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Via C. Saldini, 50
20133–Milano, Italy

Abstract

In this paper we discuss some existence and uniqueness results for multi-population stationary Mean

Field Games systems with Neumann conditions at the boundary. We prove the existence of solutions

through fixed-point and approximation arguments, assuming that the Hamiltonian functions are

super-linear with respect to the gradient entry and the costs are regularizing functionals or local

functions of the distributions. In the latter case we require uniform boundedness or some growth

conditions on the costs, which assure that suitable a-priori estimates hold. We propose a sufficient

hypothesis for uniqueness of solutions and some examples where multiplicity of solutions arises.
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1. Introduction

The objective of this paper is to study existence and uniqueness of solutions of the multi-

population ergodic Mean Field Games system with Neumann boundary conditions



−νi∆ui(x) +Hi(x,Dui(x)) + λi = V i[m](x), ∀x ∈ Ω hj),

−νi∆mi(x)− div(DpH
i(x,Dui(x))mi(x)) = 0 ∀x ∈ Ω k),

∂nui(x) = 0, ∀x ∈ ∂Ω hjn),

νi∂nmi(x) +miDpH
i(x,Dui(x)) · n(x) = 0 ∀x ∈ ∂Ω kn),

(MFG)
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i = 1, . . . ,M . Such a non-linear elliptic system appears within the theory of Mean Field Games

(briefly MFG), a new branch of Dynamic Games proposed independently by Lasry, Lions [18, 19, 20]

and Caines, Huang, Malhamé [16] which aims at modeling and analyzing complex decision processes

involving a very large number of indistinguishable rational agents.

The system (MFG) captures equilibria of M populations of agents aiming at minimizing some

long-time average criterion. Indeed, solutions of (MFG) provide optimal strategies for players of

every population i = 1, . . . ,M , who pay a cost that is proportional to their velocity and some func-

tion V i that depends on their positions and the distributions m1, . . . ,mM of the populations. The

state space of players is a bounded domain Ω ⊂ Rd and their trajectories solve stochastic differential

equations involving a Brownian diffusion
√

2νiB
i
t and reflection at the boundary ∂Ω. The standard

Dynamic Programming Principle associates the system of Hamilton-Jacobi-Bellman equations hj)

with Neumann conditions hjn) to the infinite-horizon minimization problem. Kolmogorov equations

k), kn) characterize the (invariant) distributions of the populations, where every player chooses to

implement the equilibrium strategy −DpH
i(·, Dui(·)). We point out that system (MFG) can be

derived by taking the limit of Nash equilibria of games with NM players with suitable symmetry

assumptions. This result has been obtained in [20] in the one population case and in [11] for M ≥ 2,

considering the torus as the state space.

In this paper we drop the assumption of periodicity, which is usually adopted in the MFG

literature to avoid technical issues, and move to the setting of reflecting boundary, for which, to

the best of our knowledge, no existence results are available; Achdou and Capuzzo-Dolcetta carried

out numerical analysis on stationary models in [1, 2] with such conditions at the boundary.

Our aim is also to provide a general existence framework for the multi-population case. For

M ≥ 2, Feleqi [11] treated the periodic case with regularizing costs; Lachapelle and Wolfram [17]

studied some two-population non-stationary models describing congestion in pedestrian crowds.

In between the one-population and the multi-population setting, we mention that in [15, 24] it is

considered a MFG where a population of “minor” agents interacts with a single “major” agent.

For general theory of MFG see also [7, 8] and [21], where many techniques for MFG systems are

developed.

We will make use of some well known result on Hamilton-Jacobi-Bellman and Kolmogorov

equations, that will be presented in Section 2. The minimal assumptions (H) on the Hamiltonians

2



Hi are satisfied by functions which are superlinear with respect to the gradient entry, i.e.

Hi(x, p) = −b(x) · p+R|p|γ −H0(x) (1)

for some R > 0, b,H0 ∈ C2(Ω). In Section 3 we prove existence for (MFG) assuming the general

(H) and that the costs V i are regularizing, i.e. they map the set of probability measures with

density in W 1,p(Ω) into a bounded set of W 1,∞(Ω), and they are continuous with respect to the

uniform convergence on Ω. The arguments in this case are quite standard and exploit the fixed

point structure of the system: a solution u of hj), hjn) for a given m is plugged into k), kn) to

produce a new vector of distributions µ. Once continuity of the map m 7→ µ is verified, a fixed

point is found by means of Schauder theorem.

In Section 4 we do not require anymore the costs to be regularizing with respect to the vector of

distributions, and assume on the other hand V i to be local functions ofm, i.e. V i[m](x) = V i(m(x)).

This case is much more tricky, as standard elliptic estimates are not sufficient in general for carrying

over a fixed-point argument. In [9] existence is proved in the case M = 1 and with quadratic

Hamiltonian by exploiting the Hopf-Cole change of variables, without any growth assumption on

the cost; for more general Hamiltonians, a-priori estimates on solutions are presented in [14]. A

full proof of existence for general MFG systems in the one population case and periodic space is

provided in [13], where more general estimates are supported by a continuation argument. However,

some growth conditions of V with respect to m are required.

Our approach relies in passing to the limit in approximating problems with smoothing costs,

for which existence is proved in Section 3. Crucial a-priori estimates are obtained by exploiting

the adjoint structure of (MFG) as in [14], Bernstein methods and fine bounds on the solutions of

Kolmogorov equations, with the requirement that Hi are precisely of the form (1) (with b ≡ 0).

We point out that the multi-population case differs from the single-population one as growth with

respect to every mi plays a role. In our hypotheses a precise behavior from above and from below

of V i is prescribed. We are also able to treat the case of local continuous costs that are uniformly

bounded with respect to m. We finally present some examples of costs for which the existence

results apply.

Section 5 is devoted to uniqueness of solutions of (MFG). The argument by Lasry and Lions

presented in [20] is adapted to the multi-population case, where non-uniqueness of solutions has

to be expected in general; we present indeed some examples of MFG systems that admit multiple
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solutions. In particular, we construct through a variational argument some “segregated” solutions

of a two-population MFG system with aversion.

We finally observe that the natural sufficient condition for uniqueness (see (24)) is related to the

hypothesis for existence with local unbounded costs (VLU) that we propose in Section 4, suggesting

that such assumptions guarantee a “convex” structure of the problem (see Remark 15).

Acknowledgements

The author is very grateful to Prof. Martino Bardi for his precious advices during the preparation

of this work and to the anonymous referee for his careful reading and suggestions that led to improve

the manuscript.

2. Preliminaries

Throughout the paper Ω will be a C2 bounded domain of Rd. We will denote by n(x) the outer

normal vector at x ∈ ∂Ω and by Df, Jf,D2f the gradient, Jacobian matrix and Hessian matrix of

a function f , respectively. Moreover,

Cav(Ω) :=

{
u ∈ C(Ω) :

∫
Ω

u = 0

}
, P =

{
m ∈ L1(Ω) :

∫
Ω

m = 1

}
.

If one considers V i[m] as a function of x, i.e. m is frozen and V i(x) = V i[m](x), equation

(MFG), hj) is a stationary Hamilton-Jacobi-Bellman equation, for which existence and uniqueness

of solutions (ui, λi) are well understood. Suppose that the following set of hypotheses on the

Hamiltonian function H holds:

(H) 1. H ∈ C1(Ω× Rd). There exist B ∈W 1,∞(Ω,Rd), C > 0, such that

H(x, p) ≥ B(x) · p− C ∀x ∈ Ω, p ∈ Rd.

2. For all x ∈ Ω, p ∈ Rd

DpH(x, p) · p−H(x, p) ≥ −C

for some C > 0.

3. There exist µ > 0, θ ∈ (0, 1), R0 > 0 such that

DxH · p+
θ

d
H2 + µ|p|2 + µ[DpH · p−H] > 0
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for all |p| ≥ R0, x ∈ Ω, and

DxH · p+
θ

d
H2 + µ|p|2 + µ[DpH · p−H] + t|p|2[DpH · n(x)] > 0

for all |p| ≥ R0, x in a neighborhood of ∂Ω and t ∈ [0, C0], where C0 is the maximum among

the negative part of the principal curvatures of ∂Ω.

P.-L. Lions proved in [22] the following result.

Theorem 1. Suppose that Ω is a bounded C2 domain, f ∈ W 1,∞(Ω), ‖f‖W 1,∞(Ω) ≤ α for some

α > 0 and that (H) holds. Then, there exist unique u ∈ C2(Ω) ∩ Cav(Ω) and λ ∈ R that solve

−ν∆u(x) +H(x,Du(x)) + λ = f(x) in Ω, ∂nu(x) = 0 on ∂Ω.

Moreover,

|λ| ≤ ‖f‖L∞(Ω) (2)

and

‖u‖W 1,∞(Ω) ≤ C (3)

where C is a positive constant that depends on Ω, H and α.

Proof. See [22], Theorem II.1.

A solution belonging to P of equation (MFG), k) with boundary conditions kn) is the density of

the invariant measure of the optimal stochastic process driven by drift b(x) := −DpH
i(x,Dui(x))

with reflection at the boundary. For such an equation existence and uniqueness is established as

well, at least under some regularity assumptions on b. We recall a result which will be used in the

sequel.

Theorem 2. Suppose that Ω is a C2 bounded domain and b ∈ L∞(Ω,Rd). Then, there exists a

unique (weak) solution m ∈W 1,2(Ω) of

ν

∫
Ω

Dm ·Dφ =

∫
Ω

mb ·Dφ ∀φ ∈W 1,2(Ω). (4)

Moreover, m ∈W 1,p(Ω) for all p ≥ 1, m ∈ C(Ω) and it satisfies

δ−1 ≤ m(x) ≤ δ ∀x ∈ Ω

for some δ > 0 depending only on ‖b‖L∞(Ω).
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Proof. See [6], Theorems II.4.4, II.4.5, II.4.7.

Throughout the paper, V i will be functionals that map C0(Ω) functions into C0(Ω) functions.

In this situation, we may consider the following definition of solution of (MFG).

Definition 3. A solution of (MFG) will be a 3M -uple (u, λ,m) such that

ui ∈ Cav(Ω) ∩ C1(Ω), λi ∈ R, mi ∈ P ∩W 1,2(Ω) ∀i = 1, . . . ,M,

ui, λi solve hj) in the standard viscosity sense, hjn) is satisfied pointwise and mi solves k), kn) in

the weak (distributional) sense, namely

νi

∫
Ω

Dmi ·Dφ+

∫
Ω

miDpH
i(x,Dui(x)) ·Dφ = 0 ∀φ ∈W 1,2(Ω), i = 1, . . . ,M.

Since Dui ∈ L∞(Ω,Rd) and DpH is continuous, DpH
i(·, Dui(·)) ∈ L∞(Ω,Rd) and Theorem 2

let us conclude that mi are continuous functions on Ω. As V i[m] are also continuous, the standard

notion of viscosity solution can be applied to the Hamilton-Jacobi-Bellman equations hj).

3. Existence in the non-local case.

In this section we prove a result on the existence of solutions to (MFG) under the assumption

that the costs V i are regularizing on the set of W 1,p probability measures. We provide the full

details of the proof, which exploits the fixed-point structure of the system and standard elliptic

estimates. The delicate part of the argument is to verify the continuity of the operator defined on

the set of probability measures, and manage the presence of Neumann boundary conditions.

Theorem 4. Suppose that every Hi satisfies (H) and V i is such that

(VNL)
1. For some α > 0, p > d, ‖V i[m]‖W 1,∞(Ω) ≤ α for all m ∈ [W 1,p(Ω)]M ∩ PM ,

2. m(n) → m uniformly on Ω⇒ V i[m(n)]→ V i[m] uniformly on Ω.

Then, there exists a solution (u, λ,m) of (MFG). Moreover ui ∈ C2(Ω) and mi ∈ W 1,p(Ω) for

all p ≥ 1.

Proof. Let mi ∈ W 1,p(Ω) ∩ P, i = 1, . . . ,M be fixed, where p is the constant that appears in

(VNL) , and Fi(x) := V i[m1, . . . ,mM ](x); by Proposition 1 there exist solutions (vi, λi) ∈ (C2(Ω)∩

Cav(Ω))× R, of

−νi∆vi +Hi(x,Dvi) + λi = Fi(x) in Ω, ∂nvi(x) = 0 on ∂Ω, (5)
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for all i = 1, . . . ,M , together with estimates ‖vi‖W 1,∞(Ω) ≤ Ci, where the constants do not depend

on m. If we let bi(x) := −DpH
i(x,Dvi), Proposition 2 guarantees existence (and uniqueness) of

(weak) solutions µi ∈W 1,p(Ω) ∩ P of

−νi∆µi − div(DpH
i(x,Dvi)µi) = 0

satisfying Neumann boundary conditions, with estimates ‖µi‖W 1,p(Ω) ≤ Ĉi. Let now

Ki := P ∩ {m ∈W 1,p(Ω)) : ||m||W 1,p(Ω) ≤ Ĉi},

one has µi ∈ Ki independently on the initial m chosen, as V i is uniformly bounded by hypothesis.

It is consequently well defined the map

Γ : (mi, . . . ,mN ) ∈ K := K1 × · · · ×KM 7→ (v1, . . . , vM ) 7→ (µ1, . . . , µM ) ∈ K. (6)

Being every Ki compactly imbedded in C(Ω) ([12], Theorem 7.26), by showing that Γ is contin-

uous (with respect to the standard C(Ω)×· · ·×C(Ω) topology), it is possible to apply the Schauder

theorem ([12], Theorem 11.1) and obtain a fixed point of Γ. A fixed point (m1, . . . ,mM ) will be a

solution of (MFG), together with (u1, . . . , uM ) obtained by solving the Hamilton-Jacobi-Bellman

equations.

Let {m(n)} be a sequence in K converging uniformly to some m ∈ K; we first want to show that

v(n) → v. Each v
(n)
i solve

−νi∆v(n)
i +Hi(x,Dv

(n)
i ) + λ

(n)
i = V i[m(n)](x) on Ω, (7)

while each vi is a solution of

−νi∆vi +Hi(x,Dvi) + λi = V i[m](x) on Ω; (8)

we also know, thanks to (2) and (3), that the constants λi and λ
(n)
i are bounded in absolute value by

α, and ‖v(n)
i ‖W 1,∞(Ω), ‖vi‖W 1,∞(Ω) ≤ Ci. We now consider any uniformly convergent subsequence

(v
(n)
1 , . . . , v

(n)
M ) → (v̄1, . . . , v̄M ) (by Ascoli-Arzelà there exists at least one). We begin by proving

that λ
(n)
i → λi (reasoning as in [3]): fix i = 1 and consider some further converging subsequence

λ
(n)
1 → λ̄1. Suppose by contradiction that λ̄1 6= λ1. Since by hypothesis V i[m(n)] → V i[m]

uniformly, we deduce that v̄1 is a solution in the viscosity sense of the limit equation

−ν1∆v̄1 +H1(x,Dv̄1) + λ̄1 = V 1[m](x) on Ω,
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with Neumann boundary conditions satisfied in generalized sense. Without loss of generality λ̄1 >

λ1 and v̄1(y) > v1(y) at some y ∈ Ω, possibly adding a positive constant to v̄1; hence, there exists

δ > 0 such that

− ν1∆v̄1 +H1(x,Dv̄1)− V 1 + δv̄1 = δv̄1 − λ̄1

≤ δv1 − λ1 = −ν1∆v1 +H1(x,Dv1)− V 1 + δv1.

By comparison principle ([10]) it follows that v̄1 ≤ v1 in Ω, that is a contradiction. So, λ̄1 = λ1

and λ
(n)
1 → λ1.

We now show that v̄1 = v1. By subtracting (8) to (7), we obtain

V 1[m(n)](x)− V 1[m](x)− (λ
(n)
1 − λ1)

= −ν1∆(v
(n)
1 − v1) +H1(x,Dv

(n)
1 )−H1(x,Dv1)

≥ −ν1∆(v
(n)
1 − v1) +

∂H1

∂p
(x, ξ)(Dv

(n)
1 −Dv1) ≥

− ν1∆(v
(n)
1 − v1)−

∣∣∣∣∂H1

∂p
(x, ξ)

∣∣∣∣ |Dv(n)
1 −Dv1| ≥

− ν1∆(v
(n)
1 − v1)− C|Dv(n)

1 −Dv1|.

where ξ = ξ(x) ∈ [Dv
(n)
1 (x), Dv1(x)] and C = supx∈Ω,|ξ|≤C1

|∂H
1

∂p (x, ξ)|. Set w
(n)
1 = v

(n)
1 − v1,

taking the limit as n→ +∞, w
(n)
1 → w1 = v̄1 − v1 uniformly, −ν1∆w1 − C|Dw1| ≤ 0 on Ω

∂w
(n)
1

∂n = 0 on ∂Ω,
(9)

again with Neumann boundary conditions that have to be intended in generalized viscosity sense.

We want w1 to be everywhere constant, and we suppose that w1 reaches its maximum (that we may

assume to be positive, by eventually adding a positive constant to w1) on Ω at a point inside the

domain: in this case, the strong maximum principle in [4] implies that w1 is constant. Furthermore,

if that maximum was reached at some x ∈ ∂Ω we would have a contradiction (as in the proof of

Theorem 2.1 in [5]); indeed, letting M = u(x), we would have u(y) < M for every y ∈ Ω. We know
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that there exist r > 0 and a smooth function φ such that 1 −ν1∆φ− C|Dφ| > 0 su Br(x)

∂φ
∂n > 0 su ∂Ω ∩Br(x),

(10)

where φ(x) = 0 and φ(y) > 0 for all y ∈ Br(x)∩Ω\{x}. The point x would be a local maximum of

w1 − φ, that is impossible by (10) and the definition of viscosity subsolution, so v̄1 − v1 is constant

on Ω and v̄1, v1 ∈ Cav(Ω), hence v̄1 = v1; by the same argument v̄i = vi for i = 2, . . . ,M .

Since the limit v̄ is unique, we deduce that the entire sequence (v
(n)
1 , v

(n)
2 ) converges to v. Let

now µ
(n)
i ∈W 1,∞(Ω) ∩ P be solutions of

−νi∆µ(n)
i − div(DpH

i(x,Dvi)µ
(n)
i ) = 0.

We prove (to obtain the continuity of Γ) that µ
(n)
i → µi uniformly, where µ = Γ(m). Notice that

νi∆v
(n)
i = Gi(x) := Hi(x,Dv

(n)
i ) + λ

(n)
i − V i[m(n)](x),

and the estimate ‖Gi‖L∞(Ω) ≤ Ĉ holds for some Ĉ > 0 independent on n, hence, by standard C1,α

interior elliptic estimates (see for example [12], theorem 8.32) one has ‖v(n)
i ‖C1,α(Ω′) <∞ on every

Ω′ ⊂⊂ Ω. Fix i = 1, then Dv
(n)
1 → Dv1 uniformly on compacts in Ω and that easily implies that

every converging subsequence µ
(n)
1 → µ̄1 is a (weak) solution of

−ν1∆µ− div(DpH
1(x,Dv1)µ) = 0,

that has µ1 as a unique solution in P. Similarly, µ
(n)
i → µi for every i = 1, . . . ,M .

Example 5. An example of costs satisfying (VNL) is given by

V i[m](x) := W i(m1 ? ϕ(x), . . . ,mM ? ϕ(x)) ? ϕ(x) ∀x ∈ Ω,

where W i ∈ C0(RM ) and ϕ ∈ C∞0 (Rd) is a regularizing kernel. We recall that

mi ? ϕ(x) :=

∫
Ω

ϕ(x− y)mi(y)dy ∀x ∈ Ω,

1Take, for example, φ(x) = e−ρs
2 − e−ρ|x−x0|2 , with ρ > 0 large enough and Bs(x0) the external sphere Ω at x.
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so

|mi ? ϕ(x)| ≤ (sup
Rd

ϕ)‖mi‖L1(Ω) = (sup
Rd

ϕ) ∀x ∈ Ω,m ∈ P.

Moreover, D(mi ? ϕ) = mi ? (Dϕ), hence

|D(mi ? ϕ)(x)| ≤ (sup
Rd

Dϕ)‖mi‖L1(Ω) = (sup
Rd

Dϕ) ∀x ∈ Ω,m ∈ P.

The two inequalities show that (VNL) , 1. holds.

Given m(n) → m uniformly on Ω, we have that

|(m(n)
i −mi) ? ϕ(x)| ≤

∫
Ω

|ϕ(x− y)(m
(n)
i (y)−mi(y))|dy

≤ ‖ϕ‖L1(Rd) sup
Ω

|(m(n)
i −mi)(y)| → 0,

as n→∞ uniformly w.r.t x ∈ Ω, so also (VNL) , 2. holds.

We observe that V i[m] ∈ C∞(Ω), so a solution (u,m) of (MFG) produced by Theorem 4 belongs

a-posteriori to C∞(Ω)× C∞(Ω) by standard elliptic regularity.

4. Existence in the local case.

In this section we focus on existence of solutions of (MFG) when the smoothing assumption on

the costs V i is dropped. Regularity of V i[m] uniform with respect to the vector of distributions

m plays a substantial role in the proof of Theorem (4), providing strong a-priori estimates for

solutions. We establish suitable estimates in the local case, exploiting the structure of the system

and assuming boundedness or monotonicity of V i.

Throughout this section the hamiltonians Hi will have the form

Hi(x, p) = Ri|p|γ −Hi
0(x), Ri > 0, γ > 1, (11)

∂nH
i
0(x) ≥ 0 on ∂Ω,

for some potential function Hi
0 ∈ C2(Ω). Although we believe that perturbations of such Hamilto-

nians could be considered in the subsequent proofs, we assume (11) to simplify the computations

and focus on the main features of the problem.

In the first result we assume that V i are continuous and bounded functions.
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Theorem 6. Let Ω be a C2 convex domain. If Hi has the form (11) and the costs V i satisfy

(VLB) V i ∈ C0(RM ), |V i(m)| ≤ L ∀m ∈ RM , i = 1, . . . ,M

for some L > 0, then there exists a solution (u, λ,m) of (MFG). Moreover ui ∈ C1,δ(Ω) and

mi ∈W 1,p(Ω) for some 0 < δ < 1 and for all p ≥ 1.

The second existence assertion of this section requires a growth assumption on V i with respect

to m from above and from below.

Theorem 7. Let Ω be a C2 convex domain. If Hi has the form (11) and V i ∈ C1(RM ) satisfy for

all mi ≥ 0

(VLU)
i) α

∑M
i=1m

γ
i |vi|2 ≤

∑M
i,j=1 ∂mjV

i(m)vi · vj for all v ∈ [Rd]M ,

ii) −V ≤ V i(m) ≤ D(1 +
∑M
i=1m

η
i ),

for some γ ≥ −1 and α, η,D, V > 0 such that

η <

 (γ + 2)/(d− 2) if d ≥ 3,

+∞ else.

Then there exists a solution (u, λ,m) of (MFG). Moreover, ui ∈ C2,δ(Ω) ∩ C1(Ω) and mi ∈

W 1,p(Ω) for some 0 < δ < 1 and for all p ≥ 1.

Before going into the details of proofs of Theorems 6 and 7 we provide some examples and state

the a-priori estimates that will be needed.

Remark 8. Condition (VLU) , i) holds when

Φ + ΦT is positive semi-definite, (12)

where

Φ := JV −


αmγ

1 0

. . .

0 αmγ
M

 (13)

JV denoting the Jacobian matrix of V . Indeed,

M∑
i,j=1

∂mjV
i(m)vi · vj − α

M∑
i=1

mγ
i |v

i|2 = tr(ΦW ) ≥ 0

11



where Wij = vi ·vj , since (12) holds and V is symmetric and positive semi-definite for all vi, vj ∈ Rd.

Moreover, suppose that for some K > 0 condition (VLU) is true for all v ∈ [Rd]M , mi ≥ K for

some i (not for all m in general) and in addition we have that

0 ≤
M∑

i,j=1

∂mjV
i(m)vi · vj

for all v ∈ [Rd]M , m1, . . . ,mM < K. Then, the existence assertion of Theorem 7 still holds.

Assumption (VLU) is indeed crucial when m becomes large.

Example 9. In the single population framework (M = 1), a typical model of unbounded cost is

V ∈ C1(R), V ′(m) ≥ 0 for all m ≥ 0 and

V (m1) = mβ
1 , β > 0,m1 ≥ 1.

In this case, setting γ = β − 1 and η = β, if d ≥ 3 the coefficients have to satisfy β < β+1
d−2 . A

sufficient condition for (VLU) turns out to be

β < 1/(d− 3) if d ≥ 4,

and β <∞ otherwise.

Example 10. If we now let

V 1(m1,m2) = am1 + bm2,

V 2(m1,m2) = cm1 + am2,
(14)

with a, b, c ∈ R the mean field system can be interpreted as two populations interacting that behave

in the same way with respect to themselves; (VLU) is then satisfied if

a > 0, b, c ≥ 0, b+ c < 2a.

if the space dimension is d ≤ 2. In higher space dimension a sublinear growth with respect to m

has to be required, but still monotonicity of V i with respect to mi should be leading.

Existence for (MFG) under the assumptions of Theorems 6, 7 is carried out by taking the limit

as ε→ 0 of the approximating problems

−νi∆uε,i(x) +Hi(x,Duε,i(x)) + λε,i = V iε [mε](x), ∀x ∈ Ω i),

−νi∆mε,i(x)− div(DpH
i(x,Duε,i(x))mε,i(x)) = 0 ∀x ∈ Ω ii),

∂nuε,i(x) = 0 ∀x ∈ ∂Ω,

∂nmε,i(x) = 0 ∀x ∈ ∂Ω.

(15)
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where

V iε [m](x) := V i(m1 ? ϕε(x), . . . ,mM ? ϕε(x)) ? ϕε(x) ∀x ∈ Ω,

ϕε(x) := ε−dϕ(x/ε), ε > 0 and ϕ ∈ C∞0 (Rd) is mollifier, i.e. ϕ ≥ 0 and
∫
Rd ϕ = 1. We also require

ϕ to be radial. We know that a solution of (15) exists for all ε > 0 by virtue of Theorem 4 (see also

Example 5). We present now some a-priori estimates for solutions of (15), independent on ε.

Lemma 11. Let Ω be convex, (u, λ,m) ∈ [C3(Ω)]M × RM × [C2(Ω)]M be a solution of (15) and

let Hi be of the form (11). Then,

M∑
i,j=1

∫
Ω

∂mjV
i(m ? ϕε)D(mi ? ϕε) ·D(mj ? ϕε)dx ≤ C, (16)

for some C = C(ν,H1, . . . ,HM ,Ω) > 0.

Proof. We consider first the equations for population i = 1, apply the gradient operator D to

equation i), multiply it by Dm1 and integrate over the domain to get

−ν1

∫
Ω

D(∆u1) ·Dm1 +

∫
Ω

D(H1(x,Du1)) ·Dm1 =

∫
Ω

D(V 1(m1 ? ϕε, . . . ,mM ? ϕε) ? ϕε) ·Dm1.

By integrating by parts the second term of the left hand side and using the Kolmogorov equation

for m1, together with boundary conditions, we obtain

−
∫

Ω

tr(D2
ppH

1(x,Du1)(D2u1)2)m1 +R1

∫
∂Ω

m1D(|Du1|γ) · n =∫
Ω

D(V 1(m1 ? ϕε, . . . ,mM ? ϕε) ? ϕε) ·Dm1 +

∫
Ω

DH1
0 ·Dm1 (17)

Convexity of Ω implies that D(|Du1(x)|γ) · n(x) ≤ 0 for all x ∈ ∂Ω. Since by standard properties

of the convolution (and the fact that ϕε is radial)∫
Ω

D(V 1(m1 ? ϕε, . . . ,mM ? ϕε) ? ϕε) ·Dm1 =

∫
Ω

D(V 1(m1 ? ϕε, . . . ,mM ? ϕε)) ·D(m1 ? ϕε),

so we integrate by parts the last term in (17), use the assumption (11) and exploit convexity of Hi

with respect to p to obtain∫
Ω

D(V 1(m1 ? ϕε, . . . ,mM ? ϕε)) ·D(m1 ? ϕε) ≤∫
∂Ω

m1∂nH
1
0 +

∫
Ω

D(V 1(m1 ? ϕε, . . . ,mM ? ϕε)) ·D(m1 ? ϕε) ≤
∫

Ω

m1∆H1
0 ≤ ‖∆H1

0‖L∞(Ω).

13



Hence, by the chain rule applied to the term D(V 1(m1 ? ϕε, . . . ,mM ? ϕε)),∑
j

∫
Ω

∂mjV
1(m1 ? ϕε, . . . ,mM ? ϕε)D(mj ? ϕε) ·D(m1 ? ϕε) ≤ ‖∆H1

0‖L∞(Ω).

It suffices now to carry out the same computations for equations corresponding to populations

i = 2, . . . ,M and sum over i to get (16).

Regarding Kolmogorov equations of type (4), it is known that an estimate on the L∞ norm of

solutions m ∈ P follows from an L∞ bound on the drift b. The next proposition states that for

such an estimate to hold, a bound on the Lr norm of b and the Lq norm of m for some q > 1 and

r > d is sufficient.

Proposition 12. Let r > d, q > r
r−1 and suppose that b ∈ C(Ω) satisfies b·n = 0 on ∂Ω. Moreover,

‖m‖Lq(Ω) ≤ K, ‖b‖Lr(Ω) ≤ K for some K > 0. If m is a solution of (4), then

‖m‖L∞(Ω) ≤ C (18)

for some C = C(K, ν, d,Ω).

Proof. From [25], Theorem 3.1, we know that the following a-priori estimate on m holds:

‖m‖W 1,p(Ω) ≤ C(‖ν∆m‖W−1,p(Ω) + ‖m‖W−1,p(Ω)),

for all p > 1 and a constant C that depends on p, ν, d,Ω. Using equation (4) and Holder inequality,

for all test functions φ ∈ C∞(Ω),∣∣∣∣∫
Ω

ν∆mφ

∣∣∣∣ ≤ ∫
Ω

|mb ·Dφ| ≤ ‖m‖Lq(Ω)‖b‖Lr(Ω)‖Dφ‖Lp′ (Ω)

and similarly ∣∣∣∣∫
Ω

mφ

∣∣∣∣ ≤ ∫
Ω

|mφ| ≤ ‖m‖Lq(Ω)

(∫
Ω

dx

)1/r

‖φ‖Lp′ (Ω),

setting p, p′ such that
1

r
+

1

q
+

1

p′
= 1,

1

p
+

1

p′
= 1.

That leads to

‖m‖W 1,p(Ω) ≤ C,
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as p > 1 by the choice of r, q. Plus, C depends only on K and fixed data of the problem. If p > d

we are done by using Sobolev embeddings (by which m is continuous and bounded on the whole

domain). Else,

‖m‖Lp∗(Ω) ≤ C,

with p∗ ≥ q + ε for some ε > 0 that does not depend on q by the hypothesis r > d. Iterating the

last two estimates and setting q = p∗ at each time, a bootstrap argument let us conclude in a finite

number of steps that

‖m‖L∞(Ω) ≤ C.

We are now ready to provide the

Proofs of Theorems 6 and 7. Step 1. Since Hi satisfies (H) and (VNL) holds for V iε [m], by Theo-

rem 4 there exists (uε, λε,mε) ∈ [C2(Ω)]M × RM × [W 1,p(Ω)]M solution of (15). We will denote

(u, λ,m) := (uε, λε,mε) during the next steps of proof.

Step 2: ‖V iε [m]‖Lq(Ω) ≤ C for some q > d. This is easily verified if (VLB) holds. If (VLU) holds,

we know that if (u, λ,m) is a solution of the system, by hypothesis i) and Lemma 11

α

∫
Ω

M∑
i=1

(mi ? ϕε)
γ |D(mi ? ϕε)|2 ≤ C

for some C > 0; hence ∫
Ω

(mi ? ϕε)
d(γ+2)
d−2 ≤ C, i = 1, . . . ,M (19)

by Sobolev inequality if d ≥ 3, otherwise ‖mi ? ϕε‖Lp(Ω) is bounded for every p ≥ 1 (the positive

constant C may vary throughout the proof, but it never depends on ε). Moreover,

‖V iε [m]‖Lq(Ω) ≤ ‖V i(m ? ϕε)‖Lq(Ω) ≤ D‖1 +
∑

(mi ? ϕε)
η‖Lq(Ω), i = 1, . . . ,M

and the last term is bounded by a positive constant for some q > d because of (19) adn (VLU) (if

d ≤ 2 this is true just by requiring V i to have polynomial growth).

Step 3: ‖Du‖Lr(Ω) ≤ C = C(r) for all r ≥ 1, which follows from Theorem 19. Indeed, the

ergodic constants λi are bounded from below by −L + minΩH
i
0 or −V + minΩH

i
0 by maximum
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principle if (VLB) or (VLU) hold respectively, and the Lq norm of the left hand sides of the Hamilton-

Jacobi-Bellman equations (15), i) are uniformly bounded due to Step 2. We also obtain that

‖Hi(x,Dui(x))‖Lr̄(Ω), ‖DpH
i(x,Dui(x))‖Lr̄(Ω) ≤ C, i = 1, . . . ,M (20)

with r̄ as large as we need.

Step 4: ‖m‖L∞(Ω) ≤ C. We first multiply (15), ii) by logmi and integrate by parts to get

νi

∫
Ω

|Dmi|2

mi
+

∫
Ω

DpH
i(x,Dui) ·Dmi = 0,

hence

νi

∫
Ω

|Dmi|2

mi
≤ νi

2

∫
Ω

|Dmi|2

mi
+

1

2νi

∫
Ω

mi|DpH
i(x,Dui)|2,

so

‖D
√
mi‖2L2(Ω) ≤ C‖mi‖Lp̄/2(Ω)‖ |DpH

i(Dui)|2‖L(p̄/2)′ (Ω) (21)

for all p̄ ≥ 2.

We use now the Gagliardo-Nirenberg interpolation inequality (see [23])

‖
√
mi‖Lp̄(Ω) ≤ C(‖D

√
mi‖1/2L2(Ω)‖

√
mi‖1/2L2(Ω) + ‖

√
mi‖1/2L2(Ω)),

which holds for
1

p̄
=

1

2

(
1

2
− 1

d

)
+

1

4

if d ≥ 2 and for all p̄ ≥ 1 if d = 1. Since
∫

Ω
mi = 1, it follows that

‖mi‖1/2Lp̄/2(Ω)
≤ C(‖D

√
mi‖1/2L2(Ω) + 1),

therefore, adjusting C

‖mi‖2Lp̄/2(Ω) ≤ C(‖D
√
mi‖2L2(Ω) + 1).

We plug now (21) into the last inequality to conclude that

‖mi‖Lp̄/2(Ω) ≤ C, (22)

p̄ as above, as ‖ |DpH
i(Dui)|2‖L(p̄/2)′ (Ω) is bounded by (20). We observe that p̄/2 > 1 for all d.

By choosing r̄ large enough so that p̄/2 > r̄/(r̄ − 1), we deduce using Proposition 12 that

‖mi‖L∞(Ω) ≤ C, i = 1, . . . ,M,
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which produces an uniform upper bound for ‖V iε [m]‖L∞(Ω) and consequently for the constants λi

as well.

Step 5: ‖u‖C1,δ′ (Ω), ‖m‖W 1,p(Ω) ≤ C for some δ′ > 1 and for all p ≥ 1. By Sobolev imbedding

theorems ‖ui‖C0(Ω) ≤ C. Equations (15), i) can be rewritten as

νi∆ui(x) = Hi(x,Dui(x)) + λi − V iε [m](x) ∀x ∈ Ω, (23)

By standard elliptic regularity it is possible to conclude that

‖u‖W 2,q(Ω) ≤ C(‖ν∆u‖Lq(Ω) + ‖u‖Lq(Ω)),

and the right hand side is uniformly bounded. Choosing q large enough let us conclude using again

Sobolev imbedding theorems that ‖ui‖C1,δ(Ω) ≤ C. The estimate for ‖mi‖W 1,p(Ω) follows from the

fact that ‖Dui‖L∞(Ω) ≤ C and Theorem 2.

Convergence as ε → 0 under (VLB) . By virtue of the estimates of Step 5, we can extract

subsequences such that

λε,i → λi ∈ R

uε,i → ui ∈ C1,δ(Ω)

mε,i → mi ∈ C0(Ω)

mε,i ⇀mi ∈W 1,p(Ω)

as ε→ 0 for δ < δ′ and for all i = 1, . . . ,M . By uniform convergence of D(uε)i and weak convergence

of (mε)i, passing to the limit in Kolmogorov equations (15), ii) let us conclude that ui and mi solve

(MFG) ii), iv) in weak sense. In order to pass to the limit in the Hamilton-Jacobi-Bellman equations,

we need to prove that V iε [mε]→ V i[m] locally uniformly. Indeed,

mε,i ? ϕε −mi = (mε,i −mi) ? ϕε + (mi ? ϕε −mi)

and both terms of the sum converge to zero locally uniformly. Therefore V i(mε ? ϕε) → V i(m)

locally uniformly and similarly V iε [mε]→ V i(m). Hence (ui, λi,mi) solve equations (MFG) i), iii)

in viscosity sense.

Convergence as ε → 0 under (VLU) . Arguments in this case are very similar to the previous

one, but differentiability of V i improves convergence. Indeed, the bound on ‖mε‖W 1,p(Ω) implies by

Sobolev imbedding a bound on ‖mε‖C0,δ(Ω) if p is chosen large enough. Hence, ‖mε?ϕε‖C0,δ(K) ≤ C
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and similarly ‖V iε [mε]‖C0,δ(K) ≤ C, for all K ⊂⊂ Ω. Combining (23) and standard Schauder

estimates we conclude that

uε,i → ui ∈ C2,δ′′(Ω) locally

for some δ′′ > 1. Hence, convergence for (15), i) is pointwise.

5. Uniqueness.

In the one-population case, uniqueness of solutions for (MFG) has been proven to hold when

the hamiltonian is convex and the cost V is increasing with respect to the density m; from the

game point of view, players tend to avoid regions where the distribution m is high. This result

has been obtained by Lasry and Lions [20] using deeply the structure of the mean field system and

an argument that is not standard in classical theory of elliptic systems. A generalization of their

argument that appears natural in the multi-population context is the following.

Theorem 13. Suppose that the following L2 monotonicity condition on the costs V i holds∫
Ω

M∑
i=1

(
V i[m](x)− V i[m̄](x)

)
(mi(x)− m̄i(x))dx ≥ 0 ∀m, m̄ (24)

and that the hamiltonians Hi(x, ·) are strictly convex for every x ∈ Ω. Then, uniqueness of (clas-

sical) solutions for (MFG) holds.

Proof. Let (u, λ,m) and (ū, λ̄, m̄) be two solutions of (MFG). We multiply i) by (mi − m̄i) and ii)

by (ui − ūi), subtract, integrate by parts, use the fact that mi, m̄i ∈ P and sum for i = 1, . . . ,M

to get

−
M∑
i=1

∫
Ω

mi[H
i(x,Dūi)−Hi(x,Dui)−DpH

i(x,Dui) · (Dūi −Dui)]dx

−
M∑
i=1

∫
Ω

m̄i[H
i(x,Dui)−Hi(x,Dūi)−DpH

i(x,Dūi) · (Dui −Dūi)]dx

=

∫
Ω

M∑
i=1

(
V i[m](x)− V i[m̄](x)

)
(mi(x)− m̄i(x))dx

The left hand side of the equation is non-positive (the Hamiltonians Hi are convex with respect

to p) and the right hand side is non-negative by assumption, so they both have to be zero. Moreover
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mi > 0 on Ω and Hi are strictly convex, i.e.

Hi(x, p+ q)−Hi(x, p)−DpH
i(x, p) · q = 0⇒ q = 0 ∀x ∈ Ω, p, q ∈ Rd,

so Dui = Dūi on Ω for all i. Hence, ui and ūi differ by a constant, but they have to be equal

because they both belong to Cav(Ω), and therefore λi = λ̄i as well. Since uniqueness holds for

Kolmogorov equations, we conclude that mi = m̄i.

Remark 14. Suppose that V i ∈ C1(RM ) are local costs. Then, a sufficient condition for (24) is

that

JV + JV T is positive semi-definite,

as an easy consequence of Lagrange’s theorem:∑
i

(V i(m)− V i(m̄))(mi − m̄i) =
∑
i,j

∂mjV
i(ξ)(mi − m̄i)(mj − m̄j)

for some ξ = ξ(m, m̄). We observe that this condition is slightly weaker than (VLU) i) (which

requires some sort of positive-definiteness of JV ), that is the “bound from below” for existence for

(MFG) with local costs (see Remark 8).

Remark 15. It has been pointed out that one-population Mean Field Games system are connected

to optimal control of partial differential equations, see [20], Section 2.6 or [19]. In particular, assume

that M = 1, H is convex, and consider the following minimization problem

inf
α

{∫
Ω

L(x, α)m+

∫
Ω

Φ(m)

}
(25)

where L is the Legendre transform of H, Φ ∈ C1(R) and m ∈ P is the state corresponding to the

control α ∈ L∞(Ω,Rd), which is the (unique) probability distribution that solves the Kolmogorov

equation

−ν∆m− div(αm) = 0 in Ω,

and satisfies the boundary condition ν∂nm + mα · n = 0. Then, it can be verified that if ᾱ is an

optimal control, namely it minimizes the expression in (25) among some set of admissible controls,

then the corresponding state m̄, the dual state ū which is determined by ᾱ = −DpH(x,Dū) and

the optimal value λ solve (MFG) with V [m] = Φ′(m).
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The optimal control interpretation carries over naturally to the multi-population case under

the following assumption on the costs V i, which we suppose to be differentiable: there exists

Ψ ∈ C2(RM ) such that

∂miΨ(m1, . . . ,mM ) = V i(m1, . . . ,mM ) ∀m1, . . . ,mM and i = 1, . . . ,M. (26)

If the set of costs satisfies such kind of “gradient” condition, we are led to consider the minimization

problem

inf
α1,...,αM

{∫
Ω

L1(x, α1)m1 + . . .+

∫
Ω

LM (x, αM )mM +

∫
Ω

Ψ(m1, . . . ,mM )

}
, (27)

where Li is the Legendre transform of Hi for all i = 1, . . . ,M , αi is the control implemented by

the i-th population and the states m1, . . . ,mM solve respectively

−νi∆mi − div(αimi) = 0 in Ω.

As in the single population case, a minimizer ᾱ1, . . . , ᾱM of (27) provides a solution to (MFG).

Note that assumption (26) implies a certain symmetry in the system, as D2Ψ turns out to be

symmetric, and consequently ∂mjV
i = ∂miV

j for all i, j = 1, . . . ,M .

Moreover, it is worth to observe that (27) becomes a convex optimization problem as soon as

Ψ is a convex function. This is equivalent to ask D2Ψ to be positive semidefinite, that is {∂mjV i}

positive semidefinite, which is equivalent to the uniqueness condition (24).

Example 16. Consider the two-populations Example 10. Then, (24) and therefore uniqueness of

solutions is ensured if

a ≥ 0, |b+ c| ≤ 2a.

We mention that in [17], a non-stationary version of (MFG) with two populations is considered,

from a theoretical and numerical point of view. A model with linear costs of the form (14) is

studied, where a = 2 and b, c = λ ≥ 0. Existence and uniqueness of solutions is obtained in the

“convex” case λ ≤ 2, that is precisely the interval where (24) is satisfied.

5.1. Some non-uniqueness examples.

In this final section we will present some two-populations examples (M = 2) where (24) does

not hold and (MFG) admits multiple solutions. We recall that if the Hamiltonian functions are

quadratic, i.e.

Hi(x, p) =
1

2
|p|2,
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the so-called Hopf-Cole change of variables vi := e
− ui

2νi , mi = v2
i reduces (MFG) to (see for example

[20])

−2ν2
1∆v1 + (V 1[v2

1 , v
2
2 ]− λ1)v1 = 0 in Ω

−2ν2
2∆v2 + (V 2[v2

1 , v
2
2 ]− λ2)v2 = 0,

vi > 0,
∫
v2
i = 1,

∂nvi = 0 on ∂Ω.

(28)

We will consider some examples of local linear costs of the form (14).

Proposition 17. Let d = 1, ν1 = ν2 = 2−1/2 and Ω = (0, 1). Then, there exist a > 0, b < 0 such

that the system 

−ν1u
′′
1(x) + 1

2 |u
′
1(x)|2 + λ1 = am1(x) + bm2(x), in Ω,

−ν2u
′′
2(x) + 1

2 |u
′
2(x)|2 + λ2 = bm1(x) + am2(x),

−νim′′i (x)− (u′i(x)mi(x))′ = 0,

u′i(0) = u′i(1) = m′i(0) = m′i(1) = 0 on ∂Ω

(29)

has at least two different solutions.

Proof. By the Hopf-Cole transform we might consider (28). Particular solutions of (28) are given

by (v1, v2) = (ϕ,ϕ), λi = λ, where ϕ, λ solve

−ϕ′′ = λϕ− (a+ b)ϕ3 ϕ > 0,

∫
ϕ2 = 1,

with ϕ′ = 0 on the boundary. As it is pointed out in [20] (p. 11) this equation has (at least) two

solutions in dimension d = 1 if −(a + b) is positive and large enough, that is true, for example,

when a > 0 and a+ b << 0. Indeed, ϕ = 1, λ = a+ b provide a solution. A non-constant solution

is obtained by solving the minimization problem

min
ϕ∈H1(Ω),

∫
Ω
ϕ2=1

1

2

∫
Ω

(ϕ′)2 +
a+ b

4

∫
Ω

ϕ4.

In the previous example V i is strictly increasing with respect to mi, but uniqueness fails due to

the leading dependence of the costs with respect to m−i.

Non-uniqueness issues arise also when considering different parameters a, b, c in (14).
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Proposition 18. Let d = 1 and Ω = (−1/2, 1/2). Then, there exists ν0 > 0 such that for all

ν ∈ (0, ν0), the system

−νu′′1(x) + 1
2 |u
′
1(x)|2 + λ1 = m2(x), in Ω,

−νu′′2(x) + 1
2 |u
′
2(x)|2 + λ2 = m1(x),

−νm′′i (x)− (u′i(x)mi(x))′ = 0,

u′i(−1/2) = u′i(1/2) = m′i(−1/2) = m′i(1/2) = 0 on ∂Ω

(30)

has at least two different solutions. Moreover, the non-constant solution (u,m, λ) satisfies

λ1,2 ≤ 48ν2. (31)

System (30) describes (long-time average) equilibria of two “xenophobic” populations, where

the cost paid by every individual is increasing with respect to the distribution of the individuals of

the other population at his position. One should expect some equilibrium configuration where the

two distributions are concentrated in different parts of the domain Ω. Let (u,m, λ) be a solution

of (30) satisfying (31). It holds that ∫
Ω

m1m2 ≤ λ1.

This inequality can be easily obtained by multiplying the Hamilton-Jacobi-Bellman equation for u1

by m1 and the Kolmogorov equation for m1 by u1 and integrating by parts. Since∫
Ω

m1m2 ≤ 48ν2,

we shall conclude that as ν → 0 the distributions m1,m2 become more and more segregated, in the

sense that
∫

Ω
m1m2 → 0.

Proof of Proposition 18. By virtue of the Hopf-Cole transform we consider (28). Particular solu-

tions of (28) are given by (v1(x), v2(x)) = (ϕ(x), ϕ(−x)), λi = λ, where ϕ, λ solve

−2ν2ϕ′′(x) + ϕ2(−x)ϕ(x) = λϕ(x), ϕ(x) > 0 ∀x ∈ Ω,

∫
ϕ2 = 1, (32)

with ϕ′ = 0 on the boundary. The constant function ϕ ≡ 1 together with λ = 1 solves (32).

Equation (32) is also linked to the variational problem

min
ϕ∈H1(Ω),

∫
Ω
ϕ2=1

J(ϕ), J(ϕ) := ν2

∫
Ω

(ϕ′(x))2dx+
1

4

∫
Ω

ϕ2(x)ϕ2(−x)dx.
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Indeed, for all v ∈ H1(Ω)

J(ϕ+ εv) =

J(ϕ) + ε2ν2

∫
Ω

ϕ′v′ +
ε

2

(∫
Ω

ϕ2(x)ϕ(−x)v(−x)dx+

∫
Ω

ϕ2(−x)ϕ(x)v(x)dx

)
+ o(ε) =

J(ϕ) + ε

(
2ν2

∫
Ω

ϕ′(x)v′(x)dx+

∫
Ω

ϕ2(−x)ϕ(x)v(x)dx

)
+ o(ε),

so a minimum of J constrained to
∫

Ω
ϕ2 = 1 solves (weakly) (32). It is also positive by standard

comparison principle arguments. Such a minimizer exists as minimizing sequences of J are bounded

in H1. We show now that if ν is sufficiently small, the minimum is not achieved at ϕ ≡ 1. Let

ϕ̄ := max{0,
√

24x}.

Then,
∫

Ω
ϕ̄2 = 1 and

J(ϕ̄) = ν2

∫
Ω

(ϕ′(x))2dx = 12ν2 <
1

4
= J(1)

if ν < ν0 :=
√

1/48. Hence, for such values of ν the minimizer ϕ of J is not the constant function.

To obtain (31), we multiply (32) by ϕ and integrate by parts to get

λ = 2ν2

∫
Ω

(ϕ′)2 +

∫
Ω

ϕ2(−x)ϕ2(x)dx = 4J(ϕ)− 2ν2

∫
Ω

(ϕ′)2 ≤ 4J(ϕ̄) = 48ν2.

Appendix A. An a-priori estimate for HJB equations.

We derive an a-priori estimate on the gradient of solutions of HJB equations with superlinear

Hamiltonian by applying the integral Bernstein method, introduced in [22]. In this version of

the method, integral estimates are obtained by employing the equation solved by |Du|2. For the

convenience of the reader, we present a detailed proof in the case of Neumann boundary conditions,

adapting the arguments of [22].

Theorem 19. Let Ω be convex, f ∈ Lq(Ω) with q > d, γ > 1, R > 0, and u ∈ C3(Ω) be a solution

of  −ν∆u+R|Du|γ + λ = f(x) in Ω

∂nu = 0 on ∂Ω.
(A.1)
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Let r ≥ 1 be fixed. Suppose that λ ≥ λ0 for some λ0 ∈ R and ‖f‖Lq(Ω) ≤ f0 for some f0 > 0, then

‖Du‖Lr(Ω) ≤ C, (A.2)

with C = C(ν,R, γ, r, d, λ0, f0)

Proof. Set w = |Du|2, so

Djw = 2
∑
i

DiuDiju, Djjw = 2
∑
i

((Diju)2 +DiuDijju).

It holds that

|Dw| ≤ 2d2|Du||D2u|. (A.3)

By differentiating the equation (A.1) in Ω with respect to Dj and taking the sums for j = 1, . . . , d

one obtains

−ν∆w +Rγ|Du|γ−2Du ·Dw + 2|D2u|2 = 2Df ·Du.

We multiply it by wp, with p ≥ 1 that will be fixed later; through all the proof we will denote by C

a constant that depends upon ν,R, γ, r, d and emphasize with Cp the dependance upon p. One has

−ν
∫

Ω

∆wwp + 2

∫
Ω

|D2u|2wp = −Rγ
∫

Ω

|Du|γ−2Du ·Dwwp + 2

∫
Ω

Df ·Duwp

We are going to estimate separately each of the four terms appearing in the equation. Since

Dw · n ≤ 0 (p. 236 [22]),

− ν
∫

Ω

∆wwp = ν

∫
Ω

Dw ·D(wp)− ν
∫
∂Ω

wpDw · n ≥ 4pν

(p+ 1)2

∫
Ω

|D(w(p+1)/2)|2

≥ C 4p

(p+ 1)2

(∫
Ω

|w|
(p+1)d
d−2

) d−2
d

− C 4p

(p+ 1)2

∫
Ω

wp+1

≥ C 4p

(p+ 1)2

(∫
Ω

|w|
(p+1)d
d−2

) d−2
d

− C 4p

(p+ 1)2

(∫
Ω

wp+γ
) p+1
p+γ

by the Sobolev embedding theorem and Holder inequality also. Then,

2

∫
Ω

|D2u|2wp ≥∫
Ω

|D2u|2wp +

∫
Ω

∑
i

(Diiu)2wp ≥
∫

Ω

|D2u|2wp +
1

d

∫
Ω

(∆u)2wp

≥
∫

Ω

|D2u|2wp +
R2

4dν2

∫
Ω

|Du|2γwp − λ2
0

dν2

∫
Ω

wp − 2

dν2

∫
Ω

f2wp,
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using the equation (A.1) and applying to the term (R|Du|γ+λ−f)2 the inequality (a−b)2 ≥ a2

2 −2b2

for every a, b ∈ R twice. For the third term we have that

−Rγ
∫

Ω

|Du|γ−2Du ·Dwwp = −Rγ
∫

Ω

|Du|γ−2Du ·D
(

1

p+ 1
wp+1

)
=

Rγ

p+ 1

∫
Ω

div(|Du|γ−2Du)wp+1 − Rγ

p+ 1

∫
∂Ω

|Du|γ−2wp+1Du · n

=
Rγ

p+ 1

∫
Ω

D(|Du|γ−2) ·Duwp+1 +
Rγ

p+ 1

∫
Ω

|Du|γ−2∆uwp+1

≤ 2d2Rγ(γ − 1)

p+ 1

∫
Ω

|Du|γ−2|D2u|wp+1 ≤ C

p+ 1

∫
Ω

wp+γ +
C

p+ 1

∫
Ω

|D2u|2wp,

by the estimate (A.3). Finally,

2

∫
Ω

Df ·Duwp = −2

∫
Ω

fdiv(Duwp) + 2

∫
∂Ω

f wpDu · n =

− 2

∫
Ω

f∆uwp − 2

∫
Ω

fDu ·D(wp) ≤ 2d

∫
Ω

|f ||D2u|wp + 4d2(p− 1)

∫
Ω

|f ||D2u|wp

≤ 1

2

∫
Ω

|D2u|2wp + Cp

∫
Ω

|f |2wp,

and by putting all the estimates together

C
4p

(p+ 1)2

(∫
Ω

|w|
(p+1)d
d−2

) d−2
d

+
1

2

∫
Ω

|D2u|2wp+

+
R2

4dν2

∫
Ω

wp+γ − λ2
0

dν2

∫
Ω

wp − 2

dν2

∫
Ω

f2wp

≤ C

p+ 1

∫
Ω

wp+γ +
C

p+ 1

∫
Ω

|D2u|2wp + Cp

∫
Ω

f2wp + C
4p

(p+ 1)2

(∫
Ω

wp+γ
) p+1
p+γ

.

One may choose p sufficiently large in order to have

C
4p

(p+ 1)2

(∫
Ω

|w|
(p+1)d
d−2

) d−2
d

+
R2

8dν2

∫
Ω

wp+γ

≤ Cp
∫

Ω

f2wp + C
4p

(p+ 1)2

(∫
Ω

wp+γ
) p+1
p+γ

+
λ2

0

dν2

∫
Ω

wp

≤ Cp
(∫

Ω

|w|
(p+1)d
d−2

) (d−2)p
(p+1)d

(∫
Ω

|f |2β
) 1
β

+ C
4p

(p+ 1)2

(∫
Ω

wp+γ
) p+1
p+γ

+ Cp

(∫
Ω

wp+γ
) p
p+γ

(A.4)

using Holder inequality, with β = α′ and α = (p + 1)d/(d − 2)p. Since 2β → d, choosing p large

enough we conclude that (A.2) holds.
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