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Abstract 22 

The naturally occurring photosensitizer hypericin can be effectively delivered to bacterial cells using serum 23 

albumins as biocompatible carriers. Using a combination of spectroscopic methods we demonstrate that the 24 

photophysics of hypericin is fully preserved when bound to these proteins. Thanks to the excellent transport 25 

capabilities of serum albumins, that deliver hypericin to Gram-positive S. aureus, an efficient antibacterial 26 

action was observed, with a reduction of up to 8 log in the number of colony-forming units. The photoactive 27 

material is fully compatible with the use in food processing environments, and may be exploited as a viable 28 

method for decontamination from S. aureus and other Gram-positive bacteria.  29 
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1. Introduction 30 

Increasing antimicrobial resistance is of great concern for public health because of the decreasing number of 31 

available effective antimicrobials, and the insufficient rate of development of new alternatives. (Boucher  et 32 

al., 2009) 33 

Formation of resistant genes in bacteria is mostly driven by selective pressure, exerted by the excessive use 34 

of antimicrobials for therapeutic use in humans or veterinary activities, e.g., growth promotion or disease 35 

prevention of livestock. The problem is exacerbated by the use of sub-therapeutic doses. (Laxminarayan  et 36 

al., 2013)  37 

Within this context, Staphyloccocus aureus, a Gram-positive microorganism of the Micrococcaceae family, is 38 

of special interest. It is a commensal and opportunistic pathogen responsible for a wide spectrum of 39 

infections in humans, ranging from superficial skin diseases to invasive and potentially life-threating illnesses. 40 

(Lowy 1998; Tong  et al., 2015)  This ubiquitous microorganism can cause nosocomial and community-41 

acquired infections, as well as food-borne diseases. (Kadariya, Smith & Thapaliya 2014) It can colonize human 42 

nasal mucosa and skin as well as environmental surfaces and clothing resulting in a significant potential to 43 

contaminate food products during production and handling. (le Loir, Baron & Gautier 2003) Furthermore, S. 44 

aureus is commonly found in a wide variety of food-producing animals, and its transfer to food may occur 45 

from dairy animals in case of mastitis (Hennekinne, De Buyser & Dragacci 2011) or contact with live animals 46 

by food handlers.  Its ability to grow in a wide range of temperatures (7 to 48.5 °C, with optimum 30 to 37 47 

°C), pH (4.2 to 9.3, with optimum 7 – 7.5) and high sodium chloride concentration (up to 15%) makes S. aureus 48 

able to survive in a large variety of foods and in dry environments. (Chaibenjawong & Foster 2011) (le Loir, 49 

Baron & Gautier 2003)  50 

S. aureus food-borne disease is one of the most common worldwide and results from the ingestion of 51 

staphylococcal enterotoxins (SEs) preformed in foods by enterotoxigenic strains of the microorganism. More 52 

than 20 SEs have been recognized and all of them have superantigenic activity, whereas nearly half of them 53 

have emetic properties which are hazardous for consumers. (Balaban & Rasooly 2000) (Hennekinne, De 54 
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Buyser & Dragacci 2011) Improper food handling practices, favourable food composition for S. aureus growth 55 

and toxinogenesis, favourable temperatures and time for S. aureus growth and ingestion of sufficient 56 

amounts of toxin to provoke symptoms are the conditions required to evoke a staphylococcal food-borne 57 

disease. (Hennekinne, De Buyser & Dragacci 2011) 58 

In the last decades, the emergence of S. aureus strains resistant to beta-lactams (Methicillin-resistant S. 59 

aureus; MRSA) caused nosocomial and community-acquired infections characterized by high morbidity 60 

worldwide. (Bukharie  et al., 2001) (King  et al., 2006) Recently, MRSA strains have been isolated from farm 61 

animals and their meat, and were recognised as a novel pathogen associated with human infections (Price  62 

et al., 2012)  (Lassok & Tenhagen 2013) (Larsen  et al., 2016) (Kinross  et al., 2017) thus representing a new 63 

One Health issue for human and veterinary medicine.  64 

The development of alternative strategies for preventing and treating infectious animal diseases of bacterial 65 

origin is therefore of great interest, (Trevisi  et al., 2014) and the application of novel methods for 66 

decontamination of food processing and handling environment is a current topic in food science. (Demirci & 67 

Ngadi 2012; Kairyte, Lapinskas, Gudelis & Luksiene 2012; Luksiene & Brovko 2013; Tortik  et al., 2016; Glueck, 68 

Schamberger, Eckl & Plaetzer 2017) 69 

Antibacterial photosensitization-based treatment is a promising approach that relies on the combined action 70 

of otherwise nontoxic molecules (called photosensitizers, PS), visible light, and oxygen to induce formation 71 

of reactive oxygen species, particularly singlet oxygen, that result in cellular phototoxicity. Among limitations 72 

of the approach is the fact that several of the known photosensitizing molecules are highly hydrophobic and 73 

therefore require a delivery vehicle, that is biocompatible with the target environment. Additional issues 74 

arise from the lack of cell specificity of the dyes, that require chemical engineering of targeting moieties into 75 

the photoactive structure. Several strategies to address both issues have been proposed and were recently 76 

reviewed. (Planas  et al., 2014) 77 

One of the most effective photosensitizers is hypericin. Hypericin (Hyp) is a naturally occurring PS 78 

(Brockmann, Haschad, Maier & Pohl 1939; Duràn & Song 1986; Karioti & Bilia 2010) that has been proposed 79 

in the treatment of cancer, (Wang  et al., 2010; Agostinis  et al., 2011; Couldwell  et al., 2011) as an antiviral, 80 
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(Jacobson  et al., 2001; Kubin  et al., 2005) antibacterial, (Kairyte, Lapinskas, Gudelis & Luksiene 2012; Yow, 81 

Tang, Chu & Huang 2012; Comas-Barceló  et al., 2013; Nafee  et al., 2013; Rodríguez-Amigo  et al., 2015) and 82 

antifungal agent. (Rezusta  et al., 2012) The molecule emits an intense fluorescence in polar organic solvents 83 

(F = 0.35 in ethanol (Duràn & Song 1986; López-Chicón  et al., 2012) and in DMSO (English  et al., 1997)), 84 

and sensitizes singlet oxygen with high yield (Δ = 0.32 in ethanol, (Darmanyan, Burel, Eloy & Jardon 1994) 85 

0.39  0.01 in methanol, (Roslaniec  et al., 2000) and 0.28  0.01 in DMSO (Losi 1997; Delcanale  et al., 2015)). 86 

Due to the hydrophobic character of the molecule, aggregates are formed in aqueous solutions, 87 

characterized by a much weaker fluorescence (Yamazaki, Ohta, Yamazaki & Song 1993) and singlet oxygen 88 

yields. 89 

Binding of Hyp to several proteins prevents aggregation of the otherwise insoluble PS in aqueous media. 90 

(Miskovsky  et al., 1998; Das  et al., 1999; Hritz, Kascakova, Ulicny & Miskovsky 2002; Gbur  et al., 2009; 91 

Roelants  et al., 2011) Proteins are highly biocompatible and warrant good bioavailability of the photoactive 92 

drug. We recently proposed the use of proteins such as apomyoglobin (apoMb) and β-lactoglobulin as 93 

carriers to deliver Hyp to bacterial cells for antimicrobial photodynamic applications. (Comas-Barceló et al., 94 

2013; Delcanale et al., 2015; Rodríguez-Amigo et al., 2015; Delcanale  et al., 2016; Delcanale  et al., 2017)  95 

Serum albumins are interesting additional candidates, given their known capability of binding a variety of 96 

endogenous molecules as well as drugs. (Fasano  et al., 2005; Varshney  et al., 2010) A well-studied example 97 

is human serum albumin (HSA), which represents the most prominent protein in plasma. HSA binds different 98 

classes of ligands at distinct sites which can affect the pharmacokinetics of many drugs and influence the 99 

reactivity of bound compounds. At the same time, HSA can act as carrier in the mechanism of disposal of 100 

potentially harmful molecules. (Fanali  et al., 2012) 101 

The interaction of Hyp with serum albumins has been described in the literature, in an attempt to devise a 102 

photosensitizing agent suitable for tumor or antiviral PDT. (Senthil, Longworth, Ghiron & Grossweiner 1992; 103 

Miskovsky 2002) Early competition experiments suggested that the binding site of Hyp is in the IIA subdomain 104 

of the protein, (Falk & Meyer 1994; Köhler  et al., 1996) a fact later confirmed by Resonance Raman and 105 

surface-enhanced Raman spectroscopy. (Miskovsky et al., 1998) A subsequent thorough investigation where 106 



6 
 

vibrational spectroscopies and molecular modeling were employed, allowed to draw a structural model for 107 

the binding site and characterize specific interactions with amino acid residues for human and bovine (BSA) 108 

serum albumins. (Miskovsky  et al., 2001) Interestingly, the complex between HSA and Hyp appears to be 109 

remarkably stable towards photobleaching upon prolonged exposure to visible light. (Uzdensky, Iani, Ma & 110 

Moan 2002) Hyp was studied in the presence of different biological systems: bound to human serum albumin, 111 

in cultured human adenocarcinoma WiDr cells and in the skin of nude mice. Hypericin was reported to be 112 

more photostable than photosensitizers like mTHPC and Photofrin that are commonly used in PDT. 113 

Serum albumins represent an interesting starting material for the development of nanostructured 114 

macromolecular assemblies endowed with specific functionalities. HSA constitutes about 50% of the protein 115 

present in the plasma of normal healthy individuals, (Evans 2002) corresponding to a concentration ranging 116 

between 33 and 52 g L−1. (Boldt 2010) Similarly, BSA is the most abundant protein in bovine plasma with a 117 

typical concentration of 50 g L−1. Purified bovine albumin is used to help replenish blood or fluid loss in 118 

animals. It is used in testing for the Rh factor in human beings, and as a stabilizer for vaccines. It is also used 119 

in antimicrobial sensitivity tests. (Jayathilakan, Sultana, Radhakrishna & Bawa 2012) One remarkable 120 

advantage of BSA is the low production cost, as large amounts of the protein can be easily purified from 121 

bovine blood, which is a byproduct of the cattle industry. 122 

In this work we have studied the interactions between Hyp and bovine as well as human serum albumins, to 123 

assess the possibility of using the complex between albumins and Hyp as a photosensitizing agent in 124 

antibacterial photodynamic applications for decontamination of food processing materials and possibly 125 

foodstuff. Staphylococcus aureus ATCC 25923 was used as target microorganism, in view of its importance 126 

as human and food-borne pathogen.  127 

 128 

2. Materials and Methods 129 

Hypericin was from HWI Analytik GmbH (Ruelzheim, Germany). Bovine serum albumin (BSA), Human serum 130 

albumin (HSA) and Bovine Albumin–fluorescein isothiocyanate conjugate were from Sigma Aldrich (St. Louis, 131 

MO). Samples were used as received.  132 
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For spectroscopic investigations, protein concentration was always in large excess of Hyp (typically tenfold), 133 

so that the concentration of free Hyp is essentially negligible. 134 

BSA and HSA were labeled with Fluorescein 5-maleimide (FMA, Sigma-Aldrich), a Fluorescein derivative that 135 

is selectively reactive towards Cys residues, following an established protocol. 136 

 137 

2.1 General spectroscopic instrumentation  138 

Absorption spectra were measured with a Jasco V-650 (Jasco Europe) spectrophotometer. Fluorescence 139 

excitation, emission and anisotropy spectra were collected with a Perkin Elmer LS50 spectrofluorometer 140 

(PerkinElmer, Waltham, MA).  141 

Hypericin fluorescence decays were recorded by a FLS920 time-correlated single photon counting system 142 

(TCSPC)  (Edinburgh Instruments, UK) with pulsed LED excitation at 365 nm (EPLED, Edinburgh Instruments, 143 

UK, operated at 10 MHz repetition rate) and detection at 600 nm.  144 

Fluorescence lifetime measurements for FRET experiments were recorded with a 5000U (Horiba JobinYvon, 145 

Edison,NJ) TCSPC system. Measurements were carried out using a pulsed LED at 457 nm (N-457, Horiba Sci., 146 

Edison, NJ). The LED operates at a fixed repetition rate of 1 MHz and pulse width of ~ 1 ns. The emission 147 

decay was recorded at 520 ± 4 nm corresponding to the region of the maximum of FMA emission. The decay 148 

data were analyzed using the deconvolution software DAS 6.2 (IBH, Glasgow, U.K.), which yields the value of 149 

the fluorescence lifetimes (τi) and their fractional amplitude (αi). The quality of the fitting was evaluated 150 

through i.) the value of the reduced χ2 (~1.0-1.5), ii.) the visual inspection of the residuals, and iii.) the value 151 

of the Durbin-Watson parameter (~1.8-2.0). 152 

Fluorescence quantum yields were determined using a comparative method. (Lakowicz 2006) The reference 153 

compound was Hyp-apoMb, for which the fluorescence quantum yield was previously established (F = 0.14 154 

(Delcanale et al., 2015) ). 155 

All experiments were performed at 20 °C. 156 
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2.2 Laser Flash Photolysis 157 

Triplet state decay of Hyp were monitored at 520 nm after photoexcitation with the second harmonic (532 158 

nm) of a nanosecond Nd:YAG laser (Spectron Laser) using a previously described setup. (Abbruzzetti  et al., 159 

2006) Triplet quantum yields were determined using a comparative method, adopting Hyp in ethanol as a 160 

reference compound (T = 0.32 (Darmanyan, Burel, Eloy & Jardon 1994)). 161 

2.3 Fluorescence Correlation Spectroscopy (FCS) 162 

FCS experiments were performed using a Microtime 200 system from PicoQuant, based on an inverted 163 

confocal microscope (Olympus IX70) and equipped with two SPADs (Single Photon Avalanche Diodes) used 164 

in the cross-correlation mode. Excitation was achieved by a 475 nm picosecond diode laser. Fluorescence 165 

emission by Hyp was collected through a bandpass filter and split with a 50/50 splitter between the two 166 

detection channels. Hyp concentration was kept in the nM range, so that only a few molecules were detected 167 

in the confocal volume. 168 

  169 
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2.4 STED nanoscopy 170 

Stimulated emission depletion (STED) nanoscopy has been performed using a custom made setup equipped 171 

with a supercontinuum pulsed laser source (ALP-710-745-SC, Fianium LTD, Southampton, UK) described 172 

elsewhere. (Delcanale et al., 2015) We selected the excitation wavelength by means of an AOTF, while the 173 

STED wavelength is predefined by the laser outputs, in particular the 715 nm output is in resonance with a 174 

vibronic transition in the emission spectrum. (Comas-Barceló et al., 2013) The laser has a repetition frequency 175 

of 20MHz and a pulse width of about 100ps. In all the experiments we used 566 nm for excitation and 715nm 176 

for STED. The doughnut shape of the STED beam is realized by a vortex phase plate (RPC photonics inc., 177 

Rochester, NY, USA). The beams are scanned on the sample by galvanometer mirrors (Till-photonics, FEI 178 

Munich GmbH, Germany), focused by a HCX PL APO CS 100x 1.4NA oil (Leica Microsystems, Mannheim, 179 

Germany) objective and fluorescence is collected by an avalanche photodiode (SPCM-AQRH-13-FC, Excelitas 180 

Technologies, Vaudreuil-Dorion, Quebec, Canada) in the spectral window 670-640nm. (Bianchini  et al., 2015) 181 

 182 

2.5 Microbial strains and growth conditions 183 

S. aureus ATCC 25923 was grown overnight in sterile Luria Bertani medium (LB) at 37°C. Stock inoculum 184 

suspensions were prepared in sterile PBS and adjusted to an optical density of 0.4 at 600 nm. 185 

 186 

2.6 Bacterial photoinactivation 187 

Cell suspensions in sterile PBS were incubated for 30 min in the dark at room temperature with the PS. The 188 

final concentration of the PS in the cell suspensions was 10 μM. Then, 0.3 mL of the suspensions was placed 189 

in 96-well plates. 190 

Irradiation of bacterial colonies was conducted using a RGB LED light source (LED par 64 short, Show Tec 191 

Highlite International B.V., Kerkrade, The Netherlands), equipped with 19, 3W, RGB LEDs. The green output 192 
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at 515 nm (40 nm FWHM) was chosen given the good overlap with the absorption spectrum of Hyp (Figure 193 

1A). The irradiance at the surface of a 96 well plate was homogeneous and corresponds to 16 mW/cm2 in the 194 

green. Exposure of cultured cells was performed for 0, 5, 15 and 30 minutes which correspond to light doses 195 

of 0, 4.9, 14.7, and 29.4 J/cm2, respectively. 196 

The bacterial suspensions were serially diluted, seeded on tryptic soy agar, and incubated in the dark for 24 197 

h at 37 °C. Colony-forming units (CFUs) were counted to calculate the survival fraction. 198 

 199 

3. Results and discussion 245 

3.1 Interaction between Hyp and serum albumins 246 

Binding of Hyp to serum albumins is readily detected from the changes in the absorption and in the 247 

fluorescence emission spectra that occur when Hyp is in the presence of the proteins. (Miskovsky et al., 1998; 248 

Miskovsky et al., 2001; Hritz, Kascakova, Ulicny & Miskovsky 2002) As shown in Figure 1A, the absorption 249 

spectrum of Hyp in PBS buffer (green curve) is characterized by broad absorption bands, due to the formation 250 

of aggregates. (Miskovsky et al., 1998) In the presence of serum albumins, the absorption bands become 251 

more intense and structured (red and black curves), as previously reported. (Miskovsky et al., 2001) Due to 252 

the interaction with the protein, Hyp is kept in a hydrophobic environment that prevents aggregation and 253 

mimics the conditions met in good organic solvents like DMSO and ethanol, where absorption bands are 254 

narrow and more intense. (Comas-Barceló et al., 2013) When bound to serum albumins, absorption maxima 255 

for Hyp-HSA are observed at 553 nm and 596 nm, whereas for Hyp-BSA peaks are located at 551 nm and 593 256 

nm. 257 

Figure 1B reports the fluorescence excitation and emission spectra for Hyp-BSA and Hyp-HSA.  The 258 

monomeric state allows the bound Hyp to emit a relatively intense fluorescence, with prominent bands at 259 

596 nm and 609 nm for Hyp-BSA and Hyp-HSA, respectively. Minor peaks are observed at 645 nm for both 260 

compounds. It is worth recalling that, due to aggregation, Hyp in aqueous solutions is essentially not 261 

fluorescent. Fluorescence excitation and emission occur at slightly different wavelengths for the two 262 
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proteins, in agreement with the different environment of the binding sites for Hyp in HSA and BSA. 263 

(Miskovsky et al., 2001)  264 

The observed effects are similar to those reported for Hyp binding to apomyoglobin (apoMb) (Comas-Barceló 265 

et al., 2013) and -lactoglobulin. (Rodríguez-Amigo et al., 2015; Delcanale et al., 2017)  266 

The fluorescence quantum yield for the complexes can be estimated using Hyp-apoMb as a reference (F = 267 

0.14 (Delcanale et al., 2015) ) and is readily evaluated as F = 0.11 and F = 0.12 for Hyp-BSA and Hyp-HSA, 268 

respectively. 269 

The increase in fluorescence upon binding allows to determine the association constant. (Comas-Barceló et 270 

al., 2013) Binding of Hyp to albumins occurs with moderate affinity. The dissociation constant for HSA-Hyp is 271 

Kd = (1.1  0.2)10-5 M and for BSA-Hyp is Kd = (2.1 0.2) 10-5 M. The value we retrieved for the dissociation 272 

constant from HSA is lower (about 8-fold) than a previous determination. (Senthil, Longworth, Ghiron & 273 

Grossweiner 1992) 274 

 275 

Binding of Hyp to the studied proteins leads to a strong increase in fluorescence anisotropy. Figure 1C 276 

compares the anisotropy measured for Hyp-HSA and for Hyp-BSA solutions, that is similar to the one 277 

determined for Hyp-apoMb. (Delcanale et al., 2015) When Hyp is bound to albumins, rotational 278 

depolarization is a much slower process and emission occurs before the polarization selected upon 279 

photoexcitation is lost. 280 

Fluorescence emission decays for Hyp-HSA and for Hyp-BSA solutions were measured by collecting the 281 

emission at 600 nm after pulsed excitation at 365 nm. Sample curves are reported in Figure 1D. Unlike the 282 

case of ethanol or DMSO solutions, where fluorescence emission decays with a single exponential relaxation, 283 

(López-Chicón et al., 2012) (Comas-Barceló et al., 2013) (Delcanale et al., 2015) the decay for albumin-bound 284 

Hyp is best described by a biexponential function. The retrieved lifetimes are 1 = 2.98 ns (45 %) and 2 = 5.52 285 

ns (55 %) for Hyp-HSA and 1 = 3.13 ns (23 %) and 2 = 6.11 ns (77 %) for Hyp-BSA. In both cases Hyp 286 
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concentration was 4.7 M while albumin was 47 M. Decay parameters are similar to those reported in the 287 

literature. (Das et al., 1999) The observed lifetimes are comparable to those previously reported when Hyp 288 

is bound to apoMb (Comas-Barceló et al., 2013) or to dimeric -lactoglobulin. (Delcanale et al., 2017) 289 

Conversely, Hyp in PBS buffer is aggregated and fluorescence decays through a complex multiexponential 290 

process with a dominant, short lived component, indicative of strong quenching of the excited state and 291 

scattering from the aggregates. (Lenci  et al., 1995; López-Chicón et al., 2012) 292 

 293 

3.2 Labeling of albumins with FMA 294 

BSA and HSA were selectively labeled with FMA, a fluorescent probe that binds selectively to Cys34, which is 295 

the only Cys residue which is not involved in a disulfide bond. The labeling provides a local fluorescent probe 296 

and a spatial reference in each protein that can be exploited to further assess interaction of Hyp with the 297 

proteins. Hyp binds in the IIA subdomain of the protein nearby Trp214, (Miskovsky et al., 1998; Miskovsky et 298 

al., 2001) located at about 30 Å from Cys34. The fluorescence emission spectrum of FMA strongly overlaps 299 

to the absorption spectrum of Hyp. It is thus expected that FRET may occur between FMA acting as the donor, 300 

and Hyp as the acceptor. Due to the spectral properties of the two fluorophores, it is difficult to detect the 301 

energy transfer from FMA to Hyp based on changes in emission intensity. We have thus monitored the 302 

fluorescence lifetime of the FMA donor. 303 

The average lifetime of the donor is 3.58 ns for HSA-FMA and 4.47 ns for BSA-FMA. In the presence of Hyp, 304 

these values decrease to 3.44 ns and 4.21 ns, respectively. The FRET efficiency can be calculated as 0.039 for 305 

HSA-FMA and 0.058 for BSA-FMA. From the spectral data it is possible to estimate the Förster radius as R0 = 306 

1.54 nm. Using the FRET efficiencies reported above, the distance between FMA and Hyp is estimated as ~2.5 307 

nm BSA-FMA and ~2.6 nm for HSA-FMA, in keeping with the expected values. 308 

It is worth observing that the affinity for Hyp is not affected by the presence of FMA. The added value of 309 

albumin co-labeling with FMA is that the presence of this second fluorophore may be exploited as a second 310 
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fluorescence readout in fluorescence imaging applications. This is expected to minimize the photoinduced 311 

generation of cytotoxic reactive oxygen species by hypericin. 312 

 313 

3.3 Triplet state 314 

Hyp bound to the hydrophobic pockets in albumins is shielded from molecular oxygen in the buffer. As a 315 

consequence, the triplet state of the protein-bound Hyp is much longer lived than the triplet states of solvent 316 

exposed PS molecules. Figure 2A shows the triplet decay detected through the absorption changes at 510 317 

nm. The triplet lifetime of HSA-bound Hyp, T = (40  6) s, is longer than the one of BSA-bound Hyp, T = (17 318 

 3) s, suggesting that the binding site is located deeper in the protein matrix and more protected from 319 

dissolved molecular oxygen.  The triplet lifetime for albumin-bound Hyp is sensibly longer than the one 320 

observed for Hyp bound to apomyoglobin (11.6 0.1 s) (Delcanale et al., 2015) and -lactoglobulin (10 2) 321 

s, (Delcanale et al., 2017) where shielding from the solvent appears less effective. 322 

The triplet yields for HYp-BSA (T = 0.13) and Hyp-HSA (T = 0.10) were readily calculated using Hyp in ethanol 323 

as a reference, for which T = 0.32.  324 

The presence of the triplet state is further confirmed by Fluorescence Correlation Spectroscopy (FCS) 325 

experiments. The autocorrelation functions for Hyp-BSA (blue curve in Figure 3D) and Hyp-HSA (not shown) 326 

are very similar. For both compounds, the best fit was obtained using a model comprising a triplet state (with 327 

lifetime of about 20 s) and a diffusive species. The diffusion coefficient of the fluorescent compound is about 328 

60 m2/s, in agreement with literature values for serum albumins.  (Raj & Flygare 1974) This indicates that 329 

the molecular weight of the observed fluorescent species coincides with that of albumin, confirming 330 

formation of the complex between Hyp and the proteins. 331 

The above data show that binding of Hyp to BSA or HSA occurs with an appreciable affinity and preserves the 332 

photophysics of the compound. The resulting nanostructure is thus endowed with triplet and fluorescence 333 

yields that are similar to those previously reported for complexes with other, smaller size globular proteins. 334 
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 335 

3.4 Interaction with bacterial cells 336 

Evidence for the existence of spontaneous interactions between Hyp transported by albumins and bacterial 337 

cells was provided by FCS measurements. S. aureus suspensions were incubated for 30 minutes with Hyp-338 

BSA (to final concentrations [Hyp] = 100 nM and [BSA] = 30 M). The suspension contained also BSA labeled 339 

with fluorescein isothiocyanate at 100 nM concentration. This provided us with two fluorescent probes that 340 

enable monitoring separately the interaction with bacteria of Hyp, through its red emission, and of the 341 

protein, through the green emission of the covalently attached label. 342 

The fluorescence intensity time-traces (MCS traces) monitored in the red show large intensity peaks (Figure 343 

3A), which correspond to bacteria going through the confocal volume of the microscope, over a small 344 

background. The low intensity background reflects the presence of a very small fraction of unbound Hyp-BSA 345 

molecules. The very slow diffusing species at low (~5 nM) concentration, giving rise to the spikes, is identified 346 

with bacteria, decorated with several copies of Hyp-BSA.  When the green emission is monitored instead 347 

(Figure 3B), the MCS trace is devoid of the large spikes. Figure 3C shows an expanded view on selected 348 

portions of the MCS traces reported in Figures 3A (in a region corresponding to bacteria passing through the 349 

confocal volume) and 3B.  350 

The corresponding cross-correlation functions show dramatically different shapes. Analysis of the cross-351 

correlation curve calculated on the full MCS trace for red fluorescence (red curve in Figure 3E) led to an 352 

estimate of the diffusion coefficient D as ~0.3 μm2/s. According to the Stokes-Einstein equation for spherical 353 

particles, this value corresponds to diffusing species of radius ~0.7 μm, roughly in keeping with the expected 354 

size of the investigated S. aureus cells. On the other hand, the cross-correlation curve monitored in the green 355 

(green curve in Figure 3E) is very similar to the one measured for Hyp-BSA alone (blue curve in Figure 3E). 356 

The model used to describe the green curve comprises a triplet state (of about 20 s lifetime) and a diffusion 357 

coefficient of 60 m2/s, indicating that the diffusing species emitting green fluorescence is albumin freely 358 

diffusing in solution and not attached to the bacteria. If the complex between Hyp and BSA was stable, the 359 
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diffusion behavior would have been the same at both wavelengths. This finding suggests that Hyp is 360 

downloaded from the protein to the bacterial wall, where it is most likely embedded in the membrane. Red 361 

emission arising from bacterial wall is indeed observed for S. aureus loaded with Hyp (Figure 3F). The STED 362 

image shows that the compound is localized on the bacterial wall, with little, if any, internalization. (Delcanale 363 

et al., 2015) The same distribution of fluorescence emission is observed when S. aureus is incubated with 364 

Hyp-apoMb (Figure 3G), Hyp-BSA (Figure 3H), or Hyp-HSA (not shown). This finding means that the protein 365 

is only providing a temporary docking site ensuring good solubilization of the compound in the buffered 366 

solution. When the complexes are in presence of bacteria, Hyp is exchanged to the bacterial wall, where it 367 

finds a better environment within the membrane. 368 

Analysis of the TCSPC photon histogram built from the full MCS trace measured for the red emission in the 369 

presence of S. aureus (Figure 3D) afforded biexponential decays similar to those observed for Hyp-BSA in PBS 370 

solutions (Figure 1D). The retrieved lifetimes and weights are a bit different when the TCSPC histogram is 371 

calculated over a range where no large peaks are detected (reproducing the parameters observed for  Hyp-372 

BSA), or when restricting the estimate to a high intensity peak (1 = 2.69 ns (38 %) and 2 = 5.94 ns (62 %)). 373 

The change in lifetime may be due to different interaction experienced by the photosensitizing compound 374 

with the bacterial wall. 375 

No substantial changes in the triplet state decay of Hyp-BSA could be observed when the compound was in 376 

the presence of S. aureus cells (Figure 2B). The triplet lifetime τT in the presence of S. aureus was 21±1 μs for 377 

Hyp-BSA, indicating a similar degree of protection of the triplet state from molecular oxygen after binding to 378 

the bacteria.  379 

 380 

3.5 Bacterial photoinactivation 381 

The use of hypericin in antimicrobial photodynamic therapy is well established, (Rezusta et al., 2012; Yow, 382 

Tang, Chu & Huang 2012) and the advantages of using a protein as a biocompatible delivery vehicle have 383 

been proven. (Comas-Barceló et al., 2013; Rodríguez-Amigo et al., 2015; Delcanale et al., 2017) To assess the 384 
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efficacy of the constructs Hyp-BSA and Hyp-HSA as photosensitizing agents we have tested the compounds 385 

in photoinactivating the Gram-positive Staphylococcus aureus. The results obtained with Hyp-BSA and Hyp-386 

HSA are compared with those obtained for free Hyp and for Hyp-apoMb under the same experimental 387 

conditions. Figure 4 reports the change in Staphylococcus aureus population at increasing light dose in the 388 

presence of the different photosensitizing compounds. 389 

The absence of dark-toxicity for all complexes is evident from the lack of reduction in population for bacteria 390 

kept in the dark (points corresponding to light dose = 0 J/cm2 in Figure 4). All compounds become phototoxic 391 

when exposed to visible light and lead to a dramatic reduction of population upon increasing the applied 392 

light dose. At a dose of 15 J/cm2, the drop in population corresponds to 5 log10 units for Hyp-BSA, a 393 

performance similar to the one observed for Hyp-apoMb. At the same light dose, Hyp and Hyp-HSA show an 394 

even higher bacterial eradication reaching the value of nearly 8 log10 units. The same performance is 395 

observed for Hyp-apoMb at a light dose of roughly 30 J/cm2, whereas for Hyp-BSA the drop in CFUs remains 396 

stable at 5 log10 units also at this light dose. 397 

While the bacterial phototoxicity of complexes of Hyp with serum albumins is not much different from that 398 

of free Hyp, a fundamental advantage of the formulation exploiting the proteins as carriers stems from the 399 

fact that the photosensitizing molecule is delivered to the cell suspension using a buffered aqueous solution. 400 

This is a remarkable improvement over administration of free Hyp in an organic solvent (either DMSO or 401 

ethanol) because it is more compatible with the use in a food processing environment and hence holds the 402 

potential for industrial applications. 403 

It is worth pointing out the higher efficiency of the complex Hyp-HSA over Hyp-BSA. This finding suggests the 404 

possible presence of a specific interaction mechanism, leading to a higher degree of damage inflicted to the 405 

microbial cells when Hyp is delivered using HSA. Thus, the use of albumins as drug carriers may bear some 406 

interest since specific interactions between albumin and bacterial components, presented on the exterior of 407 

the cell wall, may be exploited to improve targeting of bacterial species. One example is protein G-like 408 

albumin binding module (GA module), that is found in a family of surface proteins of different bacterial 409 
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species. Protein PAB from the anaerobic bacterium Finegoldia magna (formerly Peptostreptococcus magnus) 410 

represents one of these proteins. Protein PAB contains a domain of 53 amino acid residues known as the GA 411 

module. GA homologs are also found in protein G of group C and G streptococci. It has been reported that 412 

the GA module binds near a cleft located between domain IIA and IIIB of HSA. (Lejon  et al., 2004) 413 

Interestingly, Hyp binds within domain IIA of HSA, near the interaction site with the GA module. Many Gram-414 

positive bacteria express surface proteins with ability to bind serum proteins. (Navarre & Schneewind 1999) 415 

The surface proteins typically contain tandemly repeated serum protein-binding domains with one or several 416 

specificities, which often include albumin binding. (Kronvall, Simmons, Myhre & Jonsson 1979; Myhre & 417 

Kronvall 1980; Nilvebrant & Hober 2013) It remains to be established whether these specific interactions may 418 

be exploited in selectively addressing bacterial contaminations. Unfortunately, STED imaging experiments 419 

did not provide a clue to a possible difference in the interaction between albumins and the bacterial wall. 420 

Finally, in view of the potential application in food industry, it is worth noting that Regulation EC N° 421 

1333/2008 on food additives does not consider proteins like albumins, which are natural constituents of food 422 

of animal origin, to be food additives. (European Commission 2008) Albumin, the most abundant plasma 423 

protein, exhibits excellent gelling and water binding capacity and it is often used to improve texture, 424 

sliceability and yield losses of processed meat products. (Parés, Toldrà, Saguer & Carretero 2014) In our study, 425 

we demonstrate the use of serum albumins to transport photosensitizers and preserve their antimicrobial 426 

action on bacterial suspensions. Future studies aimed at evaluating the efficacy on contaminated food 427 

processing material will provide further assessment on industrial applicability.  428 

6. Conclusions 429 

The complex between Hyp and serum albumin represents a highly biocompatible nanostructure preserving 430 

bioavailability of the photoactive compound. The photosensitizing properties of the compound allow to 431 

obtain a decrease in Staphylococcus aureus ATCC 25923 population between 5- and 8- orders of magnitude 432 

upon exposure to visible light.  433 
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While hypericin shows a photodynamic action that is comparable to those observed for the complexes 434 

between hypericin and serum albumins, the low water solubility of the photosensitizer requires the use of 435 

organic solvents that may not be acceptable in perspective applications. Thus, the use of a solubilizing agent 436 

that is fully biocompatible and easily removed by simple rinsing with water, introduces a remarkable 437 

advantage in terms of its practical use. 438 

Moreover, the presence of potential binding sites on proteins exposed on the bacterial wall in several strains 439 

may be exploited to improve targeting of the microorganisms. 440 

The protein carrier and the natural product hypericin are fully compatible with applications in food processing 441 

environments, especially on food contact surfaces and equipment, and the nanostructure holds the potential 442 

to be introduced as an effective disinfectant for food manufacturing and handling materials.  443 

 444 
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Figure legends 453 

Figure 1. A. Absorption spectra of 5 M Hyp solutions in PBS buffer (green), and in the presence of HSA (50 454 

M, black) or BSA (50 M, red). The optical path was 0.4 cm. B. Fluorescence excitation (solid, em = 646 nm) 455 

and emission (dashed, ex = 551 nm) spectra for 5 M Hyp solutions in the presence of excess HSA (50 M, 456 

black) or BSA (50 M, red).  C. Fluorescence excitation anisotropy for 5 M Hyp PBS buffered solutions in the 457 

presence of HSA (50 M, black) or BSA (50 M, red). For comparison, the anisotropy measured for Hyp-458 

apoMb is shown as the green curve. (Delcanale et al., 2015) em = 620 nm in all cases. The optical path was 459 

0.4 cm. D. Fluorescence decays measured for a 1.3 M DMSO solution (green), and for 2.6 M Hyp PBS 460 

buffered solutions in the presence of HSA (50 M, black) BSA (50 M, red). Excitation was at 365 nm. The 461 

blue line is the IRF of the pulsed LED and the gray lines are the results of the reconvolution fits. 462 

 463 

Figure 2.  A. Triplet-triplet absorption after excitation at 532 nm with a nanosecond pulsed laser for Hyp in 464 

ethanol (black), Hyp-BSA (green), and Hyp-HSA (blue). [Hyp] = 10 M in all cases, [BSA] = 100 M, [HSA] = 465 

100 M. Absorbance change was normalized to allow easier comparison of time traces. B. Triplet-triplet 466 

absorption after excitation at 532 nm with a nanosecond pulsed laser for Hyp-BSA (green) in the presence of 467 

S. aureus. [Hyp] = 10 M, [BSA] = 100 M. Red solid curves are the result of the fitting to a single exponential 468 

decay function. 469 

 470 

Figure 3 Fluorescence emission in the red (A) and in the green (B) for a 600 s acquisition on a S. aureus 471 

suspension loaded with Hyp bound to FITC-BSA. Time bins are 1 ms wide. (Hyp 100 nM, BSA 30 M, FITC-BSA 472 

100 nM). C. Expanded view on selected portions of the MCS traces in A and B. D. TCSPC histograms calculated 473 

for the full acquisition time in A (red curve) and B (green curve). The black curves are tail fits to a double 474 

exponential decay (for the red curve) with lifetimes 1 = 2.96 ns (40 %) and 2 = 6.10 ns (60 %) or a triple 475 

exponential decay (for the green curve) with lifetimes 1 = 0.48 ns (60 %), 2 = 1.88 ns (29 %) and 3 = 4.60 ns 476 

(19 %). E. Cross-correlation function (red curve) calculated for the trace in panel A. Best fit is obtained with a 477 
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diffusional model plus a triplet state decay. The diffusing species is characterized by a diffusion coefficient D 478 

= 0.3 m2s-1 (consistent with diffusing objects the size of S. aureus) and the triplet decay by a lifetime of about 479 

20 s. The green curve is the cross-correlation curve obtained for the trace in panel B. Best fit is obtained 480 

with a diffusional model plus a triplet state decay. The diffusing species is characterized by a diffusion 481 

coefficient D = 60 m2s-1, consistent with the expected value for BSA, and the triplet decay has a lifetime of 482 

about 20 s. The blue curve is the cross-correlation curve obtained for Hyp-BSA in PBS buffer (Hyp 100 nM, 483 

BSA 30 M) in the absence of bacteria, monitoring emission in the red. The diffusing species is characterized 484 

by a diffusion coefficient D = 60 m2s-1, indicating that Hyp is bound to BSA.  F. Selected STED image of S. 485 

aureus cells in the presence of Hyp (1 M) collected under excitation at 566 nm and detection at 605\70 nm. 486 

The STED beam was at 715 nm, power 30 mW and dwell time 0.05 ms. Scale bar, 2m. G. Selected STED 487 

image of S. aureus cells in the presence of Hyp-apoMb ([Hyp] = 1 M, apoMb = 3 M). Conditions as in F. H. 488 

Selected STED image of B. S. aureus cells in the presence of Hyp (500nM) bound to BSA (5 M) collected 489 

under excitation at 560 nm and detection at 570-670 nm. The STED beam was at 775 nm, power 130 mW 490 

and scan speed 8000 Hz. Scale bar, 1m, 128 averages. Gating windows from 1 ns to 7 ns. 491 

 492 

Figure 4. Light dose effects on Staphylococcus aureus photoinactivation by Hyp (green triangles, 10 M) and 493 

the complexes between Hyp (10 μM) and BSA (100 μM, red circles), apoMb (30 μM, black squares), or HSA 494 

(100 μM, blue triangles).  495 

 496 

  497 
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