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Preface

The study of Kähler immersions of a given real analytic Kähler manifold into a

finite or infinite dimensional complex space form originates from the pioneering

work of Eugenio Calabi [10]. With a stroke of genius Calabi defines a power-

ful tool, a special (local) potential called diastasis function, which allows him to

obtain necessary and sufficient conditions for a neighbourhood of a point to be lo-

cally Kähler immersed into a finite or infinite dimensional complex space form. As

application of its criterion, he also provides a classification of (finite dimensional)

complex space forms admitting a Kähler immersion into another. Although, a

complete classification of Kähler manifolds admitting a Kähler immersion into

complex space forms is not known, not even when the Kähler manifolds involved

are of great interest, e.g. when they are Kähler–Einstein or homogeneous spaces.

In fact, the diastasis function is not always explicitely given and Calabi’s crite-

rion, although theoretically impeccable, most of the time is of difficult application.

Nevertheless, throughout the last 60 years many mathematicians have worked on

the subject and many interesting results have been obtained.

The aim of this book is to describe Calabi’s original work, to provide a detailed

account of what is known today on the subject and to point out some open

problems.

Each chapter begins with a brief summary of the topics discussed and ends

with a list of exercises which help the reader to test his understanding.

Apart from the topics discussed in Section 3.1 of Chapter 3, which could be

skipped without compromising the understanding of the rest of the book, the

requirements to read this book are a basic knowledge of complex and Kähler
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geometry (treated, e.g. in Moroianu’s book [61]).

The authors are grateful to Claudio Arezzo and Fabio Zuddas for a careful

reading of the text and for valuable comments that have improved the book’s

exposition.
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Chapter 1

The diastasis function

In this chapter we describe the diastasis function, a basic tool introduced by

E. Calabi in [10] which is fundamental to study Kähler immersions of Kähler

manifolds into complex space forms.

In Section 1.1 we define the diastasis function and summarize its basic prop-

erties, while in Section 1.2 we describe the diastasis functions of complex space

forms, which represent the basic examples of Kähler manifolds. Finally, in Sec-

tion 1.3 we give the formal definition of what a Kähler immersion is and prove

that the indefinite Hilbert space constitutes a universal Kähler manifold, in the

sense that it is a space in which every real analytic Kähler manifold can be locally

Kähler immersed.

1.1 Calabi’s diastasis function

LetM be an n-dimensional complex manifold endowed with a real analytic Kähler

metric g. Recall that the Kähler metric g is real analytic if fixed a local coordinate

system z = (z1, . . . , zn) on a neighbourhood U of any point p ∈ M , it can

be described on U by a real analytic Kähler potential Φ : U → R. In that

case the potential Φ(z) can be analytically continued to an open neighbourhood

W ⊂ U × U of the diagonal. Denote this extension by Φ(z, w̄).
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1.1. CALABI’S DIASTASIS FUNCTION

Definition 1.1.1. The diastasis function D(z, w) on W is defined by:

D(z, w) = Φ (z, z̄) + Φ (w, w̄)− Φ (z, w̄)− Φ (w, z̄) . (1.1)

The following proposition describes the basic properties of D(z, w).

Proposition 1.1.2 (E. Calabi, [10]). The diastasis function D(z, w) given by

(1.1) satisfies the following properties:

(i) it is uniquely determined by the Kähler metric g and it does not depend on

the choice of the local coordinate system;

(ii) it is real valued in its domain of (real) analyticity;

(iii) it is symmetric in z and w and D(z, z) = 0;

(iv) once fixed one of its two entries, it is a Kähler potential for g.

Proof.

(i) By the ∂∂̄–Lemma a Kähler potential is defined up to the addition of the

real part of a holomorphic function, namely, given two Kähler potentials Φ

and Φ′ on U ⊂ M , then Φ′ = Φ + f + f̄ for some holomorphic function f .

Conclusions follow again by (1.1).

(ii) Since Φ(z, z̄) = Φ(z) is real valued, then from Φ(z, z̄) = Φ(z, z̄) and by

uniqueness of the extension it follows Φ(z, w̄) = Φ(w, z̄).

(iii) It follows directly from (1.1).

(iv) Fix w (the case of z fixed is totally similar). Then:

∂2

∂zj∂z̄k
D(z, w) =

∂2

∂zj∂z̄k
Φ (z, z̄) =

∂2

∂zj∂z̄k
Φ (z) .

The last property justifies the following second definition.
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CHAPTER 1. THE DIASTASIS FUNCTION

Definition 1.1.3. If w = (w1, . . . , wn) are local coordinates for a fixed point

p ∈M , the diastasis function centered at p is given by:

Dp(z) = D(z, w).

In particular, if p is the origin of the coordinate system chosen, we write D0(z).

The importance of the diastasis function for our purposes is expressed by the

following:

Proposition 1.1.4 (E. Calabi, [10]). Let (M, g) and (S,G) be Kähler manifolds

and assume G to be real analytic. Denote by ω and Ω the Kähler forms associated

to g and G respectively. If there exists a holomorphic map f : (M, g) → (S,G)

such that f ∗Ω = ω, then the metric g is real analytic. Further, denoted by

DM
p : U → R and DS

f(p) : V → R the diastasis functions of (M, g) and (S,G)

around p and f(p) respectively, we have DS
f(p) ◦ f = DM

p on f−1(V ) ∩ U .

Proof. Observe first that the metric g on M is real analytic being the pull–back

through a holomorphic map of the real analytic metric G. In order to prove the

second part, fix a coordinate system {z} around p ∈ M . From f ∗G|V ∩f(U) =

g|f−1(V )∩U , if ΦS and ΦM are Kähler potential for G and g around f(p) and p

respectively, we get:

∂2ΦS(f(z), f(z))

∂zj∂z̄k
=
∂2ΦM(z, z̄)

∂zj∂z̄k
,

i.e. ΦS(f(z), f(z)) = ΦM(z, z̄) + h+ h̄ and conclusion follows by (1.1).

Observe that the pull-back of any other Kähler potential is still a Kähler

potential, but the fact underlined in the previous proposition that holomorphic

maps pull-back the diastasis function in the diastasis function is a fundamental

ingredient to prove Calabi’s criteria in the next chapter.
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1.1. CALABI’S DIASTASIS FUNCTION

Recall that given any Kähler manifold (M, g) and a Kähler potential Φ around

a point p ∈ M , there always exists a coordinate system {zj} around p, which

satisfies:
∂2Φ

∂zj∂z̄k
(p) = gjk̄(p) = δjk,

∂3Φ

∂zl∂zj∂z̄k
(p) =

∂

∂zl

(
gjk̄
)

(p) = 0;
∂3Φ

∂z̄l∂zj∂z̄k
(p) =

∂

∂z̄l

(
gjk̄
)

(p) = 0.

If we assume the Kähler metric g to be also real analytic then in such coordinates

the diastasis satisfies:

Dp(z) =
n∑

α=1

|zα|2 + ψ2,2, (1.2)

where ψ2,2 is a power series with degree ≥ 2 in both the variables z and z̄. These

coordinates, uniquely defined up to a unitary transformation (cfr. [7, 10]), are

called the normal or Bochner’s coordinates around the point p (see [7, 10, 37, 38,

67, 70] for more details and further results about Bochner’s coordinates).

The following proposition shows how the diastasis function is related to the

geodesic distance explaining the name diastasis, from the Greek διάστασις, that

means distance.

Proposition 1.1.5 (E. Calabi, [10]). If ρ(p, q) is the geodesic distance between

p and q, then

D(p, q) = (ρ(p, q))2 +O((ρ(p, q))4).

Proof. Fix p ∈ M and let {z} be Bochner coordinates around it. Then, since

Dp(z) is a Kähler potential for g around p, its power expansion around p in the

variables z and z̄ reads:

D(p, q) = Dp(z) = ||z||2 + ψ2,2(z, z̄),

where ψ2,2 is a power series with no terms of degree less than 2 in either the

variables z and z̄. On the other hand, since at the origin one has gjk̄ = δjk, the

geodesic distance satisfies:

(ρ(p, q))2 = ||z||2 +O((||z||2)2),

and conclusion follows.
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CHAPTER 1. THE DIASTASIS FUNCTION

We conclude this section giving a very useful characterization of the diastasis,

easily deducible by the definition, in terms of its power expansion. In order

to semplify the notation, let us first fix the following multi-index convention

that we are going to use through all this book. We arrange every n-tuple of

nonnegative integers as the sequence mj = (mj,1, . . . ,mj,n) with not decreasing

order, that is m0 = (0, . . . , 0) and if |mj| =
∑n

α=1mj,α, we have |mj| ≤ |mj+1| for

all positive integer j. Further zmj denotes the monomial in n variables
∏n

α=1 z
mj,α
α .

For example, if n = 2 we can consider the ordering m0 = (0, 0), m1 = (1, 0),

m2 = (0, 1), m3 = (1, 1), m4 = (2, 0), etc. and we would have zm0 = 1, zm1 = z1,

zm2 = z2, zm3 = z1z2, zm4 = z2
1 , etc. Notice that the order is not uniquely

determined by these rules, since we are allowed to switch terms of equal module

|mj| (i.e. in the 2 dimensional case we may also take m1 = (0, 1), m2 = (1, 0),

etc.).

Theorem 1.1.6 (E. Calabi, [10]). Among all the Kähler potentials the diastasis

Dp(z) is characterized by the fact that in every coordinate system (z1, . . . , zn)

centered at p, the ∞ × ∞ matrix of coefficients (ajk) in its power expansion

around the origin

Dp(z) =
∞∑

j,k=0

ajkz
mj z̄mk , (1.3)

satisfies aj0 = a0j = 0 for every nonnegative integer j.

Proof. Let (z1, . . . , zn) be a coordinate system centered at p ∈ M and assume

that:

Φ(z, z̄) =
∞∑

j,k=0

ajkz
mj z̄mk ,

is a Kähler potential satisfying aj0 = a0j = 0 for every nonnegative integer j.

Then,

Φ(z, 0) = 0 = Φ(0, z̄),

and by (1.1) we have:

D0(z, z̄) = Φ(z, z̄).

5



1.2. COMPLEX SPACE FORMS

Conversely, let:

Φ(z, z̄) =
∞∑

j,k=0

ajkz
mj z̄mk ,

be the power expansion around the origin of a Kähler potential. Then by (1.1):

Dp(z) = D(z, 0) =
∞∑

j,k=0

ajkz
mj z̄mk + a00 −

∞∑
j=0

aj0z
mj −

∞∑
k=0

a0kz̄
mk ,

and conclusion follows.

1.2 Complex space forms

We describe here the diastasis of complex space forms. Recall that a complex

space form is a finite or infinite dimensional Kähler manifold of constant holomor-

phic sectional curvature, that if we assume to be complete and simply connected,

then up to homotheties it can be of the following three types, according to the

sign of the holomorphic sectional curvature.

1. Complex Euclidean space. The complex Euclidean space CN of complex

dimension N ≤ ∞, endowed with the flat metric denoted by g0. Here C∞ denotes

the Hilbert space l2(C) consisting of sequences wj ∈ C, j = 1, 2, . . . , such that∑+∞
j=1 |wj|2 < +∞. The diastasis, that we will denote from now on by D0, is

equal to the square of the geodesic distance, i.e. it is given by:

D0(p, q) = ||p− q||2.

Obviously, D0 is positive except for p = q. The canonical coordinates (z1, . . . , zn)

of CN are Bochner coordinates around the origin and the globally defined diastasis

D0
0 : CN → R centered at the origin reads:

D0
0(z) =

N∑
j=1

|zj|2. (1.4)

2. Complex projective space. The complex projective space CPN
b = (CPN , gb),

namely the complex projective space CPN of complex dimensionN ≤ ∞, with the

Fubini-Study metric gb of holomorphic sectional curvature 4b for b > 0. Here CP∞

6



CHAPTER 1. THE DIASTASIS FUNCTION

denotes the quotient of l2(C) by the usual equivalent relation. Let [Z0, . . . , ZN ]

be homogeneous coordinates, p = [1, 0, . . . , 0] and U0 = {Z0 6= 0}. The affine

coordinates z1, . . . , zN on U0 defined by zj = Zj/(
√
bZ0) are Bochner coordinates

centered at p. The diastasis on U0 centered at the origin and defined on U0 reads:

Db
0(z) =

1

b
log

(
1 + b

N∑
j=1

|zj|2
)
, for b > 0. (1.5)

Since (1.5) in homogeneous coordinates reads:

Db
0(Z) =

1

b
log

N∑
j=0

|Zj|2

|Z0|2
,

by (1.1) we have:

Db(Z,W ) =
1

b
log

∑N
j,k=0 |Zj|2|Wk|2∣∣∣∑N

j=0 ZjW̄j

∣∣∣2 . (1.6)

Observe that Db is positive everywhere. Further, gb is Einstein with Einstein

constant λ = 2b(N + 1).

3. Complex hyperbolic space. The complex hyperbolic space CHN
b of com-

plex dimension N ≤ ∞, namely the unit ball B ⊂ CN given by:

B =

{
(z1, . . . , zN) ∈ CN ,

N∑
j=1

|zj|2 < −
1

b

}
,

endowed with the hyperbolic metric gb of constant holomorphic sectional cur-

vature 4b, for b < 0. Fixed a coordinate system around a point p ∈ B, the

hyperbolic metric is described by the (globally defined) diastasis Db
0 centered at

the origin which reads as:

Db
0(z) =

1

b
log

(
1 + b

N∑
j=1

|zj|2
)
, for b < 0. (1.7)

If we introduce homogeneous coordinates (Z0, . . . , ZN), defined by zj = Zj/(
√
−bZ0),

similarly to the case of the complex projective space, we obtain:

Db
0(Z) =

1

b
log
|Z0|2 −

∑N
j=1 |Zj|2

|Z0|2
,

7



1.3. THE INDEFINITE HILBERT SPACE

and thus:

Db(Z,W ) =
1

b
log

(
|Z0|2 −

∑N
j=1 |Zj|2

)(
|W0|2 −

∑N
k=1 |Wk|2

)
∣∣∣Z0W̄0 −

∑N
j=1 ZjW̄j

∣∣∣2 .

In this case gb is Einstein with Einstein constant λ = 2b(N + 1).

Notation. In the sequel we denote g1 by gFS and g−1 by ghyp. Furthermore, in

order to simplify the notation we write CN , CPN and CHN instead of (CN , g0),

(CPN , gFS) and (CHN , ghyp). Finally, according with the notation in [10], we will

write F(N, b) to refer to a complex space form of curvature 4b and dimension N .

Observe that for the case b = 0 the notation is justified since the diastasis D0 can

be seen as the limit for b approaching 0 of Db. Moreover, notice also that with

these notations one has CPN
b = F (N, b), b > 0 and CHN

b = F (N, b), for b < 0.

1.3 The indefinite Hilbert space

Consider the indefinite Hilbert space E of sequences

(x1, x−1, x2, x−2, . . . , xj, x−j, . . . ),
∑
j∈Z∗
|xj|2 <∞,

endowed with the indefinite Hermitian metric defined by the diastasis:

DE
0 (x) =

∑
j∈Z∗

(sgnj)|xj|2.

Definition 1.3.1. We say that a complex manifold (M, g) admits a local Kähler

immersion into E if given any point p ∈ M there exists a neighbourhood U of p

and a map f : U → E such that:

1. f is holomorphic;

2. f is isometric, namely DM
p (z) = DE

f(p)(f(z));

3. there exists 0 < R < +∞ such that
∑∞

j=1 |fj(z)|2 < R.

8



CHAPTER 1. THE DIASTASIS FUNCTION

The last condition is justified by the following:

Lemma 1.3.2 (E. Calabi, [10]). If a sequence fj(z) of holomorphic functions

defined on a common domain satisfies
∑∞

j=1 |fj(z)|2 < R, for some 0 < R < +∞,

then the function f(z, z̄) =
∑∞

j=1 |fj(z)|2 is real analytic as a function in the

variables z and z̄.

In particular observe that the weaker hypothesis
∑∞

j=1 |fj(z)|2 < +∞ does

not even imply f to be continuous.

As we are about to prove, the indefinite Hilbert space E constitutes a universal

Kähler manifold, in the sense that it is a space in which every real analytic Kähler

manifold can be locally Kähler immersed.

More precisely we have the following:

Theorem 1.3.3 (E. Calabi, [10, pages 6-9]). A complex manifold M endowed

with a metric g admits a local Kähler immersion into the indefinite Hilbert space

E if and only if g is a real analytic Kähler metric.

Proof. Let p ∈M and let Dp(z) be the distasis function of g in a neighbourhood

U of p. If f : U → E, f(z) = (. . . , f−j(z), . . . , f−1(z), f1(z), . . . , fj(z), . . . ) is a

holomorphic and isometric immersion then by Prop. 1.1.4:

Dp(z) =
∑
j∈Z∗

(sgnj)|fj(z)− fj(p)|2, (1.8)

and by Lemma 1.3.2 Dp(z) is real analytic on U . Thus, since by (iv) of Prop.

1.1.2 Dp(z) is a Kähler potential around p for the induced metric g on M , g is a

real analytic Kähler metric.

Conversely, assume the metric g to be real analytic. Then for each p ∈ M ,

there exists a neigborhood U such that Dp(z) is real analytic and admits the

power expansion:

Dp(z, z̄) =
∞∑

j,k=1

ajk z
mj z̄mk . (1.9)

Observe that being Dp(z) real valued, (ajk) is a ∞×∞ Hermitian matrix. We

need to construct a sequence of functions fj which satisfies (1.8) and converges

9



1.3. THE INDEFINITE HILBERT SPACE

in norm in a sufficiently small neighbourhood of p. Let r = (r1, . . . , rn) be an

n-tuple of arbitrary positive numbers to be fixed later. Define:

fj(z) :=
1

2

(
ajjr

mj +
1

rmj

)
zmj +

∞∑
k=j+1

ajkr
mjzmk

f−j(z) :=
1

2

(
ajjr

mj − 1

rmj

)
zmj +

∞∑
k=j+1

ajkr
mjzmk

Then:

|fj(z)|2 − |f−j(z)|2 =
∞∑

i,k=j

aikz
mi z̄mk

and from:∑
j∈Z∗

(sgnj)|fj(z)|2 =
∞∑
j=1

(
|fj(z)|2 − |f−j(z)|2

)
=

∞∑
j,k=1

ajkz
mj z̄mk ,

(1.8) follows. It remains to prove that the sequence (fj)j∈Z∗ converges in norm

to a real analytic function, i.e. due to Lemma 1.3.2, that it satisfies the third

condition of Def. 1.3.1 above. From the definition of fj and f−j, we get:

|f±j(z)|2 =

∣∣∣∣∣12
(
ajjr

mj ± 1

rmj

)
zmj +

∞∑
k=j+1

ajkr
mjzmk

∣∣∣∣∣
2

≤

∣∣∣∣∣ 1

2rmj
zmj +

∞∑
k=1

ajkr
mjzmk

∣∣∣∣∣
2

≤ |z|
2mj

2r2mj
+

∣∣∣∣∣
∞∑
k=1

ajkr
mjzmk

∣∣∣∣∣
2

which implies: ∑
j∈Z∗
|fj(z)|2 ≤

∞∑
j=1

|z|2mj
r2mj

+ 2
∞∑

j,k=1

|ajkrmjzmk |2 .

From the convergence of the RHS of (1.9) to a real analytic function on U , there

exists positive constant H such that for any polycylinder |zα| ≤ ρα, α = 1, . . . , n

contained in U , we have |ajk| ≤ H/(ρmjρmk), where ρ = (ρ1, . . . , ρn). Choose an

n-tuple ρ′ such that 0 < ρ′ < ρ. Then for |zα| ≤ ρ′α one has:∑
j∈Z∗
|fj(z)|2 ≤

∞∑
j=1

ρ′2mj

r2mj
+ 2H2

∞∑
j=1

r2mj

ρ2mj

∞∑
k=1

ρ′2mk

ρ2mk
.

10



CHAPTER 1. THE DIASTASIS FUNCTION

Fixing rj =
√
ρjρ′j we get:

∑
j∈Z∗
|fj(z)|2 ≤

∞∑
j=1

ρ′mj

ρmj
+ 2H2

∞∑
j=1

ρ′mj

ρmj

∞∑
k=1

ρ′2mk

ρ2mk
,

and thus:

∑
j∈Z∗
|fj(z)|2 ≤ 1∏n

j=1(1− ρ′j/ρj)

(
1 +

2H2∏n
j=1(1− ρ′2/ρ2

j)

)
= R <∞

as wished.

We end this chapter with the following result about Bochner’s coordinates

and Kähler immersions.

Theorem 1.3.4 (E. Calabi, [10]). Let f : (M, g)→ (S,G) be a Kähler immersion

of an n-dimensional Kähler manifold (M, g) into a real analytic N-dimensional

Kähler manifold (S,G). Then g is a real analytic Kähler metric and if z =

(z1, . . . , zn) are Bochner’s coordinates on M with respect to a point p ∈ M , then

there exist Bochner’s coordinates on S such that the immersion f : M → S is

given in a neighbourhood of p by a graph:

(z1, . . . , zn) 7→ (z1, . . . , zn, f1(z), . . . , fN−n(z)), (1.10)

where for all j = 1, . . . , N − n, fj is a holomorphic function with no terms of

degree less than 2.

Proof. The metric g is real analytic by Proposition 1.1.4. Let z be Bochner’s

coordinates around a point p ∈ M . Up to performe a unitary transformation,

one can choose Bochner’s coordinates on S centered at f(p) and such that f(z) =

(f1(z), . . . , fN(z)) with:

fj(z) = zj +
∞∑

k=n+1

ajkz
mk , for j = 1, . . . , n;

fj(z) =
∞∑

k=n+1

ajkz
mk , for j = n+ 1, . . . , N.

11
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Since both the diastasis around p and f(p) satisfy (1.2) in normal coordinates,

by Prop. 1.1.4 we have:

Dp(z) =
n∑

α=1

|zα|2 + ψ2,2(z) = DS
f(p)(f(z)) =

N∑
α=1

|fα(z)|2 + ψ2,2(f(z)),

and in particular from:

|zj +
∞∑

k=n+1

ajkz
mk |2 = |zj|2 + |

∞∑
k=n+1

ajkz
mk |2 +

∞∑
k=n+1

ajkz
mk z̄j +

∞∑
k=n+1

ajkz̄
mkzj

we get that ajk must vanish for any j ≤ n.

1.4 Exercises
Ex. 1.4.1 — Consider the Springer domain defined by:

D =

{
(z0, . . . , zn−1) ∈ Cn |

n−1∑
j=1

|zj|2 < e−|z0|
2

}
,

with the Kähler metric g described by the globally defined Kähler potential:

Φ := − log

(
e−|z0|

2 −
n−1∑
j=1

|zj|2
)
.

Prove that Φ is the diastasis function centered at the origin for (D, g).

Ex. 1.4.2 — Consider a bounded domain Ω of C3 endowed with the metric gB

described in a neighbourhood of the origin by the Kähler potential:

ΦB = −3 log(1− |z1|2 − 2|z2|2 − |z3|2 + |z1|2|z3|2 + |z2|4 − z1z3z̄
2
2 − z2

2 z̄1z̄3).

Prove that ΦB is the diastasis function centered at the origin for (Ω, gB).

Ex. 1.4.3 — Consider on C the metric g whose associate Kähler form ω is given

by: ω = (4 cos(z − z̄)− 1) dz ∧ dz̄. Write the diastasis D(z, w) associated to ω.

Ex. 1.4.4 — LetM be a complex manifold. We say that a real analytic Kähler

metric g onM is projective-like if for all points p ∈M the function e−Dp is globally

defined on M and e−Dp(q) = 1 implies p = q. Prove that:

(a) the Kähler metric of a complex space form is projective-like;

12
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(b) the Kähler metric of a Kähler manifold which admits an injective Kähler

immersion into a complex space form is projective-like.

Finally, give an example of real analytic Kähler metric which is not projective-

like.

Ex. 1.4.5 — Prove that if a Kähler manifold (M, g) admits a Kähler immersion

f into CPN
b then for any p ∈M , the diastasis Dp(q) is real analytic, single valued

and nonnegative over M \ f−1(H) where H is a hyperplane in CPN .

Ex. 1.4.6 — Prove that a Kähler manifold (M, g) admits a Kähler immersion

into CHN
b then for any p ∈ M , the diastasis Dp(q) is real analytic, single valued

and nonnegative for any q ∈M .
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Chapter 2

Calabi’s criterion

This chapter summarizes the work of E. Calabi [10] about the existence of a

Kähler immersion of a complex manifold into a finite or infinite dimensional

complex space form. In particular, Calabi provides an algebraic criterion to find

out whether a complex manifold admits or not such an immersion. Sections 2.1

and 2.2 are devoted to illustrate Calabi’s criterion for Kähler immersions into

the complex Euclidean space and nonflat complex space forms respectively. In

Section 2.3 we discuss the existence of a Kähler immersion of a complex space

form into another, which Calabi himself in [10] completely classified as direct

application of his criterion.

2.1 Kähler immersions into the complex Euclidean

space

We describe now Calabi’s criterion for Kähler immersion into the complex flat

space CN (see Section 1.2).

Definition 2.1.1. We say that a complex manifold (M, g) admits a local Kähler

immersion into CN if given any point p ∈M there exists a neighbourhood U of p

and a map f : U → CN such that:

1. f is holomorphic;

15
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2. f is isometric, i.e. DM
p (z) =

∑N
j=1 |fj(p)− fj(z)|2;

3. there exists 0 < R < +∞ such that
∑N

j=1 |fj(z)|2 < R.

Further, we say that the immersion is full if the image f(M) is not contained in

any proper linear subspace of CN .

As already remarked, recall that if there exists a Kähler immersion of a com-

plex manifold (M, g) into CN , then the metric g is forced to be a real analytic

Kähler metric, being the pull–back via a holomorphic map of a real analytic Käh-

ler metric. Thus, consider a real analytic Kähler manifold (M, g), fix a coordinate

system z = (z1, . . . , zn) with origin at p ∈ M and denote by D0(z) the diastasis

of g at p. Define the matrix (ajk) to be the ∞×∞ matrix of coefficients given

by (1.3).

Definition 2.1.2. A real analytic Kähler manifold (M, g) is resolvable of rank

N at p ∈M if (ajk) is positive semidefinite of rank N .

Calabi’s criterion for local Kähler immersion into CN can be stated as follows

(cfr. [10, pages 9, 18]):

Theorem 2.1.3. Let (M, g) be a real analytic Kähler manifold. There exists a

neighbourhood U of a point p that admits a Kähler immersion into CN if and

only if (M, g) is resolvable of rank at most N at p ∈M . Furthermore if the rank

is exactly N , the immersion is full.

Proof. Assume that there exists a Kähler immersion f : U → CN . Fixed local

coordinates (z1, . . . , zn) centered at p ∈ U , up to translate we can assume f(p) =

0. By Prop. 1.1.4, the induced diastasis:

DM
p (z) =

N∑
h=1

|fh(z)|2

is real analytic on U . By expanding fj(z) =
∑∞

k=0 a
j
kz

mk we get:

DM
p (z) =

∞∑
j,k=0

N∑
h=1

ahj ā
h
kz

mj z̄mk .

16
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It follows that (ajk) is the product of the N ×∞ matrix ahj with its transpose

conjugate, and thus it is positive semidefinite and of rank at most N .

Assume now that (1.3) converges in a domain U and that (ajk) is positive

semidefinite. Then, we can decompose (ajk) =
∑N

h=1 a
h
j ā

h
k, where for each h, ah =

(ahj ) is an infinite nonzero vector. Then, we can define the map f = (f1, . . . , fN)

as a formal power series:

fh(z) =
∞∑
j=1

ahj z
mj .

Since for any j, k = 1, 2, . . . , |ajk| is bounded on any maximal polycylindrical

domain, from:

|ahj |2 ≤
N∑
h=1

|ahj |2 = |ajj|,

we get that also |ahj | is bounded in such domain. Since U is a convergence domain

of the power series (1.3), it is a union of its maximal polycylinders. Thus, the

fh are holomorphic function on U and by construction the sum of the square of

their absolute values
∑N

h=1 |fh(z)|2 converges on U to DM
p (z).

It follows directly by Th. 2.1.3 that all Stein manifolds with the induced

metric are examples of resolvable manifolds of finite rank.

In order to state the global version of Calabi’s criterion, we need two further

results (cfr. [10, pages 8, 11, 18]):

Theorem 2.1.4 (Rigidity). If a neighbourhood U of a point p admits a full

Kähler immersion into CN , then N is uniquely determined by the metric and the

immersion is unique up to rigid motions of CN .

Proof. Let (z1, . . . , zn) be a coordinate system on U centered at p and consider

two full Kähler immersions:

f : U → CN , f(z) = (f1(z), . . . , fN(z)),

f ′ : U → CN
′
, f ′(z) = (f ′1(z), . . . , f ′N ′(z)).

We can assume without loss of generality that f(p) = f ′(p) = 0.

17
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Observe now that being f holomorphic, for any j = 1, . . . , N , fj(U) is not

contained in a one dimensional real subspace of C. In fact, if it was so, we would

have fj(z) = fj(z) and thus fj(z) would be a constant which is equal to zero

since f(0) = 0, contradicting the hypothesis of fullness. The same holds for f ′.

Since f ∗(g0) = f ′∗(g0), by Prop. 1.1.4 we get:

D(z, w) =
N∑
j=1

||fj(z)− fj(w)||2 =
N ′∑
j=1

||f ′j(z)− f ′j(w)||2. (2.1)

Consider n + 1 points p0, p1, . . . , pn ∈ U . Their images in CN are linearly de-

pendent in a real sense if and only if the vectors v1 = f(p1) − f(p0), . . . , vn =

f(pn)− f(p0) are, i.e. if and only if:
n∑
j=1

αjvj = 0

for real constants αj not all vanishing. Taking the norm, this is equivalent to

require that:
n∑

j,k=1

αjαk〈vj, vk〉 = 0,

for not all vanishing αj, αk. From:

〈vj, vj〉 = ||f(pj)− f(p0)||2 = D(pj, p0),

we get:

〈vj, vk〉 =
1

2
(D(p0, pj) +D(p0, pk)−D(pj, pk)) ,

which means that we can write the condition of being linearly dependent in

terms of the diastasis. In view of (2.1), this means that the maximum number of

linearly independent points in the images of U through f and f ′ does depend on

the metric on U alone and thus, the fullness condition implies N = N ′.

From (2.1) the two maps f and f ′ preserves distances and thus there exists a

rigid motion T of CN such that f ′(U) = Tf(U). Furthermore T is unique, since

f(U) and f ′(U) span linearly CN in the real sense. It remains to show that T is

unitary. Since f(0) = f ′(0) = 0, the transformation T can be written:

f ′j(z) =
N∑
k=1

ajkfk(z) +
N∑
k=1

bjkf̄k(z), j = 1, . . . , N,

18
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i.e.:

f ′j(z)−
N∑
k=1

ajkfk(z) =
N∑
k=1

bjkf̄k(z), j = 1, . . . , N,

which implies both sides are constant and thus vanish. Then, T can be written:

f ′j(z) =
N∑
k=1

ajkfk(z), j = 1, . . . , N,

which is a complex linear transformation preserving distance and thus a unitary

transformation of CN .

Theorem 2.1.5 (Global character of resolvability). If a real analytic connected

Kähler manifold (M, g) is resolvable of rank N at a point p ∈ M , then it also is

at any other point.

Proof. We will prove that the set of resolvable points in M is open and closed.

The set of resolvable points of rank N is open since a point p is resolvable

of rank N if and only if there exists a neighbourhood U 3 p which admits a

Kähler immersion f into CN . Since the points in f(U) spans CN (see the proof of

the previous theorem), it follows that any other point in U is resolvable of rank

exactly N .

In order to prove it is also closed, let p be a limit point of the set of resolvable

points of rank N in M . By Theorem 1.3.3 there exists a neighbourhood V of

p admitting a Kähler immersion into the indefinite Hilbert space E. Since p

is a limit point of the set of resolvable points, there exist also p′ ∈ V and a

neighbourhood V ′ ⊂ V of p′ such that V ′ admits a Kähler immersion into CN .

Let z be a coordinate system defined on V with origin at p′ and denote by

f ′ = (f ′j)j=1,...,N the Kähler immersion f ′ : V ′ → CN and by f = (fj)j∈Z∗ the

Kähler immersion f : V → E. Assume also that f ′(0) = 0 = f(0). Observe that

the diastasis of E restricted to the subspace E ′ spanned by f(V ′) (and thus by

f(V )) is positive semidefinite, in the sense that for any q ∈ E ′, DE(f(p′), q) ≥ 0.

In fact, we can write the vector v = q − f(p′) as a linear combination of vectors

vj = f(pj) − f(p′) with pj ∈ V ′, let us say v =
∑k

j=1 αjvj. Then, we consider
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v′+ f ′(p′) = q′ ∈ CN where v′ =
∑k

j=1 αjv
′
j, for v′j = f ′(pj)− f ′(p′), and by Prop.

1.1.4, we have:

DE
0 (q) =

1

2

k∑
i,j=1

αjαk
(
DE(f(p′), f(pj)) + DE(f(p′), f(pk))−DE(f(pj), f(pk))

)
=

1

2

k∑
i,j=1

αjαk

(
DC

N

(f ′(p′), f ′(pj)) + DC
N

(f ′(p′), f ′(pk))−DC
N

(f ′(pj), f
′(pk))

)
=

1

2

k∑
i,j=1

αjαk

N∑
σ=1

(
|f ′σ(pj)|2 + |f ′σ(pk)|2 − |f ′σ(pj)− f ′σ(pk)|2

)
=

N∑
σ=1

∣∣∣∣∣
k∑
j=1

αjf
′
σ(pj)

∣∣∣∣∣
2

≥ 0,

as wished. Denote now by E0 the subspace of E ′ defined by:

E0 =

{
y ∈ E ′|

∑
j∈Z∗

(sgnj)|yj|2 = 0

}
,

(where y are coordinates in E) and by E+ the orthogonal complement of E0 with

respect to the Hermitian form
∑

j∈Z∗ |yj|2 (if necessary E ′, E0 and E+ should be

replaced by their completion with respect to that metric). On E+ the diastasis

is positive definite, and further the orthogonal projection T of E ′ onto E+ has

the effect of preserving the diastasis of all pairs of points. Thus, the map defined

by T ◦ f : V → E+ is an isometric immersion of V into a unitary space. Finally,

since V span the same linear space as V ′, we have that E+ must be of dimension

N . Thus, every points in V , and in particular p, must be resolvable of rank N

concluding the proof.

Last theorem states that if a local Kähler immersion around a point p ∈ M

exists, then the same is true for any other point. Due to this result, we can say

that a manifold is resolvable without specifying the point.

The following result states that if M is chosen to be simply connected, then

it is possible to extend the local immersion to the whole manifold (cfr. [10, pages

12-13]):
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Theorem 2.1.6 (Calabi’s criterion for simply connected manifolds). A simply

connected complex manifold (M, g) admits a Kähler immersion into CN if and

only if the metric is real analytic and M is resolvable of rank at most N . Fur-

thermore, the immersion is full if and only if the rank is exactly N .

Proof. The conditions are necessary in view of Theorem 2.1.3. Thus, assume that

M is a real analytic Kähler manifold resolvable of rank N . By Theorem 2.1.3

for any point p ∈ M there exists a neighbourhood U 3 p admitting a Kähler

immersion into CN in such a way that the image of U spans linearly CN . Let

{Uj} be an open covering of M such that each Uj admits a Kähler immersion

into CN . Let p0 be the origin in U0 and let f : U0 → CN , f = (fj), be a Kähler

immersion. For any point p ∈M , consider a path connecting p0 and p and denote

by π0, π1, . . . , πk the overlapping open segments obtained as intersection between

the path and the Uj’s.

p0

p

π0

πk

p1

π1

At each overlap πj ∩ πj+1, there exists a unique unitary motion which trans-

forms the immersion functions of πj into those of πj+1. If we apply the trans-

formation to all the neighbourhood of πj, we get the same Kähler immersion for

both πj and πj+1. By induction, we can extend the Kähler immersion around

p0 to a Kähler immersion around the whole path between p0 and p. Since M

is arcwise connected, the Kähler immersion can be extended to the whole mani-

fold and since it is simply connected, the extension does not depend on the path

chosen.

Corollary 2.1.7. If a simply connected Kähler manifold (M, g) is resolvable of

any rank, then its diastasis D(p, q) can be extended to all pairs of points and its

everywhere nonnegative.
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Proof. Since the diastasis of the complex Euclidean space can be extended to all

pairs of points and its everywhere nonnegative, the statement is an immediate

consequence of the previous theorems and of Prop. 1.1.4.

Theorem 2.1.8. A complex manifold M endowed with a Kähler metric g admits

a Kähler immersion into CN if and only if the following conditions are fulfilled:

(i) g is real analytic Kähler metric,

(ii) (M, g) is resolvable of rank at most N ,

(iii) for each point p ∈ M the analytic extension of the diastasis Dp is single

valued.

Further, the immersion is also injective if and only if for any point p ∈M :

(iv) Dp(q) = 0 only for q = p.

Proof. By Theorem 2.1.6, conditions (i) and (ii) are necessary and sufficient for

the universal covering π : M̃ → M to admit a Kähler immersion f : M̃ → CN .

The necessity of condition (iii) follows directly from Prop. 1.1.4. In order to

prove it is also sufficient for f to descend to the quotient, fix p ∈M and consider

the analytic extension D̃p of Dp to the whole M̃ . If Dp is single valued on M ,

Dp ◦π = D̃p implies that D̃p(q) = 0 for any point q ∈ M̃ that belongs to the same

fibre of p. Hence, the Poincaré group of M acting on M̃ leaves the image of M̃

in CN pointwise fixed and the map f descends to a globally defined Kähler map

M → CN . Finally, condition (iv) is equivalent for the immersion to be injective

since by Prop. 1.1.4 f(p) = f(q) only for p = q.

2.2 Kähler immersions into nonflat complex space

forms

Let F(N, b) be an N -dimensional complex space form of holomorphic sectional

curvature 4b and denote by Db its diastasis function, described in Section 1.2.

The following definition generalizes Def. 2.1.1 to the case when b 6= 0:
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Definition 2.2.1. We say that a complex manifold (M, g) admits a local Kähler

immersion into F(N, b) if given any point p ∈M there exists a neighbourhood U

of p and a map f : U → F(N, b) such that:

1. f is holomorphic;

2. f is isometric, i.e., due to Prop. 1.1.4, DM
p (z) = Db

f(p)(f(z));

3. there exists 0 < R < +∞ such that
∑N

j=1 |fj(z)|2 < R.

Further, we say that the immersion is full if the image f(M) is not contained in

any proper totally geodesic submanifold of F(N, b).

We introduce here a generalized stereographic projection performed from a

complex space form of nonzero curvature to the complex euclidean space. Let p

be a point in F(N, b) and set normal coordinates z in a neighbourhood U centered

at p. The generalized stereographic projection is the map:

π : U → CN , π(z) = (π1(z), . . . , πN(z))

which satisfies Db
0(z) = D0

0(π(z)):

π

Db
0

D0
0

F(N, b) ⊃ U

CN

R

i.e. such that:
N∑
j=1

|πj(z)|2 =
1

b

(
ebD

b
0(z) − 1

)
.

Consider now a real analytic Kähler manifold (M, g) and fix a coordinate

system (z1, . . . , zn) with origin at p ∈ M . Recall that as for the case of flat

ambient space, chosing a real analytic Kähler manifold is not restrictive since if

there exists a Kähler immersion of a complex manifold (M, g) into F(N, b), then

the metric g is forced to be a real analytic Kähler metric, being the pull–back

via a holomorphic map of the real analytic Kähler metric gb. Denote by D0(z)
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the diastasis of g at p and consider the power expansion around the origin of the

function (ebD0(z) − 1)/b:

ebD0(z) − 1

b
=

∞∑
j,k=0

sjk z
mj z̄mk .

Definition 2.2.2. A real analytic Kähler manifold (M, g) is b-resolvable of rank

N at p ∈M if the matrix (sjk) is semipositive definite of rank N .

In particular, (M, g) is 1-resolvable of rank N at p if the matrix of coefficients

(bjk) given by:

eD0(z) − 1 =
∞∑

j,k=0

bjk z
mj z̄mk , (2.2)

is positive semidefinite of rank N . Similarly (M, g) is −1-resolvable of rank N at

p if the matrix of coefficients (cjk) given by

1− e−D0(z) =
∞∑

j,k=0

cjk z
mj z̄mk . (2.3)

is positive semidefinite of rank N .

Remark 2.2.3. Observe that a Kähler manifold (M, g) is b-resolvable of rank N

at p ∈M if and only if the diastasis:

D′0(π(z)) =
1

b

(
ebD0(z) − 1

)
,

obtained from the diastasis D0(z) of g after a stereographic projection π with

respect to p0, is resolvable of rank N at p.

Calabi’s criterion for local Kähler immersion can be stated as follows (cfr. [10,

pages 9, 18]):

Theorem 2.2.4. Let (M, g) be a real analytic Kähler manifold. There exists a

neighbourhood V of a point p that admits a Kähler immersion into F(N, b) if and

only if (M, g) is b-resolvable of rank at most N at p ∈ M . Furthermore if the

rank is exactly N , the immersion is full.
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Proof. Consider local coordinates z around p and denote by D0 the diastasis

of M centered at p. By Prop. 1.1.4, there exists a Kähler immersion f :

V → F(N, b) of a neighbourhood V of p into F(N, b) if and only if D0(z) =

1
b

log
(

1 + b
∑N

j=1 |fj(z)|2
)
. Taking a stereographic projection with respect to p,

we get that this is equivalent to have D′0(z) =
∑N

j=1 |fj(z)|2, which is in turn

equivalent by Theorem 2.1.3 to M being resolvable of rank at most N at p, and

the rank is exactly N if and only if the immersion is full. The following diagram

summarizes this setting:

f
V

π

Db
0

D0
0

D′0 = D0
0 ◦ π ◦ f

D0 = Db
0 ◦ f

f(V ) ⊂ F(N, b)

CN

R

Conclusion follows since by Remark 2.2.3, (M, g) is b-resolvable at p if and

only if its projected diastasis D′0 is resolvable at p.

In particular, a neighbourhood V 3 p of (M, g) admits a Kähler immersion

into CPN (resp. CHN), if and only if M is 1-resolvable (resp. −1-resolvable) of

rank at most N at p.

Hermitian symmetric spaces of compact type are examples of 1-resolvable

manifolds of finite rank. This follows from Th. 2.2.4 and the existence of a Käh-

ler immersion of such spaces into the finite dimensional complex projective space,

well–known since the work of Borel and Weil (see [49] or [69] for a proof).

In order to state the global version of Calabi’s criterion, we need two further

results analogous to Theorem 2.1.4 and Theorem 2.1.5 respectively (cfr. [10, page

18]):
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Theorem 2.2.5 (Rigidity). If a neighbourhood V of a point p admits a full

Kähler immersion into F(N, b), then N is uniquely determined by the metric and

the immersion is unique up to rigid motions of F(N, b).

Proof. Let V be a neighbourhood of p admitting two full Kähler immersions

f : V → F(N, b) and f ′ : V → F(N ′, b). Let π : f(V )→ CN and π′ : f ′(V )→ CN
′

be stereographic projections with respect to f(p) and f ′(p) respectively. Since:

D′0(z) =
N∑
j=1

|fj(z)|2 =
N ′∑
j=1

|f ′j(z)|2,

π ◦ f and π′ ◦ f ′ are two Kähler immersions of V into CN and CN ′ respectively,

with the same metric induced by D′0(z), and thus the proof reduces to that of

Theorem 2.1.4.

Theorem 2.2.6 (Global character of b-resolvability). If a real analytic connected

Kähler manifold (M, g) is b-resolvable of rank N at a point p ∈ M , then it also

is at any other point.

Proof. Similarly to the case of flat ambient space, we will prove that the set of

b-resolvable points in M is open and closed. It is open since by Theorem 2.2.4

the b-resolvability is equivalent to the existence of a local Kähler immersion. It

is also closed, in fact let p be one of its limit points and let V be a small enough

neighbourhood around p such that D(q, q′) is real analytic and single valued for

any q, q′ ∈ V . Let p′ be a b-resolvable point in V . By Theorem 2.2.4 there exist

a neighbourhood V ′ of p′ and a Kähler immersion f : V ′ → F(N, b). Define a

second diastasis on V by:

D′(q, q′) :=
ebD(q,q′) − 1

b
. (2.4)

Observe that on V ′, D′(q, q′) coincides with the stereographic projection of D(q, q′)

and thus at p′ the metric induced by D′(q, q′) is resolvable of rank N . By Theorem

2.1.5, V with the metric induced by D′(q, q′) is resolvable of rank N at any of
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its points. By Theorem 2.1.8, since in addition D′(q, q′) is single valued on V ,

the immersion f can be extended to a Kähler immersion of the whole V with

the metric induced by D′(q, q′) into CN . Thus, f maps isometrically V into

F(N, b). The proof is complete by observing that when b < 0, from (2.4) one gets

D′(q, q′) < −1
b
, and thus:

N∑
j=1

|fj(q)− fj(q′)|2 < −
1

b
,

implies that the image of V is actually contained in CHN
b .

The previous theorem states that if a local Kähler immersion into F(N, b)

around a point p ∈ M exists, then the same is true for any other point. Due to

this result we can say that a manifold is b-resolvable without specifying the point.

In particular, if (M, g) is 1-resolvable, we say also that g is projectively induced.

In complete analogy with the case of flat ambient space, the theorems just

proven imply the following global criteria (cfr. [10, thms. 11-12, pages 19-20]):

Theorem 2.2.7. A simply connected complex manifold (M, g) admits a Kähler

immersion into F(N, b), if and only if the metric g is b-resolvable of rank at most

N . Furthermore, if the immersion is full the rank is exactly N .

Theorem 2.2.8. A complex manifold (M, g) admits a Kähler immersion into

F(N, b), if and only if the following conditions are fulfilled:

(i) the metric is a real analytic Kähler metric,

(ii) the Kähler manifold (M, g) is b-resolvable of rank at most N ,

(iii) for each point p ∈ M the analytic extension of the diastasis Dp over M is

single valued.

Further, the immersion is also injective if and only if for any p ∈M :

(iv) Dp(q) = 0 only for q = p.
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Remark 2.2.9. Observe that, if it does exist, a Kähler immersion f : M → CP∞

of a compact Kähler manifold into CP∞ is forced not to be full. In fact, assume

by contradiction that f : M → CP∞ is a full Kähler immersion. Then we can

write f(p) = [s0 : · · · : sj : . . . ], where each sj is a global holomorphic section of

the holomorphic line bundle L on M obtained as the pull-back of the hyperplane

bundle of CP∞. Since the map is full, the sj’s are linearly independent and so

the space of global holomorphic sections of L is infinite dimensional. This is in

contrast with the well known fact that this space is finite dimensional due to the

compactness of M . Notice also that being the pull-back of the integral Fubini-

Study form of CPN through a holomorphic map, the induced Kähler form on M

is forced to be integral and so we are in the realm of algebraic geometry. It is

worth pointing out that if we start with compact Kähler manifold (M,ω) with ω

integral then the Kodaira embedding k : M → CPN is a holomorphic map into

some finite dimensional complex projective space CPN , but in general k is not

isometric (k∗ωFS cohomologous to ω, up to rescaling, but in general not equal).

We conclude this section with the following example of Kähler metric admit-

ting a local but not global immersion into CP∞.

Example 2.2.10. Consider the Kähler metric g̃ on C∗ whose fundamental form

is

ω̃ =
i

2

dz ∧ dz̄
|z|2

.

Since C admits a Kähler immersion f0 : C → CP∞ into CP∞ (cfr. Eq. (2.7)

below) and it covers C∗ through the map exp : C→ C∗, given by exp(z) = e2πiz,

then a neighbourhood of each point of C∗ can be Kähler immersed into CP∞.

The immersion cannot be extended to a global one. In fact, since exp∗(g̃) = g0,

such Kähler immersion f composed with exp, would be a Kähler immersion of C

into CP∞. By Calabi’s rigidity Theorem 2.2.5, it would then exist a rigid motion

T of C such that T ◦ f0 = f ◦ exp, that is impossible since f0 is injective and exp

is not.
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2.3 Kähler immersions of a complex space form

into another

As application of its criterion Calabi studies the existence of Kähler immersion

of a complex space form into another. Following the notations of the previous

chapter, we will denote by F(N, b) a complex space form of dimension N and

holomorphic sectional curvature 4b.

Theorem 2.3.1 (E. Calabi, [10, pages 21-22]). A complex space form F(n, b)

admits a global Kähler immersion into F(N, b′) if an only if b ≤ b′ and

either b ≤ 0 and N =∞,

or b′ = kb for some positive integer k, and N ≥
(
n+k
k

)
− 1.

Proof. Assume first b 6= 0. By Theorem 2.2.7 it is enough to check for what values

of b, gb is b′-resolvable. Fix a point p ∈ F(n, b) and consider local coordinates z

centered at p. Then:

Db
0 =

1

b
log

(
1 + b

n∑
j=1

|zj|2
)
,

and the (j, k) entry in the matrix (ajk) of its power expansion around the origin

(1.3) reads:

ajk = δjk
(|mj| − 1)!

mj!
(−b)|mj |−1.

Thus, (ajk) is a diagonal matrix with nonvanishing elements on the diagonal. It

follows that its rank is infinite and it is positive semidefinite if and only if each of

its entries is nonnegative, i.e. if and only if b < 0. It follows that F(n, b) admits

a Kähler immersion into CN iff F(n, b) = CHn
b and N = ∞. In order to check

the b′-resolvability for b′ 6= 0, consider that:

eb
′Db0 − 1

b′
=

(
1 + b

∑n
j=1 |zj|2

) b′
b − 1

b′
=

1

b′

∞∑
j=1

(
b′/b

j

)(
b

n∑
k=1

|zk|2
)j

,
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and thus the matrix (sjk) of the coefficients of its power expansion around the

origin is a diagonal matrix with terms on the diagonal given by:

sjj =


∏|mj |−1

l=1 (b′−lb)
mj !

for |mj| > 1;

1 otherwise.

The rankN of (sjk) is the number of nonvanishing entries. When b′ is a multiple of

b, i.e. there exists a positive integer k such that b′ = kb, then N is equal to
(
n+k
k

)
−

1. Since in this case each entry is nonnegative, (sjk) is positive semidefinite. When

b′ is not a multiple of b, then the rank is ∞ and (sjk) is b′-resolvable iff b′ − lb is

nonnegative for any l = 2, 3, . . . , i.e. iff b < 0.

Finally, the case b = 0 is trivial when b′ = 0. For b′ 6= 0 we get:

sjj =
(b′)|mj |−1

mj!

and thus (sjk) is positive semidefinite if and only if b′ > 0 and the rank is infinite,

i.e. the only nontrivial Kähler immersion Cn admits is into CP∞b .

Remark 2.3.2. It is interesting to notice that a Kähler manifold (M,ω) is b-

resolvable for b > 0 (resp. b < 0) if and only if (M, bω) is 1-resolvable (resp.

−1-resolvable). To see this, notice that if we denote by ϕ the immersion ϕ : M →

CPN
b , by Prop. 1.1.4 we have:

DM
p (z) =

1

b
log

(
1 + b

N∑
j=1

|ϕj(z)|2
)
,

thus the map
√
b ϕ satisfies:

(
√
b ϕ)∗Db

0(z) = log

(
1 + b

N∑
j=1

|ϕj(z)|2
)

= bDM
p (z).

Totally similar arguments apply to the b < 0 case. Finally, notice that the

multiplication of the metric g by c is harmless when one studies Kähler immersions

into the infinite dimensional complex Euclidean space l2(C) equipped with the

flat metric g0. In fact, if f : M → l2(C) satisfies f ∗(g0) = g then (
√
cf)∗(g0) = cg.
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In sight of the previous remark, Theorem 2.3.1 can be stated in terms of

Kähler immersions of (CHn, c ghyp), Cn and (CPn, c gFS) into CHN≤∞, CN≤∞ or

CPN≤∞ as follows.

Theorem 2.3.3.

1. For any c > 0, (CHn, c ghyp) admits a full Kähler immersion into l2(C) and

into CP∞. Further, (CHn, c ghyp) admits a Kähler immersion into CHN≤∞

if and only if c ≤ 1 and N =∞.

2. The flat space Cn does not admit a Kähler immersion into CHN≤∞ for any

value of N , but it does, full, into CP∞.

3. For no value of c > 0, (CPn, c gFS) admits a Kähler immersion into CHN≤∞

nor CN≤∞. Further, (CPn, c gFS) admits a full Kähler immersion into CPN ,

N <∞, if and only if c is a positive integer and N =
(
n+c
c

)
− 1.

We conclude this chapter with the following theorems which show that if a a

Kähler manifold (M, g) admits a Kähler immersion into l2(C) (resp. CH∞) then

it also does into CP∞ (resp. l2(C)). These facts has been firstly pointed out by

S. Bochner in [7].

Theorem 2.3.4. If a Kähler manifold (M, g) admits a Kähler immersion into

the infinite dimensional flat space l2(C) then it also does into CP∞.

Proof. Fix a local coordinate system (z1, . . . , zn) on a neighbourhood U of p ∈M .

By Theorem 1.1.6 for some holomorphic functions f1, . . . , fj, . . . , the diastasis

function for g reads

DM
0 (z) =

∞∑
j=1

|fj|2.

Let DM
0 (z) = logψ with ψ = eDM0 (z). Then for some suitable functions hj,

j = 1, 2, . . . we get

ψ = 1 +
∞∑
j=1

|hj|2,

and the conclusion follows.
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Theorem 2.3.5. If a Kähler manifold (M, g) admits a Kähler immersion into

the infinite dimensional hyperbolic space CH∞ then it also does into l2(C).

Proof. Consider a local coordinate system (z1, . . . , zn) on M in a neighbourhood

of p ∈ M and let DM
0 (z) be the diastasis function for g at p. By Theorem 1.1.6,

there exists f1, . . . , fj, . . . holomorphic functions such that

DM
0 (z) = − log

(
1−

∞∑
j=1

|fj|2
)
.

Hence

DM
0 (z) =

∞∑
j=1

|hj|2,

for some suitable holomorphic functions hj, j = 1, 2, . . . , and we are done.

2.4 Exercises
Ex. 2.4.1 — Prove that

f : CHn ↪→ l2(C) : z 7→

(
. . . ,

√
(|mj| − 1)!

mj!
zmj , . . .

)
, (2.5)

is a full Kähler immersion of CHn into l2(C).

Ex. 2.4.2 — Prove that

f : CHn ↪→ CP∞ : z 7→

(
. . . ,

√
|mj|!
mj!

zmj , . . .

)
, (2.6)

is a full Kähler immersion of CHn into CP∞.

Ex. 2.4.3 — Prove that

f : Cn ↪→ CP∞ : z 7→

(
. . . ,

√
1

mj!
zmj , . . .

)
, (2.7)

is a full Kähler immersion of Cn into CP∞.

Ex. 2.4.4 — Let k be a positive integer. Construct a full Kähler immersion of

(CP1, kgFS) into CPk (cfr. 3. of Theorem 2.3.3).
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Ex. 2.4.5 — Consider the Springer domain defined by:

D =

{
(z0, . . . , zn−1) ∈ Cn |

n−1∑
j=1

|zj|2 < e−|z0|
2

}
,

with the Kähler metric g described by the globally defined Kähler potential:

Φ := − log

(
e−|z0|

2 −
n−1∑
j=1

|zj|2
)
.

Prove that (D, g) admits a full Kähler immersion into l2(C).

Ex. 2.4.6 — For α > 0, consider:

D =

{
(z0, . . . , zn−1) ∈ Cn |

n−1∑
j=1

|zj|2 <
α

|z0|2 + α

}
,

endowed with the Kähler metric g described by the globally defined Kähler po-

tential:

Φ := − log

(
α

|z0|2 + α
−

n−1∑
j=1

|zj|2
)
.

Prove that (D, g) admits a full Kähler immersion into CP∞.

Ex. 2.4.7 — Let:

D =

{
(z0, . . . , zn−1) ∈ Cn |

n−1∑
j=1

|zj|2 <
1√

|z0|2 + 1

}
,

with the Kähler metric g described by the globally defined Kähler potential:

Φ := − log

(
1√

|z0|2 + 1
−

n−1∑
j=1

|zj|2
)
.

Prove that (D, g) does not admit a Kähler immersion into any complex space

form.

Ex. 2.4.8 — Consider a circular bounded domain Ω of C3 endowed with the

metric gB described in a neighbourhood of the origin by the Kähler potential:

ΦB = −3 log(1− |z1|2 − 2|z2|2 − |z3|2 + |z1|2|z3|2 + |z2|4 − z1z3z̄
2
2 − z2

2 z̄1z̄3).

Prove that (Ω, gB) does not admit a Kähler immersion into l2(C).
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Ex. 2.4.9 — Theorem 2.3.4 combined with Remark 2.3.2, implies that if a Käh-

ler manifold (M, g) admits a Kähler immersion into l2(C), then (M, cg) does into

CP∞, for any value of c > 0. Shows that the converse is true, namely that if

Kähler manifold (M, cg) admits a local Kähler immersion into CP∞ for all c > 0

then (M, g) does into l2(C).

Ex. 2.4.10 — Prove that if a Kähler metric g is projectively induced the same

is true for kg, for any positive integer k.

Ex. 2.4.11 — Let (M, g) be a Kähler manifold and let f : M → CPN , N ≤ ∞,

be a Kähler immersion. Prove that the Bochner coordinates around a point

p ∈M can be extended over M \ f−1(Hp), where Hp is the hyperplane at infinity

with respect to f(p).
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Chapter 3

Homogeneous Kähler manifolds

In this chapter we survey what is known about the existence of Kähler immer-

sions of homogeneous Kähler manifolds into complex space forms. Recall that a

homogeneous Kähler manifold is a Kähler manifold on which the group of holo-

morphic isometries Aut(M) ∩ Isom(M, g) acts transitively on M (here Aut(M)

denotes the group of biholomorphisms of M).

In the first two sections we summarize the results of A. J. Di Scala, H. Ishi

and A. Loi [18] about Kähler immersion of homogeneous Kähler manifolds into

complex Euclidean and hyperbolic spaces. Section 3.1 is devoted to proving that

the only homogeneous bounded domains which are projectively induced for all

positive multiples of their metrics are given by the product of complex hyper-

bolic spaces. This result, combined with the solution of J. Dorfmeister and K.

Nakajima [26] of the fundamental conjecture on homogeneous Kähler manifolds

(Theorem 3.2.3), will be applied in Section 3.2 to classify homogeneous Kähler

manifolds admitting a Kähler immersion into CHN or CN , N ≤ ∞ (Theorem

3.2.4).

In the last three sections we consider Kähler immersions of homogeneous

Kähler manifolds into CPN , N ≤ ∞. The general case is discussed in Section

3.3, while in sections 3.4 and 3.5 we detail the case of Käher immersions of

bounded symmetric domains into CP∞.

35
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3.1 A result about Kähler immersions of homoge-

neous bounded domains into CP∞

We have already noticed in Section 2.3 that the complex Euclidean space (Cn, λg0)

and the complex hyperbolic space (CHn, λghyp) both admit a Kähler immersion

into CP∞, for all λ > 0. In the following theorem we prove that this fact charac-

terizes these two spaces among all homogeneous bounded domains. Recall that a

homogeneous bounded domain (Ω, g) is a bounded domain (i.e. a connected open

set) Ω ⊂ Cn such that (Ω, g) is a homogeneous Kähler manifold. Recall also that

we say that a Kähler manifold is projectively induced when it is 1-resolvable in

the sense of Definition 2.2.2, i.e. when it does admit a local Kähler immersion

into CP∞.

This theorem will be one of the key ingredients for the study of Kähler immer-

sions of homogeneous Kähler manifolds into finite or infinite dimensional complex

space forms.

Theorem 3.1.1 (A. J. Di Scala, H. Ishi, A. Loi [18]). Let (Ω, g) be an n-

dimensional homogeneous bounded domain. The metric λg is projectively induced

for all λ > 0 if and only if:

(Ω, g) = (CHn1 × · · · × CHnr , λ1ghyp ⊕ · · · ⊕ λrghyp) , (3.1)

where n1 + · · ·+ nr = n, λj, j = 1, . . . , r are positive real numbers.

Proof. First we find a global potential for the homogeneous Kähler metric g on the

domain Ω following Dorfmeister [25]. By [25, Theorem 2 (c)], there exists a split

solvable Lie subgroup S ⊂ Aut(Ω, g) acting simply transitively on the domain Ω.

Taking a reference point z0 ∈ Ω, we have a diffeomorphism S 3 s ∼7→ s · z0 ∈ Ω,

and by the differentiation, we get the linear isomorphism s := Lie(S) 3 X
∼7→

X · z0 ∈ Tz0Ω ≡ Cn. Then the evaluation of the Kähler form ω on TzoΩ is given

by ω(X · zo, Y · z0) = β([X, Y ]) (X, Y ∈ s) with a certain linear form β ∈ s∗. Let

j : s→ s be the linear map defined in such a way that (jX) ·z0 =
√
−1(X ·z0) for
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X ∈ s. We have <g(X · z0, Y · z0) = β([jX, Y ]) for X, Y ∈ s, and the right-hand

side defines a positive inner product on s. Let a be the orthogonal complement

of [s, s] in s with respect to the inner product. Then a is a commutative Cartan

subalgebra of s. Define γ ∈ a∗ by γ(C) := −4β(jC) (C ∈ a), where we extended

γ to s = a⊕ [s, s] by the zero-extension. Keeping the diffeomorphism between S

and Ω in mind, we define a positive smooth function Ψ on Ω by:

Ψ((expX) · z0) = e−γ(X) (X ∈ s).

From the argument in [25, pages 302–304], we see that:

ω =
i

2
∂∂̄ log Ψ. (3.2)

It is known that there exists a unique kernel function Ψ̃ : Ω × Ω → C such

that (1) Ψ̃(z, z) = Ψ(z) for z ∈ Ω and (2) Ψ̃(z, w) is holomorphic in z and

anti-holomorphic in w (cf. [39, Prop. 4.6]). Let us observe that the metric g is

projectively induced if and only if Ψ̃ is a reproducing kernel of a Hilbert space

of holomorphic functions on Ω. Indeed, if f : Ω → CPN (N ≤ ∞) is a Kähler

immersion with f(z) = [ψ0(z) : ψ1(z) : · · · ] (z ∈ Ω) its homogeneous coordinate

expression, then we have ω = i
2
∂∂̄ log

∑N
j=0 |ψj|2. Comparing (3.2) with it, we see

that there exists a holomorphic function φ on Ω for which Ψ = |eφ|2
∑N

j=0 |ψj|2.

By analytic continuation, we obtain Ψ̃(z, w) = eφ(z)eφ(w)
∑N

j=0 ψj(z)ψj(w) for

z, w ∈ Ω. For any z1, . . . , zm ∈ Ω and c1, . . . , cm ∈ C, we have

m∑
p,q=1

cpc̄qΨ̃(zp, zq) =
m∑

p,q=1

cpc̄qe
φ(zp)eφ(zq)

N∑
j=0

ψj(zp)ψj(zq)

=
N∑
j=0

|
m∑
p=1

cpe
φ(zp)ψj(zp)|2 ≥ 0.

Thus the matrix (Ψ̃(zp, zq))p,q ∈ Mat(m,C) is always a positive Hermitian matrix.

Therefore Ψ̃ is a reproducing kernel of a Hilbert space (see [6, p. 344]).

On the other hand, if Ψ̃ is a reproducing kernel of a Hilbert space H ⊂ O(Ω),

then by taking an orthonormal basis {ψj}Nj=0 of H, we have a Kähler immersion

f : M 3 z 7→ [ψ0(z) : ψ1(z) : · · · ] ∈ CPN because we have Ψ(z) = Ψ̃(z, z) =
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∑N
j=0 |ψj(z)|2. Note that there exists no point a ∈ Ω such that ψj(a) = 0 for all

1 ≤ j ≤ N since Ψ(z) =
∑N

j=0 |ψj(z)|2 is always positive.

The condition for Ψ̃ to be a reproducing kernel is described in [39]. In order

to apply the results, we need a fine description of the Lie algebra s with j due to

Piatetskii-Shapiro [65]. Indeed, it is shown in [65, Ch. 2] that the correspondence

between the homogeneous bounded domain Ω and the structure of (s, j) is one-

to-one up to natural equivalence. For a linear form α on the Cartan algebra a, we

denote by sα the root subspace {X ∈ s ; [C,X] = α(C)X (∀C ∈ a) } of s. The

number r := dim a is nothing but the rank of Ω. Thanks to [65, Ch. 2, Sec. 3],

there exists a basis {α1, . . . , αr} of a∗ such that s = s(0)⊕ s(1/2)⊕ s(1) with:

s(0) = a⊕
∑⊕

1≤k<l≤r
s(αl−αk)/2, s(1/2) =

∑⊕

1≤k≤r
sαk/2,

s(1) =
∑⊕

1≤k≤r
sαk ⊕

∑⊕

1≤k<l≤r
s(αl+αk)/2.

If {A1, . . . , Ar} is the basis of a dual to {α1, . . . , αr}, then sαk = RjAk. Thus

sαk (k = 1, . . . , r) is always one dimensional, whereas other root spaces sαk/2 and

s(αl±αk)/2 may be {0}. Since {α1, . . . , αr} is a basis of a∗, the linear form γ ∈ a∗

defined above can be written as γ =
∑r

k=1 γkαk with unique γ1, . . . , γr ∈ R. Since

jAk ∈ sαk , we have:

γk = γ(Ak) = −4β(jAk) = −4β([Ak, jAk]) = 4β([jAk, Ak])

and the last term equals 4g(Ak · z0, Ak · z0). Thus we get γk > 0.

For ε = (ε1, . . . , εr) ∈ {0, 1}r, put qk(ε) :=
∑

l>k εl dim s(αl−αk)/2 (k = 1, . . . , r).

Define:

X(ε) :=

 (σ1, . . . , σr) ∈ Cr ;
σk > qk(ε)/2 (εk = 1)

σk = qk(ε)/2 (εk = 0)

 ,

and X :=
⊔
ε∈{0,1}r X(ε). By [39, Theorem 4.8], Ψ̃ is a reproducing kernel if and

only if γ := (γ1, . . . , γr) belongs to X. We denote by W (g) the set of λ > 0

for which λg is projectively induced. Since the metric λg corresponds to the

parameter λγ, we see that λg is projectively induced if and only if λγ ∈ X.

Namely we obtain:

W (g) =
{
λ > 0 ; λγ ∈ X

}
,
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and the right-hand side is considered in [40]. Put qk =
∑

l>k dim s(αl−αk)/2 for

k = 1, . . . , r. Then [40, Theorem 15] tells us that:

W (g) ∪ {0} ⊂
{

qk
2γk

; k = 1, . . . , r

}
∪ (c0,+∞),

where c0 := max
{

qk
2γk

; k = 1, . . . , r
}
.

Now assume that λg is projectively induced for all λ > 0. Then we have

c0 = 0, so that dim s(αl−αk)/2 = 0 for all 1 ≤ k < l ≤ r. In this case, we see that s

is a direct sum of ideals sk := jsαk ⊕ sαk/2⊕ sαk (k = 1, . . . , r), which correspond

to the hyperbolic spaces CHnk with nk = 1 + (dimαk/2)/2 ([65, pages 52–53]).

Therefore the Lie algebra s corresponds to the direct product CHn1×· · ·×CHnr ,

which is biholomorphic to Ω because the homogeneous domain Ω also corresponds

to s. Hence (3.1) holds and this concludes the proof of the theorem.

3.2 Kähler immersions of homogeneous Kähler man-

ifolds into CN≤∞ and CHN≤∞

In this section we classify homogeneous Kähler manifolds which admit a Kähler

immersion into CN or CHN , N ≤ ∞ (Theorems 3.2.4 and 3.2.5 respectively).

For this purpose, we need the following two lemmata (Lemma 3.2.1 and Lemma

3.2.2) and the classification of all the homogeneous Kähler manifolds (Theorem

3.2.3) due to J. Dorfmeister and K. Nakajima [26].

Recall that complete connected totally geodesic submanifolds of Rn are affine

subspaces p+ W, where p ∈ Rn and W ⊂ Rn is a vector subspace. The reader is

referred to [1] for the proof of the following result.

Lemma 3.2.1. Let G be a connected Lie subgroup of isometries of the Euclidean

space Rn. Let G.p = p + V and G.q = q + W be two totally geodesic G-orbits.

Then V = W, i.e. G.p and G.q are parallel affine subspaces of Rn.

Notice that if two Kähler manifolds (M1, g1) and (M2, g2) admit Kähler im-

mersions, say f1 and f2, into CN1 and CN2 respectivley, Nj ≤ ∞, j = 1, 2, then
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the Kähler manifold (M1 × M2, g1 ⊕ g2) admits a Kähler immersion into CN ,

N = N1+N2 obtained by mapping (z1, z2) ∈M1×M2 to (c1f1(z1), c2f2(z2)) ∈ CN ,

for suitable constants c1 and c2. The converse is also true:

Lemma 3.2.2. A Kähler immersion f : M1×M2 → CN , N ≤ ∞, from the prod-

uct M1 ×M2 of two Kähler manifolds is a product, i.e. up to unitary transfor-

mation of CN f(p, q) = (f1(p), f2(q)), where f1 : M1 → CN1 and f2 : M2 → CN2,

N = N1 +N2, are Kähler immersions.

Proof. Let α(X, Y ) be the second fundamental form of the Kähler map f . In

order to show that f is a product it is enough to prove that α(TM1, TM2) ≡ 0,

see [60] and [17, Lemma 2.5]. The Gauss equation implies the following equation

for the holomorphic bisectional curvature of M1 ×M2, see [44, Prop. 9.2, pp.

176]:

− < RX,JXJY, Y >= 2||α(X, Y )||2,

where R is the curvature tensor of M1 ×M2. Thus, if X ∈ TM1 and Y ∈ TM2,

we get that α(X, Y ) = 0.

Theorem 3.2.3 (J. Dorfmeister, K. Nakajima, [26]). A homogeneous Kähler

manifold (M, g) is the total space of a holomorphic fiber bundle over a homoge-

neous bounded domain (Ω, g) in which the fiber F = E × C is (with the induced

Kähler metric) the Kähler product of a flat homogeneous Kähler manifold E and

a compact simply-connected homogeneous Kähler manifold C.

A flat homogeneous Kähler manifold is the Kähler product of the quotients of

the complex Euclidean spaces with the flat metric. Examples of such manifold are

in the compact case the flat complex tori (see Example 2.2.10 for a noncompact

and non simply-connected example).

Theorem 3.2.4 (A. J. Di Scala, H. Ishi, A. Loi, [18]). Let (M, g) be an n-

dimensional homogeneous Kähler manifold.

(a) If (M, g) can be Kähler immersed into CN , N <∞, then (M, g) = Cn;
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(b) if (M, g) can be Kähler immersed into l2(C), then (M, g) equals:

Ck × (CHn1 , λ1ghyp)× · · · × (CHnr , λrghyp),

where k + n1 + · · ·+ nr = n, λj > 0, j = 1, . . . , r.

Moreover, in case (a) (resp. case (b)) the immersion is given, up to a unitary

transformation of CN (resp. l2(C)), by the linear inclusion Cn ↪→ CN (resp. by

(f0, f1, . . . , fr), where f0 is the linear inclusion Ck ↪→ l2(C) and each fj : CHnj →

l2(C) is
√
λj times the map (2.5)).

Proof. Assume that there exists a Kähler immersion f : M → CN . By Theorem

3.2.3 and by the fact that a homogeneous bounded domain is contractible we get

that M = Ck × Ω as a complex manifold since, by the maximum principle, the

fiber F cannot contain a compact manifold. Let M = G/K be the homogeneous

realization of M (so the metric g is G-invariant). It follows again by Theorem

3.2.3 that there exists L ⊂ G such that the L-orbits are the fibers of the fibration

π : M = G/K → Ω = G/L. Let Fp, Fq be the fibers over p, q ∈ Ω. We claim

that f(Fp) and f(Fq) are parallel affine subspaces of CN . Indeed, by Calabi’s

rigidity f(Fp) and f(Fq) are affine subspaces of CN since both Fp and Fq are flat

Kähler manifolds of Cn. Moreover, Calabi rigidity theorem implies the existence

of a morphism of groups ρ : G→ IsoC(CN) = U(CN) n CN such that f(g · x) =

ρ(g)f(x) for all g ∈ G, x ∈M . LetWp,q be the affine subspace generated by f(Fp)

and f(Fq). Since both f(Fp) and f(Fq) are ρ(L)-invariant it follows that Wp,q

is also ρ(L)-invariant. Indeed, for any g ∈ L the isometry ρ(g) is an affine map

and so must preserve the affine space generated by f(Fp) and f(Fq). Observe

that Wp,q is a finite dimensional complex Euclidean space, ρ(L) acts on Wp,q

and f(Fp) and f(Fq) are two complex totally geodesic orbits in Wp,q. Then, by

Lemma 3.2.1, we get that f(Fp) and f(Fq) are parallel affine subspaces of Wp,q

and hence of CN . Since p, q ∈ Ω are two arbitrary points it follows that f(M)

is a Kähler product. Thus M = Ck × Ω is a Kähler product of homogeneous

Kähler manifolds. Using again the fact that M can be Kähler immersed into
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CN it follows that the homogeneous bounded domain Ω can be Kähler immersed

into CN . If one denotes by ϕ this immersion and by gΩ the homogeneous Kähler

metric of Ω, it follows that the map
√
λϕ is a Kähler immersion of (Ω, λgΩ) into

CN (cfr. Remark 2.3.2). Therefore, by Lemma 2.3.4, λgΩ is projectively induced

for all λ > 0 and Theorem 3.1.1 yields:

(M, g) = Ck × (CHn1 , λ1ghyp)× · · · × (CHnr , λrghyp),

where k+n1 + · · ·+nr = n and λj, j = 1, . . . , r are positive real numbers. If the

dimension N of the ambient space CN is finite then M = Cn since there cannot

exist a Kähler immersion of (CHnj , λjghyp) into CN , N <∞ (see Theorem 2.3.3)

and this proves (a). The last part of Theorem 3.2.4 is a consequence of Calabi’s

Rigidity Theorem 2.1.4 together with Lemma 3.2.2.

Theorem 3.2.5 (A. J. Di Scala, H. Ishi, A. Loi, [18]). Let (M, g) be an n-

dimensional homogeneous Kähler manifold. Then if (M, g) can be Kähler im-

mersed into CHN , N ≤ ∞, then (M, g) = CHn and the immersion is given, up

to a unitary transformation of CHN , by the linear inclusion CHn ↪→ CHN .

Proof. If a homogeneous Kähler manifold (M, g) can be Kähler immersed into

CHN , N ≤ ∞, then, by Lemma 2.3.5 it can also be Kähler immersed into l2(C).

By Theorem 3.2.4, (M, g) is then a Kähler product of complex space forms,

namely

(M, g) = Ck × (CHn1 , λ1ghyp)× · · · × (CHnr , λrghyp),

Then the conclusion follows from the fact that Ck cannot be Kähler immersed

into CHN for all N ≤ ∞ (see Theorem 2.3.3) and from [2, Theorem 2.11] which

shows that there are not Kähler immersions from a product M1 ×M2 of Kähler

manifolds into CHN , N ≤ ∞.
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3.3 Kähler immersions of homogeneous Kähler man-

ifolds into CPN≤∞

As we have already pointed out in Remark 2.2.9 a necessary condition for a

Kähler metric g on a complex manifold M to be projectively induced is that

its associated Kähler form ω is integral i.e. it represents the first Chern class

c1(L) in H2(M,Z) of a holomorphic line bundle L→M . Indeed L can be taken

as the pull-back of the hyperplane line bundle on CPN whose first Chern class

can represented by ωFS. Observe also that if ω is an exact form (e.g. when M

is contractible) then ω is obviously integral since its second cohomology class

vanishes. Other (less obvious) conditions are expressed by the following theorem

and its corollary.

Theorem 3.3.1 (A. J. Di Scala, H. Ishi, A. Loi [18]). Assume that a homogeneous

Kähler manifold (M, g) admits a Kähler immersion f : M → CPN , N ≤ ∞.

Then M is simply-connected and f is injective.

Proof. Theorem 3.2.3 and the fact that a homogeneous bounded domain is con-

tractible imply that M is a complex product Ω×F , where F = E ×C is a Kähler

product of a flat Kähler manifold E Kähler embedded into (M, g) and a simply-

connected homogeneous Kähler manifold C. We claim that E is simply-connected

and hence M = Ω × E × C is simply-connected. In order to prove our claim

notice that E is the Kähler product Ck × T1× · · · × Ts, where Tj are non simply-

connected flat Kähler manifolds. So one needs to show that each Tj reduces to

a point. If, by a contradiction, the dimension of one of this space, say Tj0 is not

zero, then by composing the Kähler immersion of Tj0 in (M, g) with the immer-

sion f : M → CPN we would get a Kähler immersion of Tj0 into CPN in contrast

with Exercise 3.6.6. In order to prove that f is injective we first observe that, by

Calabi’s Rigidity Theorem 2.2.5, f(M) is still a homogeneous Kähler manifold.

Then, by the first part of the theorem, f(M) ⊂ CPN is simply-connected. More-

over, since M is complete and f : M → f(M) is a local isometry, it is a covering
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map (see, e.g., [22, Lemma 3.3, p. 150]) and hence injective.

Remark 3.3.2. When the dimension of the ambient space is finite, i.e. CPN ,

N <∞,M is forced to be compact and a proof of Theorem 3.3.1 is well-known by

the work of M. Takeuchi [69]. In this case he also provides a complete classification

of all compact homogeneous Kähler manifolds which can be Kähler immersed into

CPN by making use of the representation theory of semisimple Lie groups and

Dynkin diagrams.

Corollary 3.3.3. Let (M, g) be a complete and locally homogeneous Kähler man-

ifold. Assume that f : (M, g) → CPN , N ≤ ∞, is a Kähler immersion. Then

(M, g) is a homogeneous Kähler manifold.

Proof. Let π : M̃ → M be the universal covering map. Then (M̃, g̃) is a homo-

geneous Kähler manifold and, by Theorem 3.3.1, f ◦ π : M̃ → CPn is injective.

Therefore π is injective, and since it is a covering map, it defines a holomorphic

isometry between (M̃, g̃) and (M, g).

The following somehow surprising theorem shows that, once that the nec-

essary conditions expressed above are satisified then, up to homotheties, any

homogeneous Kähler manifold is projectively induced.

Theorem 3.3.4 (A. Loi, R. Mossa [51]). Let (M, g) be a simply-connected ho-

mogeneous Kähler manifold with associated Kähler form ω integral. Then there

exists a positive real number λ such that (M,λg) is projectively induced.

Proof. Since ω is integral there exists a holomorphic line bundle L over M such

that c1(L) = [ω]. Let h be an Hermitian metric on L such that Ric(h) = ω, where

Ric(h) is the 2-form on M defined by the equation:

Ric(h) = − i
2
∂∂̄ log h(σ(x), σ(x)), (3.3)

for a trivializing holomorphic section σ : U ⊂M → L \ {0} of L.
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Choose λ > 0 sufficiently large in such a way that λω is integral and the

Hilbert space of global holomorphic sections of Lλ = ⊗λL given by:

Hλ,h =

{
s ∈ Hol(Lλ) |

∫
M

hλ(s, s)
ωn

n!
<∞

}
, (3.4)

is non-empty. The existence of such a λ is due to Rosenberg–Vergne [66]. Let

{sj}j=0,...,N , N ≤ ∞, be an orthonormal basis for Hλ,h. Consider the function

ελ(x) =
N∑
j=0

hλ(sj(x), sj(x)). (3.5)

This definition depends only on the Kähler form ω. Indeed since M is simply-

connected, there exists (up to isomorphism) a unique L→M such that c1(L) =

[ω], and it is easy to see that the definition does not depend on the orthonormal

basis chosen or on the Hermitian metric h. Assume now that the function ελ is

strictly positive. One can then consider the map f : M → CPN defined by:

f(x) = [s0(x), . . . , sj(x), . . . ] . (3.6)

It is not hard to see (cfr. Exercise 3.6.8) that:

f ∗ωFS = λω +
i

2
∂∂̄ log ελ, (3.7)

where ωFS is the Fubini–Study form on CPN .

Let now F be a holomorphic isometry and let F̃ be its lift to L (which exists

since M is simply-connected). Notice now that, if {s0, . . . , sN}, N ≤ ∞, is an

orthonormal basis for Hλ,h, then {F̃−1 (s0 (F (x))) , . . . , F̃−1 (sN (F (x)))} is an

orthonormal basis for Hλ,F̃ ∗h. Therefore

ελ(x) =
N∑
j=0

F̃ ∗hλ
(
F̃−1(sj(F (x))), F̃−1(sj(F (x)))

)
=

N∑
j=0

hλ (sj(F (x)), sj(F (x))) = ελ (F (x)) .

Since the group of holomorphic isometries acts transitively on M it follows that

ελ is forced to be a positive constant. Hence the map f can be defined and it is

a Kähler immersion.
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Remark 3.3.5. The integrality of ω in this theorem cannot be dropped since

there exists a simply-connected homogeneous Kähler manifold (M,ω) such that

λω is not integral for any λ ∈ R+ (take, for example, (M, g) = (CP 1, gFS) ×

(CP 1,
√

2gFS)). Observe also that there exist simply-connected (even contractible)

homogeneous Kähler manifolds (M, g) such that ω is an integral form but g is

not projectively induced (see e.g. Theorem 3.5.3).

Remark 3.3.6. The Kähler metric g as in the previous theorem such that the

function ελ is a positive constant for all λ > 0 plays a prominent role in the theory

of quantization of Kähler manifolds and also in algebraic geometry when M is

compact. A Kähler metric λg satisfying this property is called a balanced metric

and the pair (L, h) is called a regular quantization of the the Kähler manifold

(M,ω). The interested reader is referred to [5, 15, 23, 24, 28, 32, 54, 55, 57] for

more details on these metrics.

3.4 Bergman metric and bounded symmetric do-

mains

LetD be a (non necessarily homogeneous) bounded domain of Cn with coordinate

system z1, . . . , zn and consider the separable complex Hilbert space L2
hol(D) of

square integrable holomorphic functions on D, i.e.:

L2
hol(D) =

{
f ∈ Hol(D),

∫
D

|f |2dµ <∞
}
,

where dµ denotes the Lebesgue measure on R2n = Cn. Pick an orthonormal basis

{ϕj} of L2
hol(D) with respect to the inner product given by:

(f, h) =

∫
D

f(ζ)h(ζ)dµ(ζ), f, h ∈ L2
hol(D).

The Bergman kernel of L2
hol(D) is the function:

K(z, ζ) =
∞∑
j=0

ϕj(z)ϕj(ζ),
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which is holomorphic in D × D̄, or equivalently, holomorphic in z and antiholo-

morphic in ζ, also called reproducing kernel for its reproducing property:

f(z) =

∫
D

K(z, ζ)f(ζ)dµ(ζ), f ∈ L2
hol(D). (3.8)

The Bergman metric on D is the Kähler metric associated to the Kähler form:

ωB =
i

2
∂∂̄ log K(z, z).

Since log K(z, z) is a Kähler potential for ωB, from (1.1) we get:

D(z, w) = log
K(z, z)K(w,w)

|K(z, w)|2
,

further, since by the reproducing property (3.8) we get:

1

K(0, 0)
=

∫
Ω

1

K(ζ, 0)
K(ζ, 0)dµ(ζ),

from which follows K(0, 0) = 1/V (Ω), the diastasis centered at the origin reads:

D0(z) = log
K(z, z)

V (Ω)|K(z, 0)|2
.

The Bergman metric is projectively induced in a natural way. In fact, the full

holomorphic map:

ϕ : M → CP∞, x 7→ [ϕ0(x), . . . , ϕj(x), . . . ], (3.9)

satisfies gB = ϕ∗(gFS), for by (1.6):

DFS(ϕ(z), ϕ(w)) = log

∑∞
j,k=0 |ϕj(z)|2|ϕk(w)|2∣∣∣∑∞j=0 ϕj(z)ϕ̄k(w)

∣∣∣2 = log
K(z, z)K(w,w)

|K(z, w)|2
= D(z, w).

Notice that the group of automorphisms Aut(D) of D, i.e. biholomorphisms

f : D → D, is contained in the group of isometries Isom(D, gB), that is if F ∈

Aut(D) then F ∗gB = gB. If Aut(D) also acts transitively, i.e. D is homogeneous,

then gB is Einstein and RicgB = −2gB, i.e. the Einstein constant is −2 (cfr. [44,

p. 163]). Observe that the Bergman metric and the hyperbolic metric on CHn

(see 3. of Section 1.2) are homothetic, more precisely one has (n+ 1)ghyp = gB.
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On a homogeneous bounded domain there could be many non-homothetic

homogeneous metrics, the Bergman metric is one of them. It could happen that

the only homogeneous metric on homogeneous bounded domain is a multiple

of the Bergman metric. This happens for example for the bounded symmetric

domains (Ω, cgB) that are convex domains Ω ⊂ Cn which are circular, i.e. z ∈

Ω, θ ∈ R ⇒ eiθz ∈ Ω (see [42] for details). Every bounded symmetric domain

is the product of irreducible factors, called Cartan domains. From E. Cartan

classification, Cartan domains can be divided into two categories, classical and

exceptional ones (see [43] for details). Classical domains can be described in

terms of complex matrices as follows (m and n are nonnegative integers, n ≥ m):

Ω1[m,n] = {Z ∈Mm,n(C), Im − ZZ∗ > 0} (dim(Ω1) = nm),

Ω2[n] = {Z ∈Mn(C), Z = ZT , In − ZZ∗ > 0} (dim(Ω2) = n(n+1)
2

),

Ω3[n] = {Z ∈Mn(C), Z = −ZT , In − ZZ∗ > 0} (dim(Ω3) = n(n−1)
2

),

Ω4[n] = {Z = (z1, . . . , zn) ∈ Cn,
n∑
j=1

|zj|2<1, 1 + |
n∑
j=1

z2
j |2−2

n∑
j=1

|zj|2 > 0}

(dim(Ω4) = n), n 6= 2,

where Im (resp. In) denotes the m×m (resp n× n) identity matrix, and A > 0

means that A is positive definite. In the last domain we are assuming n 6= 2

since Ω4[2] is not irreducible (and hence it is not a Cartan domain). In fact, the

biholomorphism:

f : Ω4[2]→ CH1 × CH1, (z1, z2) 7→ (z1 + iz2, z1 − iz2),

satisfies:

f ∗(2(ghyp ⊕ ghyp)) = gB.

The reproducing kernels of classical Cartan domains are given by:

KΩ1(z, z) =
1

V (Ω1)
[det(Im − ZZ∗)]−(n+m),

KΩ2(z, z) =
1

V (Ω2)
[det(In − ZZ∗)]−(n+1),
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KΩ3(z, z) =
1

V (Ω3)
[det(In − ZZ∗)]−(n−1),

KΩ4(z, z) =
1

V (Ω4)

(
1 + |

n∑
j=1

z2
j |2 − 2

n∑
j=1

|zj|2
)−n

, (3.10)

where V (Ωj), j = 1, . . . , 4, is the total volume of Ωj with respect to the Euclidean

measure of the ambient complex Euclidean space (see [19] for details).

Notice that for some values of m and n, up to multiply the metric by a positive

constant, the domains coincide with the hyperbolic space CHn, more precisely

we have:

(Ω1[1, n], gB) = (CHn, (n+ 1)ghyp),

(Ω2[1], gB) = (Ω3[2], gB) = (Ω4[1], gB) = (CH1, 2ghyp),

(Ω3[3], gB) = (CH3, 4ghyp).

In general, (Ω, gB) = (CHn, cghyp), for some c > 0, if and only if the rank of Ω

is equal to 1. There are two kinds of exceptional domains Ω5[16] of dimension

16 and Ω6[27] of dimension 27, corresponding to the dual of E III and E V II,

that can be described in terms of 3×3 matrices with entries in the 8-dimensional

algebra of complex octonions OC. We refer the reader to [78] for a more complete

description of these domains.

Remark 3.4.1. It is interesting to observe that any irreducible bounded symmet-

ric domain of rank greater or equal than 2, can be exhausted by totally geodesic

submanifolds isomorphic to Ω4[3] and that every bounded symmetric domain

different from

(CHn1 × · · · × CHns , c1 ghyp ⊕ · · · ⊕ cs ghyp) ,

for c1, . . . , cs positive constants, admits Ω4[3] as a Kähler submanifold (cfr. [72]

for the proofs of these assertions).
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3.5 Kähler immersions of bounded symmetric do-

mains into CP∞

Being a bounded symmetric domain a particular case of homogeneous bounded

domain and so of homogeneous Kähler manifolds, we already know about the

existence of Kähler immersions into finite or infinite dimensional complex space

form. In Theorem 3.5.3 we describe for what values of c > 0 a bounded symmetric

domain can be Kähler immersed into CP∞. We start with the definition of the

Wallach set of an irreducible bounded symmetric domain (Ω, cgB) of genus γ and

Bergman kernel K, referring the reader to [3], [29] and [77] for more details and

results. This set, denoted by W (Ω), consists of all η ∈ C such that there exists

a Hilbert space Hη whose reproducing kernel is K
η
γ . This is equivalent to the

requirement that K
η
γ is positive definite, i.e. for all n-tuples of points x1, . . . , xn

belonging to Ω the n × n matrix (K(xα, xβ)
η
γ ), is positive semidefinite. It turns

out (cfr. [3, Cor. 4.4, p. 27] and references therein) that W (Ω) consists only

of real numbers and depends on two of the domain’s invariants, a and r. More

precisely we have:

W (Ω) =
{

0,
a

2
, 2
a

2
, . . . , (r − 1)

a

2

}
∪
(

(r − 1)
a

2
, ∞

)
. (3.11)

The set Wd =
{

0, a
2
, 2a

2
, . . . , (r − 1)a

2

}
and the interval Wc =

(
(r − 1)a

2
, ∞

)
are called respectively the discrete and continuous part of the Wallach set of the

domain Ω. The reader is referred to [50, Prop. 3] for an analogous description of

the Wallach set of bounded homogeneous domains.

Remark 3.5.1. If Ω has rank r = 1, namely Ω is the complex hyperbolic space

CHd, then gB = (d + 1)ghyp. In this case (and only in this case) Wd = {0} and

Wc = (0,∞). If d = 1, the Hilbert space H associated to the kernel:

K =
1

(1− |z|2)α
, α > 0,

is the space:

H =

{
f ∈ Hol(CH1), f(z) =

∞∑
j=0

ajz
j |

∞∑
j=0

Γ(α)Γ(j + 1)

Γ(j + α)
|aj|2 <∞

}
,
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endowed with the scalar product:

< g, h >=
∞∑
j=0

Γ(α)Γ(j + 1)

Γ(j + α)
bj c̄j,

where g(z) =
∑∞

j=0 bjz
j, h(z) =

∑∞
j=0 cjz

j and Γ is the Gamma function.

If α > 1, H is the weighted Bergman space of Ω, namely the Hilbert space of

analytic functions f ∈ Hol(CH1) such that:∫
CH1

|f(z)|2dµα(z) <∞,

where µα(z) is the Lebesgue measure of C.

The following proposition provides the expression of the diastasis function

for (Ω, gB) (see also [49]) and proves a very useful property of the matrix of

coefficients (bjk) given by (2.2).

Proposition 3.5.2. Let Ω be a bounded symmetric domain. Then the diastasis

for its Bergman metric gB around the origin is:

DΩ
0 (z) = log(V (Ω)K(z, z)), (3.12)

where V (Ω) denotes the total volume of Ω with respect to the Euclidean measure

of the ambient complex Euclidean space. Moreover the matrix (bjk) given by (2.2)

for DΩ
0 satisfies bjk = 0 whenever |mj| 6= |mk|.

Proof. The Kähler potential DΩ
0 (z) is centered at the origin, in fact by the repro-

ducing property of the kernel we have:

1

K(0, 0)
=

∫
Ω

1

K(ζ, 0)
K(ζ, 0)dµ,

hence K(0, 0) = 1/V (Ω), and substituting in (3.12) we obtain DΩ
0 (0) = 0. By the

circularity of Ω (i.e. z ∈ Ω, θ ∈ R imply eiθz ∈ Ω), rotations around the origin

are automorphisms and hence isometries, that leave DΩ
0 invariant. Thus we have

DΩ
0 (z) = DΩ

0 (eiθz) for any 0 ≤ θ ≤ 2π, that is, each time we have a monomial

zmj z̄mk in DΩ
0 (z), we must have

zmj z̄mk = ei|mj |θzmje−i|mk|θz̄mk = zmj z̄mke(|mj |−|mk|)iθ,
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implying |mj| = |mk|. This means that every monomial in the expansion of

DΩ
0 (z) has holomorphic and antiholomorphic part with the same degree. Hence,

by Theorem 1.1.6, DΩ
0 (z) is the diastasis for gB. By the chain rule the same

property holds true for eDΩ
0 (z) − 1 and the second part of the proposition follows

immediately.

The following theorem interesting on its own sake will be an important tool

in the next chapter.

Theorem 3.5.3 (A. Loi, M. Zedda, [53]). Let Ω be an irreducible bounded sym-

metric domain endowed with its Bergman metric gB. Then (Ω, cgB) admits a

equivariant Kähler immersion into CP∞ if and only if cγ belongs to W (Ω) \ {0},

where γ denotes the genus of Ω.

Proof. Let f : (Ω, cgB)→ CP∞ be a Kähler immersion, we want to show that cγ

belongs toW (Ω), i.e. Kc is positive definite. Since Ω is contractible it is not hard

to see that there exists a sequence fj, j = 0, 1 . . . of holomorphic functions defined

on Ω, not vanishing simultaneously, such that the immersion f is given by f(z) =

[. . . , fj(z), . . . ], j = 0, 1 . . . , where [. . . , fj(z), . . . ] denotes the equivalence class in

l2(C) (two sequences are equivalent if and only if they differ by the multiplication

by a nonzero complex number). Let x1, . . . , xn ∈ Ω. Without loss of generality

(up to unitary transformation of CP∞) we can assume that f(0) = e1, where e1

is the first vector of the canonical basis of l2(C), and f(xj) /∈ H0, ∀ j = 1, . . . , n.

Therefore, by Theorem 1.1.4 and Proposition 3.5.2, we have:

cDΩ
0 (z) = log[V (Ω)c Kc(z, z)] = log

(
1 +

∞∑
j=1

|fj(z)|2

|f0(z)|2

)
, z ∈ Ω \ f−1(H0),

that is:

V (Ω)c Kc(xα, xβ) = 1 +
∞∑
j=1

gj(xα)gj(xβ), gj =
fj
f0

.

Thus for every (v1, . . . vn) ∈ Cn one has:

n∑
α,β=1

vαKc(xα, xβ)v̄β =
1

V (Ω)c

∞∑
k=0

|v1gk(x1) + · · ·+ vngk(xn)|2 ≥ 0, g0 = 1,
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and hence the matrix (Kc(xα, xβ)) is positive semidefinite.

Conversely, assume that cγ ∈ W (Ω). Then, by the very definition of Wallach

set, there exists a Hilbert space Hcγ whose reproducing kernel is Kc =
∑∞

j=0 |fj|2,

where fj is an orthonormal basis of Hcγ. Then the holomorphic map f : Ω →

l2(C) ⊂ CP∞ constructed by using this orthonormal basis satisfies f ∗(gFS) = cgB.

In order to prove that this map is equivariant write Ω = G/K where G is the

simple Lie group acting holomorphically and isometrically on Ω and K is its

isotropy group. For each h ∈ G the map f ◦ h : (Ω, cgB) → CP∞ is a full

Kähler immersion and therefore by Calabi’s rigidity (Theorem 2.2.5) there exists

a unitary transformation Uh of CP∞ such that f ◦h = Uh◦f and we are done.

Remark 3.5.4. In [3] it is proven that if η belongs to W (Ω)\{0} then G admits

a representation in the Hilbert space Hη. This is in accordance with our result.

Indeed if cγ belongs to W (Ω) \ {0} then the correspondence h 7→ Uh, h ∈ G

defined in the last part of the proof of Theorem 3.5.3 is a representation of G.

Remark 3.5.5. Notice that Theorem 3.1.1 for bounded symmetric domains fol-

lows directly by Theorem 3.5.3 and Remark 3.5.1.

3.6 Exercises
Ex. 3.6.1 — Prove that the Bergman metric gB on Ω4[3] is not resolvable.

(Hint: compute the first 9 × 9 entries of the matrix of coefficients in the power

expansion (1.3) for the diastasis function given by (3.10) and (3.12) and show it

is not positive semidefinite).

Ex. 3.6.2 — Use Remark 3.4.1 and the previous exercise to prove that up to

biholomorphism, the only irreducible bounded symmetric domain of complex

dimension n admitting a Kähler immersion into l2(C) is CHn.

Ex. 3.6.3 — Let Gk,n be the complex Grassmannian of k-planes in Cn. Let

M ⊂ Cn×k denote the open subset of matrices of rank k and π : M → Gk,n the

canonical projection which turns out to be a holomorphic principal bundle with
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structure group GL(r,C). Let Z be a holomorphic section of π over an open

subset U ⊂ Gk,n and define a closed form ωG of type (1, 1) on U by:

ωG =
i

2
∂∂̄ log det

(
Z̄tZ

)
.

Show that:

(a) ωG is a well-defined Kähler form on Gk,n;

(b) (Gk,n, g) is a homogeneous Kähler manifold, where g is the Kähler metric

whose associated Kähler form is ω;

(c) the Plücker embedding, namely the map

p : Gk,n → P
(
Λk(Cn)

) ∼= CP(nk)−1, span{v1, . . . , vk} 7→ v1 ∧ · · · ∧ vk,

is a Kähler immersion from (Gk,n, g) into
(
CP(nk)−1, gFS

)
.

Ex. 3.6.4 — Prove that the Segre embedding, namely the map σ : CPn ×

CPm → CP(n+1)(m+1)−1 defined by:

σ([Z0, . . . , Zn], [W0, . . . ,Wm]) 7→ [Z0W0, . . . , ZjWk, . . . , ZnWm],

is a Kähler immersion.

Ex. 3.6.5 — Let g1 (resp. g2) be a projectively induced Kähler metric on a

complex manifold M1 (resp. M2). Prove that the Kähler metric g1 ⊕ g2 on

M1 ×M2 is projectively induced.

(Hint: generalize the previous exercise).

Ex. 3.6.6 — Prove that a not simply-connected flat Kähler manifold does not

admit a global Kähler immersion into CPN≤∞.

(Hint: cfr. Example 2.2.10).

Ex. 3.6.7 — Prove that the hyperbolic metric g on a compact Riemannian

surface Σg of genus g ≥ 2 is not projectively induced.

(Hint: use the fact that the universal covering map π : CH1 → Σg, satisfies

π∗ω = ωhyp).

Ex. 3.6.8 — Prove (3.7).
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Chapter 4

Kähler–Einstein manifolds

A Kähler manifold (M, g) is Einstein when there exists λ ∈ R such that ρ = λω,

where ω is the Kähler form associated to g and ρ is its Ricci form. The constant

λ is called the Einstein constant and it turns out that λ = s/2n, where s is the

scalar curvature of the metric g and n the complex dimension of M (as a general

reference for this chapter see e.g. [71]). If ω = i
2

∑n
j=1 gαβ̄dzα ∧ dz̄β̄ is the local

expression of ω on an open set U with local coordinates (z1, . . . , zn) centered at

some point p then the Ricci form is the 2-form on M of type (1, 1) defined by

ρ = −i∂∂̄ log det gαβ̄. (4.1)

By the ∂∂̄-Lemma (and by shrinking U if necessary) this is equivalent to require

that

det(gαβ̄) = e−
λ
2

D0(z)+f+f̄ , (4.2)

for some holomorphic function f , where Dp denotes Calabi’s diastasis function

centered at p.

In this chapter we study Kähler immersions of Kähler–Einstein manifolds into

complex space forms. We begin describing in the next section the work of M.

Umehara [75] which completely classifies Kähler–Einstein manifolds admitting a

Kähler immersion into the finite dimensional complex hyperbolic or flat space.

In Section 4.3 we summarize what is known about Kähler immersions of Kähler–

Einstein manifolds into the finite dimensional complex projective space.
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4.1 Kähler immersions of Kähler–Einstein mani-

folds into CHN or CN

In this section we summarize the results of M. Umehara in [75] which determine

the nature of Kähler–Einstein manifolds admitting a Kähler immersion into CHN

or CN , for N finite.

Theorem 4.1.1 (M. Umehara). Every Kähler–Einstein manifold Kähler im-

mersed into CN or CHN is totally geodesic.

In order to prove this theorem we need the following lemma, achieved by

Umehara himself in [74]. Let M be a Kähler manifold and denote by Λ(M) the

associative algebra of R-linear combinations of real analytic functions of the form

hk̄ + h̄k for h, k ∈ Hol(M). The importance of Λ(M) for our purpose relies on

the fact that given a Kähler map f : M → `2(C), if f is full then |f |2 /∈ Λ(M)

(cfr. [74, p. 534]).

Lemma 4.1.2. Let f1, . . . , fN be non-constant holomorphic functions on a com-

plex manifold M such that for all j = 1, . . . , N , fj(p) = 0 at some p ∈ M .

Then:

(1) e
∑N
j=1 |fj |2 /∈ Λ(M),

(2) log(1−
∑N

j=1 |fj|2) /∈ Λ(M),

(3) (1−
∑N

j=1 |fj|2)−a /∈ Λ(M), (a > 0).

Proof. We prove first (1) and (2). Consider the power expansions (cfr. Exercises

2.5 and 2.7):

e
∑N
j=1 |fj |2 − 1 =

∞∑
j=1

|fmj |2

mj!
,

− log

(
1−

N∑
j=1

|fj|2
)

=
∞∑
j=1

(|mj| − 1)!

mj!
|fmj |2,
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which, since fj(p) = 0 for any j = 1, . . . , N , converge in a sufficiently small

neighbourhood U of p. We can then define two full Kähler maps ϕ, ψ : U → `2(C)

by:

ϕj :=
fmj√
mj!

, ψj :=

√
(|mj| − 1)!

mj!
fmj ,

from which follows:

e
∑N
j=1 |fj |2 = 1 + |ϕ|2 /∈ Λ(M), (4.3)

log

(
1−

N∑
j=1

|fj|2
)

= −|ψ|2 /∈ Λ(M). (4.4)

In order to prove (3), write (1−
∑N

j=1 |fj|2)−a = e−a log(1−
∑N
j=1 |fj |2) and use (4.4)

to get: (
1−

N∑
j=1

|fj|2
)−a

= 1 +
∞∑

|mj |=1

∞∑
j=1

|(
√
a)|mj |ψmj |2

mj!
.

If we arrange to order the (
√
a)
|mj | ψmj as |mj| increases, we get again a full map

ψ̃ =
(
ψ̃1, . . . , ψ̃j, . . .

)
of U into `2(C) and conclusion follows.

Let us prove first Umehara’s result in the case when the ambient space is CN .

Proof of the first part of Theorem 4.1.1. Let (M, g) be an n-dimensional Kähler–

Einstein manifold Kähler immersed into CN , ω the Kähler form associated to g

and ρ its Ricci form given by (4.1). Let z = (z1, . . . , zn) be a local coordinate

system on U ⊂M such that 0 ∈ U and let

ω|U =
i

2
∂∂̄DM

0 ,

where DM
0 is the diastasis for g on U centered at 0. The Gauss’ Equation

ρ ≤ 2b(n+ 1)ω, (4.5)

where b is the holomorphic sectional curvature of the ambient space (see for

example [44, p. 177]), gives for b = 0 ρ ≤ 0, where the equality holds if and

only if M is totally geodesic. Hence, if M is not totally geodesic, ρ is negative

definite and the Einstein’s Equation ρ = λω implies λ < 0. Up to homothetic

transformations of CN we can suppose λ = −1.
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SinceM admits a Kähler immersion into CN , by Proposition 1.1.4 there exists

f1, . . . , fN holomorphic functions such that:

DM
0 (z) =

N∑
j=1

|fj(z)|2.

Thus, by previous lemma we have eDM0 /∈ Λ(M). On the other hand, by Equation

(4.2) with λ = −1, the function log det(gαβ̄) is a Kähler potential for g, hence we

have:

DM
0 (z) = h+ h̄+ log det(gαβ̄),

for a holomorphic function h. Hence:

eDM0 = |eh|2 det(gαβ̄).

Since det(gαβ̄) ∈ Λ(M), for it is a real valued function being the matrix (gαβ̄)

Hermitian, we get the contradiction eDM0 ∈ Λ(M).

Before proving the second part of Umehara’s theorem we need the following

lemma:

Lemma 4.1.3 (M. Umehara). Let M be a complex n-dimensional manifold and

let (z1, . . . , zn) be a local coordinate system on an open set U ⊂ M . If f ∈ Λ(U)

then:

fn+1 det

(
∂2 log f

∂zα∂z̄β

)
∈ Λ(U).

Proof. Let us write fα for ∂f/∂zα, fβ̄ for ∂f/∂z̄β and fαβ̄ for ∂2f/∂zα∂z̄β. We

have:

∂2 log f

∂zα∂z̄β
=
fαβ̄
f
−
fαfβ̄
f 2

,
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thus we get:

fn+1 det

(
∂2 log f

∂zα∂z̄β

)
= f det

(
fαβ̄ −

fαfβ̄
f

)
= f det


f11̄ − f1f1̄/f . . . f1n̄ − f1fn̄/f 0

...
...

...

fn1̄ − fnf1̄/f . . . fnn̄ − fnfn̄/f 0

f1̄/f . . . fn̄/f 1



= f det


f11̄ . . . f1n̄ f1

...
...

...

fn1̄ . . . fnn̄ fn

f1̄/f . . . fn̄/f 1

 = det


f11̄ . . . f1n̄ f1

...
...

...

fn1̄ . . . fnn̄ fn

f1̄ . . . fn̄ f

 .

Hence:

fn+1 det

(
∂2 log f

∂zα∂z̄β

)
∈ Λ(U),

for it is finitely generated by holomorphic and antiholomorphic functions on U

and it is real valued, because the matrix (∂2 log f/∂zα∂z̄β) is Hermitian.

We can now prove the second part of Theorem 4.1.1.

Proof of the second part of Theorem 4.1.1. Let (M, g) be an n-dimensional Kähler–

Einstein manifold Kähler immersed into CHN . Comparing Gauss’ Equation (4.5)

with b < 0 and Einstein’s Equation ρ = λω, we get that the Einstein constant λ

is negative. Let (z1, . . . , zn) be local coordinates on an open set U ⊂M centered

at p ∈ U . On U the Monge–Ampère Equation (4.2) for g reads:

e−
λ
2
DM0 (z) = |eh|2 det(gαβ̄),

for some holomorphic function h. By Proposition 1.1.4, for some holomorphic

functions ϕ1, . . . , ϕN that can be chosen to be zero at the origin, we have on U :

DM
0 (z) = − log(1−

N∑
j=1

|ϕj(z)|2).

Setting f = 1−
∑N

j=1 |ϕj|2 we get:

det(gαβ̄) = (−1)n det

(
∂2 log f

∂zα∂z̄β

)
.
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Thus:

f
λ
2 = (−1)n|eh|2 det

(
∂2 log f

∂zα∂z̄β

)
,

and hence:

f
λ
2

+n+1 = (−1)n|eh|2fn+1 det

(
∂2 log f

∂zα∂z̄β

)
.

By previous lemma we obtain:

f
λ
2

+n+1 =

(
1−

N∑
j=1

|ϕj(z)|2
)λ

2
+n+1

∈ Λ(U),

and by (3) of Lemma 4.1.2 we get λ
2

+ n + 1 ≥ 0. On the other hand, Gauss’

Equation (4.5) implies n + 1 + λ
2
≤ 0. Thus λ = −2(n + 1), and M is totally

geodesic.

Regarding the existence of a Kähler immersion of a Kähler manifold (M, g)

into CH∞ and l2(C), Umehara’s result cannot be extended to that cases, as one

can see simply considering the Kähler immersion (2.5) given by Calabi of CHn

into l2(C). Nevertheless, we conjecture that this is the only exception:

Conjecture 4.1.4. If a Kähler–Einstein manifold (M, g) admits a Kähler im-

mersion into CH∞ or l2(C), then either (M, g) is totally geodesic or (M, g) =

(CHn1 × · · · × CHnr , c1ghyp ⊕ · · · ⊕ crghyp) for positive constants c1, . . . , cr and

some r ∈ N.

4.2 Kähler immersions of KE manifolds into CPN :

the Einstein constant

We summarize in this section the work of D. Hulin [37, 38] that studies Kähler–

Einstein manifolds Kähler immersed into CPN in relation with the sign of the

Einstein constant. By the Bonnet–Myers’ Theorem it follows that if the Ein-

stein constant of a complete Kähler–Einstein manifold M is positive then M is

compact. D. Hulin proves that in the case when M is projectively induced the

converse is also true:
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Theorem 4.2.1 (D. Hulin, [38]). Let (M, g) be a compact (connected) Kähler–

Einstein manifold Kähler immersed into CPN . Then the Einstein constant is

strictly positive.

Proof. Let p be a point in M , up to a unitary transformation of CPN we can

assume that ϕ(p) = p0 = [1, 0. . . . , 0]. Take Bochner’s coordinates (w1, . . . , wn)

in a neighbourhood U of p which we take small enough to be contractible. Since

the Kähler metric g is Einstein with Einstein constant λ, the volume form of

(M, g) reads on U as:

ωn

n!
=
in

2n
e−

λ
2
Dp+f+f̄dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n , (4.6)

where f is a holomorphic function on U and Dp = ϕ−1(Dp0) is the diastasis on p

(cfr. Prop. 1.1.4), where Dp0 is the diastasis of CPN globally defined in CPN \H0,

H0 = {Z0 6= 0} (cfr. (1.5)).

We claim that f + f̄ = 0. Indeed, observe that:

ωn

n!
=
in

2n
det

(
∂2Dp

∂wα∂w̄β

)
dw1 ∧ dw̄1 ∧ · · · ∧ dwn ∧ dw̄n.

By the very definition of Bochner’s coordinates it is easy to check that the ex-

pansion of log det( ∂2Dp
∂wα∂w̄β

) in the (w, w̄)-coordinates contains only mixed terms

(i.e. of the form wjw̄k, j 6= 0, k 6= 0). On the other hand by formula (4.6):

−λ
2
Dp + f + f̄ = log det

(
∂2Dp

∂wα∂w̄β

)
.

Again by the definition of the Bochner’s coordinates this forces f + f̄ to be zero;

hence:

det

(
∂2Dp

∂wα∂w̄β

)
= e−

λ
2

Dp(w), (4.7)

proving our claim. By Theorem 1.3.4 there exist affine coordinates (z1, . . . , zN)

on X = CPN \H0, satisfying:

z1|ϕ(U) = w1, . . . , zn|ϕ(U) = wn.

Hence, by formula (4.6) (with f + f̄ = 0), the n-forms ωnFS
n!

and e−
λ
2
Dp0dz1∧ dz̄1∧

· · · ∧ dzn ∧ dz̄n globally defined on X agree on the open set ϕ(U). Since they are
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real analytic they must agree on the connected open set M̂ = ϕ(M) ∩X, i.e.:

ωnFS
n!

=
in

2n
e−

λ
2
Dp0dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n. (4.8)

Since ωnFS
n!

is a volume form on M̂ we deduce that the restriction of the pro-

jection map:

π : X ∼= CN → Cn : (z1, . . . , zN) 7→ (z1, . . . , zn)

to M̂ is open. Since it is also algebraic its image contains a Zariski open subset of

Cn (see [8, Theorem 13.2]), hence its euclidean volume, voleucl(π(M̂)), has to be

infinite. Suppose now that the Einstein constant of g is non-positive. By formula

(4.8) and by the fact that Dp0 is non-negative, we get vol(M̂, g) ≥ voleucl(π(M̂))

which is the desired contradiction, being the volume of M (and hence that of M̂)

finite.

Consider now the following construction. Let (M, g) be an n-dimensional

Kähler manifold which admits a Kähler immersion F : M → CPN into CPN and

consider the Plücker embedding:

i : Gr(n,CPN)→ P(∧n+1CN+1), span(ej1 , . . . , ejr) 7→ [ej1 ∧ · · · ∧ ejr ].

where Gr(n,CPN) is the Grassmanian of n-dimensional projective spaces in CPN

and (e0, e1, . . . , eN) is a unitary frame of CN+1. The Gauss map γ : M →

P(∧n+1CN+1) takes a point p ∈M to the n-dimensional projective space in CPN

tangent to M at p. Setting Bochner coordinates z = (z1, . . . , zn) around p ∈ M ,

by Theorem 1.3.4 we can write F (z) = [1, z1, . . . , zn, f1, . . . , fN−n] ∈ CPN . The

vectors:

v0(z) = e0 +
n∑
j=1

zjej +
N−n∑
j=1

fj(z)en+j,

vk(z) = ek +
N−n∑
j=1

∂fj
∂zj

(z)en+j, 1 ≤ k ≤ n,

span a complex space CN+1 whose projection is the projective space tangent to

M at [1, z1, . . . , zn, f1, . . . , fN−n], and thus they satisfy γ(z) = v0 ∧ · · · ∧ vn. It
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follows that γ(z) = [1,∇f, ϕ] for ∇f = (∂jfk)j=0,...,n;k=1,...,N−n and for suitable

ϕ = (ϕα)α=1,...,s, s =
(
N+1
n+1

)
− 1− (n+ 1)(N − n). One has (see S. Nishikawa [63]

and also M. Obata [64] for the case of real setting and ambient space of constant

curvature):

γ∗(GFS) = (n+ 1)g − 1

2
Ricg, (4.9)

where we denote by GFS the Fubini–Study metric on P(∧n+1CN+1).

When (M, g) is Kähler–Einstein with Einstein constant λ, from (4.9) we get

γ∗(GFS) =
(
n+ 1− λ

2

)
g, which by (1.1.4) and by the expression of the Fubini–

Study’s diastasis implies:(
1 +

n∑
j=1

|zj|2 +
N∑

k=n+1

|fk|2
)n+1−λ

2

= 1 +
n∑

j,k=1

|∂jfk|2 +
s∑

α=1

|ϕα|2, (4.10)

which we write shortly:(
1 + |z|2 + |f |2

)n+1−λ
2 = 1 + |∇f |2 + |ϕ|2. (4.11)

In the sequel we will denote by H a hyperplane of CPN and by Hp the hyper-

plane at infinity relative to the point F (p), for p ∈M .

Lemma 4.2.2. Let (M, g) be a Kähler–Einstein manifold with Einstein constant

λ < 0 and let F : M → CPN , N <∞, be a full Kähler immersion. If λ /∈ Q then

F (M) ⊂ CPN \H.

Proof. Assume by contradiction that there exist two points p, q ∈ M such that

F (q) ∈ Hp. Since the immersion is full and Hp ∩Hq has codimension 1 in CPN ,

we can further choose x ∈ M such that F (p), F (q) /∈ Hx. By Exercise 2.4.11

we can set Bochner coordinates (z) = (z1, . . . , zn) centered at x in the whole

M \F−1(Hx). From (4.11), duplicating the variables and evaluating at z̄ = q (to

simplify the notations we identify a point with its coordinates) we get:(
1 + zq̄ + f(z)f(q)

)n+1−λ
2

= 1 + (∇f)(z)(∇f)(q) + ϕ(z)ϕ(q), (4.12)

where F (z) = [1, z, f(z)] (see Theorem 1.3.4 or the discussion above). Observe

that since F (q) ∈ Hp, from F (p) = [1 : p : f(p)], F (q) = [1 : q : f(q)] we get:

1 + pq̄ + f(p)f(q) = 0.
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Thus, the RHS of (4.12) is a holomorphic function equal to:

(z − p)n+1−λ
2 h(z)n+1−λ

2

for some suitable h(z). Since the order of a zero of a holomorphic function must

be rational, we get the desired contradiction λ ∈ Q.

Lemma 4.2.3. Let (M, g) be a Kähler–Einstein manifold with Einstein constant

λ < 0 and let F : M → CPN , N ≤ ∞, be a full Kähler immersion. If λ /∈ Q then

F (M) ⊂ CPN \H is bounded.

Proof. Let p ∈ M . Since by Lemma 4.2.2 F (M) ⊂ CN , Bochner coordinates

(z) = (z1, . . . , zn) around p extends to the whole M . Assume F (M) is not

bounded, i.e. any open neighbourhood U of CPN \H is such that U ∩ F (M) 6=

∅. Consider a path t 7→ F (xt) in F (M) which diverges as t increases. Since

F (xt) = [1, xt, f(xt)] (where to simplify the notations we identify a point with

its coordinates), this means that either xt or f(xt) diverges. If xt diverges, then

since M is complete the limit point x∞ belongs to M and F (x∞) would be a

point of both F (M) and CPN \ H. If f(xt) diverges and xt does not, then

[1, xt, f(xt)] approaches [0, 0, b] for a suitable nonvanishing (N − n)-vector b as t

increases. Thus, we can conclude by showing that there exists a neighbourhood

of [0, 0, b] ∈ CPN which does not meet F (M). Since by Lemma 4.2.2 for any

p, q ∈ F (M), p /∈ Hq, it is enough to show that for each (α, β, γ) ∈ CN+1 close

enough to the origin the function:

Φ: CN+1 × C→ C, ((α, β, γ), t) 7→ 〈(1, tz, f(tz)), (α, β, b+ β)〉,

satsfies Φ((α, β, γ), t0) = 0 for some t0 ∈ C. In order to do so, observe that

since the function Φ0 : C → C defined by Φ0(t) := Φ((0, 0, 0), t) = f(tz)b̄ is

a holomorphic function not vanishing everywhere, the image Φ0(U) ∈ C of an

open neighbourhood U ∈ C of the origin is still an open neighbourhood of the

origin. Let c be a closed curve in U such that its image is contained in Φ0(U)

and turns around the origin. In the compact set with Φ0(c) as boundary both
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|t0z| and |f(t0z)| are bounded. For sufficiently small (α, β, γ) ∈ CN+1, the image

of c through Φ(α,β,γ) := Φ((α, β, γ), ·) is a closed curve contained in Φ(α,β,γ)(U)

and still turning around the origin. Thus there exists a point t0 ∈ C such that

〈(1, t0z, f(t0z)), (α, β, b+ β)〉 = 0, and we are done.

Theorem 4.2.4 (D. Hulin, [37]). Let (M, g) be a complete Kähler–Einstein man-

ifold which admits a Kähler immersion F : M → CPN into CPN . Then the

Einstein constant λ is rational. Further, if the immersion is full and we write

λ = 2p/q > 0, where p/q is irreducible, then p ≤ n + 1 and if p = n + 1 (resp.

p = n), then (M, g) = (CPn, qgFS) (resp. (M, g) = (Qn, qgFS)).

Proof. Assume first λ > 0. Since M is complete, by Bonnet–Myers’ theorem

M is compact. Combining the fact that 1
π
ωFS is an integral Kähler form (since

it represents the first Chern class of the hyperplane bundle of CPN) and g is

projectively induced we deduce that 1
π
ω is integral, where ω is the Kähler form

associated to g. Moreover, 1
π
ρ is an integral form since it represents the first

Chern class of the canonical bundle over M . Then the Einstein condition ρ = λω

forces λ to be rational.

Let now λ < 0. Assume by contradiction that λ /∈ Q. Then by Lemma

4.2.2, F (M) ⊂ CN ⊂ CPN and by Lemma 4.2.3 F (M) is bounded. Set Bochner

coordinates (z) = (z1, . . . , zn) around a point p ∈ M and write F (z) = [1, z, f ]

(see Theorem 1.3.4 and the discussion above for the notations). Consider the path

R+ → CN , t 7→ (t, 0, . . . , 0), and observe that since 0 ∈ F (M), for small values

of t > 0, (t, 0, . . . , 0) ∈ F (M). Set T = supt{(x, 0, . . . , 0) ∈ F (M) for all x < t}.

Since F (M) is bounded, we have that the image [1 : (t, 0, . . . , 0) : f(t, 0, . . . , 0)]

is bounded and thus, T < +∞ and f(t, 0, . . . , 0) is bounded for all t < T . By

(4.11) we get:

|f ′|2 <
(
1 + |t|2 + |f |2

)n+1−λ
2 ,

i.e. also f ′ is bounded and so is the length of the curve in F (M) defined by:

γ : [0, T )→ F (M), t→ [1, (t, 0, . . . , 0), f((t, 0, . . . , 0))],
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contradicting the completness of M and the existence of global Bochner coordi-

nates given by Exercise 2.4.11.

4.3 Kähler immersions of KE manifolds into CPN :

codimension 1 and 2

The problem of classifying Kähler–Einstein manifolds admitting a Kähler immer-

sion into the finite dimensional complex projective space CPN has been partially

solved by S. S. Chern [13] and K. Tsukada [73], that determined all the projec-

tively induced Kähler–Einstein manifolds in the case when the codimension is

respectively 1 or 2 (see Theorem 4.3.2 below). We follow essentialy the proof of

D. Hulin given in [37], which makes use of the diastasis function.

Let (M, g) be a Kähler–Einstein n-dimensional manifold with Einstein con-

stant λ and let F : M → CPn+2 be a Kähler immersion. Setting Bochner coordi-

nates z = (z1, . . . , zn) around a point p ∈M , due to Theorem 1.3.4 we can write

F (z) = [1, z1, . . . , zn, f1, f2]. Let us denote by Qj and Bj (j = 1, 2) the homoge-

neous part of fj of degree 2 and 3 respectively. From (4.10) setting ` = n+1− λ
2
,

follows:

||∇Q1||2 + ||∇Q2||2 = `||z||2, 〈∇Q1,∇B1〉+ 〈∇Q2,∇B2〉 = 0; (4.13)

2∑
j=1

||∇Bj||2 = (`− 1)
2∑
j=1

|Qj|2+
` (`− 1)

2

n∑
j=1

|zj|4−
1

2

2∑
j,k=1

|∇Qj∧∇Qk|2, (4.14)

where |∇Qj ∧∇Qk|2 = ||∇Qj||2||∇Qk||2 − |〈∇Qj,∇Qk〉|2.

We begin with the following lemma.

Lemma 4.3.1 (D. Hulin, [37]). Let (M, g) be an n-dimensional Kähler manifold

admitting a Kähler immersion F : M → CPn+2 into CPn+2 and let Q1, Q2 as

above. One can choose a unitary frame (ν1, ν2) of the normal space to TpM and

a coordinate system (z1, . . . , zn) around p ∈M , such that:

Q1 =
1

2

n∑
j=1

αjz
2
j , Q2 =

1

2

n∑
j=1

ajz
2
j ,
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with αj ≥ 0 and aj ∈ C, j = 1, . . . , n.

Proof. We proceed by induction on n. When n = 1 there is nothing to prove.

Assume n > 1 and choose (ν1, ν2) such that Q2 has rank less than n. Observe

that this choice is always possible. In fact, if Q2 has rank n then the polynomial

Q1 + tQ2 is not constant in t and has at least one zero t = t0. The unitary

transformation of the normal space to TpM given by: 1√
1+t20

t0√
1+t20

− t0√
1+t20

1√
1+t20

 ,

moves Q1 into Q′1 = 1√
1+t20

(Q1 + t0Q2), whose rank is less than n since det(Q1 +

t0Q2) = 0. Up to a unitary transformation T ∈ U(n) we have:

Q1 =
1

2

n∑
j=1

αjz
2
j ,

and from (4.13) we get:

||∇Q2||2 =
n∑
j=1

(`− α2
j )|zj|2.

Write Q2 =
∑n

j=1 lj(z)2, where lj(z) are homogeneous polynomials of degree 1 in

z1, . . . , zn. By hypothesis there exists ξ ∈ kerQ2, ξ 6= 0, such that lj(ξ) = 0, for

all j = 1, . . . , n, which implies that also ker(||∇Q2||2) is not trivial and thus one

between αj’s must be equal to
√
`. Assume αn is. Then we have:

Q1 = Q′1(z1, . . . , zn−1) + `|zn|2, Q2 = Q′2(z1, . . . , zn−1),

for Q′1(z1, . . . , zn−1) = 1
2

∑n−1
j=1 αjz

2
j and Q′2(z1, . . . , zn−1) a quadratic form in

z1, . . . , zn−1. We can apply the inductive hypothesis to Q′1 and Q′2 and performe

a change of coordinates which leaves zn invariant and modifies z1, . . . , zn in such

a way that:

Q′1 =
1

2

n∑
j=1

αjz
2
j , Q′2 =

1

2

n∑
j=1

ajz
2
j ,

and conclusion follows.
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Theorem 4.3.2 (S. S. Chern [13], K. Tsukada [73]). Let (M, g) be an n-dimensional

Kähler–Einstein manifold (n ≥ 2). If (M, g) admits a Kähler immersion into

CPn+2, then M is either totally geodesic or the quadric Qn in CPn+1 (which is

totally geodesic in CPn+2), with homogeneous equation Z2
0 + · · ·+ Z2

n+1 = 0 .

Proof. Assume first that Q2 = cQ1. Up to unitary transformation of CPn+2 we

can assume c = 0. Then, from (4.13) we get B1 = 0 and ||∇Q1||2 = `||z||2. Up to

a unitary transformation T ∈ U(n), we can then assume Q1 =
√
`

2
(z2

1 + · · ·+ z2
n),

and substituting into (4.14) we obtain:

||∇B1||2 =
` (`− 1)

4

(
|

n∑
j=1

z2
j |2 + 2

n∑
j=1

|zj|4
)
.

Comparing the right and left hand sides of the above identity as polynomials in

the variable z1, . . . , zn, we see that when ` 6= 0, 1, the right hand side contains(
n+1

2

)
different monomials while the left has at most n. This implies ` = 0 or

` = 1, i.e. λ = n + 1 and by Theorem 4.2.4 M is totally geodetic or λ = n and

M is the quadric.

Assume now that Q1 and Q2 are not proportional. We will prove that this

case is not possible. By Lemma 4.3.1, we can choose a unitary frame (ν1, ν2) of

the normal space to TpM and a coordinate system (z1, . . . , zn) around p such that

Q1 = 1
2

∑n
j=1 αjz

2
j , αj ≥ 0, j = 1, . . . , n, and Q2 = 1

2

∑n
j=1 ajz

2
j , aj ∈ C. From

(4.13) we get:
n∑
j=1

(α2
j + |aj|2 − `)|zj|2 = 0, αj∂jB1 + aj∂jB2 = 0, j = 1, . . . , n.

In particular, from the linear system in ∂2
j,kB1 and ∂2

j,kB2, obtained deriving the

jth identity αj∂jB1 + aj∂jB2 = 0 with respect to z̄k and the kth with respect to

z̄j, for each j, k = 1, . . . , n we get ∂2
j,kB1 = ∂2

j,kB2 = 0 whenever αjak−αkaj 6= 0.

Observe that for j = k, |∇Qj ∧∇Qk|2 = 0. Further:

|Q1|2 =
1

4
|

n∑
j=1

αjz
2
j |2 =

1

4

n∑
j,k=1

αjαkz
2
j z̄

2
k, |Q2|2 =

1

4
|

n∑
j=1

ajz
2
j |2 =

1

4

n∑
j,k=1

aj ākz
2
j z̄

2
k,

||∇Q1||2 =
n∑
j=1

α2
j |zj|2, ||∇Q2||2 =

n∑
j=1

|aj|2|zj|2,
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and for j 6= k:

|〈∇Qj,∇Qk〉|2 =
n∑

j,k=1

αjαkaj āk|zj|2|zk|2.

Thus:
2∑

j,k=1

|∇Qj ∧∇Qk|2 = 2|∇Q1 ∧∇Q2|2 = 2
n∑

j,k=1

(
α2
j |ak|2 − αjαkaj āk

)
|zjzk|2,

and we have:
2∑
j=1

||∇Bj||2 =
1

4
(`− 1)

∑
j 6=k

z2
j z̄

2
k (αjαk + aj āk) +

3` (`− 1)

4

n∑
j=1

|zj|4+

− 1

2

n∑
j,k=1

(
α2
j |ak|2 − αjαkaj āk

)
|zjzk|2.

(4.15)

Since Q1 and Q2 are not proportional, there exist j, k such that αjak−αkaj 6= 0.

Observe that up to a unitary transformation of the normal space to TpM we

can assume that such αj, αk, aj, ak are not zero. For these fixed j, k and

for any l = 1, . . . , n, B1 and B2 do not contain monomials in zjzkzl. Thus,

||∇B1||2 + ||∇B2||2 does not contain terms in |zjzk|2. Comparing the left and

right sides of (4.15), we then get α2
j |ak|2 − αjαkaj āk = 0, which leads to the

desired contradiction αjak − αkaj = 0.

In general, it is an open problem to classify projectively induced Kähler–

Einstein manifolds. The only known examples of such manifolds are homogeneous

and it is conjecturally true these are the only ones (see e.g. [4, 13, 69, 73]):

Conjecture 4.3.3. If a complete Kähler–Einstein manifold admits a Kähler im-

mersion into CPN , then it is homogeneous.

Remark 4.3.4. When the ambient space is CP∞, Conjecture 4.3.3 does not hold.

Indeed in the next chapter we describe a family of noncompact, nonhomogeneous

and projectively induced Kähler–Einstein metrics.

Since a homogeneous Kähler manifold which admits a Kähler immersion into

a complex projective space is compact (see [69, §2 p. 178]), we can state the

following weaker conjecture (cfr. Ex. 4.4.5):
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Conjecture 4.3.5. If a complete Kähler–Einstein manifold admits a local Kähler

immersion into CPN , then it is compact.

4.4 Exercises
Ex. 4.4.1 — Let (M, g) be a complex n-dimensional Kähler manifold which

admits a Kähler immersion into the finite dimensional complex projective space

(CPN , gFS). Assume that the diastasis D0 around some point p ∈ M is rotation

invariant with respect to the Bochner’s coordinates (z1, . . . , zn) around p (this

means that D0 depends only on |z1|2, . . . , |zn|2). Prove that there exists an open

neighbourhood W of p such that D0(z) can be written on W as:

D0(z) = log

(
1 +

n∑
j=1

|zj|2 +
N∑

j=n+1

aj|zmhj |2
)

where aj > 0 and hj 6= hk for j 6= k.

Ex. 4.4.2 — Let (M, g) be as in the previous exercise. Show that its Einstein

constant is a positive rational number less or equal to 2(n + 1). Deduce that if

Mn is complete then Mn is compact and simply connected.

(Hint: The upper bound for λ follows by Theorem 4.2.4. For the lower bound,

use the previous exercise to write D0(z) = logP , where P = 1 +
∑n

j=1 |zj|2 +∑N
j=n+1 aj|z

mhj |2. From det(gαβ̄) = 1
P 2n det

(
PPαβ̄ − PαPβ̄

)
one gets a inequality

involving the total degree of det
(
PPαβ̄ − PαPβ̄

)
as a polynomial in the variables

z1, . . . , zn, z̄1, . . . , z̄n, which combined with Eq. (4.7) implies λ > 0. The last part

follows by Bonnet–Myers’ Theorem and by a result of Kobayashi [41] which asserts

that a compact manifold with positive first Chern class is simply-connected.)

Ex. 4.4.3 — Let (M, g) be a complex n-dimensional Kähler manifold which

admits a Kähler immersion into the finite dimensional complex projective space

(CPN , gFS). Assume that the diastasis D0 around some point p ∈ M is radial

with respect to the Bochner’s coordinates z1, . . . , zn around p (this means that D0

depends only on |z1|2+· · ·+|zn|2). Prove that there exists an open neighbourhood
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W of p such that D0(z) can be written on W as

D0(z) = log

1 +
n∑
j=1

|zj|2 +
N∑
k=2

ak

(
n∑
j=1

|zj|2
)k
 ,

where ak > 0 for each k = 2, . . . , N .

Ex. 4.4.4 — Let (M, g) be as in the previous exercise. Prove that M is an

open subset of CPn.

(Hint: Write the Monge–Ampére Eq. (4.7) in terms of the polynomial P =

1 +
∑n

j=1 |zj|2 +
∑N

k=2 ak

(∑n
j=1 |zj|2

)k
.)

Ex. 4.4.5 — Give an example of complete Kähler manifold which can be Kähler

immersed into the finite complex projective space (CPN , gFS).

Ex. 4.4.6 — Show that a compact simply-connected Kähler–Einstein manifold

with nonpositive Einstein constant cannot be locally Kähler immersed into any

complex space form. Show with an example that the assumption of simply-

connectedness cannot be dropped.
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Chapter 5

Hartogs type domains

Hartogs type domains are a class of domains of Cn+m characterized by a Kähler

metric described locally by a Kähler potential of the form Φ(z, w) = H(z) −

log (F (z)− |w|2), for suitable functions H and F . They have been studied under

several points of view and represent a large class of examples in Kähler geometry

(the reader finds precise references inside each section).

The first section describes Cartan–Hartogs domains. Prop. 5.1.3 discusses the

existence of a Kähler immersion into the infinite dimensional complex projective

space in terms of the Cartan domains they are based on, and Th. 5.1.5 proves

they represent a counterexample for Conjecture 4.3.3 when the ambient space

is infinite dimensional. Section 5.2 extends some of these results when the base

domain is not symmetric but just a bounded homogeneous domain.

Finally, in Section 5.3 we discuss the existence of a Kähler immersion for

a large class of Hartogs domains whose Kähler potentials are given locally by

− log (F (|z0|2)− ||z||2) for suitable function F (see Prop. 5.3.1).

5.1 Cartan–Hartogs domains

Let Ω be an irreducible bounded symmetric domain of complex dimension d and

genus γ. For all positive real numbers µ consider the family of Cartan-Hartogs
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domains:

MΩ(µ) =
{

(z, w) ∈ Ω× C, |w|2 < Nµ
Ω(z, z)

}
, (5.1)

where NΩ(z, z) is the generic norm of Ω, i.e.:

NΩ(z, z) = (V (Ω)K(z, z))−
1
γ ,

with V (Ω) the total volume of Ω with respect to the Euclidean measure of the

ambient complex Euclidean space and K(z, z) is its Bergman kernel.

The domain Ω is called the base of the Cartan–Hartogs domain MΩ(µ) (one

also says that MΩ(µ) is based on Ω). Consider on MΩ(µ) the metric g(µ) whose

globally defined Kähler potential around the origin is given by

D0(z, w) = − log(Nµ
Ω(z, z)− |w|2). (5.2)

Cartan–Hartogs domains has been considered by many authors (see e.g. [30, 31,

52, 53, 55, 78, 79, 81, 82, 83, 84]) under different points of view. Their importance

relies on being examples of nonhomogeneous domains which for a particular value

of the parameter µ are Kähler–Einstein. The following theorem summarizes these

properties. (see [78] and [79] for a proof).

Theorem 5.1.1 (G. Roos, A. Wang, W. Yin, L. Zhang, W. Zhang, [78]). Let

µ0 = γ/(d + 1). Then (MΩ(µ0), g(µ0)) is a complete Kähler–Einstein manifold

which is homogeneous if and only if the rank of Ω equals 1, i.e. Ω = CHd.

Remark 5.1.2. Observe that when Ω = CHd, we have µ0 = 1, MΩ(1) = CHd+1

and g(1) = ghyp.

The following proposition shows that the existence of a Kähler immersion of a

Cartan–Hartogs domain into CP∞ is completely determined by the base domain

(Ω, gB), where gB is its Bergman metric.

Proposition 5.1.3 (A. Loi, M. Zedda, [53]). The potential D0(z, w) given by

(5.2) is the diastasis around the origin of the metric g(µ). Moreover, cg(µ) is

projectively induced if and only if (c + m)µ
γ
gB is projectively induced for every

integer m ≥ 0.
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Proof. The power expansion around the origin of D0(z, w) can be written as:

D0(z, w) =
∞∑

j,k=0

Ajk(zw)mj(z̄w̄)mk , (5.3)

where mj are ordered (d+ 1)-uples of integer and:

(zw)mj = z
mj,1
1 · · · zmj,dd wmj,d+1 .

In order to prove that D0(z, w) is the diastasis for g(µ) we need to verify that

Aj0 = A0j = 0 (see Theorem 1.1.6). This is straightforward. Indeed if we take

derivatives with respect either to z or z̄ is the same as deriving the function

− log(Nµ
Ω(z, z)) = µ

γ
DΩ

0 (z) that is the diastasis of (Ω, µ
γ
gB), thus we obtain 0. If

we take derivatives with respect either to w or w̄ we obtain zero no matter how

many times we derive with respect to z or z̄, since D0(z, w) is radial in w.

In order to prove the second part of the proposition take the function:

ecD0(z,w) − 1 =
1

(Nµ
Ω(z, z)− |w|2)c

− 1, (5.4)

and using the same notations as in (5.3) write the power expansion around the

origin as:

ecD0(z,w) − 1 =
∞∑

j,k=0

Bjk(zw)mj(z̄w̄)mk .

By Calabi’s criterion (Theorem 2.1.3), cg(µ) is projectively induced if and only

if B = (Bjk) is positive semidefinite of infinite rank. The generic entry of B is

given by:

Bjk =
1

mj! ·mk!

∂|mj |+|mk|

∂(zw)mj∂(z̄w̄)mk

(
1

(Nµ
Ω(z, z)− |w|2)c

− 1

) ∣∣∣∣∣
0

,

where mj! = mj,1! · · ·mj,d+1! and ∂(zw)mj = ∂z
mj,1
1 · · · ∂zmj,dd ∂wmj,d+1 . By Propo-

sition 3.5.2 we have:

mj,1 + · · ·+mj,d 6= mk,1 + · · ·+mk,d ⇒ Bjk = 0, (5.5)

and since (5.4) is radial in w we also have:

mj,d+1 6= mk,d+1 ⇒ Bjk = 0. (5.6)
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Thus, B is a ∞×∞ matrix of the form

B =



0 0 0 0 0 0

0 E1 0 0 0 . . .

0 0 E2 0 0 . . .

0
... 0 E3 0 . . .

0
... 0 Dots


,

where the generic block Ei contains derivatives ∂(zw)mj∂(z̄w̄)mk of order 2i,

i = 1, 2, . . . such that |mj| = |mk| = i. We can further write:

Ei =


Fz(i)(0) 0 0

0 Fw(i)(0) 0

0 0 F(z,w)(i)(0)

 , (5.7)

where Fz(i)(0) (resp. Fw(i)(0), F(z,w)(i)(0)) contains derivatives ∂(zw)mj ∂(z̄w̄)mk

(of order 2i with |mj| = |mk| = i) such that mj,d+1 = mk,d+1 = 0 (resp. mj,d+1 =

mk,d+1 = i, mj,d+1,mk,d+1 6= 0, i). (Notice also that we have 0 in all the other

entries because of (5.5) and (5.6)). Since the derivatives are evaluated at the

origin, deriving (5.4) with respect to ∂(zw)mj ∂(z̄w̄)mk with |mj| = |mk| = i and

mj,d+1 = mk,d+1 = 0 is the same as deriving the function:

1

(Nµ
Ω(z, z))c

− 1 = ec
µ
γ

DΩ
0 (z) − 1. (5.8)

Thus, by Calabi’s criterion, all the blocks Fz(i)(0) are positive semidefinite if and

only if cµ
γ
gB is projectively induced. Observe that the blocks Fw(i)(0) are semi-

positive definite without extras assumptions. Indeed if we consider derivatives

∂(zw)mj∂(z̄w̄)mk of (5.4) with |mj| = |mk| = i and mj,d+1 = mk,d+1 = i, since

Nµ
Ω(z, z) evaluated in 0 is equal to 1, it is the same as deriving the function

1/(1−|w|2)c−1 =
(∑∞

j=0 |w|2j
)c
−1 and the claim follows. Finally, consider the

block F(z,w)(i)(0). It can be written as:

F(z,w)(i)(0) =


Hz(i−1),w(1)(0) 0 0 0

0 Hz(i−2),w(2)(0) 0 0
... Dots

0 0 0 Hz(1),w(i−1)(0)

 ,
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where the generic block Hz(i−m),w(m)(0), 1 ≤ m ≤ i − 1, contains derivatives

∂(zw)mj , ∂(z̄w̄)mk of order 2i such that |mj| = |mk| = i andmj,d+1 = mk,d+1 = m

evaluated at zero (as before, by (5.5) and (5.6) all entries outside these blocks

are 0). Now it is not hard to verify that these blocks can be obtained by taking

derivatives ∂(zw)mj , ∂(z̄w̄)mk of order 2(i−m) such that |mj| = |mk| = 2(i−m)

and mj,d+1 = mk,d+1 = 0 of the function

(m+ c− 1)!

(c− 1)! m! N
µ(c+m)
Ω (z, z)

− 1 = e(c+m)µ
γ

DΩ
0 (z) − 1, (5.9)

and evaluating at z = z̄ = 0. Thus, again by Calabi’s criterion, F(z,w)(i)(0) is

positive semidefinite iff (c+m)µ
γ
gB, m ≥ 1, is projectively induced and this ends

the proof of the proposition.

Remark 5.1.4. Proposition 5.1.3 can be also proved for “general” Cartan-Hartogs

domains with dimension n = d+ r, namely

MΩ(µ) =
{

(z, w) ∈ Ω× Cr, ||w||2 < Nµ
Ω(z, z)

}
,

where ||w||2 = |w1|2 + · · · + |wr|2. In that case Equation (5.9) can be obtained

using the following formula

1

m1!2 · · ·mr!2
∂2m

∂wm1
1 ∂w̄m1

1 · · · ∂wmrr ∂w̄mrr

(
1

f(z, z̄)− ||w||2

)c
=

=
1

m1!2 · · ·mr!2

m1+1∑
k1=1

· · ·
mr+1∑
kr=1

[
(
∑r

j=1(kj) +m+ c− r − 1)!

(c− 1)!
·

·
r∏
i=1

[(
mi

ki − 1

)2

(mi + 1− ki)!(wiw̄i)ki−1

]
1

(f(z, z̄)− ||w||2)
∑r
j=1(kj)+m+c−r

]
.

From Theorem 5.1.1, Prop. 5.1.3 and Theorem 3.5.3 we get the following

theorem, which gives a counterexample to Conjecture 4.3.3 in the case when the

ambient space is infinite dimensional.

Theorem 5.1.5 (A. Loi, M. Zedda, [53]). There exists a continuous family of

homothetic, complete, nonhomogeneous and projectively induced Kähler-Einstein

metrics on each Cartan–Hartogs domain based on an irreducible bounded sym-

metric domain of rank r 6= 1.
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Proof. Take µ = µ0 = γ/(d + 1) in (5.2) and Ω 6= CHd. By Theorem 5.1.1

(MΩ(µ0), cg(µ0)) is Kähler-Einstein, complete and nonhomogeneous for all pos-

itive real numbers c. By Proposition 5.1.3 cg(µ0) is projectively induced if and

only if c+m
d+1

gB is projectively induced, for all nonnegative integer m. By Theorem

3.5.3 this happens if (c+m)
d+1

≥ (r−1)a
2γ

. Hence cg(µ0) with c ≥ (r−1)(d+1)a
2γ

is the

desired family of projectively induced Kähler-Einstein metrics.

By applying the same argument with 0 < c < a(d+1)
2γ

(and r 6= 1) one also gets

the following:

Corollary 5.1.6. There exists a continuous family of nonhomogeneous, complete,

Kähler-Einstein metrics which does not admit a local Kähler immersion into CPN

for any N ≤ ∞.

Remark 5.1.7. As direct consequence of Corollary 5.1.6 together with Exercise

2.4.9, we get that a Cartan-Hartogs domain (MΩ(µ0), cg(µ0)) does not admit a

Kähler immersion into l2(C). Further by Theorem 6.1.3, it does not admit a

Kähler immersion into CH∞ for any value of c > 0 either.

We conclude this section with the following lemma which gives an explicit

expression of the Kähler map of a Cartan-Hartogs domain into CP∞.

Lemma 5.1.8 (A. Loi, M. Zedda, [55]). If f : MΩ(µ) → CP∞ is a holomorphic

map such that f ∗ωFS = αω(µ) then up to unitary transformation of CP∞ it is

given by:

f =

[
1, s, hµα

γ
, . . . ,

√
(m+ α− 1)!

(α− 1)!m!
hµ(α+m)

γ

wm, . . .

]
, (5.10)

where s = (s1, . . . , sm, . . . ) with:

sm =

√
(m+ α− 1)!

(α− 1)!m!
wm,

and hk = (h1
k, . . . , h

j
k, . . . ) denotes the sequence of holomorphic maps on Ω such

that the immersion h̃k = (1, h1
k, . . . , h

j
k, . . . ), h̃k : Ω → CP∞, satisfies h̃∗kωFS =

kωB, i.e.:

1 +
∞∑
j=1

|hjk|
2 =

1

Nγ k
. (5.11)
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Proof. Since the immersion is isometric, by (5.2) we have f ∗ΦFS = −α log(Nµ
Ω(z, z)−

|w|2), which is equivalent to:

1

(Nµ − |w|2)α
=
∞∑
j=0

|fj|2,

for f = [f0, . . . , fj, . . . ]. If we consider the power expansion around the origin of

the left hand side with respect to w, w̄, we get:

∞∑
k=1

[
∂2k

∂wk∂w̄k
1

(Nµ − |w|2)α

]
0

|w|2k

k!2
=
∞∑
k=1

[
∂2k

∂wk∂w̄k
1

(1− |w|2)α

]
0

|w|2k

k!2

=
1

(1− |w|2)α
− 1.

The power expansion with respect to z and z̄ reads:

∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
1

(Nµ − |w|2)α

]
0

zmj z̄mk

mj!mk!
=
∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
1

Nµα

]
0

zmj z̄mk

mj!mk!

=
∞∑
j=1

|hjµα
γ
|2,

where the last equality holds since by (5.11)
∑∞

j=1 |h
j
µα
γ
|2 is the power expansion

of 1
Nµα − 1.

Finally, the power expansion with respect to z, z̄, w, w̄ reads:

∞∑
m=1

∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
∂2m

∂wm∂w̄m
1

(Nµ − |w|2)α

]
0

zmj z̄mkwmw̄m

mj!mk!m!2

=
∞∑
m=1

∑
j,k

[
∂|mj |+|mk|

∂zmj∂z̄mk
(m+ α− 1)!

(α− 1)!m!Nµ(α+m)

]
0

zmj z̄mk

mj!mk!
|w|2m

=
∞∑
m=1

∞∑
j=1

(m+ α− 1)!

(α− 1)!m!
|w|2m|hjµ(α+m)

γ

|2,

where we are using (5.11) again. It follows by the previous power series expan-

sions, that the map f given by (5.10) is a Kähler immersion of (MΩ(µ), αg(µ))

into CP∞. By Calabi’s rigidity Theorem 2.2.5 all other Kähler immersions are

given by U ◦ f , where U is a unitary transformation of CP∞.
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5.2 Bergman–Hartogs domains

Bergman–Hartogs domains are a generalization of Cartan-Hartogs domains where

the base domain is not required to be symmetric but just homogeneous and

endowed with its Bergman metric. To the authors knowledge, they have already

been considered in [35, 85].

For all positive real numbers µ a Bergman-Hartogs domain is defined by:

MΩ(µ) =
{

(z, w) ∈ Ω× C, |w|2 < K̃(z, z)−µ
}
,

where K̃(z, z) = K(z,z)K(0,0)
|K(z,0)|2 with K the Bergman kernel of Ω. Consider on MΩ(µ)

the metric g(µ) whose associated Kähler form ω(µ) can be described by the

(globally defined) Kähler potential centered at the origin:

Φ(z, w) = − log(K̃(z, z)−µ − |w|2).

The domain Ω is called the base of the Bergman–Hartogs domain MΩ(µ) (one

also says that MΩ(µ) is based on Ω).

In the previous section it is proven that when the base domain is symmetric

(MΩ(µ), c g(µ)) admits a Kähler immersion into the infinite dimensional complex

projective space if and only if (Ω, (c + m)µgB) does for every integer m ≥ 0. As

pointed out in [34], a totally similar proof holds also when the base is a homo-

geneous bounded domain. This fact together with Theorem 3.3.4 proves that

a Bergman–Hartogs domain (MΩ(µ), c g(µ)) is projectively induced for all large

enough values of the constant c multiplying the metric. Further, the immersion

can be written explicitely as follows (cfr. Lemma 5.1.8 in the previous section):

Lemma 5.2.1. Let α be a positive real number such that the Bergman–Hartogs

domain (MΩ(µ), α g(µ)) is projectively induced. Then, the Kähler map f from

(MΩ(µ), α g(µ)) into CP∞, up to unitary transformation of CP∞, is given by:

f =

[
1, s, hµα, . . . ,

√
(m+ α− 1)!

(α− 1)!m!
hµ(α+m)w

m, . . .

]
, (5.12)
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where s = (s1, . . . , sm, . . . ) with

sm =

√
(m+ α− 1)!

(α− 1)!m!
wm,

and hk = (h1
k, . . . , h

j
k, . . . ) denotes the sequence of holomorphic maps on Ω such

that the immersion h̃k = (1, h1
k, . . . , h

j
k, . . . ), h̃k : Ω → CP∞, satisfies h̃∗kωFS =

kωB, i.e.

1 +
∞∑
j=1

|hjk|
2 = K̃−k.

Proof. The proof follows essentially that of [55, Lemma 8] once considered that

Φ(z, w) = − log(K̃(z, z)−µ − |w|2) is the diastasis function for (MΩ(µ), g(µ)) as

follows readily applying the definition of diastasis (1.1).

Observe that such map is full, as can be easily seen for example by considering

that for anym = 1, 2, 3, . . . , the subsequence {s1, . . . , sm} is composed by linearly

independent functions.

5.3 Rotation invariant Hartogs domains

The class of domains we are about to describe is a very rich class of examples. It

has been considered in [27] in the context of Berezin quantization and in [48] in

relation to the existence of a Kähler immersion into finite dimensional complex

space forms (see also [21, 54, 58, 59] for other results on their Riemannian and

Kähler geometry).

Let x0 ∈ R+∪{+∞} and let F : [0, x0)→ (0,+∞) be a decreasing continuous

function, smooth on (0, x0). The Hartogs domain DF ⊂ Cn associated to the

function F is defined by:

DF = {(z0, z1, . . . , zn−1) ∈ Cn | |z0|2 < x0, ||z||2 < F (|z0|2)},

where ||z||2 = |z1|2 + · · · + |zn−1|2. We shall assume that the natural (1, 1)-form

on DF given by:

ωF =
i

2
∂∂ log

(
1

F (|z0|2)− ||z||2

)
, (5.13)
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is a Kähler form on DF . The following proposition gives some conditions on DF

equivalent to this assumption:

Proposition 5.3.1 (A. Loi, F. Zuddas [59]). Let DF be a Hartogs domain in Cn.

Then the following conditions are equivalent:

(i) the (1, 1)-form ωF given by (5.13) is a Kähler form;

(ii) the function −xF ′(x)
F (x)

is strictly increasing, namely −
(
xF ′(x)
F (x)

)′
> 0 for every

x ∈ [0, x0);

(iii) the boundary of DF is strongly pseudoconvex at all z = (z0, z1, . . . , zn−1)

with |z0|2 < x0.

The Kähler metric gF associated to the Kähler form ωF is the metric we will

be dealing with in the present paper. It follows by (5.13) that a Kähler potential

for this metric is given by:

ΦF = − log
(
F (|z0|2)− ||z||2

)
.

Observe that this is also the diastasis function around the origin for ωF .

Remark 5.3.2. It is worth pointing out that an Hartogs domain (DF , gF ) is

either homogeneous or Einstein if and only if F (x) = 1 − x, namely DF is the

complex hyperbolic space equipped with the hyperbolic metric (see Theorem 1.1

in [59] for a proof).

In order to study the existence of a Kähler immersion into the complex

projective space, we start considering that setting |z0|2 = x and |zj|2 = yj,

j = 1, . . . , n− 1, we get:

∂2j

∂zj0∂z̄
j
0

∂2k1

∂zk1
1 ∂z̄

k1
1

· · · ∂2kn−1

∂z
kn−1

n−1 ∂z̄
kn−1

n−1

1

(F (|z0|2)− ||z||2)c
|0

= j!k1! · · · kn−1!
∂j

∂xj
∂k1

∂yk1
1

· · · ∂
kn−1

∂y
kn−1

n−1

1

(F (x)− ||y||2)c
|0

= j!k1! · · · kn−1!
Γ(c+ k1 + · · ·+ kn−1)

Γ(c)

∂j

∂xj
1

(F (x))c+k1+···+kn−1
|0.

(5.14)
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From Calabi’s criterion Theorem 2.2.8 it follows that a Hartogs domain (DF , c ωF )

is projectively induced if and only if:

∂j

∂xj
1

(F (x))c+k
|0 ≥ 0, (5.15)

for all integers j, k ≥ 0. This condition is of course strictly related to F . The

following example, Prop. 5.3.4 and exercises 5.4.1, 5.4.2 and 5.4.3, show that there

are cases when the immersion exists for all values of c, or only for integers values

of c, or for no value. Observe that since such domains are rotation invariant,

when the immersion exists it can be written as:

f : DF → CP∞, f(z) = [. . . , fj,k1,...,kn−1 , . . . ]

where:

fj,k1,...,kn−1 =

√
Γ(c+ k1 + · · ·+ kn−1)

j!k1! · · · kn−1! Γ(c)

∂j

∂xj
1

(F (x))c+k1+···+kn−1
|0zj0zk1

1 · · · z
kn−1

n−1 .

Example 5.3.3. Let F (t) = (1 − t)p, p > 0, x0 = 1 (for p = 1 we recover CHn

described in Section 1.2). The Hartogs domain associated to F is given by:

DF =
{

(z0, . . . , zn−1) ∈ Cn | |z0|2 + (||z||2)1/p < 1
}
.

Since:
∂j

∂xj
1

(1− x)p(c+k)
|0 =

Γ(p(c+ k) + j)

Γ(p(c+ k))
,

this domain is infinite projectively induced for any value of c > 0 and thus (see

Ex. 2.4.9) it also admits a full Kähler immersion into l2(C).

The next proposition gives an example of Hartogs domain not admitting a

Kähler immersion into CP∞ even when the metric is rescaled by a positive con-

stant.

Proposition 5.3.4. The Hartogs domain (DF , gF ) defined by

F (x) = (x− 1)

(
x− 11

4

)(
x+

3

4

)
,

and with x0 = 1 does not admit a Kähler immersion into CP∞ even when the

metric is rescaled by a positive constant c.
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Proof. By definition F (x) > 0 in [0, 1). Further:

F ′(x) = 3x(x− 2)− 1

16
≤ − 1

16
< 0.

This domain does not admit a Kähler immersion into CP∞ for any value of c. In

order to prove it, consider that for any polynomial P (x) = (x− a1) · · · (x− an),

one has:

∂j

∂xj
P (x)−c|0 =

(−1)jj!

Γ(c)n

∑
k1+···+kn=j

Γ(c+ k1) · · ·Γ(c+ kn)

k1! · · · kn!

1

(−a1)c+k1 · · · (−an)c+kn
.

For n = 3 and a1 = 1, a2 = 11
4
, a3 = −3

4
, we get:

∂j

∂xj
P (x)−c|0 =

(−1)jj!

Γ(c)3

∑
k1+k2+k3=j

(−1)k1+k2A(k1, k2, k3), (5.16)

where we set:

A(k1, k2, k3) =
Γ(c+ k1)Γ(c+ k2)Γ(c+ k3)

k1!k2!k3!

(
4

11

)c+k2
(

4

3

)c+k3

. (5.17)

When j is odd and greater than 1, the sign of (−1)k1+k2A(k1, k2, k3) is positive for

k3 odd, and negative for k3 even. Thus, in order to prove that for any c > 0 there

exists j such that (5.16) is negative, it is enough to show that for all h = 1, . . . , j:

∑
k1+k2=j−h

A(k1, k2, h) >
∑

k1+k2=j−h−1

A(k1, k2, h− 1).

By (5.17), this is equivalent to the following quantity being positive:

j−h∑
k=0

Γ(c+ k)Γ(c+ j − h− k)Γ(c+ h− 1)

k!(j − h− k)!(h− 1)!

(
4

11

)c+k (
4

3

)c+h−1 [
4

3

c+ h− 1

h
− c+ j − h− k
j − h− k + 1

]
+

− Γ(c+ j − h+ 1)Γ(c)Γ(c+ h− 1)

(j − h+ 1)!(h− 1)!

(
4

11

)c+j−h+1(
4

3

)c+h−1

.

(5.18)

We claim that for any fixed h, (5.18) is positive as j → +∞. In order to prove

the claim we observe that the second part of (5.18) goes to zero as j grows, while

the first part does as k grows. Thus, the sign of (5.18) as j goes to infinity is
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determined by finite values of k, i.e. those values that do not approach j. The

claim then follows since for k and h fixed:

lim
j→+∞

(
4

3

c+ h− 1

h
− c+ j − h− k
j − h− k + 1

)
=

4

3

c+ h− 1

h
− 1 > 0.

The property of being not projectively induced even when rescaled is a not

trivial property which we discuss in more details in Section 7.1.

5.4 Exercises
Ex. 5.4.1 — Consider the Springer domain, i.e. the rotation invariant Hartogs

domain defined by:

DF =
{

(z0, . . . , zn−1) ∈ Cn | ||z||2 < e−|z0|
2
}
,

with F (t) = e−t, x0 = +∞, and let gF the Kähler metric defined by the Käh-

ler potential − log(F (|z0|2) − ||z||2). Prove that (DF , gF ) admits a full Kähler

immersion into CP∞ for any c > 0, and thus into l2(C).

Ex. 5.4.2 — Consider the rotation invariant Hartogs domain given by:

DF =

{
(z0, . . . , zn−1) ∈ Cn | ||z||2 < α

|z0|2 + α

}
,

for F (x) = α
x+α

, α > 0, x0 = +∞ and let gF the Kähler metric associated to

the Kähler potential − log(F (|z0|2)−||z||2). Prove that (DF , c gF ) is projectively

induced if and only if c is a positive integer.

Ex. 5.4.3 — Consider the rotation invariant Hartogs domain given by:

DF (p) =

{
(z0, . . . , zn−1) ∈ Cn | ||z||2 < 1

(|z0|2 + 1)p

}
,

for F (x) = 1
(x+1)p

, p > 0, x0 = +∞ and let gF (p) the Kähler metric associated

to the Kähler potential − log(F (|z0|2) − ||z||2). Prove that (DF (p), c gF (p)) is

projectively induced if and only if cp is a positive integer.
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Ex. 5.4.4 — For any value of µ > 0, a Fock–Bargmann–Hartogs domainDn,m(µ)

is a strongly pseudoconvex, nonhomogeneous unbounded domain in Cn+m with

smooth real-analytic boundary, given by:

Dn,m(µ) := {(z, w) ∈ Cn+m : ||w||2 < e−µ||z||
2}.

One can define a Kähler metric ω(µ; ν), ν > −1 on Dn,m(µ) through the globally

defined Kähler potential:

Φ(z, w) := νµ||z||2 − log(e−µ||z||
2 − ||w||2).

Prove that the metric g(µ; ν) on the Fock–Bargmann–Hartogs domain Dn,m(µ)

admits a full Kähler immersion into l2(C) for any value of µ > 0 and ν > −1 (see

[9] for more details and results on these domains).
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Relatives

We say that two Kähler manifolds (finite or infinite dimensional) M1 and M2 are

relatives if they share a complex Kähler submanifold S, i.e. if there exist two

Kähler immersions h1 : S →M1 and h2 : S →M2. Otherwise, we say thatM1 and

M2 are not relatives. Further, we say that two Kähler manifolds are strongly not

relatives if they are not relatives even when the metric of one of them is rescaled

by the multiplication by a positive constant.

This terminology has been introduced in [20], even if the problem of under-

standing when two Kähler manifolds share a Kähler submanifold has been firstly

considered by M. Umehara [76], which solves the case of complex space forms with

holomorphic sectional curvature of different sign and finite dimension, which we

summarize in Section 6.1.

In the remaining part of this chapter we pay particular attention to under-

standing whether or not a Kähler manifold (M, g) is relative to a projective

Kähler manifold, which is by definition a Kähler manifold admitting a Kähler

immersion into a finite dimensional complex projective space CPN . In Section

6.2 we discuss the case when (M, g) is homogeneous while in Section 6.3 (M, g)

is a Bergman–Hartogs domain.
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6.1 Relatives complex space forms

In [76] M. Umehara proved that two finite dimensional complex space forms with

holomorphic sectional curvatures of different signs do not share a common Kähler

submanifold. His result should be compared to Bochner’s Theorem 2.3.4 (see also

Theorem 2.3.5), which shows that when the ambient space is allowed to be infinite

dimensional, the situation is much different (see also [12] for the case when the

complex space forms involved have curvatures of same sign).

The following theorems summarize Umehara’s (and Bochner’s) results. Recall

that we denote by CPN
b , b > 0, the complex projective space of holomorphic

sectional curvature 4b and by CHN
b , b < 0, the complex hyperbolic space of

holomorphic sectional curvature 4b (cfr. Section 1.2).

Theorem 6.1.1. Any Kähler submanifold of CN , N ≤ ∞, admits a full Kähler

immersion into CP∞b , for any value of b > 0.

Proof. Let (M, g) be a Kähler submanifold of CN , for N ≤ ∞. Then for any

p ∈ M , there exist a neighbourhood U and Bochner coordinates (z1, . . . , zn)

centered at p, such that g is described by the Kähler potential:

D0(z) =
N∑
j=1

|fj(z)|2,

where f : U → CN , f(z) = (f1(z), . . . , fN(z)) and f(0) = 0. If U admits a Kähler

immersion h : U → CPN ′

b , then we also have:

D0(z) =
1

b
log

(
1 + b

N ′∑
k=1

|hk(z)|2
)
,

and thus:
N ′∑
k=1

|hk(z)|2 =
exp

(
b
∑N

j=1 |fj(z)|2
)
− 1

b
.

Since:

exp

(
b

N∑
j=1

|fj(z)|2
)

=
∞∑
k=1

(
b
∑N

j=1 |fj(z)|2
)k

k!
=
∞∑
k=1

bk
∑
|mj |=k

1

mj!
|fmj(z)|2,
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the map ψ defined by ψj =
√
bkfmj/

√
mj!, |mj| = k, is a full holomorphic and

isometric map from U to l2(C) ⊂ CP∞. By Calabi’s Rigidity Theorem 2.2.5 we

get N ′ =∞.

Corollary 6.1.2. There are no Kähler submanifolds of both the complex Eu-

clidean space CN<∞ and the complex projective space CPN ′<∞
b .

Proof. By Theorem 6.1.1 any Kähler submanifold of CN admits a full Kähler

immersion into CP∞b . Conclusion follows by Calabi Rigidity’s Theorem 2.2.5.

Theorem 6.1.3. Any Kähler submanifold of CHN≤∞
b admits a full Kähler im-

mersion into l2(C).

Proof. Let (M, g) be a Kähler submanifold of CHN , for N < ∞. Then for any

p ∈ M , there exist a neighbourhood U and Bochner coordinates centered at p,

such that g is described by the Kähler potential:

D0(z) =
1

b
log

(
1 + b

N∑
k=1

|hk(z)|2
)
.

where h : U → CHN , h(z) = (h1(z), . . . , hN(z)) and we assume h(0) = 0. If U

admits a Kähler immersion f : U → CN
′ , then we also have:

D0(z) =
N ′∑
j=1

|fj(z)|2,

and thus:

N ′∑
k=1

|fk(z)|2 =
1

b
log

(
1− b

N∑
k=1

|hk(z)|2
)

=
∞∑
k=1

(−b)k−1

k

(
N∑
j=1

|hj(z)|2
)k

.

Since:
∞∑
k=1

(−b)k−1

k

(
N ′∑
j=1

|hj(z)|2
)k

=
∞∑
k=1

(−b)k−1

(k − 1)!

∑
|mj |=k

|hmj |2

mj!
.

It follows that the map ψ defined by ψj =
√

(−b)k−1

(k−1)!
hmj/

√
mj!, |mj| = k, is a full

holomorphic and isometric map from U to l2(C). By Calabi’s Rigidity Theorem

2.1.4 we get N ′ =∞.
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Corollary 6.1.4. There are not Kähler submanifolds of both the complex Eu-

clidean space CN<∞ and the complex hyperbolic space CHN ′<∞
b .

Proof. By Theorem 6.1.3 any Kähler submanifold of CHN
b admits a full Kähler

immersion into `2(C). Conclusion follows by Calabi Rigidity’s Theorem 2.1.4.

Corollary 6.1.5. There are not Kähler submanifolds of both the complex hyper-

bolic space CHN<∞
b and the complex projective space CPN ′<∞

b′ .

Proof. By Theorem 6.1.1 and Theorem 6.1.3 follows that any Kähler submanifold

of CHN
b , N ≤ ∞, admits a full Kähler immersion into CP∞b′ . Conclusion follows

by Calabi Rigidity’s Theorem 2.2.5.

6.2 Homogeneous Kähler manifolds are not rela-

tive to projective ones

In this section we discuss when a homogeneous Kähler manifold is relative to

a projective one. Recall that a projective Kähler manifold is (by definition)

a Kähler manifold which admits a Kähler immersion into a finite dimensional

complex projective space CPN . We begin with the following theorem.

Theorem 6.2.1 (A. J. Di Scala, A. Loi, [20]). A bounded domain D of Cn en-

dowed with its Bergman metric and a projective Kähler manifold are not relatives.

Proof. Observe first that by Prop. 1.1.4, it is enough to show that (D, gB) is not

relative to CPN for any finite N . Since D is bounded, L2
hol(D) contains all poly-

nomials in the variables z1, . . . , zn. In particular, we can choose an orthonormal

basis containing λkzk1 , for any k = 0, 1 . . . and some suitable constants λk and a

full Kähler immersion F : D → CP∞ is given by [λ0, λ1z1, . . . , λkz
k
1 , . . . , F̃ ], where

F̃ is the sequence of holomorphic functions which complete {λkzk1} as orthonormal

basis of L2
hol(D).

Assume by contradiction that S is a 1-dimensional common Kähler subman-

ifold of CPN and (D, gB) and denote by α : S → D and β : S → CPN the Kähler
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immersion. By Prop. 1.1.4 and Theorem 2.2.5, it is enough to show that F ◦α is

a full Kähler map from S to CP∞. Let α = (α1, . . . , αn). Since the role of z1 in

the above construction can be switched to any other zj, we can assume without

loss of generality that ∂α1

∂ξ
6= 0, where ξ is the coordinate on S. Conclusion fol-

lows since {λkαk1} is a subsequence of {(F ◦α)j} composed by linear independent

functions.

Observe that such result does not hold for multiples of the Bergman metric,

since it makes use of the existence of a full Kähler immersion of (D, gB) into CP∞,

which is in general not guaranteed when one multiplies gB by a positive constant

c. As we see in a moment, an improvement in this direction can be achieved by

adding the assumption of D to be symmetric or homogeneous.

Dealing with the symmetric case, observe that since a Hermitian symmetric

space of compact type with integral Kähler form admits a Kähler immersion into

some finite dimensional complex projective space, then due to theorems 6.1.1 and

6.1.3 and their corollaries it does not share a common Kähler submanifold with

either the complex flat space or the complex hyperbolic space of finite dimensions.

It is still an open question if a Hermitian symmetric space of compact type is

relative to l2(C) or to CH∞ and what happens when the metric is rescaled to

be not integral. Consider now a bounded symmetric domain Ω of Cn and let gB

denote its Bergman metric. The complex flat space and (Ω, gB) are not relatives

due to a result by X. Huang and Y. Yuan [36]. Further, due to Theorem 6.2.1

nor are (Ω, gB) and a projective Kähler manifold. Observe that when we deal

with flat spaces we can forget about rescaling the metric by a positive constant.

Although, the situation is different dealing with projective spaces. We ask what

happens when the metric is rescaled by the multiplication to a positive constant

c. The following theorem answers this question.

Theorem 6.2.2 (A. J. Di Scala, A. Loi, [20]). A bounded symmetric domain

(Ω, cgB) endowed with a positive multiple of its Bergman metric is not relative to

any projective Kähler manifold.
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This result follows from Theorem 6.2.1 and the following general lemma, which

proves that when the Kähler manifold considered is regular, in the sense that it

is projectively induced when rescaled by a great enough constant, the property

of not being relative to any projective Kähler manifold is invariant by the multi-

plication of the metric by a positive constant.

Lemma 6.2.3 (M. Zedda [84]). Assume that (M,βg) is infinite projectively in-

duced for any β > β0 ≥ 0. Then, if (M, g) and CPn are not relatives for any

n <∞, then the same holds for (M, cg), for any c > 0.

Proof. For any c > 0, we can choose a positive integer α such that cα > β0.

Denote by ω the Kähler form associated to g. Let F : M → CP∞ be a full

Kähler map such that F ∗ωFS = cα ω. Then
√
αF is a Kähler map of (M, c g)

into CP∞α . Let S be a 1-dimensional common Kähler submanifold of (M, c g)

and CPn. Then by Theorem 1.1.4 for any p ∈ S there exist a neighbourhood U

and two holomorhic maps f : U → M and h : U → CPn, such that f ∗(cω)|U =

(
√
αF ◦ f)∗ωFS|U = h∗ωFS|U .

Thus, by (1.5) one has:

log

(
1 +

n∑
j=1

|hj|2
)

=
1

α
log

(
1 +

∞∑
j=1

|(F ◦ f)j)|2
)
.

i.e.:

α log

(
1 +

n∑
j=1

|hj|2
)

= log

(
1 +

∞∑
j=1

|(F ◦ f)j)|2
)
. (6.1)

If this last equality holds, then U is a common Kähler submanifold of both CP∞

and CPn
1/α. This is a contradiction, for F ◦ f is full, since otherwise U would be

a Kähler submanifold of both (M, g) and a finite dimensional complex projective

space, and by Calabi rigidity Theorem 2.2.5, from (6.1) since α is integer we get

n =∞.

Observe that in general there are not reasons for a Kähler manifold which is

not relative to another Kähler manifold to remain so when its metric is rescaled.

For example, consider that the complex projective space (CP2, c gFS) where gFS
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is the Fubini–Study metric, for c = 2
3
is not relative to CP2, while for positive

integer values of c it is (see [12] for a proof).

We refer the reader to [20] for a proof that Hermitian symmetric spaces of

compact and noncompact type are not relatives to each others.

We conclude this section with the following result due to R. Mossa [62], which

generalises Theorem 6.2.2 to bounded homogeneous domains:

Theorem 6.2.4 (R. Mossa, [62]). A bounded homogeneous domain (Ω, g) and a

projective Kähler manifold are not relatives.

Proof. Observe first that by Prop. 1.1.4, it is enough to show that (Ω, g) is not

relative to CPN for any finite N . Let (Ω, g) be a homogeneous bounded domain

of Cn. Then by Th. 3.3.4, there exists β0 > 0 such that for any β ≥ β0, βg is

projectively induced. Denote g̃ = β0g. Due to Th. 6.2.3, it is enough to show

that g̃ is not relative to CPN to get the same assertion for a homogeneous metric

not necessarily projectively induced. Since (Ω, g̃) is pseudoconvex, the Kähler

metric g̃ admits a globally defined Kähler potential Φ, i.e. ω̃ = i
2
∂∂̄Φ, where we

denote by ω̃ the Kähler form associated to g. Denote by HΦ the weighted Hilbert

space of square integrable holomorphic functions on Ω, with weight e−Φ:

HΦ =

{
f ∈ O(Ω)|

∫
Ω

e−Φ|f |2 ω̃
n

n!
<∞

}
.

In [50, 62] it is proven that HΦ 6= {0} and a Kähler immersion F : Ω → CP∞,

F ∗ωFS = ω̃ is given through one of its orthonormal bases (a Kähler metric satis-

fying such property is called balanced, see Remark 3.3.6 for references). Since

Ω is bounded, HΦ contains all the monomials {λkzkj } for j = 1, . . . , n and

k = 0, 1, 2, . . . . Thus, a orthonormal basis of HΦ and hence the Kähler map

F , can be written as F = [P (z1), f ], where P = [. . . , λkz
k
1 , . . . ] and f is a se-

quence obtained by deleting from the basis {Fj} the sequence {λkzkj }. The proof

is now totally similar to that of Th. 6.2.1. Namely, assume by contradiction that

S is a 1-dimensional common Kähler submanifold of CPN and (Ω, g̃) and denote

by α : S → Ω and β : S → CPN the Kähler immersion. By Prop. 1.1.4 and Th.
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2.2.5, it is enough to show that F ◦ α is a full Kähler map from S to CP∞. Let

α = (α1, . . . , αn). Since the role of z1 in the above construction can be switched

to any other zj, we can assume without loss of generality that ∂α1

∂ξ
6= 0, where

ξ is the coordinate on S. Conclusion follows since {λkαk1} is a subsequence of

{(F ◦ α)j} composed by linear independent functions.

6.3 Bergman–Hartogs domains are not relative to

a projective Kähler manifold

We begin this section with a general result which somehow generalizes the pe-

culiarity of the Kähler maps described in theorems 6.2.1 and 6.2.4. In order to

state it, consider a d-dimensional Kähler manifold (M, g) which admits global

coordinates {z1, . . . , zd} and denote by Mj the 1-dimensional submanifold of M

defined by:

Mj = {z ∈M | z1 = · · · = zj−1 = zj+1 = · · · = zd = 0}.

When exists, a Kähler immersion f : M → CP∞ is said to be transversally full

when for any j = 1, . . . , d, the immersion restricted to Mj is full into CP∞.

Theorem 6.3.1 (M. Zedda [84]). Let (M, g) be a Kähler manifold infinite projec-

tively induced through a transversally full map. If for any α ≥ α0 > 0, (M,α g) is

infinite projectively induced then (M, g) is strongly not relative to any projective

Kähler manifold.

Proof. Due to Lemma 6.2.3 and Theorem 1.1.4 we need only to prove that a

if a Kähler manifold is infinite projectively induced through a transversally full

immersion then it is not relative to CPn for any n. Assume that S is a 1-

dimensional Kähler submanifold of both CPn and (M, g). Then around each

point p ∈ S there exist an open neighbourhood U and two holomorphic maps

ψ : U → CPn and ϕ : U → M , ϕ(ξ) = (ϕ1(ξ), . . . , ϕd(ξ)) where ξ are coordinates

on U , such that ψ∗ωFS|U = ϕ∗(cω)|U . Without loss of generality we can assume
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∂ϕ1(ξ)
∂ξ

(0) 6= 0. Let f : M → CP∞ be a Kähler map from (M, g) into CP∞. Since

by assumption f is transversally full, f = [f0, . . . , fj, . . . ] contains for any m =

1, 2, 3, . . . , a subsequence {fj1 , . . . , fjm} of functions which restricted to M1 are

linearly independent. The map f ◦ϕ : U → CP∞ is full, in fact f |M1◦ϕ is full since

ϕ1(ξ) is not constant and for any m = 1, 2, 3, . . . , {fj1(ϕ1(ξ)), . . . , fjm(ϕ1(ξ))} is

a subsequence of {f |M1 ◦ϕ} of linearly independent functions. Conclusion follows

by Calabi’s rigidity Theorem 2.2.5.

Combining Theorems 6.2.1 and 6.3.1 with Lemmata 5.2.1 and 6.2.3, we get

the following:

Corollary 6.3.2. For any µ > 0, a Bergman–Hartogs domain (MΩ(µ), g(µ)) is

strongly not relative to any projective manifold.

Proof. Observe first that due to Theorem 1.1.4 it is enough to prove that (MΩ(µ), αg(µ))

is not relative to CPn for any finite n. Further, by Lemma 6.2.3 and Theorem

6.2.1, a common submanifold S of both (MΩ(µ), αg(µ)) and CPn is not contained

into (Ω, αg(µ)|Ω), since αg(µ)|Ω = αµ
γ
gB is a multiple of the Bergman metric on

Ω. Thus, due to arguments totally similar to those in the proof of Th. 6.3.1, it

is enough to check that the Kähler immersion f : MΩ(µ)→ CP∞ is transversally

full with respect to the w coordinate. Conclusion follows then by (5.12).

6.4 Exercises
Ex. 6.4.1 — Prove that for any integer m > 0 the Hartogs domain (DF ,m gF )

described in Exercise 5.4.2 is relative to CP1.

Ex. 6.4.2 — Consider the Hartogs domain (DF (p), c gF (p)) described in Exer-

cise 5.4.3. Prove that if both p and c are positive integers then (DF (p), c gF (p))

is relative to CP1.

Ex. 6.4.3 — Prove that the Hartogs domain described in Exercise 5.4.1 is

strongly not relative to any projective Kähler manifold.
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Ex. 6.4.4 — Prove that for any µ, α > 0, ν > −1, a Fock–Bargmann–Hartogs

domain (see Ex. 5.4.4 for a definition) (Dn,m(µ), α ω(µ; ν)) admits a transversally

full Kähler immersion into CP∞.

Ex. 6.4.5 — Prove that for any µ > 0, a Fock–Bargmann–Hartogs domain

(see Ex. 5.4.4 for a definition) (Dn,m(µ), ω(µ; ν)) is strongly not relative to any

projective manifold.
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Further examples and open

problems

In this chapter we describe three Kähler manifolds with interesting properties.

The first section summarizes the results in [56] showing that the complex plane C

endowed with the Cigar metric does not admit a local Kähler immersion into any

complex space form even when the metric is rescaled by a positive constant. The

importance of this example relies on the fact that there are not topological and

geometrical obstructions for the existence of such an immersion. In the second

section we describe a complete and not locally homogeneous metric introduced by

Calabi in [11]. The diastasis function associated to this metric is not explicitely

given and it makes very difficult to say something about the existence of a Kähler

immersion into complex space forms. Finally, in the third and last section we

discuss a 1-parameter family of nontrivial Ricci–flat metrics on C2, called Taub-

NUT metrics. The diastasis associated to these metrics is rotation invariant, i.e.

depends only on the module of the variables, but it is not explicitely given and

it is still unknown whether or not they are projectively induced for small values

of the parameter.
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7.1 The Cigar metric on C

The metric we describe in this section is an example of Kähler metric whose

associated diastasis is globally defined and nonnegative but nevertheless it does

not admit a Kähler immersion into any complex space form.

The Cigar metric g on C has been introduced by Hamilton in [33] as first

example of Kähler–Ricci soliton on non-compact manifolds. It is defined by:

g =
dz ⊗ dz̄
1 + |z|2

.

A (globally defined) Kähler potential for this metric is given by (see also [68]):

D0(|z|2) =

∫ |z|2
0

log(1 + s)

s
ds,

whose power series expansion around the origin reads:

D0(|z|2) =
∞∑
j=1

(−1)j+1 |z|2j

j2
. (7.1)

By duplicating the variable in this last expression, by the very definition of dias-

tasis function (1.1) we get:

Dg(z, w) =
∞∑
j=1

(−1)j+1

j2

(
|z|2j + |w|2j − (zw̄)2j − (wz̄)2j

)
. (7.2)

The following lemma proves thatDg(z, w) is everywhere nonnegative and globally

defined on C×C (the fact that Dg(z, w) is globally defined was also observed in

[68]).

Lemma 7.1.1 (A. Loi, M. Zedda, [56]). The diastasis function (7.2) of the Cigar

metric is globally defined and nonnegative.

Proof. If we denote by Lin(z) the polylogarithm function, defined for |z| < 1 by:

Lin(z) =
∞∑
j=1

zj

jn
,

and by analytic continuation otherwise, from (7.2) we can write Dg(z, w) as:

D(z, w) = −Li2(−|z|2)− Li2(−|w|2) + Li2(−zw̄) + Li2(−wz̄).

98



CHAPTER 7. FURTHER EXAMPLES AND OPEN PROBLEMS

Write z = ρ1e
iθ1 and w = ρ2e

θ2 and let α = θ1 − θ2. Then:

D(z, w) =− Li2(−ρ2
1)− Li2(−ρ2

2) + Li2(−ρ1ρ2 e
iα) + Li2(−ρ1ρ2 e

−iα)

=− Li2(−ρ2
1)− Li2(−ρ2

2) + 2ReLi2(−ρ1ρ2 e
iα),

(7.3)

where we are allowed to take the real parts since Dg(z, w) is real. In order

to simplify the term ReLi2(−ρ1ρ2 e
iα), we recall the following formula due to

Kummer (see [45] or [47, p.15]):

ReLi2(ρeiθ) =
1

2

(
Li2(ρeiθ) + Li2(ρeiθ)

)
=− 1

2

(∫ ρ

0

log(1− yeiθ)
y

dy +

∫ ρ

0

log(1− ye−iθ)
y

dy

)
=− 1

2

∫ ρ

0

log(1− 2y cos θ + y2)

y
dy

i.e.:

ReLi2(−ρeiα) = −1

2

∫ ρ

0

log(1 + 2y cos(α) + y2)

y
dy.

Since 1+2y cos(α)+y2 is decreasing for 0 < α < π and increasing for π < α < 2π,

α = π is a minimum. Thus:

ReLi2(−ρeiα) ≥ −
∫ ρ

0

log(|1− y|)
y

dy, (7.4)

where:

−
∫ ρ

0

log(|1− y|)
y

dy =

Li2(ρ) if ρ ≤ 1

π2

6
− Li2(1− ρ)− ln(ρ− 1) ln(ρ) otherwise.

Thus, when ρ1ρ2 ≤ 1 from (7.3) and (7.4), we get:

D(z, w) ≥ −Li2(−ρ2
1)− Li2(−ρ2

2) + 2Li2(ρ1ρ2) ≥ 0,

where the last equality follows since all the factors in the sum are positive. When

ρ1ρ2 > 1, from (7.3) and (7.4), we get:

D(z, w) ≥ −Li2(−ρ2
1)− Li2(−ρ2

2) +
π2

3
− 2Li2(1− ρ1ρ2)− 2 ln(ρ1ρ2 − 1) ln(ρ1ρ2).

(7.5)

99



7.1. THE CIGAR METRIC ON C

The RHS is positive for 1 < ρ1ρ2 ≤ 2 since it is sum of positive factors. When

ρ1ρ2 > 2, since all the factors are monotonic, it is enough to consider the limit

as ρ1 goes to +∞ of −D(z, w)/Li2(−ρ2
1). By (7.5) above we get:

lim
ρ1→+∞

D(z, w)

−Li2(−ρ2
1)
≥ 5

2
,

and we are done.

In the previous chapters we have seen how the multiplication of a Kähler

metric by a positive constant c affects its being projectively induced. The interest

of the Cigar metric relies on the fact that it does not admit a Kähler immersion

into CP∞ for any value of c (and thus due to theorems 2.3.4 and 2.3.5 into any

other complex space form). Observe that Calabi himself provides in [10] examples

of metrics which have the same property.

Example 7.1.2. Consider on C the metric g whose associate Kähler form ω

is given by: ω = (4 cos(z − z̄)− 1) dz ∧ dz̄. The associated (globally defined)

diastasis:

D(p, q) = 4 [cos(p− p̄) + cos(q − q̄)− cos(p− q̄)− cos(q − p̄)]− |p− q|2,

takes negative values, e.g. for q = p+ 2π.

Example 7.1.3. Consider the product CP1 × CP1 endowed with the metric

g = b1gFS ⊕ b2gFS, with b1, b2 positive real numbers such that b2/b1 is irrational.

Then (CP1 × CP1, cg) does not admit a Kähler immersion into CP∞ for any

value of c. In fact, in [10, Theorem 13], Calabi proves that (CPn, cgFS) admits a

Kähler immersion into CP∞ iff 1/c is a positive integer, and this property cannot

be fulfilled by both 1/cb1 and 1/cb2.

Althought, both those metrics present geometrical obstructions to the exis-

tence of a Kähler immersion into CP∞ that put aside the role of c. More precisely,

in the first example the diastasis associated to g is negative at some points, while

in the second one the Kähler form ω associated to g is not integral. In this sense,
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the Cigar metric is important not only because it cannot be Kähler immersed into

any (finite or infinite dimensional) complex space form for any c > 0 but also

since its associated Kähler form is integral and its diastasis is globally defined on

C× C and positive (cfr. Lemma 7.1.1 above).

In order to prove the nonexistence of a Kähler immersion of (C, c g) into CP∞

we need the following definition and properties of Bell polynomials. The partial

Bell polynomials Bn,k(x) := Bn,k(x1, . . . , xn−k+1) of degree n and weight k are

defined by (see e.g. [14, p. 133]):

Bn,k(x1, . . . , xn−k+1) =
∑
π(k)

n!

s1! . . . sn−k+1!

(x1

1!

)s1 (x2

2!

)s2
· · ·
(

xn−k+1

(n− k + 1)!

)sn−k+1

,

(7.6)

where the sum is taken over the integers solutions of:s1 + 2s2 + · · ·+ ksn−k+1 = n

s1 + · · ·+ sn−k+1 = k.

Bell polynomials satisfy the following equalities (the second one has been firstly

pointed out in [16]):

Bn,k(trx1, tr
2x2, . . . , tr

n−k+1xn−k+1) = tkrnBn,k(x1, . . . , xn−k+1). (7.7)

Bn,k+1(x) =
1

(k + 1)!

n−1∑
α1=k

α1−1∑
α2=k−1

· · ·
αk−1−1∑
αk=1

(
n

α1

)(
α1

α2

)
· · ·
(
αk−1

αk

)
·

· xn−α1xα1−α2 · · ·xαk−1−αkxαk .

(7.8)

The complete Bell polynomials are given by:

Yn(x1, . . . , xn) =
n∑
k=1

Bn,k(x), Y0 := 0,

and the role they play in our context is given by the following formula [14, Eq.

3b, p.134]:
dn

dxn

(
exp

(
∞∑
j=1

aj
xj

j!

))
|0 = Yn(a1, . . . , an). (7.9)

Observe that from (7.7) it follows:

Yn(rx1, r
2x2, . . . , r

nxn) = rnYn(x1, . . . , xn). (7.10)
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Theorem 7.1.4. Let g = 1
1+|z|2dz ⊗ dz̄ be the Cigar metric on C. Then the

diastasis function of the metric g is globally defined and positive on C × C and

(C, cg) cannot be (locally) Kähler immersed into any complex space form for any

c > 0.

Proof. Observe first that if (M, cg) does not admit a Kähler immersion into CP∞

for any value of c > 0, then it does not either into any other space form. In

fact, if (M, cg) admits a Kähler immersion into l2(C) then by Th. 2.3.4, it also

does into CP∞, and in particular since the multiplication by c is harmless when

one considers Kähler immersion into flat spaces, it does for any value of c > 0.

Further, Th. 2.3.5 implies that it does not admit a Kähler immersion into CH∞

either. Thus, it is enough to show that (C, cg) does not admit a Kähler immersion

into CP∞ for any c > 0.

Further, the diastasis function associated to the Cigar metric is globally de-

fined and positive by Lemma 7.1.1 above.

Then, by Calabi’s criterions, it remains only to show that there exists n such

that:
∂2n exp (cD0(|z|2))

∂zn∂z̄n
|0 < 0,

where D0(|z|2) is the Kähler potential defined in (7.1). Observe first that setting:

ãj := −c j!
j2
, (7.11)

by (7.9) and (7.10) we get:

∂2n exp (cD0(|z|2))

∂zn∂z̄n
|0 =

1

n!

dn exp (cD0(x))

dxn
|0

=
1

n!
Yn
(
−ã1, (−1)2ã2, . . . , (−1)nãn

)
=

(−1)n

n!
Yn (ã1, . . . , ãn) .

We wish to prove that for any c > 0 there exists n big enough such that:

Y2n (a1, . . . , a2n) < 0.
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Observe first that since ãj = −c aj with aj = j!/j2, we get:

Y2n(ã) =
2n∑
k=1

(−1)kckB2n,k(a)

=
(2n)!c

(2n)2

(
−1 +

c(2n)2B2n,2(a)

(2n)!
− c2(2n)2B2n,3(a)

(2n)!
+ · · ·+ c2n−1(2n)2

(2n)!

)
.

Thus, we need to prove that for any value of c there exists n large enough such

that the following inequality holds:

c(2n)2B2n,2(a)

(2n)!
− c2(2n)2B2n,3(a)

(2n)!
+ · · ·+ c2n−1(2n)2

(2n)!
< 1. (7.12)

Since (see [56, Lemma 4]):

lim
n→∞

(2n)2B2n,k+1(a)

(2n)!
=

k + 1

(k + 1)!

∞∑
j1=1

1

j2
1

· · ·
∞∑

jk−1=1

1

j2
k

,

then:

lim
n→+∞

(2n)2B2n,k+1(a)

(2n)!
=

k + 1

(k + 1)!

∞∑
j1=1

1

j2
1

∞∑
j2=1

1

j2
2

· · ·
∞∑
jk=1

1

j2
k

.

Further, by:
∞∑
j=1

1

j2
=
π2

6
,

we get:

lim
n→+∞

(2n)2B2n,k+1(a)

(2n)!
=

1

k!

(
π2

6

)k
.

Plugging this into (7.12), we get that as n goes to infinity the left hand side

converge to:
∞∑
k=1

(−1)k+1ck

k!

(
π2

6

)k
= 1− e−

c π2

6 ,

and conclusion follows by observing that 1 − e−
c π2

6 is strictly increasing as a

function on c and its limit value as c grows is 1.

Remark 7.1.5. It is worth pointing out that the cigar metric has positive sec-

tional curvature. Hence, in view of Theorem 7.1.4, it is interesting to see if there

exist examples of negatively curved real analytic Kähler manifolds (M, g) with

globally defined diastasis function which is positive and such that (M, cg) cannot

be locally Kähler immersed into any complex space form for all c > 0.
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METRIC

7.2 Calabi’s complete and not locally homogeneous

metric

Consider the complex tubular domain Mn = 1
2
D ⊕ iRn ⊂ Cn, where D denotes

any connected, open subset of Rn. Let gn be the metric on Mn whose associated

Kähler form is given by:

ωn =
i

2
∂∂̄F (z),

with:

F (z) = f(z1 + z̄1, . . . , zn + z̄n),

where f : D → R is a radial function f(x1, . . . , xn) = y(r), with r = (
∑n

j=1 x
2
j)

1/2,

satisfying the differential equation:(
y′

r

)n−1

y′′ = ey, (7.13)

with initial conditions:

y′(0) = 0, y′′(0) = ey(0)/n. (7.14)

This metric introduced by Calabi [11] is the first example of complete and not

locally homogeneous Kähler–Einstein metric. In [80] J. A. Wolf gives a stronger

more straight-forward version of Calabi’s result, namely if n ≥ 2 and gn is an

E(n)-invariant Kähler metric on Mn, where E(n) = Rn · SO(n), then (Mn, gn)

cannot be both complete and locally homogeneous. Moreover, E(n) is the largest

connected group of holomorphic isometries of (Mn, gn).

It is still an open question if this metric admits or not a Kähler immersion

into some complex space form (except with the case exposed in Exercise 7.4.1).

Although, the following lemma guarantees that the metric is smooth around the

origin and we are able to write its diastasis function.

Lemma 7.2.1. If y(r) is a function satisfying (7.13), then y(r) is smooth at

r = 0.
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Proof. Let y(r) be a solution of (7.13). From ((y′)n)′ = n(y′)n−1y′′ and (7.13) we

get:

y′(r) =

(
n

∫ r

0

tn−1ey(t)dt

)1/n

,

and by substituting t = rs we have:

y′(r) = r

(
n

∫ 1

0

sn−1ey(rs)ds

)1/n

.

Since
∫ 1

0
sn−1ey(rs)ds is not zero at r = 0, the last equation implies that y′(r) ∈

Ck(0) whenever y(r) ∈ Ck(0). By (7.14), y(r) ∈ C2(0) and we are done.

By recursion from (7.13) and (7.14), one obtains that for all m ∈ N:

y(2m+1)(0) = 0,

thus the power expansion of y(r) around the origin is of the form:

y(r) = y(0) +
y′′(0)

2
r2 +

y(4)(0)

4!
r4 +

y(6)(0)

6!
r6 + . . . ,

and we have:

F (z, z̄) = F (0, 0)+
y′′(0)

2

n∑
j=1

(zj + z̄j)
2 +

y(4)(0)

4!

(
n∑
j=1

(zj + z̄j)
2

)2

+

+
y(6)(0)

6!

(
n∑
j=1

(zj + z̄j)
2

)3

+ . . . .

Thus by (1.1), we have:

D0(z) = F (z, z̄) + F (0, 0)− F (0, z̄)− F (z, 0),
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i.e.:

D0(z) =
y′′(0)

2

(
n∑
j=1

(zj + z̄j)
2 −

n∑
j=1

z̄2
j −

n∑
j=1

z2
j

)
+

+
y(4)(0)

4!

( n∑
j=1

(zj + z̄j)
2

)2

−

(
n∑
j=1

z̄2
j

)2

−

(
n∑
j=1

z2
j

)2
+

+
y(6)(0)

6!

( n∑
j=1

(zj + z̄j)
2

)3

−

(
n∑
j=1

z̄2
j

)3

−

(
n∑
j=1

z2
j

)3
+

+ . . .

+
y(2k)(0)

(2k)!

( n∑
j=1

(zj + z̄j)
2

)k

−

(
n∑
j=1

z̄2
j

)k

−

(
n∑
j=1

z2
j

)k
+

+ . . . .

Observe that we can assume y′′(0) = 1 and the coefficients y(2k)(0)
(2k)!

can be com-

puted from (7.13) and (7.14). Although, the matrices of coefficients in the power

expansions (1.9), (2.2) and (2.3) are not diagonal and it is not easy to find a

negative eigenvalue or to prove they are positive semidefinite.

7.3 Taub-NUT metric on C2

In [46] C. Lebrun constructs the following family of Kähler forms on C2 defined

by ωm = i
2
∂∂̄Φm, where:

Φm(u, v) = u2 + v2 +m(u4 + v4), for m ≥ 0, (7.15)

and u and v are implicitly defined by:

|z1| = em(u2−v2)u, |z2| = em(v2−u2)v. (7.16)

For m = 0 one gets the flat metric, while for m > 0 each of the metrics of this

family represents the first example of complete Ricci–flat (non-flat) metric on C2

having the same volume form of the flat metric ω0, i.e. ωm ∧ ωm = ω0 ∧ ω0.

Moreover, for m > 0, these metrics are isometric (up to dilation and rescaling)

to the Taub-NUT metric.
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Lemma 7.3.1 (A. Loi, M. Zedda, F. Zuddas, [57]). Let m ≥ 0, gm be the Taub–

NUT metric on C2 and α be a positive real number. Then αgm is not projectively

induced for m > α
2
.

Proof. Assume by contradiction that αgm is projectively induced, namely that

there existsN ≤ ∞ and a Kähler immersion of (C2, αgm) into CPN . Then, it does

exist also a Kähler immersion into CPN of the Kähler submanifold of (C2, ωm)

defined by z2 = 0, z1 = z, endowed with the induced metric, having potential

Φ̃m = u2 + mu4, where u is defined implicitly by zz̄ = e2mu2
u2. Observe that

Φ̃m is the diastasis function (1.1) for this metric, since it is a rotation invariant

potential centered at the origin.

Consider the power expansion around the origin of the function eαΦ̃m − 1,

that, by (7.15) and (7.16), reads:

eαΦ̃m − 1 = α|z|2 +
α

2
(α− 2m)|z|4 + . . . .

Since α− 2m ≥ 0 if and only if m ≤ α
2
, it follows by Calabi’s criterion Th. 2.2.4

that αgm can not admit a Kähler immersion into CPN for any m > α
2
.

In [57] the authors state the following conjecture:

Conjecture 7.3.2. The Taub–NUT metric αgm on C2 is not projectively induced

for any m > 0.

7.4 Exercises
Ex. 7.4.1 — Prove that for n = 2, Calabi’s complete not locally homogeneous

metric (M2, ω2) does not admit a Kähler immersion into CHN , N ≤ ∞.

Ex. 7.4.2 — Verify that the Taub–NUT metric (C2, αgm) cannot be Kähler

immersed into the complex hyperbolic space CHN , N ≤ ∞.

Ex. 7.4.3 — Prove that if the Taub-NUT metric (C2, gm) admits a Kähler im-

mersion into CN , N ≤ ∞, then m = 0.
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