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Abstract

In this paper, we propose a novel method for extrinsic and intrinsic automatic
calibration of four wheel industrial Automated Guided Vehicles (AGVs) com-
pliant with Ackermann and Dual Drive kinematics. For each kinematic model
the algorithm estimates the trajectories measured by an on-board sensor and
the expected ones given the state of the wheels. The estimation exploits the
model equations derived in this work which constrain calibration parameters
and measurements from wheel encoders and sensor odometry. The parameter
values are computed through closed-form solutions of least-square estimation.
The method has been implemented on Programmable Logic Controllers and
tested on industrial AGVs. The developed procedure computes the parameters
in about 10−15 minutes, a significant improvement compared with one hour or
more required by manual AGV calibration. Experiments with AGVs of various
sizes in a warehouse have assessed the accuracy and stability of the proposed ap-
proach. The position accuracy achieved by AGVs calibrated with the proposed
method is higher than the one achieved by manual calibration.

Keywords: Industrial AGVs, calibration, mobile robots.

1. Introduction

Automated Guided Vehicles (AGVs) are commonly used to transport goods
and to efficiently handle logistics of industrial warehouses. Industrial AGVs
are usually equipped with forks or other grasping devices for transportation of
goods, and with one or more exteroceptive sensors to detect obstacles and to
estimate robot position and orientation. Each vehicle must be able to localize
in the environment, to perform navigation, and to precisely reach the operation
points with the forklift to lay down or carry pallets. Accurate robot positioning
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Figure 1: An industrial Ackermann AGV with visible front steering and actuated
wheels, its back forklift and a navigation laser scanner at the top of a telescopic
pole. Although with slightly different mechanical structure, Dual Drive AGVs have a
similar appearance.

depends on accurate odometry and sensor-based localization, which in turn
requires suitable calibration. AGV calibration is the estimation of intrinsic
parameters, which relate the wheel commands to the motion of the AGV, and
extrinsic parameters, which define the pose of the sensor placed on the robot
and used for localization. Examples of intrinsic parameters include those used
in the computation of odometry like the wheel steering offsets and the wheel
driving scales relating encoders and travelled distance. Examples of extrinsic
parameters include the relative position and orientation of the on-board sensors
w.r.t. the robot frame. In industrial practice, calibration parameters are often
evaluated by iteratively correcting parameter values until the desired motion is
obtained. Such calibration process requires from half an hour to one hour and
half for each AGV and its accuracy largely depends on the skills and experience
of the operator performing the calibration. Consistency of manual calibration
with multiple, possibly different AGVs operating in the same warehouse is often
hard to guarantee, which can result in different behavior when reaching the
operating points.

In this paper, we propose a novel algorithm for intrinsic and extrinsic calibra-
tion of four wheel AGVs, and specifically Ackermann and Dual Drive kinematic
models. Four wheel AGVs are increasingly preferred in industrial applications
over simpler kinematic configurations due to their better load distribution and
stability on rough grounds, as well as because of their actuation redundancy and
more precise fork operations. Figure 1 shows an example of Ackermann AGV.
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Both Ackermann and Dual Drive models have steering front wheels and non-
steering rear wheels. In Ackermann AGVs the two front wheels are actuated,
whereas in Dual Drive models the rear wheels are actuated. In Dual Drive AGVs
the actuators are closer to the fork-lift on the rear of vehicles, which makes these
vehicles more effective in cargo operations. To date, no suitable automated cal-
ibration procedure has been proposed for four wheel AGVs. This work stems
from a joint industry-academia project aiming at improving calibration accu-
racy and reducing calibration time through automatic procedures. Moreover,
the developed solution for calibration must take into account the software lim-
itations of standard embedded industrial controllers (e.g. programmable logic
controllers) adopted in AGVs.

Research has addressed several formulations of calibration problems for dif-
ferent robotic systems, including the calibration of multi-sensor systems and
robot odometry [1–33]. In industrial scenarios, calibration is required for the
correct operation of wheel mobile robots [2, 3, 9, 11, 34, 35], multi-tractor ve-
hicles with specific kinematics [33], and sensor-based object grasping using ma-
nipulators [21–24]. Several of these works investigate either intrinsic or extrinsic
calibration: some techniques are focused on robot intrinsic kinematics [3, 4, 7–
9, 11], whereas other are designed for multi-sensor systems [15, 21, 22, 24, 30–32].
Recently, Censi et al. [1] proposed a complete calibration algorithm for robots
with differential drive kinematics and equipped with a sensor. However, the
kinematic model, the selection of parameters and the presented experimental
validation are mostly suited for a laboratory robotic platform rather than in-
dustrial vehicles. Most of the odometry calibration literature is committed to
differential drive robots. The popularity of differential drive actuation system
is due to its simplicity. However, the industrial AGVs employed in transporta-
tion of heavy loads require robot kinematics with higher number of wheels. Our
previous work [2] illustrated a calibration algorithm for tricycle robots, a config-
uration adopted in earlier design of industrial AGVs, but which is often replaced
by four wheel AGVs in new automated warehouses. There are relatively few
works on the calibration four wheel robots. McKerrow et al. [36] present a
semi-automatic procedure computing driving scales and steering offsets, under
the assumption that wheels are already aligned. The procedure proposed in [37]
estimates step by step the pose of a range finder mounted on an ominidirectional
robot using segment features, the gyroscope orientation and the odometric pa-
rameters. None of these method optimizes all the calibration parameters of a
four wheel AGV in a single step. Maye et al. [38] proposed a general calibra-
tion framework that can estimates all kind of parameters, intrinsic or extrinsic,
provided a model. The main advantages of such method are its applicability
for online calibration and the automatic numerical evaluation of observability.
However, since it is designed for general AGV models, it is based on numerical
methods and model approximations (e.g. linearization, covariance projection
based on Jacobian, etc.), and online continous calibration may suffer from out-
lier measurements in the case of industrial AGVs with lifelong operability. In
order to achieve the high position accuracy required in industrial applications,
it would be convenient to evaluate all the calibration parameters of four wheel
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AGVs by optimizing an objective function depending on all the measurements.
Unfortunately, four wheel models are over-actuated and intrinsic kinematic pa-
rameters cannot be identified by means of the observed trajectory.

This work develops a complete calibration procedure of four wheel AGVs
according to the principle adopted in [1, 2]: the comparison of the trajectory
measured by the on-board sensor and the expected trajectory of the AGV.
Due to the observability issues of four wheel kinematic models, the only pre-
condition is the manual alignment of the front wheels of the robot. To observe
trajectories, the robot must be equipped with on-board sensors enabling ego-
motion estimation. Sensors with such capability, like range finders, are usually
mounted on industrial AGVs and other mobile robots for localization and nav-
igation as well as obstacle detection. The expected trajectories also depend on
odometry and, thus, on intrinsic parameters. These different measurements are
encoded by a set of constraints among intrinsic and extrinsic parameters, which
are exploited to perform least-square estimation. In the Ackermann and Dual
Drive kinematic models addressed in this paper, the presence of multiple in-
dependently actuated wheels makes calibration more difficult as well as crucial
to limit slipping and to achieve consistent motion of all actuators. The main
contribution of this paper is the derivation of equations for four wheel Acker-
mann and Dual Drive kinematics, and their closed-form solutions. The intrinsic
calibration equations accurately describe the real motion of AGVs under the
assumption of wheel alignment and negligible wheel slipping. The presented
extrinsic calibration algorithm extends our previous work on tricycle AGVs [2].
Moreover, the proposed closed-form solution is suitable for implementation on
PLCs (Programmable Logic Controllers) used for industrial AGVs. The second
contribution of the paper is the implementation, deployment and assessment
of the proposed methods on industrial AGVs. In particular, the implemented
application enables full estimation of calibration parameters in about 10 − 15
minutes. Repeated calibration trials have exhibited numerical stability and pre-
cision in the values of computed parameters. Positioning tests on actual AGVs
have also demonstrated the higher accuracy of the proposed calibration algo-
rithm w.r.t. manual calibration.

The paper is organized as follows. Section 2 presents the general model
of four wheel AGVs and the specific equations of Ackermann and Dual Drive
robots. Sections 3 and 4 illustrate the solutions to respectively intrinsic and
extrinsic calibration. Section 5 discusses practical implementation and deploy-
ment of calibration algorithms on industrial AGVs. Section 6 presents the re-
sults about calibration repeatability and position precision. Finally, section 7
concludes the paper.

2. Problem Formulation

This section illustrates the Ackermann and Dual Drive kinematics and pro-
vides the formulation of their intrinsic parameter estimation. These two models
have four wheels and are both over-actuated vehicles, since there are more actu-
ators than the system degrees-of-freedom. Thus, large wheel slipping may occur
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Figure 2: Structure of four wheel AGVs with the reference frames of AGV and its parameters.
Counterclockwise arrows refer to positive angles, whereas clockwise ones (e.g. the arrow of
αloff ) are negative.

with arbitrary values of steering and speed. When wheel commands yield a con-
sistent AGV motion, i.e. correspond to the kinematics of a rigid body, these
input commands are called consistent. When the commands are not consistent,
robot dynamics must be taken into account to compute the final motion. Since
accurate modelling and estimation of torques, masses and friction is difficult
and beyond the scope of the work, we limit the analysis to kinematics.

2.1. Modelling Four Wheel AGVs

Figure 2 illustrates the general structure of four wheel robots with reference
frames and dimensional parameters. All the reference frames are treated in the
following as either tridimensional frames with parallel axes ẑ or planar frames.
Reference frames include a global inertial frame {G} fixed in the environment,
the robot frame {V }, the frame {S} attached to the navigation sensor, and the
wheel frames {Fl} (front-left wheel), {Fr} (front-right wheel), {Bl} (back left
wheel), and {Br} (back-right wheel). The two front wheels {Fl} and {Fr} have
independent steering actuators controlling the respective steering angles. The
dimensional parameters are the so called wheelbase fx, i.e. the distance between
front and rear axes, and the front and back wheel half-axes, respectively fy and
by.

The Ackermann and Dual Drive models are compliant with this geometric
description. In the Ackermann model, the front wheels Fl and Fr are both

5



steering and actuated whereas the rear wheels Bl and Br are passive. The
rolling speed of passive wheels is completely set by the other actuated wheels.
In the Dual Drive model, Fl and Fr are only steering whereas Bl and Br are
actuated and not steering. The front steering-only wheels are used to guide the
vehicle and to limit slipping.

Since all the frames belong to a rigid body, the robot configuration in planar
space can be described by a unique pose vector q = [qx, qy, qθ]

> ∈ se(2). The
state vector represents the position qpos = [qx, qy]> ∈ R2 and orientation qθ ∈
so(2) of reference frame {V } w.r.t. the global frame {G}. Henceafter, the
subscript ·pos applied to a pose vector refers to its position coordinate vector in
R2. The reference frame {V } is sometimes called logical point, since robot state
is logically represented as a point particle located in the origin of this frame.
The general kinematic equation describing the evolution of state vector q over
time is

q̇ =

 vlp cos (qθ)
vlp sin (qθ)

ωlp

 (1)

The input controls of eq. (1) are given by the linear and angular velocities vlp
and ωlp of the logical point. It is sometimes convenient to express the linear and
angular speeds of robot frame {V } from global frame {G} in {V } 3D coordinates
as

V vV,G =
[
vlp 0 0

]>
(2)

V ωV,G =
[

0 0 ωlp
]>

(3)

Observe that V vV,G has only a longitudinal component aligned with axis x̂V of
frame {V }, and zero lateral velocity. Odometry is obtained by integration of
equation (1) over a given time interval. The exact expression is straightforwardly
obtained under the assumption that input controls vlp and ωlp are constant over
[tk−1, tk]. Thus, the curvature radius rkκ = vlp/ωlp is also constant and the robot
performs a circular path. The analytical expression of robot relative motion

δk = [δkpos
>
, δkθ ]> = [δkx, δ

k
y , δ

k
θ ]> ∈ se(2) is given by

δkpos = R (−qθ(tk−1)) (qpos(tk)− qpos(tk−1))

= rkκ

[
sin
(
δkθ
)

1− cos
(
δkθ
) ] (4)

δkθ = qθ(tk)− qθ(tk−1) =

∫ tk

tk−1

ωlp dτ (5)

Equations (4) and (5) provide the exact expression of the relative motion over
circular path segments.

Physically, the values of the velocities vlp and ωlp of the robot logical point
depend on the robot wheels. The forward kinematic model consists of the
equations relating the wheel steering angles and rolling speeds to the logical
point velocities. The parameters used in forward kinematic model are called
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intrinsic parameters. In section 2.2, we illustrate the forward kinematic models
and the intrinsic parameters of Ackermann and Dual Drive models.

The robot is equipped with a sensor, which allows navigation and egomotion
estimation. In the case of industrial AGVs, this sensor is usually a planar sensor
like a laser scanner specifically designed to localize the robot in the environment
by detecting artificial landmarks. The range finder mounted on the robot is such
that the scanning plane is parallel to the ground plane. Thus, the position and
orientation of sensor frame {S} w.r.t. the robot frame {V } is described by
the planar pose vector l = [lx, ly, lθ]

> ∈ se(2). The parameters l that encode
the sensor pose w.r.t. to the vehicle are called extrinsic parameters. Accurate
estimation of extrinsic parameters is needed to perform robot localization and
navigation using the sensor. The measurements acquired from the sensor enable
the estimation of relative motion ζk = [ζkx , ζ

k
y , ζ

k
θ ]> ∈ se(2) of frame {S} over

time interval [tk−1, tk]. In the case of laser scanner, the value ζk is computed
using registration algorithms [39].

The simultaneous estimation of intrinsic and extrinsic calibration parame-
ters is performed through the comparison of the odometry δk and the sensor
egomotion ζk over several path segments k = 1, . . . , n. The value of δk de-
pends on the intrinsic parameters of the robot through forward kinematics as
illustrated in section 2.2. On the other hand, δk and ζk are constrained by the
extrinsic parameters l through the following relation[

lpos + R (lθ) ζ
k
pos

lθ + ζkθ

]
=

[
δkpos + R

(
δkθ
)
lpos

δkθ + lθ

]
(6)

The symbol R (·) refers, henceafter, both to the map from an angle β ∈ S1

to the corresponding rotation matrix of R (β) ∈ SO(2) and to the map from a
vector b ∈ R2 to a skew matrix R (b) ∈ R2×2 defined respectively as

R (β) ,
[

cosβ − sinβ
sinβ cosβ

]
, R (b) ,

[
bx −by
by bx

]
(7)

The angular part of eq. (6) implies that the relative rotation angles of the robot
and of the sensor attached as a rigid body are equal: δkθ = ζkθ . Since forward
kinematics can relate the input control and intrinsic parameters to each δkθ ,
this equation will be used to solve intrinsic calibration. The position part of
eq. (6) constrains δkpos (computed from controls and intrinsic parameters) and

ζkpos (directly measured using sensor registration) with the extrinsic parameters
l. The difference between the two members of equation (6) can be interpreted
as an error vector ek dependent from l. Thus, the value of l can be computed
by least-square estimation over errors ek for all path segments k = 1, . . . , n.

2.2. Forward Kinematics of Four Wheel AGVs

The velocities of logical point are related to the velocities set by the wheels.
The relations between speeds can be computed under the hypothesis that the
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robot can be treated as a rigid body. In particular, we can use the wheel equa-
tion [40] applied to each wheel frame {W}

V vW,G = V vV,G + V ωV,G × V pW (8)

where W is either Fl, Fr, Bl or Br. The resulting velocities at the four wheels in
robot coordinates are obtained through the substitution of eq. (2), (3) and the
position vector of each wheel (see the parameters in Figure 2) in equation (8)
as

V vFl,G =
[
vlp − ωlpfy ωlpfx 0

]>
(9)

V vFr,G =
[
vlp + ωlpfy ωlpfx 0

]>
(10)

V vBl,G =
[
vlp − ωlpby 0 0

]>
(11)

V vBr,G =
[
vlp + ωlpby 0 0

]>
(12)

The above equations provide the velocity required for each wheel in order to
achieve the desired velocities vlp and ωlp in the logic point.

However, each actuated wheel is controlled by its rolling speed and, for steer-
ing wheels, by its steering angle through actuators. We describe the parameters
that enable setting of wheel velocities referred to the four wheel robot illustrated
in Figure 2.

• Steering offsets. The two front wheels are steering and their steering angles
αwl and αwr are referred to the forward direction of robot corresponding
to axis x̂V of frame {V }. The steering motors control the steering angles
and their encoders measure the angles αl and αr w.r.t. the steer encoder
reference. Ideally, the steer encoder references should be aligned with the
forward direction of robot, i.e. axis x̂V of frame {V }. In practice, there
are steering offsets αloff and αroff of encoders such that

αwl = αl + αloff αwr = αr + αroff (13)

• Driving scales. The distance travelled by an actuated wheel is proportional
to its turning angle. Physically, the turning angle over a time interval
[tk−1, tk] is measured by counting the corresponding tick number of the
wheel encoder nkw. The driving scale sw is the parameter that relates the
relative encoder tick nkw to the travelled distance swn

k
w (e.g. in mm).

The corresponding wheel velocity at time t is denoted as swṅw(t). In the
Ackermann model, the left and right front wheels are actuated and the
module of their velocities is equal respectively to

‖V vFl,G‖ = swlṅwl ‖V vFr,G‖ = swrṅwr (14)

where swl and swr represent respectively the left and right driving scales,
and ṅwl and ṅwl are the turning rates of left and right wheels measured
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in encoder ticks. In the Dual Drive model, the same notation is adopted
for the rear wheels

‖V vBl,G‖ = swlṅwl ‖V vBr,G‖ = swrṅwr (15)

where swl, swr, ṅwl and ṅwl refer to the rear wheels. The physical meaning
of these quantities, i.e. whether referred to front or back wheels, will be
clear from the context.

Forward kinematics consist of the equations relating the logical point veloc-
ities to the wheel controls. Forward kinematics depend on the intrinsic parame-
ters αloff , αroff , swl and swr discussed above. The goal of intrinsic calibration
is the estimation of such parameters. We derive the equations that relate the ve-
locities of the robot logical point and the velocities of the wheels for Ackermann
and Dual Drive models.

Ackermann model. In the Ackermann model, the two front wheels are
steering and actuated, whereas the rear wheels are passive and not controlled.
Its forward kinematics is obtained by comparing the velocities of frames {Fl}
and {Fr}, from eq.(9)-(10), with the wheel velocities in eq. (14) as

V vFl,G =

 swl ṅwl cαwl
swl ṅwl sαwl

0

 =

 vlp − ωlpfy
ωlpfx

0

 (16)

V vFr,G =

 swr ṅwr cαwr
swr ṅwr sαwr

0

 =

 vlp + ωlpfy
ωlpfx

0

 (17)

where the modules of wheel velocities in eq. (14) are projected according to
steering angles αwl and αwr. Forward kinematics of Ackermann model is given
by

vlp =
swlṅwl cαwl + swrṅwr cαwr

2
(18)

ωlp =
swl ṅwl sαwl

fx
(19)

ωlp =
swr ṅwr sαwr

fx
(20)

ωlp =
swr ṅwr cαwr − swl ṅwl cαwl

2fy
(21)

Since Ackermann AGVs are over-actuated, there are multiple expressions for
ωlp. The values of independent controls αl, αr, ṅwl and ṅwr must be chosen
s.t. equations (18)-(21) are simultaneously satisfied. Otherwise, kinematics is
insufficient to model wheel slipping and system dynamics must be taken into
account to predict its evolution.

Dual Drive model. Dual Drive AGVs have two front steering wheels and
two rear actuated wheels, which cannot steer. The same procedure adopted for
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the Ackermann model can be applied to compute Dual Drive forward kinemat-
ics. The velocities V vBl,G and V vBr,G of rear wheels have only longitudinal
components along axis x̂V , that are equal to

swl ṅwl = vlp − ωlpby (22)

swr ṅwr = vlp + ωlpby (23)

Such equations can be used to compute the forward kinematics of Dual Drive

vlp =
swl ṅwl + swr ṅwr

2
(24)

ωlp =
swr ṅwr − swl ṅwl

2by
(25)

Driving scales swl and swr are the only intrinsic parameters appearing in the
above relations. The steering angles are required for the steering passive wheels
described by

V vFl,G =

 vfl cαwl
vfl sαwl

0

 =

 vlp − ωlpfy
ωlpfx

0

 (26)

V vFr,G =

 vfr cαwr
vfr sαwr

0

 =

 vlp + ωlpfy
ωlpfx

0

 (27)

In equations (26) and (27) the modules of wheel velocities, respectively vfl and
vfr for front left and right wheels, are not set by motor commands. These equa-
tions can be manipulated to write two constraints, one for each front wheel,
according to the following procedure (described for the front left wheel, but
similar for the right one). We can remove the dependence from vfl by multiply-
ing the x and y component of eq. (26) by respectively sαwl and cαwl. Then,
the two equations are subtracted member by member. Finally, the values of vlp
and ωlp from equations (24) and (25) can be substituted. The final result is the
following:

0 =
swl ṅwl + swr ṅwr

2
sαwl

+
swr ṅwr − swl ṅwl

2by
(−fy sαwl − fx cαwl) (28)

0 =
swl ṅwl + swr ṅwr

2
sαwr

+
swr ṅwr − swl ṅwl

2by
(fy sαwr − fx cαwr) (29)

2.3. Discussion

The model presented in the previous subsection is based on the assumption
that the velocity directions and steering angles of wheels are congruent. In par-
ticular, equations (16)-(17) for Ackermann and (26)-(27) for Dual Drive state
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that vectors V vFl,G and V vFr,G have orientation angles αwl and αwr. This
assumption holds only when no wheel slippage occurs and the input controls
are consistent with the rigid body motion. Otherwise, since Ackermann and
Dual Drive are over-actuated kinematics, the kinematic parameters cannot be
identified by means of the observed trajectory. For example, the same straight
motion can be obtained either with perfectly parallel wheels or with symmetri-
cally opposite steering angles. Thus, before the calibration procedure, a manual
parallelization of wheels is performed to guarantee the feasibility of such condi-
tion. The procedure is briefly described in section 5.

The wheel parallelization procedure is performed with tolerance on offset
accuracy. Once the wheel are approximately aligned, the optimization methods
for the two four wheel kinematics described in sections 3 and 4 can effectively
estimate the calibration parameters, as shown by experiments.

3. Intrinsic Calibration

The intrinsic calibration procedures of Ackermann and Dual Drive models
depend on their specific equations. Nonetheless, the principle applied in in-
trinsic calibration is the same. Since the AGV is a rigid body, the rotation
angles of all the frames rigidly attached to the robot are the same. In order to
use the simplified equations of odometry (4)-(5), only time intervals [tk−1, tk]
with constant control input are taken into account. The k apex notation is
used henceafter for all the parameter values and the measurements related to
time intervals [tk−1, tk] with k = 1, . . . , nk. The path travelled over [tk−1, tk]
with constant wheel steering angles and velocities is called path segment k. In
particular, for each segment k, we measure the following variables:

• the steering angles of left and right front wheels, respectively αkl and
αkr , which are constant on path segment k and measured by the steering
encoders;

• the left and right wheel spins nkwl and nkwr measured in encoder ticks (front
wheels for Ackermann, rear wheels for Dual Drive);

• the relative rotation δkθ of the AGV while following a path segment between
time instant tk−1 and tk.

As observed before, the relative rotation δkθ is not measured directly, but ob-
tained through sensor registration ζkθ . In the industrial setup, sensor registra-
tion is performed by matching artificial landmarks made of reflective material
in known positions. These landmarks are called reflectors and are detected by
the laser scanner.

3.1. Calibration of Ackermann Model

The solution of Ackermann intrinsic calibration can be obtained by integrat-
ing equations (19)-(21), which relate angular velocity ωlp to wheel parameters,
over several path segments k. The three expressions of ωlp can be substituted
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into equation (5) and equated to δkθ = ζkθ . Moreover, we substitute the expres-
sion of total steering angles αkwl = αkl + αloff and αkwr = αkr + αroff and of the
wheel spin angles

nkwl =
∫ tk
tk−1

ṅwldτ nkwr =
∫ tk
tk−1

ṅwrdτ (30)

The result of this operation over path segment k consists of the three linear
equations

Ak
a xa = bka (31)

where the matrices and vectors are defined as

xa =


xa1
xa2
xa3
xa4


>

=


swl cαloff
swl sαloff
swr cαroff
swr sαroff

 (32)

Ak
a =


nkwl sα

k
l

fx

nkwl cα
k
l

fx
0 0

0 0
nkwr sα

k
r

fx

nkwr cα
k
r

fx
−nkwl cα

k
l

2fy

nkwl sα
k
l

2fy

nkwr cα
k
r

2fy

−nkwr sα
k
r

2fy


=

 aslcl aslsl 0 0
0 0 asrcr asrsr

aclcl aclsl acrcr acrsr

 (33)

bka =
[
δkθ δkθ δkθ

]>
(34)

The original intrinsic parameters swl, swlr, αloff and αroff have been conve-
niently substituted with other variables s.t. the equations are linear w.r.t. the
new variables. Of course, additional constraints may be inserted to keep consis-
tency, when the new variable space is a specific manifold. The above constraints
are replicated for all path segments with k = 1, . . . , nk to form the linear system
with matrix Ay and known term vector by defined as

Aa =
[
A1
a
>

A2
a
>

. . . Ank
a
>
]>

(35)

ba =
[
b1
a
>

b2
a
>

. . . bnka
>
]>

(36)

A least square solution x∗a for this system can be found using Moore-Penrose
pseudoinverse. Thus, Ackermann model calibration can be formulated as the
following problem:

Problem 1 (Ackermann intrinsic calibration). Find the parameter vector x∗a ∈
R4 that

minimize‖Aaxa − ba‖2 (37)
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where Aa and ba are given respectively by eq. (35) and (36). The final calibra-
tion parameters are computed as

s∗wl =
√
x2a1 + x2a2 (38)

s∗wr =
√
x2a3 + x2a4 (39)

α∗loff = atan2 (xa2, xa1) (40)

α∗roff = atan2 (xa4, xa3) (41)

3.2. Calibration of Dual-Drive Model

The solution of intrinsic calibration of Dual Drive AGVs is derived with a
procedure analogous to the one applied to the Ackermann model. Yet there is an
important difference between the formula of ωlp in eq. (25) and the constraints
on steering wheels in eq.(28)-(29). The first constraint can be used to estimate
the driving scales swl and swr of respectively left and right back wheels. The
latter relations are used to estimate the steering offsets of left and right front
wheels, respectively αloff and αroff . This two-step estimation (first the esti-
mation of driving scales, followed by steering offsets) has a closed-form solution,
which is suitable for implementation in embedded systems. The integration of
eq. (25) leads to

δkθ =

(
nkwr
2by

)
︸ ︷︷ ︸
akωr

swr −
(
nkwr
2by

)
︸ ︷︷ ︸

akωl

swl (42)

where the travelled angles nkwl and nkwr are measured by the left and right wheel
encoders as in section 3.1. The multiple constraints in the form of eq. (42)
collected over path segments k = 1, . . . , nk can be arranged into the linear
system 

δ1θ
δ2θ
...
δnkθ


︸ ︷︷ ︸

bs

=


a1ωl a1ωr
a2ωl a2ωr
...

...
ankωl ankωr


︸ ︷︷ ︸

As

[
swl
swr

]
︸ ︷︷ ︸

xs

(43)

Similarly to previous case, the conditions given by the linear system in eq. (43)
often do not hold simultaneously. Hence, the driving scales xs are evaluated by
minimizing ‖Asxs − bs‖. Once the driving scales are evaluated, equations (28)
and (29) can be integrated over all path segments k. The left steering offset
αloff appears only in eq. (28), while αroff only in eq. (29). Thus, two sets of
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independent equations in αloff and αroff , which can be solved independently,
are obtained from the integration a1αl,1 a1α,l,2

...
...

ankαl,1 ankα,l,2


︸ ︷︷ ︸

Aα,l

·
[

cαloff
sαloff

]
︸ ︷︷ ︸
xl=[xl1,xl2]]>

= 0 (44)

 a1αr,1 a1α,r,2
...

...
ankαr,1 ankα,r,2


︸ ︷︷ ︸

Aα,r

·
[

cαroff
sαroff

]
︸ ︷︷ ︸
xr=[xr1,xr2]]>

= 0 (45)

where the coefficients of the two linear system matrices are defined as

akv =
swln

k
wl + swrn

k
wr

2
(46)

akω =
swrn

k
wr − swlnkwl

2by
(47)

akαl,1 = (akv − fyakω) sαkl − fxakω cαkl (48)

akαl,2 = (akv − fyakω) cαkl + fxa
k
ω sαkl (49)

akαr,1 = (akv − fyakω) sαkl − fxakω cαkl (50)

akαr,2 = (akv − fyakω) cαkl + fxa
k
ω sαkl (51)

Equations (44) and (45) have been written to highlight the linearity w.r.t. re-
spectively vectors xl and xr. The two variables are subject to constraints
‖xl‖2 = 1 and ‖xr‖2 = 1. Due to noise in measurements, the above condi-
tions are usually not satisfied. The estimation of left and right steering offsets
is achieved by finding the xl or xr that minimize respectively ‖Aα,lxl‖2 and
‖Aα,rxr‖2. Fortunately, the problem of minimizing a homogeneous quadratic
function over a sphere is well-known and has a closed-form solution (see [41,
p. 593]). It suffices to find the eigenvector of matrix A>α,·Aα,· corresponding
to its minimum eigenvalue. The intrinsic calibration of Dual Drive model is
summarized by the following problem:

Problem 2 (Dual Drive intrinsic calibration). Solve the following steps.

1. Find the driving scale vector x∗s = [swl, swr] ∈ R2 that

minimize‖Asxs − bs‖2 (52)

s.t. ys1, ys2 > 0 (53)

where As and bs are defined in eq. (43).
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2. After substitution of x∗s, find x∗l ,x
∗
r ∈ R2

x∗l = argmin
‖xl‖2=1

‖Aα,lxl‖2 (54)

x∗r = argmin
‖xr‖2=1

‖Aα,rxr‖2 (55)

The values of steering offsets are computed as

α∗loff = atan2 (x∗l2, x
∗
l1) (56)

α∗roff = atan2 (x∗r2, x
∗
r1) (57)

4. Extrinsic Calibration

The aim of extrinsic calibration is the estimation of the position and orienta-
tion of the sensor mounted on the robot represented by vector l. As illustrated
in [2], extrinsic calibration is formulated as a least-square problem over the con-
straints derived from equation (6). In particular, the position error on path
segment k can be defined as

ekpos = (lpos + R (lθ) ζ
k
pos)− (δkpos + R

(
δkθ
)
lpos)

=
[
I2 −R

(
δkθ
)

R
(
ζkpos

) ]︸ ︷︷ ︸
Qk

[
ϕpos
ϕang

]
︸ ︷︷ ︸

ϕ

−δkpos (58)

where ϕpos = [ϕ1, ϕ2]> = [lx, ly]> and ϕang = [ϕ3, ϕ4]> = [cos lθ, sin lθ]
>. Over

each path segments the value of δkpos is computed according to eq.(4). The for-
mula holds for both Ackermann and Dual Drive models using the proper values
of curvature radius rkκ. The vector ϕang is subject to constraint ϕ>angϕang = 1
to satisfy trigonometric consistency that can be written as

h(ϕ) = ϕ>
[

0 0
0 I2

]
︸ ︷︷ ︸

W

ϕ− 1 (59)

The error function can be chosen in order both to properly represent a distance
from the consistent estimation and to allow the computation of its minimum.
Such function must depend on all the measurements collected by the robot,
while moving along the n path segments. Although more complex functions
could weigh the different components of ekpos, it is convenient to use the square
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sum function defined as

E(ϕ) =

n∑
k=1

ekpos
>
ekpos

=

n∑
k=1

(ϕ>Qk − δkpos)>(Qk ϕ− δkpos)

= ϕ>Mϕϕ− 2ϕ>Pϕ +

(
n∑
k=1

δkpos
>
δkpos

)
(60)

where

Mϕ =

n∑
k=1

Q>k Qk =


m1 0 m2 −m3

0 m1 m3 m2

m2 m3 m4 0
−m3 m2 0 m4

 (61)

m1 =

n∑
k=1

2(1 − cos δkθ ) (62)

m2 =

n∑
k=1

(
ζkx (1 − cos δkθ ) − ζky sin δkθ

)
(63)

m3 =

n∑
k=1

(
ζkx sin δkθ + ζky (1 − cos δkθ )

)
(64)

m4 =

n∑
k=1

(
(ζkx)2 + (ζky )2

)
(65)

Pϕ =

n∑
k=1

Q>k δkpos =

n∑
k=1

[
(I2 −R>(δkθ )) δkpos

R>(ζkpos) δkpos

]
=
[
p1 p2 p3 p4

]>
(66)

Thus, the extrinsic calibration problem is formulated as follows.

Problem 3 (Extrinsic calibration). Find the parameter vector ϕ ∈ R4 that

minimize E(ϕ) = ϕ>Mϕϕ− 2ϕ>Pϕ + const
s.t. h(ϕ) = ϕ>Wϕϕ− 1 = 0

(67)

Problem 3 can be solved through Lagrange multiplier method, since the
KKT conditions hold thanks to Slater’s conditions. Moreover, it has a closed-
form solution that can be obtained by explicitly expanding the linear system
(Mϕ−λW)ϕ = P and by substituting the resulting ϕ (as function of multiplier
λ) in the constraint h(ϕ). The polynomial equation derived by such substitution
is

λ2 + bϕλ+ cϕ = 0 (68)
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Figure 3: An example of path segments used for calibration with nseg = 6 grouped according
to versus of direction and steering: forward left segments (top-left), forward right segments
(top-right), backward left segments (bottom-left) and backward right segments (bottom-right).

where the coefficients of the equation are

bϕ = 2µ2

cϕ = µ2
2 −

(m1p3 −m2p1 −m3p2)2 + (m1p4 +m3p1 −m2p2)2

m2
1

Each λ1,2 satisfying equation (68) can be back-substituted into the linear system
and the two respective solutions ϕ(1,2) can be obtained. The existence of two
solutions is due to the symmetries of the reference equations. The additional
physical constraint ϕ1 > 0 is required to choose between the two outputs [2].

5. From Theory to Practice

The calibration algorithms for Ackermann and Dual Drive kinematics pre-
sented in sections 3 and 4 have been implemented and used for calibration of
industrial AGVs. The control architecture of the two AGVs has been imple-
mented on PLCs on an embedded computer. PLC systems are widespread and
standard industrial solutions to guarantee robustness and real-time execution
as well as to comply with safety requirements. Calibration procedures require
careful synchronization of data acquired from encoders, laser scanner, sensors
and devices in order to relate measurements to the correct segment path, and
PLC systems facilitate this task. However, there are some drawbacks in porting
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advanced algorithms from laboratory to industrial engineered systems. For ex-
ample, available PLC library suites provide limited support for advanced data
structures, linear algebra and numeric algorithms. The proposed calibration
algorithms and the prior formulation of objective functions have been designed
taking into account such limitations. Indeed, adopting closed-form solutions is
also recommended to cope with such issues of calibration, beside their theoret-
ical importance.

The proposed procedure requires the acquisition of sensor and wheel data
while the AGV performs segments of circular paths. For each absolute value of
steering angle the system collects four path segments corresponding to left and
right steering trajectories, which are travelled in both forward and backward
directions. If nseg absolute steering angle values are chosen, then calibration
is performed using the corresponding 4nseg values. The steering angles of left
and right wheels are computed by setting the steering angle of a virtual wheel
positioned between the two front wheels. The steering angle αwv of such virtual
wheel is varied in the interval [αwv,min, αwv,max]. The steering angles αwl and
αwr are related to αwv by

tanαwl =
tanαwv

1 − fy
fx

tanαwv
tanαwr =

tanαwv

1 +
fy
fx

tanαwv
(69)

The minimum and maximum value of αwv are picked in order to keep the
robot in the designated calibration area and to avoid physically impossible values
of left and right steering angles. The quadruple of path segment i corresponds
to

αkwv = αwv,min +
αwv,max − αwv,min

nseg − 1
i (70)

where i = 0, . . . , nseg − 1. Positive αiwv lead to left steering circular path seg-
ments whereas −αiwv represent the specular right steering segments. While
equations (69) hold for both Ackermann and Dual Drive, the minimum and
maximum steering values depend on the physical dimensions of the specific
robot and on the dimensions of the calibration area.

Thus, the calibration is structured in four phases distinguished by the dif-
ferent combinations of motion direction (forward or backward) and steer angle
(towards left or right). During each of these phases the AGV performs circular
path segments and gradually increases the (absolute) value of the steering angle
αwv, while the curvature radius riκ decreases. To maintain a regular pattern the
path segments are circular arcs with fixed arc length π. Since the robot is not
calibrated, the resulting arc lengths only approximate such value. This choice
has proven to be the best trade-off to allow sufficiently long trajectories and, at
the same time, to reduce the duration of the procedure. In this way the robot
approximately covers half-circles while performing the path segments. The ve-
locity for the calibration procedure has been set to 1500 cdeg/s, a value that
represents the angular velocity of the AGV rigid body around the instant center
of rotation. Figure 3 shows an example of path segments used for calibration
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with nseg = 6 subdivided into four phases according to direction (forward or
backward) and steering versus (left or right).

During calibration the correct values of calibration parameters are known
only up to their nominal values. Thus, the real trajectories performed for cali-
brating the robot can be potentially inaccurate. In the developed AGV calibra-
tion procedure, the initial nominal values of calibration parameters have been
determined as follows. The pose of the laser scanner mounted on the AGV is
given by CAD design (usually ly = 0 and lθ = 0 are assumed) neglecting as-
sembly errors. Driving scales swl and swr are assessed from radii and encoder
resolution of actuated wheels. Steering offsets αloff and αroff are either as-
sumed to be zero or are set so that the two wheels are approximately parallel
and straight. The latter choice limits wheel slipping while the AGV travels
along path segments and, thus, enables wheel rotation measurements nkwl and
nkwr to be more consistent with the real travelled distance.

6. Experiments

The proposed calibration algorithms have been tested on industrial AGVs
in warehouse buildings. An Ackermann AGV 17 and a Dual Drive AGV 12,
both manufactured by Elettric80 S.p.A., were used in the first two experiments
reported henceafter. The proposed calibration method requires forward and
backward AGV motions along circular path segments as discussed in section 5.
Hence, calibration has been executed in an obstacle-free area able to accom-
modate circular trajectories with maximum radius of 5 m. These experiments
have been designed to assess the correctness and the precision of the proposed
calibration method. The goal of the first experiment is the evaluation of the
calibration parameters at different calibration conditions. The second experi-
ment estimates the positioning precision of the AGVs at operation points. The
third experiment has assessed the position precision and consistency of a fleet
of Dual Drive AGVs.

6.1. Calibration Stability Experiments

Due to the unavailability of reliable groundtruth parameters, the stability
and robustness of the proposed method are better assessed by repeating the
calibration procedure in different settings. Each setting is distinguished by the
number of path segments nseg used in the four phases, and by the minimum
and maximum values of steering angle αwv. A total of 5 trials have been per-
formed for each setting in order to collect significant statistics. The complete
calibration procedure takes about 10 ÷ 15 minutes per trial depending on the
setting parameters.

Table 1 collects the results achieved in 20 calibrations for Ackermann AGV
17. Most of the trials have been executed using nseg = 6 path segments per mo-
tion phase, while collecting also the results of shorter calibration with nseg = 4.
An offset of 0.41 deg has been added to all the steering angles αiwv to satisfy
the geometric constraints (available free area, physical limits on steering an-
gles of the AGV, etc.) and to achieve conditions more similar to the tests on
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nseg αwv-min/max valid αloff [cdeg] αroff [cdeg] swl [mm/tick] swr [mm/tick] lx [mm] ly [mm] lθ [cdeg]

[deg] of 5 avg std avg std avg std avg std avg std avg std avg std

6 26.41 ÷ 36.41 5 -207.99 0.21 -291.80 0.40 0.25008 0.00003 0.25013 0.00003 1652.97 0.22 -8.38 0.41 -42.25 0.44
4 26.41 ÷ 41.41 5 -207.98 0.72 -292.62 0.77 0.24982 0.00004 0.24986 0.00005 1652.07 0.21 -6.04 0.92 -39.88 0.87
6 26.41 ÷ 41.41 4 -209.12 1.22 -292.91 1.05 0.25036 0.00016 0.25035 0.00015 1652.74 0.23 -5.07 1.32 -41.71 0.86
6 26.41 ÷ 46.41 4 -208.31 0.43 -292.08 0.51 0.24969 0.00001 0.24972 0.00003 1652.42 0.34 -5.45 0.46 -41.46 0.44

Table 1: Calibration parameters of Ackermann AGV.

nseg αwv-min/max valid αloff [cdeg] αroff [cdeg] swl [mm/tick] swr [mm/tick] lx [mm] ly [mm] lθ [cdeg]

[deg] of 5 avg std avg std avg std avg std avg std avg std avg std

4 26.00 ÷ 36.00 4 -286.20 0.58 -296.28 0.12 0.24410 0.00023 0.24489 0.00026 560.30 1.96 4.99 2.35 59.08 3.34
6 26.00 ÷ 36.00 4 -286.75 0.46 -295.16 0.37 0.24375 0.00009 0.24453 0.00010 559.82 0.96 4.96 0.92 61.93 1.59
4 26.00 ÷ 41.00 5 -293.82 0.80 -293.86 0.55 0.24363 0.00007 0.24443 0.00007 558.98 0.28 4.69 2.07 61.42 0.46
6 26.00 ÷ 41.00 5 -294.04 1.22 -292.30 0.82 0.24348 0.00006 0.24429 0.00006 559.55 0.74 4.93 1.74 60.36 1.53
4 26.00 ÷ 46.00 5 -296.64 3.00 -291.30 1.44 0.24364 0.00007 0.24448 0.00011 558.66 0.24 4.60 3.20 60.86 0.37
6 26.00 ÷ 46.00 5 -299.76 1.18 -290.60 0.97 0.24406 0.00016 0.24487 0.00017 558.64 0.11 5.05 1.77 61.27 0.91

Table 2: Calibration parameters of Dual Drive AGV.

Dual Drive AGV 12 illustrated in the following. Two outlier estimations have
been observed for settings nseg = 6 / α = (26.41 ÷ 41.41) deg and nseg = 6 /
α = (26.41 ÷ 46.41). The outlier has been caused by failed sensor registration
over one path segment, likely due to insufficient number of detected reflectors.
Outlier measurements can be straightforwardly detected by monitoring registra-
tion conditions (e.g. checking the number of detected and associated landmarks)
and easily dealt with in practical application of the method. The mean value
and standard deviation of calibration parameters in Tables 1 and 2 have been
computed only from the valid calibration trials. The average values of estimated
parameters do not significantly change with the different settings. The sensor
coordinate ly is likely the parameter most sensitive to experimental conditions,
as shown by its average values and standard deviation, which is slightly higher
than lx. However, the average value of ly oscillates at most by 3 mm in different
conditions. All the variations on angular parameters are less than 1 deg.

Table 2 illustrates the results achieved in 30 calibrations for Dual Drive
AGV 12. Also for Dual Drive two outlier estimations have been observed in sets
nseg = 4 / α = (26 ÷ 36) deg and nseg = 6 / α = (26 ÷ 36) deg. Statistics in
Table 2 are computed with the exclusion of outlier parameters. The position
parameter most sensitive to experimental conditions is again ly, as shown by its
standard deviation. Parameter lθ, that must be very well calibrated to achieve
good AGV movement, has a steady average and a small standard deviation. The
values of estimated parameters are stable to different calibration conditions like
the number of segments used for calibration or the interval of steering angles.
Outliers seem to affect more the estimated value of parameter ly, whereas the
computed values of other parameters are generally comparable to the estimation

αloff αroff swl swr lx ly lθ
[cdeg] [cdeg] [mm/tick] [mm/tick] [mm] [mm] [cdeg]

Ackermann AGV
Manual -200.00 -292.00 0.25483 0.25483 1657.00 0.00 -20.00
Auto1 -208.43 -292.17 0.25016 0.25017 1652.99 -5.42 -41.02
Auto2 -208.20 -292.38 0.24968 0.24975 1652.00 -5.94 -41.96

Dual Drive AGV
Manual -220.00 -298.00 0.24031 0.24031 575.00 12.00 62.00
Auto1 -292.24 -291.31 0.24350 0.24435 560.24 4.05 58.36
Auto2 -301.72 -292.24 0.24418 0.24496 558.74 6.68 60.74

Table 3: Calibration parameters used for experiments
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Figure 4: The layout of paths used to perform position precision experiments. The operative
area for the vehicle is approx. 16.5 m x 5.5 m

without outliers. Standard deviations decrease with higher number of segments
or with larger steering angle interval, although there are some exceptions. Using
6 paths instead of 4 seems to return smaller standard deviations in estimated
values. The best set of calibration parameters appears to be the one returned
from the tests with nseg = 6 / α = (26÷41) deg, considering the lack of outliers
and the high stability of parameters.

6.2. Position Precision Experiments

Several tasks performed by AGVs require to stop at given operation points
of the warehouse, e.g. to load or unload pallets with the forklift. The intrinsic
parameters are part of the robot kinematic model and influence both the control
system and the odometry. The extrinsic parameters define the pose of the laser
scanner used in navigation and localization. An important aim of calibration is
to make all the AGVs working in a warehouse stop on the same operation points
with adequate precision. Three different sets of experiments have been executed
in a real warehouse to evaluate positioning precision obtained by automatic
calibration.

1. Localizer Error. The first test assesses the distance and heading errors
measured by the localizer, when the AGV stops at given operating points.
Distance error represent the lateral position error w.r.t. the AGV trajec-
tory terminating on the operating point. These errors depend on AGV
navigation and control system and on accuracy of calibration parameters,
and cannot be used as groundtruth. However, smaller absolute errors re-
veal better calibration parameter. We performed this test stopping at op-
eration points placed after either straight or uneven high curvature paths
that stress the control system. Straight and curved paths are labelled re-
spectively by roman numerals (I, IV , V II and X) and letters (from A to
D) in Figure 4.
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Figure 5: Example of forward and backward paths marked on the ground during the execution
of Straightness Error test on Ackermann AGV 17. The marker line color identifies the paths
obtained using calibration parameters Manual (green), Auto1 (blue) and Auto2 (red).

2. Straightness Error. The second test assesses the accuracy of sensor orien-
tation lθ and, indirectly, of all the other calibration parameters. The AGV
moves back and forth over straight paths 10 m long (straight lines with
roman numerals I, IV , V II and X in Figure 4). A perfectly calibrated
vehicle should execute perfect and overlapping straight trajectories while
moving forward and backward. Otherwise, the AGV produces a “leaf
shape” moving on slightly different paths when moving forward or back-
ward. The larger is the error on lθ, the larger is the distance between
forward and backward paths. The distance is measured approximately on
the medium point of the path by marking the AGV position (the side of
its chassis) on the ground as shown in Figure 5.

3. Halting Point Precision. The third test evaluates the global quality of
calibration parameter set by measuring the halting point precision. The
vehicle moves back and forth on two facing straight paths, each 5 m long.
In Figure 4, the halting points are labelled with arabic numerals (from 1
to 4), whereas forward and backward paths are in roman numerals. The
AGV is manually stopped in the halting point and two points on both sides
of back wheels are marked on the ground. This procedure is repeated for
both the front facing paths. For example, point 1 is reached from both
paths II and III. The halting position of right back wheel from path II is
compared with the position of left back wheel on path III (side A), and
viceversa (side B). Figure 6 shows an example of marked halting points
on the side of an AGV rear wheel.
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Figure 6: Example of halting points marked on the side of AGV rear wheel during the execu-
tion of Halting Point Precision test on Dual Drive AGV 12. The marked point color identifies
the points obtained using calibration parameters Manual (green), Auto1 (blue) and Auto2
(red).

The three tests have been performed for both Ackermann AGV 17 and Dual
Drive AGV 12. For both vehicles, we compared the results obtained with cal-
ibration parameter sets Manual, Auto1 and Auto2 (the latter is not used in
some tests) shown in Table 3. As suggested by their name, set Manual is ob-
tained through manual calibration performed by an expert operator, whereas
Auto1 and Auto2 are computed in two different calibration trials of the pro-
posed method for each vehicle type.

The statistical results of the Localizer Error test are displayed by the his-
tograms of distance and heading errors in Figure 7(a)-(b) for respectively Ack-
ermann and Dual Drive. Automatic calibration achieves lower average values
and standard deviations of distance and heading errors than manual calibration
for the two models. The error due to trajectory tracking control is more pro-
nounced on curved paths, but automatic calibration performance is better or
comparable.

The Straightness Error test has assessed the accuracy of parameter lθ and,
indirectly, of the other calibration parameters. Figure 8(a)-(b) shows the his-
togram of errors obtained on four straight paths. On Ackermann AGV 17 the
automatic calibration procedure always outperforms the manual one. For Dual
Drive AGV 12, the straightness error of the calibration parameter sets Auto1
and Auto2 is comparable with the one achieved by manual calibration. All trials
demonstrate that the value of lθ has been correctly estimated by manual as well
as automatic calibration.
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Figure 7: Results of Localizer Error test for Ackerman AGV 17 (a) and Dual Drive AGV 12
on four straight and four curved path segments.
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AGV n◦
αloff
[cdeg]

αroff
[cdeg]

swl
[mm/tick]

swr
[mm/tick]

lx
[mm]

ly
[mm]

lθ
[cdeg]

1 -325 -286 0.23847 0.23783 554 -8 -18
2 -350 -261 0.23690 0.23720 560 -11 -139
3 -299 -209 0.23703 0.23714 549 -4 -6
4 -369 -244 0.23639 0.23641 548 -2 -44
5 -388 -247 0.23590 0.23620 554 -11 59

Table 4: Calibration parameters of the five Dual Drive AGVs used in fleet position experi-
ments.

In the Halting Point Precision test, we measured the precision on halt-
ing points reached from two different paths. The distance between the points
obtained by the AGV moving on the two facing paths are summarized in Fig-
ure 9(a)-(b). For both Ackermann AGV 17 and Dual Drive AGV 12, the au-
tomatic calibration procedure achieves lower (or, in the worst cases, similar)
distance value between the trail points than the manual one. Parameter com-
puted with the automatic calibration appear to yield more stable and accurate
halting points.

6.3. Position Precision of AGV fleets

The results presented in the previous section estimate the position precision
achieved by a single AGV when calibrated manually or using the proposed
method. Several tasks performed by AGVs require to stop at given operation
points of the warehouse, e.g. to load or unload pallets. Position precision
depends on different factors including the localization system and the accuracy
of calibration. Thus, an important goal of calibration is to make all the AGVs
halt at the same points with high precision.

In this section, we report the position precision of a fleet of Dual Drive AGVs
operating in a real industrial warehouse. The tests on straightness error and
halting point precision discussed in section 6.2 have been performed on a set of
five Dual Drive AGVs calibrated with the proposed method. Table 4 shows the
obtained calibration parameters used for each AGV. It can be observed that,
although the AGVs are built according to the same design, there are significant
variations in both intrinsic and extrinsic parameters and more noticeably in the
latter ones. In particular, it is difficult to mechanically mount the laser scanners
with the same orientation lθ.

Figure 10 reports the straighness error of the five AGVs measured for two
different straight paths FI and FII . As usual the straightness error is taken
in the middle of the straight path when travelled forward and backward. The
measured distance is less than 8 mm for all the AGVs.

Tests on halting point precision have been performed by stopping the robots
on two points F1 and F2. Each point is reached from two opposite directions
and the position error is measured on both the front wheels (sides A and B).
The maximum wheel displacement is at most 16 mm. The resulting positional
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Figure 8: Results of Straightness Error test for Ackerman AGV 17 (a) and Dual Drive AGV
12 (b) on four straight segments labelled by roman numerals as in Figure 4.
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Figure 9: Results of Halting Point Precision test for Ackermann AGV 17 (a) and Dual Drive
AGV 12 (b) on four halting points 1, 2, 3 and 4 in Figure 4.
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Figure 10: Results of Straightness Error test for for a fleet of 5 Dual Drive AGVs on two
straight paths FI and FII in an industrial warehouse.
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Figure 11: Results of Halting Point Precision test for a fleet of 5 Dual Drive AGVs on two
halting points F1 and F2 in an industrial warehouse.
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accuracy is sufficient for correct pallet loading and unloading operations. Indeed,
the proposed automatic procedure has consistently calibrated AGVs, enabling
them to perform their tasks with equivalent accuracy in a real industrial plant.

7. Conclusion

In this paper, we have proposed a novel method for extrinsic and intrinsic
automatic calibration of four wheel industrial AGVs compliant with Ackermann
and Dual Drive kinematics. The algorithm estimates the trajectories measured
by an onboard sensor and the expected ones given by the state of the wheels.
By means of the model equations derived for the specific kinematics, both in-
trinsic and extrinsic calibration parameters are computed through closed-form
solutions of least-square optimization. The methods have been implemented on
PLC controllers and experiments have been carried out with industrial AGVs
in a warehouse. The precision of the estimated AGV parameters in repeated
calibration trials is at most 0.1 deg for angular parameters and typically less
than 5 mm for position parameters. The accuracy can be improved by a proper
selection of the path segment executed by the AGV and by a manual straighten-
ing/parallelization of wheels. The AGVs calibrated with the proposed methods
have shown the ability to stop at the same operation points with a typical ac-
curacy of 10÷15 mm if the control system is not overstressed. The experiments
on a fleet of AGVs show that the vehicles calibrated with the proposed method
achieve adequate similar position precision. This level of position accuracy is
comparable with the accuracy obtained with the best manual calibration avail-
able in industrial environment. With the suggested number of path segments
the automatic calibration procedure takes about 15 minutes for each AGV in-
stead of more than one hour required by the manual iterative procedure. The
availability of an automatic, fast and reliable calibration procedure allows more
frequent recalibration and hence better AGV localization and navigation per-
formance.
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