
Article

Optimization of Finite-Differencing Kernels for
Numerical Relativity Applications

Roberto Alfieri 1,2 ID , Sebastiano Bernuzzi 2,3,* ID , Albino Perego 1,2,4 ID and David Radice 5,6 ID

1 Dipartimento di Scienze Matematiche Fisiche ed Informatiche, Universitá di Parma, I-43124 Parma, Italia;
roberto.alfieri@unipr.it (R.A.); albino.perego@pr.infn.it (A.P.)

2 Istituto Nazionale di Fisica Nucleare, Sezione Milano Bicocca, Gruppo Collegato di Parma,
I-43124 Parma, Italia

3 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743 Jena, Deutschland
4 Istituto Nazionale di Fisica Nucleare, Sezione Milano Bicocca, I-20126 Milano, Italia
5 Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA; david.e.pi.3.14@gmail.com
6 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA
* Correspondence: sebastiano.bernuzzi@gmail.com

Received: 23 March 2018; Accepted: 24 May 2018; Published: 25 May 2018
����������
�������

Abstract: A simple optimization strategy for the computation of 3D finite-differencing kernels
on many-cores architectures is proposed. The 3D finite-differencing computation is split
direction-by-direction and exploits two level of parallelism: in-core vectorization and multi-threads
shared-memory parallelization. The main application of this method is to accelerate the high-order
stencil computations in numerical relativity codes. Our proposed method provides substantial
speedup in computations involving tensor contractions and 3D stencil calculations on different
processor microarchitectures, including Intel Knight Landing.

Keywords: numerical relativity; many-core architectures; knight landing; vectorization

1. Introduction

Numerical relativity (NR) is the art of solving Einstein’s equations of general relativity using
computational physics techniques. The typical NR application is the simulation of strong-gravity
astrophysical phenomena like the collision of two black holes or two neutron stars, and the core-collapse
and explosion of massive stars. Those simulations are of primary importance for fundamental
physics and high-energy astrophysics, including the emerging field of gravitational-wave and
multi-messenger astronomy [1–3]. Some of the open problems in the simulation of strongly gravitating
astrophysical sources demand the modeling of the dynamical interaction between supranuclear-density,
high-temperature matter [4], and neutrino radiation in complex geometries [5]; the resolution of
magnetohydrodynamical instabilities in global simulations [6,7]; and the production of accurate
gravitational waveforms for many different physical settings [8,9].

Addressing these challenges will require significant computational resources and codes able to
efficiently use them. For example, in the case of neutron star mergers, typical production simulations
use few hundreds cores and require ∼100, 000 CPU-h to cover the dynamical timescale of the last
orbits (O(100) milliseconds of evolution). However, to fully capture hydromagnetic instabilities in the
merger remnant, necessary to predict the electromagnetic signature of mergers, it would be necessary
to increase the resolution in these simulations by more than a factor of ten. With current technologies,
a simulation at this scale would require one billion CPU-hrs. Clearly, exascale resources are needed to
perform these simulations.

Exascale high-performance computing, based on energy-efficient and heterogeneous architectures,
offers the possibility to tackle some of the scientific challenges of relativistic astrophysics in the

J. Low Power Electron. Appl. 2018, 8, 15; doi:10.3390/jlpea8020015 www.mdpi.com/journal/jlpea

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della Ricerca - Università degli Studi di Parma

https://core.ac.uk/display/217804144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-6201-9335
https://orcid.org/0000-0002-2334-0935
https://orcid.org/0000-0002-0936-8237
https://orcid.org/0000-0001-6982-1008
http://dx.doi.org/10.3390/jlpea8\num [minimum-integer-digits = 2]{2}\num [minimum-integer-digits = 4]{15}
http://www.mdpi.com/journal/jlpea
http://www.mdpi.com/2079-9268/8/2/15?type=check_update&version=2

J. Low Power Electron. Appl. 2018, 8, 15 2 of 13

strong-gravity regime. On the technological side, the Intel Knight Landing (KNL) processor brings up
most of the features required for the upcoming exascale computing, such as power efficiency, with
large GFLOPS per watt ratios, and high peak performance, provided by the many-core architecture
and by large vector instructions [10]. The KNL many-core architecture allows users to approach
exascale systems with the standard MPI/OpenMP programming model that is standard for NR codes.
More recently, Intel released the Skylake (SKL) processor microarchitecture that succeeds the Intel
Broadwell (BDW) architecture and supports the same AVX-512 instruction set extensions as the KNL
one. Vectorization has a key role since it introduces an increasing speedup in peak performance,
but existing NR codes do require refactoring or even the introduction of new programming paradigms
and new algorithmic strategies for the solution of Einstein equations.

This work discusses the first steps towards the implementation of a highly scalable code that
will be dedicated to NR simulations for gravitational wave astronomy and relativistic astrophysics.
The primary focus is on the vectorization of the basic kernels employed for the discretization of
the spacetime’s metric fields. We consider the optimization of the computation of finite-differencing
derivatives on a spatially uniform, logically Cartesian patch using high-order-accurate stencils in 3D.
The problem has been discussed rarely since high-order finite-differencing operators are peculiar to
NR applications, e.g., [11–14], but not often employed in other branches of relativistic astrophysics
(but see [15,16] for an optimization discussion). Here, we propose an optimization strategy based
on the use of OpenMP 4.0 PRAGMA and on two levels of parallelism: in-core vectorization and
multi-threads shared memory parallelization.

2. Method

The general relativistic description of the spacetime (metric fields) plus matter and radiation fields
reduces to solving an initial-boundary value problem with nonlinear hyperbolic partial differential
equations (PDEs) in three spatial dimensions plus time (3 + 1 D).

A toy model equation for the metric fields, g, is the tensor wave equation,

∂thij = −2Kij , (1a)

∂tKij = Rij , (1b)

obtained by linearizing Einstein equations around a reference background η, i.e., assuming g = η+ h
with |hij| � |ηij|. In the above equations, i, j = 1, 2, 3 are the spatial indices, hij the metric perturbation,
Kij the extrinsic curvature, and Rij the Ricci tensor. The latter takes the form

Rij = −
1
2

ηkl∂k∂lhij, (1c)

where ηij is the inverse background metric and a sum on k is understood (Einstein’s summation
convention).

An even simpler toy model retaining all the key features is the 3D scalar wave equation,

∂tφ = Φ , (2a)

∂tΦ = ∆φ = ηij∂i∂jφ . (2b)

The PDE system in Equation (1) is in a first-order-in-time and second-order-in-space form and
mimics the conformal BSSNOK and Z4 free evolution schemes for general relativity [17–20]. Note that
the basic operations of the right-hand side (RHS) of Equation (1) are derivatives, metric inversion,
and contractions (i.e., multiplications, divisions, and sums).

The numerical solution of Equations (1) and (2) is based on finite differencing. The 3D flat
space is discretized with a uniform Cartesian mesh of grid spacing hx = hy = hz = h and of size
N = nxnynz = n3 (n is hereafter referred as block-size). We indicate with (i, j, k) the grid indices in the

J. Low Power Electron. Appl. 2018, 8, 15 3 of 13

three directions and with (xi, yj, zk) the corresponding grid-node. Each component of the fields on
a given grid-node is denoted by ui,j,k = u(xi, yj, zk). The derivatives on the RHS, e.g., in the y-direction,
are approximated by

(
∂yu

)
i,j,k ≈ h−1

S

∑
s=−S

csui,j+s,k , (3a)

(
∂2

yu
)

i,j,k
≈ h−1

S

∑
s=−S

dsui,j+s,k , (3b)

where S is the size of the stencil, cs and ds are the finite-differencing coefficients reported in Table 1,
and the error terms scale asO(h2S). Similar expressions hold for the other directions. Mixed derivatives
are approximated by the successive application of 1D finite differencing operators. The method of
lines and standard explicit integration algorithms are then used to time-update the state vector
ui,j,k = {ui,j,k}, composed of all the field components, with evolution equations in the form
u̇i,j,k(t) = Fi,j,k (u, ∂u, ∂∂u). Our work focuses on the optimization of the finite differencing kernel
and tensor contractions for the computation of the RHS of these equations.

Table 1. Coefficients of 1D finite differencing stencils for the evaluation of first (cs, top) and second
(ds, bottom) derivatives according to Equation (3), up to a stencil size S = 4. Stencils are symmetric
with respect to 0.

S 0 1 2 3 4

cs for s ≤ S

2 0 2/3 −1/12
3 0 3/4 −3/20 1/60
4 0 4/5 −1/5 4/105 −1/280

ds for s ≤ S

2 −5/2 4/3 −1/12
3 −49/18 3/2 −3/20 1/90
4 −205/72 8/5 −1/5 8/315 −1/560

Our global strategy for the RHS computation is composed of two levels: (i) in-core vectorization,
that takes advantage of single instruction multiple data (SIMD) parallelism on aligned memory;
and (ii) multi-thread and shared-memory parallelism of the outer loops. The second level splits RHS
evaluations in block of operations (derivatives, contractions, etc.) in order to fit instructions and
data cache. We expect the latter optimization to be particularly important for the Einstein equations,
where the RHS evaluation involves accessing tens of grid functions.

The x-direction is the only one where elements are contiguous in memory; thus, SIMD
parallelization is only possible along its fastest running index. The other two directions are accessed
as u[ijk + s*dj] or u[ijk + s*dk], where dj = nx and dk = nxny. Thus, for the approximation of
the derivatives in the y- and z-directions, stridden memory access is unavoidable. Instead of using
vector instructions to evaluate Equation (3), we vectorize the code by grouping together points in the
x-direction, i.e., the derivatives in the y-direction are computed as:

J. Low Power Electron. Appl. 2018, 8, 15 4 of 13

(
∂yu

)
i,j,k ≈

S

∑
s=−S

csui,j+s,k , (4a)

(
∂yu

)
i+1,j,k ≈

S

∑
s=−S

csui+1,j+s,k , (4b)

...(
∂yu

)
i+V,j,k ≈

S

∑
s=−S

csui+V,j+s,k , (4c)

where V is the size of the vector register, e.g., 8 on KNL nodes when computing in double precision.
This simple in-core parallelization strategy is then combined with threading for out-of-core, but in-node
parallelism using the OpenMP library. Note that our implementation requires the additional storage
of 1D arrays with temporary data. However, for typical block-sizes (n = 32 or larger), the additional
memory requirements are negligible, even when storing hundreds of grid functions.

A pseudo code of our RHS implementation is the following:

1 #pragma omp p a r a l l e l
2 {
3 /∗ Outer loops OpenMP p a r a l l e l ∗/
4 #pragma omp f o r c o l l a p s e (1) schedule (s t a t i c , 1)
5 f o r (i n t k = kmin ; k <= kmax ; k++)
6 f o r (i n t j = jmin ; j <= jmax ; j ++) {
7 /∗ Loop over tensor i n d i c e s are pulled out of the vec tor ized loops
8 to improve data l o c a l i t y : process one v a r i a b l e a t the time ∗/
9 f o r (i n t a = 0 ; a < NDIM; ++a)

10 f o r (i n t b = a ; b < NDIM; ++b) {
11 /∗ Inner loop SIMD vector ized ∗/
12 #pragma omp simd al igned (ddh , . . : 6 4)
13 f o r (i n t i =imin ; i <=imax ; i ++) {
14 /∗ Compute 2nd d e r i v a t i v e s of the metr ic a t point i (k , j are f i x e d) ∗/
15 ddh [c] [d] [a] [b] [i] = d i f f (h [a] [b] , . . .) ;
16 }
17

18 f o r (i n t a = 0 ; a < NDIM; ++a)
19 f o r (i n t b = a ; b < NDIM; ++b) {
20 #pragma omp simd al igned (R : 6 4)
21 f o r (i n t i = imin ; i <= imax ; ++ i) {
22 i n t const i j k = INDEX3D(i , j , k) ;
23 R[a] [b] [i j k] = 0 . ;
24 f o r (i n t c = 0 ; c < NDIM; ++c)
25 f o r (i n t d = 0 ; d < NDIM; ++d) {
26 /∗ Compute R i c c i tensor by c o n t r a c t i n g metr ic d e r i v a t i v e s
27 with the inverse of the background metr ic ∗/
28 R[a] [b] [i j k] −= 0 .5∗ inv_eta [c] [d] [i]∗ddh [c] [d] [a] [b] [i] ;
29 }
30 }
31 }
32 }
33 }

To ensure optimal performance of our code, we perform aligned memory allocation at 64 bit
boundaries and we ensure that the block-size is a multiple of the vector size. This avoids the need for
and the use of remainder loops. Note that avoiding reminder loops is also necessary to ensure the
exact reproducibility of the calculations. The block-size is fixed and set at a compilation stage.

J. Low Power Electron. Appl. 2018, 8, 15 5 of 13

3. Experimental Setup

The above method is tested on BDW, KNL and SKL nodes of the Marconi cluster at CINECA,
and on BDW and KNL nodes of the High-Performance-Computing (HPC) data center at the University
of Parma. The characteristics of the nodes are listed in Table 2.

Table 2. Characteristics and performance of the BDW, KNL, and SKL nodes used for the tests.

Node Type Intel Xeon Frequency Cores HT Core/Node Perf L1/L2 Cache L3 Cache

BDW E5-2697 v4 2.3 GHz 2 × 18 off 36/1300 GFLOPS 576 KB/4.5 MB 45 MB (Smart Cache)
KNL Phi 7250 1.4 GHz 1 × 68 on 44/3000 GFLOPS 32 KB/1 MB (per tile) 16 GB (MCDRAM)
SKL 8160 2.1 GHz 2 × 24 off 67/3200 GFLOPS 768 KB/1 MB 33 MB L3

We consider independent implementations of the scalar wave and linearized Einstein equations
and exploit the auto-vectorization capabilities of the Intel compiler combined with the introduction
of the PRAGMA SIMD statement. This approach strikes a balance between performance and code
portability. The specific options for auto-vectorization that we employed with Intel C/C++ compiler
v.17.0.2 are:

icc -O3 -xCORE-AVX2, # do Vectorization on BDW,
icc -O3 -xCORE-AVX512, # do Vectorization on SKL,
icc -O3 -xMIC-AVX512, # do Vectorization on KNL,
icc -O3 -no-vec -no-simd, # do not Vectorize.

Note that, in order to completely disable vectorization, we use the options -no-vec for compiler
auto-vectorization and -no-simd to disable the PRAGMA SIMD statements.

While our main results focus on the Intel compiler, Appendix A reports some early tests performed
with the GNU compiler.

The data ui,j,k is stored in contiguous arrays of float or double precision data types. In this work,
we use double precision, as commonly done in current production codes to avoid issues due to the
accumulation of floating point errors over the O(106) timesteps of a typical simulation. Appendix B
reports results comparing float and double precision data types.

4. Results

4.1. Wave Equation

We explore the performance of our method on BDW, KNL and SKL architectures using the wave
equation implementation. Comparative tests on a single core/thread on those architectures are first
considered for variable block-sizes, up to n = 128 points, and with focus on vectorization performance.
Multi-thread performance and strong OpenMP scaling are then analyzed with a fixed block-size of
n = 128 points. The speed of our implementation is measured in terms of Million cells updates per
second. The results of this section refer to the speed of the whole program that is dominated by the
RHS evaluation.

The results relative to the single core optimization are shown in Figure 1. Without vectorization,
the speed on the KNL core is about a factor 3 smaller than on the BDW core; and the speed on the latter
is about 20% smaller than that on the SKL core. When vectorization is enabled, we find a speedup of 1.5
on BDW, of 2 on SKL, and of 4 on KNL. This in-core optimization results are about half the theoretical
maximal speedup of a single core due to the vectorization: 8× for KNL/SKL and 4× for BDW.

We stress that all data fit in the L3 cache memory on the considered architectures. Moreover,
the vectorization efficiency improves even for smaller block-sizes, which fit the L2 and/or L1 cache.
As a consequence, the sub-optimal performance of our implementation cannot be ascribed to the
memory speed alone, at least in the single thread case (see below for a discussion of possible memory
access inefficiencies in the multi-threaded case).

J. Low Power Electron. Appl. 2018, 8, 15 6 of 13

Table 3 reports speedup measurements on the two main operations of the RHS (contraction and
derivatives). Such numbers differ by about a factor 2 or more from the potential speedup reported
by the compiler at compilation time (also reported in the table). Performances are stable for variable
block-sizes as long as the number of floating point operations dominates the computation (n > 32).
Our results are in line with those reported by Intel in a similar test [16].

0 50 100 150 200 250 300
Block size

0

20

40

60

80

100

120

140

160

M
-c

el
l u

pd
at

es
 p

er
 s

ec
on

d

Vectorization. Number of threads = 1
BDW vector
BDW scalar
SKL vector
SKL scalar
KNL vector
KNL scalar

0 50 100 150 200 250 300
Block size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ve
ct

or
 s

pe
ed

up

Vectorization. Number of threads = 1

BDW
SKL
KNL

Figure 1. Single-core performances (left panel) and speedup (right panel) for variable block-sizes and
different node architectures, in the case of the wave equation with stencil size S = 2. The tests have
been executed with vectorization enabled (solid lines) or disabled (dashed lines). The best performance
is obtained for vectorized kernel on SKL nodes.

Table 3. Vectorization speedup on single cores for the wave equation with stencil size S =

2. The block-size is n = 128. The table shows the Intel compiler report information (obtained with
the -qopt-report options) and the measured speedup (ratio between non-vectorized and vectorized
execution time). The measured speedup differs by about a factor 2 or more from the potential speedup.

Operation BDW KNL SKL

Potential Measured Potential Measured Potential Measured

Derivative 5.03 1.7 6.58 3.7 5.73 2.22
Contraction 5.61 1.8 7.77 4 5.61 2.27

The results relative to the multi-thread optimization are shown in Figure 2. The block-size
employed for these tests is n = 128.

Scaling on BDW and SKL nodes is close to ideal until 16 threads; then, we observe a drop of
the performance even when running on 32 physical cores. On the other hand, the KNL node shows
a sustained speedup (about 4×) up to 64 physical cores, and performance remains good also with
hyper-threading enabled (not shown in the figure). The use of the KNL node can, in principle, speedup
computations by more than a factor of 2 with respect to BWD and SKL architectures when the kernel
works on sufficiently large block-sizes. Note, however, that the use of n = 128 is unrealistic for
numerical relativity application since one would be memory limited in that case.

Strong scaling with multiple threads of our vectorized code depends mainly on the available
memory bandwidth when accessing data requested by the stencil code. A high data re-use rate would
hit the local L1 or L2 cache, with high memory bandwidth. In order to optimize the re-use of data in
cache, we used the KMP_AFFINITY environment variable to bind adjacent threads to adjacent cores on
the same socket. On the KNL node, we used the Scatter mode since the hyper-threading was enabled
(see Figure 3). On SKL and BDW nodes, we used the Compact mode.

Although the L2 cache on the KNL architecture can host the allocation of the vectorized x-direction
(the memory pattern amounts to (n× number o f variables× size o f variable) bytes), an L2 cache miss
can happen when processing stencil data with different x-values.

J. Low Power Electron. Appl. 2018, 8, 15 7 of 13

In this case, data belonging to other tiles can be found in the L2 cache through the
Caching/Home Agent (CHA) architecture or in the Multi-Channel Dynamic Random-Access Memory
(MCDRAM), depending on the configured Cluster Mode and on the total memory, which amount to
(n3 × number o f variables× size o f variable) bytes. The MCDRAM can be used as a cache memory
if the node is configured in Cache Mode. If the node is in Flat Mode, it is possible to allocate data
on MCDRAM through the High-Bandwidth Memory (HBM) library or through the memory affinity
control provided by the numactl tool. We tested different MCDRAM modes achieving the same results
since the MCDRAM is rarely involved.

The optimal KNL multi-thread scalability with respect to the BDW and SKL cases, presented
in Figure 2, is due to the good performance in the L2 cache miss management through the CHA
architecture. These results are obtained using the omp for directive with the following clauses:

#pragma omp for collapse(1) schedule(static,1).

The reason for this choice is that adjacent x-arrays (i.e., arrays in the y-direction) are processed
simultaneously by adjacent cores and this guarantees a fast data communication for this type of L2
cache miss. Furthermore, in our production codes, OpenMP is employed on Cartesian blocks of fixed
size given by distributed paralleization; dynamical OMP allocation is not effective in that context.

0 10 20 30 40 50 60 70
Number of threads

0

500

1000

1500

2000

2500

3000

3500

4000

M
-c

el
l u

pd
at

es
 p

er
 s

ec
on

d

Strong OpenMP scaling. Block size = 128
BDW vector
BDW scalar
SKL vector
SKL scalar
KNL vector
KNL scalar

0 10 20 30 40 50 60 70
Number of threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ve
ct

or
 s

pe
ed

up

Strong OpenMP scaling. Block size = 128

BDW
SKL
KNL

Figure 2. Multi-thread performances (left panel) and speedup (right panel) for block-size n = 128 as
a function of the number of threads and for different node architectures, in the case of the wave equation
with stencil size S = 2. Solid and dashed lines refer to enabled and disabled vectorization, respectively.
The KNL node demonstrates better speedup, overall performance and scalability, especially in case of
large block-sizes.

0 10 20 30 40 50 60 70
Number of threads

0

500

1000

1500

2000

2500

3000

3500

4000

M
-c

el
l u

pd
at

es
 p

er
 s

ec
on

d

Strong OpenMP scaling. Block size = 128
KNL-INTEL-AffScatter vector
KNL-INTEL-AffScatter scalar
KNL-INTEL-AffNone vector
KNL-INTEL-AffNone scalar

Figure 3. Effect of pinning threads to KNL cores. The affinity is controlled by the KMP_AFFINITY
environment variable. Cyan lines refer to KMP_AFFINITY=none, orange lines to KMP_AFFINITY=scatter.

J. Low Power Electron. Appl. 2018, 8, 15 8 of 13

4.2. Linearized Einstein Equations

Let us now discuss the results on linearized Einstein equations.
Besides stencil operations, the numerical solution of Einstein’s equations also requires the

evaluation of many tensor operations, such as the contraction of tensor indices and the inversion
of small 3 × 3 or 4 × 4 matrices. Since these operations are local to each grid point and involve
the multiple re-use of data already in cache, they can be more efficiently vectorized. The linearized
Einstein equations are not as algebraically complex as their fully nonlinear counterpart, but can give
an indication of the speedup that could be achieved with vectorization in a production simulation.

We perform a study of the performance of our vectorization and threading strategies for the
linearized Einstein equations using the same compiler options as in Section 4.1. The tests are performed
using a single KNL node on CINECA Marconi. Our results are summarized in Figures 4 and 5.

The single core performances are very encouraging, especially for large block-sizes. Indeed,
on a single core, the vectorized code can achieve close to a factor ∼8 speedup over the non-vector
version of our code. This is the theoretical maximum speedup for double precision calculations if
fused math-addition operations are not used. Even for smaller block-sizes, down to n = 8, we achieve
a speedup factors of ∼5−6. This shows that vectorization would be very beneficial also for production
simulations, where the block-sizes are typically n = 32 or smaller.

When multi-threading, the speedup due to vectorization is somewhat worse. On the one hand,
this is expected because each thread operates on a smaller sub-block of the data. On the other hand,
when comparing vector speedups with threading to those obtained in an equivalently smaller single
core case, we typically find worse speedups in the former case (see Figure 5). This might indicate
that the default tiling employed by OpenMP is not efficient. Improvements could be obtained either
by tuning the tiling, or by switching to a coarse grained parallelization strategy also for OpenMP.
The latter could be, for example, to map threads to individual (small) blocks.

We extended our OpenMP scaling tests all the way up to 68 cores, thus using all of the physical
cores on a KNL node. However, we find the results with 68 threads to be somewhat inconsistent
between runs: sometimes running on 68 threads yields a speedup and sometimes a slowdown. We find
that leaving four physical cores dedicated to OS and IO tasks result in more predictable performances.
Consequently, we do not plan to perform simulations using more than 64 OpenMP threads on the
KNL architecture. Nevertheless, in Figures 4 and 5, we show the results obtained with 68 threads
for completeness.

Case S = 2.

8 16 24 32 48 64 96 128
Block size

106

Ce
ll

up
da

te
s p

er
 se

co
nd

Performance. Number of threads = 1.

scalar
8 x scalar
vector

1 2 4 8 16 32 68
Number of threads

106

107

108

Ce
ll

up
da

te
s p

er
 se

co
nd

Strong OpenMP scaling. Block size = 128.
scalar
8 x scalar
vector

Figure 4. Cont.

J. Low Power Electron. Appl. 2018, 8, 15 9 of 13

Case S = 3.

8 16 24 32 48 64 96 128
Block size

106

Ce
ll

up
da

te
s p

er
 se

co
nd

Performance. Number of threads = 1.

scalar
8 x scalar
vector

1 2 4 8 16 32 68
Number of threads

106

107

108

Ce
ll

up
da

te
s p

er
 se

co
nd

Strong OpenMP scaling. Block size = 128.
scalar
8 x scalar
vector

Case S = 4.

8 16 24 32 48 64 96 128
Block size

106

Ce
ll

up
da

te
s p

er
 se

co
nd

Performance. Number of threads = 1.

scalar
8 x scalar
vector

1 2 4 8 16 32 68
Number of threads

106

107

108

Ce
ll

up
da

te
s p

er
 se

co
nd

Strong OpenMP scaling. Block size = 128.
scalar
8 x scalar
vector

Figure 4. Single-core performance on the KNL architecture, as a function of the block-size (left
panels), and strong scaling with OpenMP, as a function of the number of threads (right panels), for the
linearized Einstein equations with different stencil sizes (top: S = 2, middle: S = 3, bottom: S = 4).
We find nearly ideal vector speedup and scaling for large block-sizes. However, the code performances
appear inconsistent when using all the 68 physical cores on the node, possibly because of the effect of
system interrupts.

8 16 24 32 48 64 96 128
Block size

0

2

4

6

8

Ve
ct

or
 sp

ee
du

p

Vectorization. Number of threads = 1.

S = 2 S = 3 S = 4

1 2 4 8 16 32 68
Number of threads

0

2

4

6

8

Ve
ct

or
 sp

ee
du

p

Vectorization. Block size = 128.

S = 2 S = 3 S = 4

Figure 5. Vectorization speedup for the linearized Einstein equations for S = 2, S = 3, and S = 4 stencil
sizes on the KNL architecture. Left panel: single core vector speedup. Right panel: vector speedup
for increasing thread count. Good vector efficiency is achieved for large block-sizes, even though the
speedup due to vectorization shows an unclear trend with S. The results when using 68 threads might
be affected by system interrupts.

J. Low Power Electron. Appl. 2018, 8, 15 10 of 13

5. Conclusions

Motivated by the future need of developing a highly scalable code for NR application on
exascale computing resources, we have introduced and tested an optimization strategy to calculate
3D finite-differencing kernels on different many-core architectures, including BDW, KNL and SKL.
The proposed method can be implemented with a minimal programming effort on existing NR codes.
It gives substantial speedup of both contraction and 3D stencil computations on BDW, KNL and
SKL architectures.

Our optimization of finite differencing kernels employing auto-vectorization delivers results
comparable to those reported by Intel experts in [16]. The latter work proposes similar strategies,
although the best performances are obtained by heavily using intrinsic instructions. This approach
would, however, hinder the portability of the code to other architectures, and make the codebase
less easily accessible to numerical relativists and astrophysicists lacking formal training in
computer science.

Tensor contractions could be further optimized with the use of dedicated libraries, e.g., [21–24].
As noted in [21,24], however, the performance improvement is neither obvious nor guaranteed because
compilers optimization are very effective on explicitly coded loops. Additionally, such libraries are
typically optimized for simple operations on tensors with large dimensions. On the contrary, in NR,
the tensors’ dimensions are small (d = 3, 4), but the expressions are algebraically complex. Furthermore,
those tensor libraries do not appear to be sufficiently mature to be used as the central building block of
large multi-physics software packages.

Future work will be also focused on improving the multi-thread performances of our approach.
For example, the introduction of the loop tiling technique would guarantee a better exploitation of the
cache. In particular, an appropriate tile size would maximize the number of hits in the L1 cache.

Author Contributions: S.B. and D.R. conceived and designed the project; A.R. performed the analysis of the
wave equation code at CINECA and Parma; S.B. implemented the wave equation code; D.R. implemented the
linearized Einstein code and performed the analysis of the linearized Einstein code at CINECA; A.P. performed
the analysis of the wave equation code at CINECA; and all authors contributed to discussion and paper writing.

Funding: This research was funded by European Research Council Starting Grant number BinGraSp-714626.

Acknowledgments: D.R. acknowledges support from a Frank and Peggy Taplin Membership at the Institute
for Advanced Study and the Max-Planck/Princeton Center (MPPC) for Plasma Physics (NSF PHY-1523261).
Computations were performed on Marconi/CINECA (PRACE proposal 2016153522 and ISCRA-B project number
HP10B2PL6K), and on the HPC facility of the University of Parma, Italy.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GFLOPS Billion FLoating Point Operations Per Second
BDW Intel Broadwell architecture
CHA Caching/Home Agent
KNL Intel Knight Landing architecture
HBM High-Bandwidth Memory library
HPC High-Performance-Computing
MCDRAM Multi-Channel Dynamic Random-Access Memory
MPI Message Passing Interface
NR Numerical Relativity
OpenMP Open Multiprocessing
RHS Right-hand side
SIMD Single Instruction Multiple Data
SKL Intel Skylake architecture

J. Low Power Electron. Appl. 2018, 8, 15 11 of 13

Appendix A. Results with GNU Compiler

We report on comparative tests between the Intel C++ Compiler and the GNU Compiler Collection
on the KNL architecture.

The tests employ the wave equation implementation with block-size n = 128. The options used
with GNU Compiler Collection v.6.1.0 are:

gcc -O3 -mavx512f -mavx512cd -mavx512er -mavx512pf, # do Vectorization on KNL,
gcc -fno-tree-vectorize, # do not Vectorize.

In both cases, we used the OpenMP thread affinity environment variables:

OMP_PROC_BIND=true,
OMP_PLACES=cores.

The same code is executed using different compilers on a variable number of threads and vector
speedup results are reported in the left panel of Figure A1.

0 10 20 30 40 50 60 70
Number of threads

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Ve
ct

or
 s

pe
ed

up

Strong OpenMP scaling. Block size = 128
KNL-INTEL
KNL-GNU

0 10 20 30 40 50 60 70
Number of threads

0

1000

2000

3000

4000

5000
M

-c
el

l u
pd

at
es

 p
er

 s
ec

on
d

Strong OpenMP scaling. Block size = 128
KNL-DOUBLE vector
KNL-DOUBLE scalar
KNL-FLOAT vector
KNL-FLOAT scalar

Figure A1. Left panel: Comparative performance on vectorization and OpenMP parallelization
between GNU and Intel compilers on KNL nodes. The speedup is the ratio between non-vectorized and
vectorized execution time. Right panel: Strong scaling with multiple threads using single and double
precision floating-point numbers. Dashed lines, corresponding to non-vectorized runs, are overlapping.
In the case of vectorized runs, the speedup with single precision floating-point numbers is about 30%
better than with double precision ones.

Speedup and overall performance with the GNU compiler are worse than with Intel. Exploiting
auto-vectorization efficiently with the GNU compilers on KNL architectures seems to require more
work; for this reason, we have first decided to focus on Intel compilers. We stress that this does
not represent an actual limitation since Intel compilers are usually used in production runs on Intel
machines rather than GNU compilers.

Appendix B. Results with Float Data Types

Although in current production codes blocks are stored using double precision floating-point
numbers (see Section 2), we evaluated the additional speedup when using float data type. The right
panel of Figure A1 shows that, for float data type, the speedup is 30% larger than the speed up
obtained with double data type. This result is partially explained by the larger number of vectors
(16 instead of 8).

J. Low Power Electron. Appl. 2018, 8, 15 12 of 13

References

1. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
Adhikari, R.X.; Adya, V.B.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger.
Phys. Rev. Lett. 2016, 116, 061102. [CrossRef] [PubMed]

2. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star
Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [CrossRef] [PubMed]

3. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.;
Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J.
2017, 848, L12. [CrossRef]

4. Radice, D.; Bernuzzi, S.; Del Pozzo, W.; Roberts, L.F.; Ott, C.D. Probing Extreme-Density Matter with
Gravitational Wave Observations of Binary Neutron Star Merger Remnants. Astrophys. J. 2017, 842, L10.
[CrossRef]

5. Perego, A.; Rosswog, S.; Cabezon, R.; Korobkin, O.; Kaeppeli, R.; Arcones, A.; Liebendoerfer, M.
Neutrino-driven winds from neutron star merger remnants. Mon. Not. R. Astron. Soc. 2014, 443, 3134–3156.
[CrossRef]

6. Radice, D. General-Relativistic Large-Eddy Simulations of Binary Neutron Star Mergers. Astrophys. J. 2017,
838, L2. [CrossRef]

7. Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M. Global simulations of strongly magnetized remnant
massive neutron stars formed in binary neutron star mergers. arXiv 2017, arXiv:1710.01311. [CrossRef]

8. Bernuzzi, S.; Nagar, A.; Thierfelder, M.; Brügmann, B. Tidal effects in binary neutron star coalescence.
Phys. Rev. 2012, D86, 044030. [CrossRef]

9. Bernuzzi, S.; Nagar, A.; Dietrich, T.; Damour, T. Modeling the Dynamics of Tidally Interacting Binary Neutron
Stars up to the Merger. Phys. Rev. Lett. 2015, 114, 161103. [CrossRef] [PubMed]

10. Sodani, A.; Gramunt, R.; Corbal, J.; Kim, H.S.; Vinod, K.; Chinthamani, S.; Hutsell, S.; Agarwal, R.; Liu, Y.C.
Knights Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro 2016, 36, 34–46. [CrossRef]

11. Brügmann, B.; Gonzalez, J.A.; Hannam, M.; Husa, S.; Sperhake, U.; Tichy, W. Calibration of Moving Puncture
Simulations. Phys. Rev. 2008, D77, 024027. [CrossRef]

12. Husa, S.; González, J.A.; Hannam, M.; Brügmann, B.; Sperhake, U. Reducing phase error in long numerical
binary black hole evolutions with sixth order finite differencing. Class. Quantum Gravity 2008, 25, 105006.
[CrossRef]

13. Radice, D.; Rezzolla, L.; Galeazzi, F. Beyond second-order convergence in simulations of binary neutron
stars in full general-relativity. Mon. Not. R. Astron. Soc. 2014, 437, L46–L50. [CrossRef]

14. Bernuzzi, S.; Dietrich, T. Gravitational waveforms from binary neutron star mergers with high-order
weighted-essentially-nonoscillatory schemes in numerical relativity. Phys. Rev. 2016, D94, 064062. [CrossRef]

15. Borges, L.; Thierry, P. 3D Finite Differences on Multi-Core Processors. 2011. Available online:
https://software.intel.com/en-us/articles/3d-finite-differences-on-multi-core-processors (accessed on
23 May 2018).

16. Andreolli, C. Eight Optimizations for 3-Dimensional Finite Difference (3DFD) Code with an Isotropic (ISO).
Intel Software On-Line Documentation. 2014. Available online: https://software.intel.com/en-us/articles/
eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso) (accessed on
23 May 2018).

17. Baumgarte, T.W.; Shapiro, S.L. On the numerical integration of Einstein’s field equations. Phys. Rev. 1999,
D59, 024007. [CrossRef]

18. Nakamura, T.; Oohara, K.; Kojima, Y. General Relativistic Collapse to Black Holes and Gravitational Waves
from Black Holes. Prog. Theor. Phys. Suppl. 1987, 90, 1–218. [CrossRef]

19. Shibata, M.; Nakamura, T. Evolution of three-dimensional gravitational waves: Harmonic slicing case.
Phys. Rev. 1995, D52, 5428–5444. [CrossRef]

20. Bernuzzi, S.; Hilditch, D. Constraint violation in free evolution schemes: Comparing BSSNOK with
a conformal decomposition of Z4. Phys. Rev. 2010, D81, 084003.

21. Landry, W. Implementing a high performance tensor library. Sci. Program. 2003, 11, 273–290. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://www.ncbi.nlm.nih.gov/pubmed/26918975
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://www.ncbi.nlm.nih.gov/pubmed/29099225
http://dx.doi.org/10.3847/2041-8213/aa91c9
http://dx.doi.org/10.3847/2041-8213/aa775f
http://dx.doi.org/10.1093/mnras/stu1352
http://dx.doi.org/10.3847/2041-8213/aa6483
http://dx.doi.org/1710.01311
http://dx.doi.org/10.1103/PhysRevD.86.044030
http://dx.doi.org/10.1103/PhysRevLett.114.161103
http://www.ncbi.nlm.nih.gov/pubmed/25955043
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1103/PhysRevD.77.024027
http://dx.doi.org/10.1088/0264-9381/25/10/105006
http://dx.doi.org/10.1093/mnrasl/slt137
http://dx.doi.org/10.1103/PhysRevD.94.064062
https://software.intel.com/en-us/articles/3d-finite-differences-on-multi-core-processors
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso)
https://software.intel.com/en-us/articles/eight-optimizations-for-3-dimensional-finite-difference-3dfd-code-with-an-isotropic-iso)
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1143/PTPS.90.1
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1155/2003/205264

J. Low Power Electron. Appl. 2018, 8, 15 13 of 13

22. Solomonik, E.; Hoefler, T. Sparse Tensor Algebra as a Parallel Programming Model. arXiv 2015,
arXiv:1512.00066. [CrossRef]

23. Huang, J.; Matthews, D.A.; van de Geijn, R.A. Strassen’s Algorithm for Tensor Contraction. arXiv 2017,
arXiv:1704.03092. [CrossRef]

24. Lewis, A.G.M.; Pfeiffer, H.P. Automatic generation of CUDA code performing tensor manipulations using
C++ expression templates. arXiv 2018, arXiv:1804.10120. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/1512.00066
http://dx.doi.org/1704.03092
http://dx.doi.org/1804.10120
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Method
	Experimental Setup
	Results
	Wave Equation
	Linearized Einstein Equations

	Conclusions
	Results with GNU Compiler
	Results with Float Data Types
	References

