methods to avoid regenerative chatter for many years. Some 

of them are based on changing the spindle speed or tool geometry modification, while other 

authors proposed the distortion of the regenerative effect by a continuous spindle speed variation 

(SSV) ([4],[6]). One of the most employed methods is to locate a tuned vibration absorber in the 

structure ([7], [8]). Passive devices can be appropriate in many cases, but they present limitations 

when dynamic characteristics can vary considerably. Active control can overcome these 

limitations due to its adaptability to changing conditions ([9]-[14]). Generally, such active 

actuators are based on the introduction of a controlled force associated to the measurement of a 

parameter related to the vibration. In this way, a dynamically correlated external energy is 



3 

 

applied into the structure of the machine. 

Nonetheless, the optimization of these chatter suppression methods requires a big number of 

factual experiments. These tests may be very problematic, due to the large number of uncertain 

machining parameters (tool wear, material properties …) and unavoidable cutting tests. 

Furthermore, the chatter characterization process always forces the whole system to reach the 

stability limit and this may decrease the lifetime of several elements of the machine tool.  

In this context, this work proposes the development of a mechatronic Hardware-In-the-Loop 

(HIL) system for simulating an orthogonal cutting process. In this way, such HIL simulator 

reproduces experimentally, on a simple mechanical structure, an equivalent cutting process 

where regenerative chatter can appear depending on the cutting parameters. This kind of systems 

can be used for testing the influence of different parameters inside the chatter formulation and 

active and passive chatter suppression methods can be experimentally tested and optimized by 

non-destructive testing. Nevertheless, such HIL simulation systems include some disadvantages. 

On the one hand, complex systems, where several modes can interact, cannot be reproduced 

accurately yet. On the other hand, only the vibration level is analysed, while other parameters 

such as surface finishing or chip breakage quality are not taken into account. 

HIL systems have been widely employed in several industries such as automotive ([15]). 

However, in manufacturing, few studies have been conducted based on such simulators. 

Different  authors proposed the construction of different HIL simulators for reproducing 

machining processes ([16], [17]). However, they were built for a particular case and the delay 

that usually exists in mechatronic systems was neglected. The non-consideration of such delay 

changes drastically the regenerative effect and thus, the obtained results are not correlating 

properly with the theoretical stability diagrams.  
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The present work describes a HIL system for orthogonal cutting operations. It permits the 

simulation of machining process where the stability is dominated by a single mode. More 

complex machining operations, such as milling, could be simulated by means of a structure with 

more than one DOF, using more shakers to simulate complex dynamic forces in three 

dimensions and adapting the algorithm of the controller [18]. However, the simulation of 

operations where more than one mode interacts in the same frequency range is a limitation for 

the system. In these cases, the ratio between natural frequencies and dynamic flexibilities of 

different modes produce intricate stability lobes diagrams [5]. 

A dimensionless formulation is proposed in order to perform the dimensional analysis based 

on Fourier’s principle of dimensional homogeneity, which states that an equation linking 

physical quantities must be dimensionally homogeneous [19]. The HIL system provides the 

possibility of simulating equivalent conditions of any orthogonal cutting process by adjusting the 

HIL relative damping to the damping of the desired system. A methodology to adjust this 

damping and the non-negligible delay is presented. Accurate results can be obtained and the 

experimental tests to optimize active control strategies can be extremely simplified. 

2 REGENERATIVE CHATTER IN ORTHOGONAL CUTTING PROCESS 

A brief explanation of the regenerative effect is offered in this section. First, the problem is 

mathematically formulated and then, a dimensionless approximation of this problem is proposed. 

2.1 Formulation of the Regenerative Effect 

Machine tool chatter vibrations result from a self-excitation mechanism in the generation of 

chip thickness during machining operations ([1]-[4]). Initially, cutting forces excite the structural 

modes of the machine tool-workpiece system and a wavy surface (x(t-τ)) is left on the workpiece. 
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In next revolution, this wavy surface is removed and, at the same time, a wavy surface (x(t)) is 

left owing to structural vibrations. This process is clearly shown in a groove turning operation 

(see Fig. 1). 

 

Fig. 1. Regenerative chatter vibrations in orthogonal cutting process. 

Depending on the phase shift between two successive waves, the maximum chip thickness h 

may exponentially grow. The growing vibrations increase cutting forces Fc(t), which depend on 

the chip thickness, and the process can become unstable. The general chip thickness can be 

expressed as follows: 

 ( ) ( ) −−−= txtxhth s)(  (1) 

where hs is the nominal feed per revolution, and [x(t)-x(t-τ)] is the dynamic chip thickness 

produced by actual vibrations (x(t)) and previous period vibrations (x(t-τ)). It is well known that 

the variable cutting force Fc(t) can be considered proportional to the frontal chip area, which is 

defined by the the chip thickness h(t) and the depth of the cut b. In the reality the cutting force is 

more complex with different possible non linearities [20] and additional terms proportional to the 
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vibration speed or acceleration [21]. These additional terms can describe the process damping 

related to the interaction between vibration waves and tool flank wear. However, the main 

regenerative term can be modelled with this simple formulation. 

 ( ) ( )thbKtF f =c  (2) 

where Kf is the cutting coefficient of the process.  

Assuming that the system has a dominant mode in the radial direction and neglecting the 

process damping [21], the equation of motion can be defined as 

 ( ) ( ) ( ) ( ) ( )thbKtFtxktxctxm f ==++ c
  (3) 

where m is the mass, c is the damping coefficient and k is the stiffness of the system. 

2.2 Stability of the process 

The chatter vibration system can be represented by the block diagram proposed by Merrit [3] 

and shown in Fig. 1, where parameters are shown in Laplace domain and (s) defines the 

transfer function between the cutting force and the displacement.  
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ωn and ξ are natural frequency and relative damping of the system. The relative damping is the 

ratio between the actual damping and the critical damping coefficient (c/cc), being cc
2=4mk. If 

equation (4) and the Laplace transform of (2) are substituted in the Laplace transform of (1), the 

resulting transfer function between the vibration and the reference chip thickness becomes: 
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The characteristic equation of such closed loop is then 

 ( )( ) 011 =−+ − s

f esbK 

 (6) 

The dynamic of the structure Φ can be analysed for a critically stable case. Hence, s=iωc is 

considered, where ωc is the chatter frequency. Additionally, the ratio of chatter frequency to 

natural frequency (ωc/ωn) is defined as λ.  
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If equation (6) is divided into real and imaginary parts and the equation (7) is taken into 

consideration, 

 ( )   ( ) ( )   0cos1sinisincos11 cccc =−++−−+  HGbKHGbK ff
 (8) 

If real and imaginary parts of equation (8) are set equal to zero, some relations between 

parameters can be obtained. From the imaginary part, the next expression is obtained: 
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H
 (9) 

Analysing the real part, the limiting value of the depth of cut depending on the chatter 

frequency is achieved. Equation (9) is used to simplify the resulting expression (10). 

 ( )  0sincos11 cc =−−+  HGbK f
 (10) 

 
( )c

lim
2

1

GK
b

f 

−
=  (11) 

Equation (11) shows the limiting depth of cut as a function of the chatter frequency c. As the 
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depth of cut should always be positive, the absolute minimum stable depth of cut occurs at the 

maximum negative value of G (Gmin), when λ2=1+2ξ 
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Once the relation between the limiting depth of cut and chatter frequency is obtained, the 

relation between the chatter frequency and the spindle rotation frequency ω can be studied. From 

the imaginary part of equation (8), the phase shift of the dynamic transfer function (ν) is defined 

from equation (7): 
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In addition, from equation (9): 
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and considering that phase shift (ν) changes between -π/2 and -π when the real part is negative: 

  ++= )32(2c uk  (15) 

Note that, if ε is defined as the phase difference between successive ondulations or waves on 

the workpiece surface and ku is the number of complete ondulations during one revolution period 

τ, 
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The phase shift between successive ondulations varies between 2π and π. By combining 

equations (13), (15) and (16), a relation between the system transfer function and ε can be 

obtained: 

 



 3

)1(

2
arctan232

2
+









−

−
=+=  (17) 

Therefore, the relation between the chatter frequency and the spindle rotation frequency Ω is 

obtained: 
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Stability lobes diagram can be calculated from the previous relations. First, the chatter 

frequency range is specified and a sweep of these frequencies is performed. For each frequency, 

the limiting depth of cut is calculated by equation (11) and different tooth passing frequencies 

are obtained for different ku values by equation (18). In this way, the relation between the 

limiting depth of cut and tooth passing frequencies is obtained, which is reflected in the stability 

lobes. The diagram representing the chatter frequency as a function of the spindle speed is also 

employed to analyse the process. 

2.3 Dimensionless study 

A dimensionless formulation can be developed for single DOF systems ([1], [21]). In 

orthogonal cutting, seven variables can be defined. Three of them are related in the machining 

process: cutting coefficient (Kf), spindle speed (N) and depth of cut (b). Three other variables can 

be obtained from the dynamics: mass (m), damping (c) and stiffness (k). Finally, when the 

critical stability is studied the chatter frequency (ωc) is generated. If the dimensional analysis is 
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applied [19], four dimensionless variables are required for its general study. In this work, the 

following four dimensionless parameters have been defined: relative damping ratio ξ, normalised 

chatter frequency λ, normalised depth of cut μ and normalised rotation frequency β. 
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From these parameters, a stability diagram between the normalised depth of cut μ and the 

normalised rotation frequency β is created, scanning the normalised chatter frequency λ for a 

defined relative damping ξ. For each value of normalised chatter frequency, normalised depth of 

cut and normalised rotation frequency are obtained for different ku (equations (21) and (22)). On 

the other hand, a dimensionless chatter frequency chart between λ and β can also be created 

considering only equation (22).  

These dimensionless stability diagrams have the advantage of allowing comparisons among 

different machining conditions for systems with one dominant mode with the same damping 

ratio ξ. In this way, the stability study turns out to be more general and independent from 

machining circumstances. The absolute limit depth of cut is always 1 and only the damping 

should be adapted to the analysed cutting process in order to obtain the correct lobe shape (see 
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Fig. 2) 

 

Fig. 2. Dimensionless stability diagrams for three different damping ratios. 

 

3 DESIGN OF THE HARDWARE-IN-THE-LOOP CHATTER DEMONSTRATOR 

The regenerative feedback model of chatter presented in the previous section has been 

implemented in a HIL demonstrator. The dynamic of the machine (s) is represented by a 

simple mechanical structure, while a shaker is used to apply the variable cutting force Fc(t) on 

the system. Previous works ([16], [17], [18]) proposed the employment of a simple beam, 

however, in this kind of system damping is mainly defined by the clamping system and is thus 

based on dry friction. Therefore, non-linearities appear depending on the clamping force and the 

dynamic force values. 

In the present work, this drawback is overcome by the employment of a linear flexure. On the 

one hand, stiffness is defined by the structure itself and is independent from the clamping. On the 

other hand, damping is provided by means of eddy currents which introduce a pure linear viscous 
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damping. The achieved linearity facilitates testing considerably. 

A collocated force sensor and displacement sensor installed on the structure provide the force 

F(t) and vibration displacement x(t) measurements. A fast processor, included on a 

programmable automation controller, calculates the simulated cutting force Fc(t) in real-time. 

The whole scheme is presented in Fig. 3. 

 

Fig. 3. HIL chatter demonstrator scheme. 

3.1 Mechanical Design 

It is well-known that the excitation of flexible structures near their natural frequencies is very 

difficult for shakers due to the deterioration of the force/voltage (F/V) ratio. This fact is very 

important for this simulator, considering that chatter frequencies are normally in the vicinity of 

the resonant frequencies of the mechanical structure. 

The deteriorated F/V ratio could be avoided by a stiffness increase, although this would raise 

the natural frequencies of the structure. If the frequencies of the structure become too high, the 

delay due to the actuator and the controller sampling period could lead to phase differences 
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between the signals of the closed loop. 

Therefore, a sufficiently flexible flexure has been designed to maintain the natural frequencies 

low enough (< 200Hz). On the other hand, steel structures usually offer really low damping 

(0.2% in this case), therefore, an increase of damping was sought in order to conserve the ratio 

F/V. The increase of damping has been achieved by means of eddy currents, which introduce a 

pure linear viscous damping without changing other dynamic properties ([23], [24]). For this 

purpose, a copper plate has been attached to the top of the flexure while permanent magnets have 

been located in the fixed part. In addition, the exciting force and the vibration measurement are 

applied near the clamping point of the flexure, where the stiffness is higher, without changing the 

natural frequency (see Fig. 3). The dynamic behaviour of the designed structure is described in 

Fig. 4 and Table 1. 

Table 1: Dynamic parameters of the structure. 

f
n (Hz) ξ (%) k (N/m) 

177.8 1.4 43.24 ∙ 107 

 

 

Fig. 4. Frequency Response Function (FRF) of the mechanical structure. 

3.2 Employed equipment 

The equipment used for the implementation of the HIL chatter demonstrator is summarized in 
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Fig. 5. The NI CompactRIO has two input signals although only the vibration signal is 

imperative for the correct operation of the HIL demonstrator. The other signal (applied force 

sensor) is acquired for information purposes. 

A Data Physics V4 shaker has been selected to apply the cutting force. The characterization of 

the force applied to the structure is exposed in Fig. 6. The F/V ratio has been preserved with a 

quasi-linear frequency dependency (43 N/V in the vicinity of the natural frequency of the 

structure). The suspension frequency of the shaker is 11 Hz, which is far enough as not to disturb 

the behaviour of the HIL. However, if the phase is analysed, a negative slope is observed due to 

the delay of the system. This delay is an important parameter because it affects the dynamics 

involved in the regenerative process and, consequently, the stability of the system. This point is 

specially analysed in section 3.5. 

 

Fig. 5. HIL chatter demonstrator equipment. 

The vibration displacement has been measured by using a laser displacement sensor Keyence 

LK-G32, which has a good signal/noise ratio and does not require any integration, as opposed to 

an accelerometer. The sampling period has been set to 100 s, which is less than 2 degree 

resolution if the equivalent rotation speed is less than 3000 rpm. 
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The computation of the chatter model has been implemented on the FPGA Virtex-5 LX 85 of 

the NI CompactRIO 9022 due to the high timing requirements of the chatter simulation closed-

loop.  

The described HIL chatter demonstrator test bench has been set up out in the laboratory (Fig. 

7). Once the regenerative chatter of a machine tool is accurately reproduced on the flexure, a new 

actuator may be attached to it in order to test the performance of different active control laws 

[12]. 

 

Fig. 6. F/V ratio and phase of the shaker versus frequency. 

 

 

Fig. 7. HIL chatter demonstrator. 
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3.3 Graphical user interface 

As a large number of critical points are needed in order to characterize the stability of different 

processes, the HIL test bench has been intensively used. For this reason, a practical Graphical 

User Interface (GUI) has been developed. It has been programmed using LabView from 

National Instruments. 

 

Fig. 8. Screenshot of the graphical user interface (GUI). 

Through this interface, the user can select the normalised rotation frequency β and the 

normalised depth of cut μ. According to this data, the temporal evolution of the vibrations is 

observed in order to decide if the behaviour is stable or not. In this way, the value of μ can be 

progressively increased until the unstable vibrations occur. At this moment, the chatter frequency 

fc is accurately measured by a Fast Fourier Transform (FFT). Finally, from this chatter frequency 

fc, the normalised chatter frequency λ is obtained. The dimensionless stability lobes are obtained 
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by scanning the necessary values of β. 

3.4 Preliminary experimental results 

The regenerative effect model has been tested on the HIL simulator in a dimensionless manner 

as explained in section 2. The normalised depth of cut μ has been increased for different values 

of the normalised rotation frequency β, until the vibration became unstable. In this way, the 

experimental dimensionless stability lobes for the original damping of the structure (ξ=1.4%) 

have been obtained. The experimental results are shown as red crosses in Fig. 9. The normalised 

chatter frequency at those limiting points is shown in the Fig. 10. 

In order to compare experimental and theoretical results, the stability lobes for this structure 

have also been obtained theoretically, as explained in section 2. Such stability lobes are depicted 

as a blue solid line in Fig. 9 and Fig. 10. A noticeable deviation which was not pointed out in 

previous works ([16],[17]) is observed between experimental and theoretical results. This 

deviation will be explained and discussed in section 3.5. 

 

Fig. 9. Theoretical and experimental results: Critical normalised depth of cut. 
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Fig. 10. Theoretical and experimental results: Normalised chatter frequency. 

3.5 System delay modelling 

The delay of the actuation system described in Fig. 6 is put forward as the main source of the 

discrepancies observed in Fig. 9 and Fig. 10. Such delay occurs due to the phase lag presented by 

the actuator τa and the controller τc. The controller delay is based on the assumption that the 

control algorithm computations, including data loading and transmission, will be completed 

within the sampling period, so the maximum lag time due to the computing cycle is equal to the 

sampling period [26]. Therefore, the controller delay can be approximated as its sampling period 

(Ts) and finally, the system delay is the sum of both delays: 

 sacasys T++=   (23) 

In order to confirm this hypothesis, both the actuator delay a and the controller delay c have 

been considered in the regenerative chatter model. As shown in Fig. 11, Fc(s) is calculated by the 

controller considering the regenerative effect. Once this force is calculated, it should be divided 

by the actuator gain ga in order to calculate the voltage signal that is commanded to the shaker 

amplifier. This signal has a delay, due to the sampling period of the controller (τc≈Ts). From the 

commanded signal, the amplifier calculates the necessary current to obtain the force F(s) in the 
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shaker, which has its own gain defined as the relation between the commanded voltage and the 

performed force (see Fig. 6). On the other hand, a small delay a exists from the instant of the 

command of this voltage to the instant at which the force is applied, as it can be observed in the 

phase plot of Fig. 6. 

 

Fig. 11. Closed loop feedback model for regenerative chatter with system delay included. 

Taking into account the new block diagram of Fig. 11, the transfer function describing the 

system is 
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where τsys is the total delay of the system (sys=a+c). 

And operating equation (23) in the same way as equation (5) in section 2: 
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Equation (25) describes the stability limit when the delay of the system is considered. If the 

normalised depth of cut is calculated now by  
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theoretical dimensionless stability lobes are again obtained and presented by a dashed blue line 

(see Fig. 12 and Fig. 13). 

 

Fig. 12. Theoretical and experimental results with the actuator delay included: Normalised depth of cut. 

 

Fig. 13. Theoretical and experimental results with the actuator delay included: Normalised chatter frequency. 

As it can be observed, the delay sys changes drastically the dynamics of the systems. The 

regenerative effect does not only depend on the real part but on the imaginary part as well, as it 

happens when the delay does not exist (equation (11)). For this reason, the shape of the stability 

diagram undergoes important deviations: 

• The value of the most stable zone, known as sweet spot, is changed. 

• The chatter frequency can be lower than the natural frequency, which is not possible in 
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non-delayed systems. 

• The minimum depth of cut is changed both in magnitude and in rotation frequency. 

• The obtained lobe diagram shows larger instability zones. For instance, three times lower 

stability is obtained for normalised rotation frequency equal to 0.7. 

Some active control laws are focused on modifying the real part of the frequency response 

function (FRF) of the system ([7], [17]). Therefore, the delay would have a capital influence in 

the real analysis of these control laws. These problems make mandatory the compensation of the 

delay for accurately employing the HIL simulator since a non-compensated HIL does not 

reproduce the desired regenerative system in a realistic way. 

 

4 SYSTEM DELAY COMPENSATION AND DAMPING ADJUSTMENT  

As it has been proved in the previous section, the delay of the system is an important drawback 

in order to reproduce exactly the behaviour of the assumed feedback model of regenerative 

chatter, especially when the final objective is the analysis of the performance of active control 

laws. 

On the other hand, it is also necessary to adapt the relative damping to simulate the lobe shape 

of any dynamic behaviour. At this point, it is useful to remark that the main goal is to reproduce, 

as accurate as possible, the behaviour of any orthogonal cutting of interest on the mechanical 

structure located in the lab. 

Bearing in mind the previous facts, a procedure for the compensation of the system delay and 

damping is presented below. The flexibility of the HIL demonstrator provided by the system 

software will be used to compensate the delay imposed by the hardware. 
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The method can be divided in two parts: delay compensation by means of a phase lead and 

damping adjustment by the introduction of a direct velocity feedback control algorithm.  

4.1 System delay compensation 

The effect of the delay introduced by the shaker and the controller sampling period affects the 

phase around the mechanical resonances. For this reason, the introduction of a filter capable to 

reshape the frequency response of the system under consideration may solve the mentioned 

phase distortions. This filter which should be a lead compensator must fulfil two design 

specifications:  

1.  Phase compensation around the natural frequency of the structure which causes the chatter 

effect. 

2.  Minimal effect in other frequency regions.  

The first condition can be easily defined mathematically, when the natural frequency of 

structure n and the phase lag introduced by the system (n) are known. The natural frequency 

of the flexure is n=1117.15 rad/s (177.8 Hz). According to Fig. 6, the phase lag to compensate 

is (n)=-0.838 rad (-48º), which means that sys=750 μs. For the considered mechatronic 

system, the phase lag around the natural frequency is approximated by a linear model (see Fig. 

6): 

 ( ) BA +=   (27) 

with A=-7.22∙10-4 s and B=-3.14∙10-2 rad. 

This phase can be introduced by a phase compensator. In this case, the filter is split into two 

parts to allow a modular design, in order to obtain the desired frequency response shaping. This 

scheme is represented in Fig. 14. 
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The first filter, denoted as Gfilter1, is a band-pass filter that gives the necessary phase at the 

natural frequency. The second one is a stop-band filter Gfilter2 which guaranties the stability of the 

system by minimizing the effect of the filter out of the band around the natural frequency. In 

order to simplify the design, a base-band filter, considering only the spectrum of frequencies 

lower than the natural frequency can substitute this stop-band filter. However using this base-

band filter, the high frequency components are eliminated. The main advantage of this modular 

design is the flexibility to include other phase compensators around different natural frequencies, 

if needed. 

 

Fig. 14. Modular design of the phase compensation filter. 

The band-pass filter is selected as simple as possible to minimize the phase changes for the 

frequencies of interest and designed to give the necessary phase at fn=177.8Hz. This filter acts as 

a lead compensator, composed by a dominant zero and a pole. However, the band-pass structure 

needs another pole defining the upper cut-off frequency. Hence, the structure of this filter is: 

 ( )
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( )( )21
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psps

zsK
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++

+
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The design parameters z1, K1, p1 and p2 are selected for a band-pass of one decade centered 

around the natural frequency of the structure (177.8 Hz), with lower cut-off frequency around 
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170 Hz and upper cut-off frequency around 2500 Hz: 

 ( ) ( ) 180

84
i

1n1 1177.82ii



 eGG filterfilter ==  (29) 

giving as result: p1=1200, p2=2000, z1=20 and K1=120000. 

A stop-band filter around fn=177.8 Hz is also needed to avoid variation of the signal at low 

frequencies is required. In this case, the minimal filter structure needs two poles and two zeros: 

 ( )
( )( )

( )( )43
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2
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zszsK
sG filter

++

++
=  (30) 

Design parameters p3, p4, z2, z3 and K2 are selected for the required frequency response shaping: 

minimal effect at low frequencies and attenuation of frequency components around fn=177.8 Hz. 

The stop-band cut-off frequencies are the reverse of the values considered in the design of the 

first filter, (p3=100, p4=6500, z2=2000, z3=5000 and K2=0.065). 

Finally, the phase compensation filter is obtained by the combination of the two filters 

( ) ( ) ( )sGsGsG filterfilterfilter 21 += . The design finishes with a model reduction of the resulting 

transfer function, leading to the next 3rd order filter: 
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 (31) 

The Bode diagram of the filter is shown in Fig. 15. The filter response at the resonance 

frequency adds the necessary phase for compensating the effect of the delay in the system. In 

addition, the filter provides a small gain at low frequencies to correct the small loss introduced 

by the shaker. 
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Fig. 15. Bode diagram of the designed lag compensation filter. 

The effect of this filter over the frequency response of the system around the resonance 

frequency can be observed in the Nyquist diagram in Fig. 16.  

 

Fig. 16. Nyquist diagram showing the effect of the phase compensation filter. 

Finally, the filter presented in equation (31) is discretized by using the bilinear transform and a 

sampling period of 100μs. 

 ( )
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=

szz

zzz
zG filter

 (32) 

The bode diagram confirms that the performance is sufficiently preserved in the digital 
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version. Implementing the phase compensation filter described above into the FPGA of the cRIO 

and obtaining again the critical values for the normalised depth of cut without any damping 

compensation, Fig. 17 and Fig. 18 are obtained, where the limiting values and their 

corresponding frequencies are depicted in red crosses.  

 

Fig. 17. Compensating the system delay by phase compensation: Normalised depth of cut when ξ=1.4%. 

  

Fig. 18. Compensating the system delay by phase compensation: Normalised chatter frequency when ξ=1.4%. 

The improved correlation of these results with the delay-free lobes is clearly shown. A slight 

deviation may be observed in the normalised depth of cut and the chatter frequency at high speed 

lobe regions. The reason for this is that the compensation filter is designed for the natural 
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frequency of the structure and when chatter frequency moves away from this frequency, the 

effectiveness of the filter is reduced. 

4.2 Damping adjustment 

On the other hand, as explained in section 2, it is necessary to adapt the relative damping ξ of 

the hardware in the loop to be able to reproduce any orthogonal cutting process. A direct velocity 

feedback (DVF) control algorithm is used, which is the most common control law to increase 

damping ([15]-[20]). It is based on the measurement of the vibration velocity and its negative 

feedback is multiplied by a gain G.  

 ( ) ( ) ( )txggtxGtF vaDVF
 −=−=  (33) 

where ga is the actuator gain and gv is the control gain. In this way, the control forces FDVF(t) 

appear as viscous damping (see equation (34)) and they are included in the calculation of the 

force that should be performed by the shaker. 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )txggtFtFtFtxktxctxm va
 −=+=++ cDVFc  (34) 

 ( ) ( ) ( ) ( ) ( )tFtxktxggctxm va c=+++   (35) 

 

Fig. 19. Control scheme of phase compensation and damping adjustment with DVF method. 

To obtain the desired relative damping, the control gain is calculated as: 
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 −
= dn2

 (36) 

where ξd is the desired relative damping and ξ is the original damping of the hardware-in-the-

loop (ξ=1.4%). Fig. 20 shows the excellent results obtained by the HIL simulator for a virtual 

damping of 4%. 

 

Fig. 20. Delay and damping compensation for 4% relative damping system. 

 

5 HIL RESULTS  

In order to verify the HIL simulator, a real lathe machine [21] behaviour is reproduced. The 

dynamic parameters of this machine and the cutting coefficient are reported on Table 2: 

Table 2: Dynamic parameters of the lathe machine used in [21]. 

f
n (Hz) ξ (%) k (N/m) Kf [MPa] 

450.7 3.8 6.48 ∙ 106 1384 

 

From these dynamic parameters and cutting coefficient, the theoretical dimensionless stability 

lobes are obtained and compared with the equivalent behaviour reproduced by the HIL. In the 
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present paper, the effect of process damping has been neglected in order to simplify the system. 

Therefore, as explained in section 4, only the delay and damping should be compensated.  

Fig. 21 shows the results obtained when applying phase compensation and DVF, defined as 

red crosses. First, the stability graphs obtained by Altintas et al. [21] have been obtained 

theoretically and this behaviour has been accurately reproduced by the HIL. Therefore, this HIL 

simulator could be used in order to perform any cutting test without the necessity of the real 

machine and workpiece. The presence of process damping increases the depth of cut at high 

order lobes (ku>10), therefore a realistic simulation of the process at low spindle speeds requires 

the introduction of process damping. The reproduction of the process damping effect requires the 

introduction of a more complex force model in the HIL. 

Finally, in order to verify the control applications offered by the HIL simulator, the 

implementation of active control for suppression of chatter in the HIL simulator has been carried 

out. If the real machine was used, several cutting test would be required, which would imply 

material and time wastage. However, the HIL simulator can be used instead of the real machine 

and a physical active damper can be added to the simulator structure. In this work, the inertial 

actuator Data Physics V2 is mounted (see Fig. 22 left). The classical Direct Velocity Feedback 

(DVF) has been applied again, in a new closed loop implemented in an external controller 

(dSPACE DS-1005 board). Several tests have been carried out, obtaining the results presented as 

green circles in Fig. 21. The time domain behaviour of the chatter force in point A of Fig. 21 has 

been captured in Fig. 22. As it can be observed, the dynamic cutting force is considerably 

reduced when the actuator is switched on and hence, a stable cut is obtained when active 

damping is applied. 
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Fig. 21. Simulation by the HIL of the machine defined in Table 2, using the phase compensation and DVF, and the improvement 

carried out by the inertial actuator. 

 

 

Fig. 22. Left: Addition of the inertial actuator to the HIL for active damping demonstration. Right: Time domain graph of the 

chatter force in point A test of Fig. 21, where inertial actuator is switched off and switched on. 

 

6 CONCLUSIONS  

In this work, a complete hardware-in-the-loop (HIL) mechatronic simulator of orthogonal 

cutting process with regenerative effect has been presented. The experimental study of chatter 
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avoidance systems is usually very problematic due to the large number of unavoidable cutting 

tests and uncertain machining parameters, which can lead to a lack of repeatability in the 

performed testing. By means of the HIL simulator, the equivalent behaviour of any orthogonal 

cutting process can be replicated. The simulations are based on a time domain theoretical 

simulation of chatter but experimental problems such as delays or electrical noise can arise. 

A new mechanical structure is proposed for the HIL simulator. Instead of the classic cantilever 

beam proposed in previous works, a flexure has been designed to ensure a high repeatability. The 

damping is provided by eddy currents which allow the addition of contactless and linear viscous 

damping. This linear behaviour improves the performance of the HIL simulator and facilitates 

the study of different parameters. 

Dimensionless formulation is proposed to obtain the equivalence of any orthogonal cutting 

process on the hardware-in-the-loop (HIL). In this way, the shape of the stability lobes is only 

altered when damping is changed. 

A new methodology implement the required relative damping to the system and compensate 

the mechatronic system delay is also presented. This delay has tremendous importance and 

cannot be neglected in order to reproduce the stability accurately. The methodology is based on a 

phase compensation to remove the delay and a direct velocity feedback (DVF) control loop to fit 

the required damping. This method, which can be spread to many applications with damping and 

delay problems, provides very accurate results when compared with theoretical stability lobes. 

Finally, a previously published particular case has been accurately reproduced by the proposed 

HIL simulator. Moreover, it has been used to test successfully an active control law by the 

addition of a small inertial actuator. In further developments, the process damping phenomenon 

should be modeled to increase the accuracy in low speed applications. 
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