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Abstract

In this work, a general methodology to extract compact, non-linear transient thermal models of

complex thermal systems is presented and validated. The focus of the work is to show a robust method

to develop compact and accurate non-linear thermal models in the general case of systems with multiple

heat sources. A real example of such a system is manufactured and its thermal behavior is analyzed

by means of Infra-Red thermography measurements. A transient, non-linear Finite-Element-Method

based model is therefore built and tuned on the measured thermal responses. From this model, the

transient thermal responses of the system are calculated in the locations of interest. From these transient

responses, non-linear compact transient thermal models are derived. These models are based on Foster

network topology and they can capture the effect of thermal non-linearities present in any real thermal

system, accounting for mutual interaction between different power sources. The followed methodology is

described, verification of the model against measurements is performed and limitations of the approach

are therefore discussed. The developed methodology shows that it is possible to capture strongly non-

linear effects in multiple-heat source systems with very good accuracy, enabling fast and accurate thermal

simulations in electrical solvers.
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I. INTRODUCTION

Many compact thermal modelling methods, which use RC networks to describe heat propa-

gation for certain boundary conditions, can be found in the literature.

For instance, Szekely has been focusing on infinite RC transmission lines, Network Identifi-

cation via Deconvolution (NID) [1], [2], the concept of structure function in electronic packages

[3]; the work carried out in the framework of the DELPHI project, aimed at the determination

of Boundary-Condition-Independent (BCI) compact thermal models of several packages used in

electronic industry, see [4], [5]. Schweitzer [6] showed several methods about how to determine

the parameters of a thermal network with a priori defined topology; Model-Order-Reduction

techniques represent an efficient way to reduce model complexity and such an approach can be

found in [7].

Lumped Element (LE) models can be discerned in physical models, strictly connected to the

physical layers and features of the described systems [8], and empirical models, which aim at

capturing a given response of the studied system [9], [10]. Lumped element physical models

tend to be cumbersome to be built, losing their appeal in terms of computational lightness.

Therefore, it makes sense to invest effort in developing accurate behavioral models. In the field

of compact thermal models, a general approach to their determination can be found in [11],

while examples of their applications to electro-thermally coupled simulations or coupling with

different dynamics can be found in [12] – [17]. An example of how to insert lumped element

models in an FEM model is shown in [18].

A general methodology which allows to determine lumped element models should produce

accurate, fast, non-linear models; the presence of multiple heat sources should also be considered.

Finite Element Method (FEM) is currently the simulation tool which offers most of the required

features, at the cost of simulation speed [19], [20]; on the other hand, standard lumped element

models offer the best in terms of simulation speed, but they may easily lack in terms of description

of non-linearities and accuracy.

In this work, a robust procedure to generate such compact models fullfilling all the above

mentioned requirements is described in detail, together with its validation on an ad-hoc test

structure.



II. DETERMINATION OF FOSTER NETWORKS

In this section, a method to obtain a non-linear Foster network from a set of thermal impedance

curves obtained at different power dissipation levels is shown.

A. Linear Foster networks

The thermal impedance response Zth(t) of a given system is usually described by a series of

K exponential terms:

ZF (t) =
K∑
k=1

Rk(1− exp(−t/τk)) (1)

with obvious meaning of the symbols. To determine all the parameters, a logarithmically-spaced

set of time constants τk between two reasonable extremes is generated [21], followed by the

minimization of the difference between the measured response ZF (t) and the calculated one:

min
t=ts∑
t=t0

(ZF (t)− Zth(t))2 (2)

where t0, . . . , ts are the time instants at which both waveforms are sampled. The fitting parameters

in Equation (2) are the number of stages K and each of the Rk resistances. The minimization can

be performed iteratively by increasing the number of stages until a satisfactory fit is achieved,

with the lowest number of stages K as possible. Such algorithm can be easily implemented in

Python [22] by using the NumPy [23] and SciPy [24] modules.

B. Non-linear Foster networks

A non-linear Foster network can be though as a merging of several Foster networks, each of

which described like in Equation (1). In case of a non-linear system, different power dissipation

levels P0, P1 will lead to different responses:

Zth0(t) =
∆T (t)

P0

=

K0∑
k=1

Rk0(1− exp(−t/τk0)) (3)

Zth1(t) =
∆T (t)

P1

=

K1∑
k=1

Rk1(1− exp(−t/τk1)) (4)

with K0 6= K1 in general, as well as the Rk0, Rk1 and τk0, τk1 constants.



It is always possible to find a value K ≥ max(K0, K1), for which the two responses are both

equally well described, both with the same number of terms. Calling Q the number of power

dissipation levels, this observation can be easily generalized to Q > 2.

Therefore, if the topology of the network is fixed i.e., the amount of stages K needed is the

same for every power dissipation level, it is possible to collapse all the linear Foster networks into

a single, non-linear Foster network. The terms R1, R2, . . . , RK are dependent on the temperature

of the network’s first node (which is the only node with a physical meaning).

The topology is therefore described in Fig. 1 where only three stages are drawn, for sake of

simplicity.
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Fig. 1. An exemplary non-linear Foster network with three stages.

Accurate non-linear models can be built only with non-linear resistive terms, keeping the

capacitive terms constant [25].

Moreover, numerical problems are reduced if the variation of each of the terms R1(T ), R2(T ),

. . . , Rk(T ) is monotonic. It was noted that the best number of stages which satisfies the listed

requirements was characterized by a (not strictly) monotonic behavior of the non-linear, resistive

terms as a function of the input temperature. Should this not be case, it is sufficient to increase

the number of stages K.

The procedure to determine the non-linear thermal models here shown consists of the following

steps:

1) generate a set of Zth curves for increasing power dissipation levels P1, . . . , PQ with P1 <

P2 < · · · < PQ;

2) starting from the lowest power level Pq with q = 1, perform the standard procedure to



obtain a linear Foster network which describes this very thermal impedance; an initial

number of stages K will be obtained;

3) go to the next power level Pq+1 and perform again the standard procedure to obtain a

linear Foster network, using the coefficients obtained at the previous step Pq as starting

guess points for the optimization; at the end of this step, q Foster networks, each of which

made of K stages, are obtained;

4) check the series of values obtained for R1, . . . , RK ; if the fitting is consistent for each

power level and the monotonicity of each resistive terms is respected, the procedure is

successful. Otherwise, repeat from step 2) with K = K + 1.

The monotonicity of the resistive terms can be obtained by careful selection of the time constants

which are used to perform the fit. By finely increasing the Pq values, the typical time constants

will also vary slightly and the monotonicity of the resistive terms can be easily achieved.

Basically, the correct Foster network is the one for which the following equations hold:

Zth(t) =
K∑
k=1

Rk(T )(1− e−t/τk(T )) (5)

dRk(T )

dT
≥ 0 or

dRk(T )

dT
≤ 0 ∀k ∈ [1, K] (6)

dCk(T )

dT
= 0 ∀k ∈ [1, K]

A graphical illustration of the process is described in Fig. 2. The resistance of the k-th stage,

calculated in case of a power dissipation Pq is defined as Rk(Tq), where Tq is the temperature

obtained at the input node of the given Foster network when a step with amplitude Pq is applied.

For higher power dissipation values, different sets of resistive terms are obtained. Three cases

of increasing power levels P1, P2 and P3 are shown as an example in Fig. 2(a), 2(b) and 2(c),

respectively. The merging of these three linear networks results in a non-linear Foster network,

where each resistance non-linearity is defined as a Look-Up-Table (LUT). For instance, referring

to the first stage, the LUT is defined as: (T1, R1(T1)), (T2, R1(T2)), (T3, R1(T3)) which results

in the network depicted in Fig. 2(d). It is possible to extend this procedure in order to include

the effect of different ambient temperatures, resulting in a network where each resistive term is

described by a double-entry LUT (Fig. 2(e)).
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Fig. 2. Graphical illustration of the procedure to obtain non-linear Foster thermal networks. The reader should refer to the

description in the text for a clarification of the process.



III. MATRIX DESCRIPTION OF THERMAL SYSTEMS

The most general representation of a system is in its MIMO (Multiple Inputs, Multiple Outputs)

form. A system with N power sources and M different locations where the temperature is

monitored (see for instance [26] and [27]) can be described by an (M × N) matrix definition

as follows: 
∆T1

...

∆TM

 =


Z11 . . . Z1N

... Zmn
...

ZM1 . . . ZMN

 ·

P1

...

PN

 (7)

where the indexes m = 1, . . . ,M and n = 1, . . . , N , respectively. Such description can be easily

implemented in circuit simulators; an example is provided in Section V.

IV. VALIDATION OF THE NON-LINEAR FOSTER ALGORITHM

In this section, the algorithm to obtain non-linear Foster network is demonstrated. To do so,

a non-linear FEM model of a power device was built and boundary conditions were applied in

order to develop strong gradients inside the structure, and therefore, appreciable non-linearities

[28], [29].

Fig. 3. Typical structure used to validate the non-linear Foster algorithm.

The bottom of such device is kept at constant temperature, while power dissipation takes place

in its active area (see Fig. 3):

• for long pulses, this boundary condition is actually unrealistic, but it is numerically chal-

lenging due to the strong gradients which will take place in a transient operation, being

therefore a good benchmark for the proposed algorithm;



• for short pulses, the heat wave vanishes within the thickness of the substrate, therefore the

temperature at its bottom location remains almost constant; in such a case, the boundary

conditions reflect a realistic condition [30], [31].

The thermal impedance of the device (corresponding to the maximum temperature) is calcu-

lated for Q = 3 different power dissipation levels: 10 , 220, and 440 W. Fig. 4 shows the effect

of (mainly) the substrate non-linearity on the thermal impedance for different power levels.
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Fig. 4. Thermal impedance of the power transistor subjected to different power levels.

To better capture the non linear behavior, Q = 45 simulations were performed, where the

power was logarithmically swept from P1 = 3 W to P45 = 440 W. A Foster network with

K = 7 stages was found to be suitable to model such a structure.

Fig. 5 shows the monotonic dependence of the resistances, plotted as a function of the

maximum temperature reached by the device. Obviously, the non-linear resistive terms Rk depend

on the maximum temperature that was reached at every q = 1, . . . , Q power step level. Since

thermal capacitance values are kept constant as a function of temperature, the time constants

τi = RiCi vary in the same way as the thermal resistances.

As further validation, a series of three short-circuit pulses was chosen; the high peak power

delivered during these events highlights the non-linear response of the FEM model. As it is

visible in Fig. 6, the agreement between the compact and the FEM model is excellent. While

such an FEM model may need up to few hours to simulate, its compact version needs few

seconds. Since the determination of the model follows a methodology based on the extraction of
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Fig. 5. Monotonic variation of the thermal resistances as a function of the maximum temperature increase in the device.

thermal impedance curves, it benefits of all the features that thermal impedance curves have, in

particular, the possibility of simulating any type of pulse profile up to the steady-state domain.
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Fig. 6. Comparison between FEM model and non-linear LEM model when subjected to the shown power profile.

V. EXPERIMENTAL VALIDATION

In this section, the methodology is applied to a real case. An ad-hoc PCB was designed and

manufactured, its non-linear transient thermal FEM model developed and tuned, the thermal

responses of interest were extracted and the compact MIMO model developed.



Fig. 7. Three-dimensional geometry, boundary conditions and heat sources of the fabricated PCB (designed with KiCAD 4.0.2).

A. Test bench design and manufacturing

The PCB is made of three MOSFETs which can be independently operated, see Fig. 7. The

layout has been designed to enhance thermal interactions between components. The top side,

shown in Fig. 8(a) was painted with an optically transparent matt paint in order to uniform

emissivity on all the surfaces made of different materials. Electrical connections for biasing and

test points are placed on the edges of the board, mounted on the bottom side of the PCB to

keep the top side cleared of bulky components. The board is made of a 1.6 mm thick FR-4

substrate with 35µm thick single copper layer. The bottom side was thermally insulated using

a 6 cm thick layer of glass wool (Fig. 8(b)). The lateral surfaces of the board are small enough

to neglect the heat flow across them.

Every device can be biased independently from each other (Fig. 9); temperature distribution

on the overall board is recorded via IR thermography, and electrical quantities are automatically

sampled via a Digital Acquisition device (DAQ).

B. Tuning of the FEM model



Fig. 8. The multisource test board: (a) top view; (b) side view (insulation with glass wool to assume almost perfect thermal

insulation on the PCB’s bottom side).

Thermal material properties are usually temperature dependent; for instance, temperature

dependence of thermal conductivity of Silicon and Silicon Carbide composites can be found

in [32]—[34], respectively. Usually, such kind of dependencies are already implemented in the

simulation software material library.

The heat transfer coefficient h which models natural convection was instead modeled as follows

(a typical non-linear function which models the fact that heat exchange efficiency increases with

temperature difference between the surface and the surrounding ambient):

h = α(T − Tamb)
β (8)

To judge the goodness of the fitting parameters, the following figure of merit was used:

|ε%| = |∆Tmeas −∆Tsim |
∆Tmeas

· 100 (9)

where ∆Tmeas is the average measured increase over the ambient temperature, and ∆Tsim is

the average simulated increase over ambient temperature. Maximum error of 10% was allowed.

Surface-averaging was performed over half top surface of each device’s mold compound (since



×

Fig. 9. Schematic diagram of the test bench built to validate the FEM modeling of a MIMO system. An infrared camera is used

to measure the temperature of the surfaces exposed to the air, a Data Acquisition board (DAQ) is used to measure the voltage

of the MOSFETs’ source VS , used to evaluate the voltage VDS and the current ID . All the data are collected by a PC.

every package contains to devices):

Tavg =

∫
Area/2

T (x, y) dA (10)

This is usually a post-processing quantity already available in COMSOL Multiphysics. A series of

measurements at different power dissipation levels allowed to find the coefficients in Equation (8)

as α = 7 Wm−2K−(1+β) and β = 0.155. Table I and II show the errors when using such

coefficients, always well below the 10% threshold. Once validated, FEM simulations are used

to extract Zmn(T ). The procedure is described in the following subsection.



TABLE I

ERRORS EVALUATION ON DEVICES TURNED ON

Device ON (dissipated power) ∆Tmeas −∆Tsim [K] |ε%|

M1 (0.68 W) 3.4 4.7

M2(0.64 W) 0.4 0.6

M3(0.60 W) −3.7 5.3

M4(0.58 W) −3.8 5.6

M5(0.65 W) −0.3 0.4

M6(0.66 W) 2.1 2.9

TABLE II

ERRORS EVALUATION ON DEVICES BESIDE THE ONE TURNED ON

Device ON (dissipated power) ∆Tmeas −∆Tsim [K] |ε%|

M1 (0.68 W) 2.6 5.1

M2(0.64 W) 0.3 0.6

M3(0.60 W) 0.6 1.3

M4(0.58 W) −3.2 6.4

M5(0.65 W) 2.9 5.8

M6(0.66 W) 2.8 5.6

C. Validation of the FEM model

The FEM model was validated against infrared thermal measurements, over different power

levels and configurations. As an example, the comparison between measured and simulated

temperature distribution (Fig. 10) for a particular case is shown.

Good agreement between FEM model and measurements was found. Therefore the FEM model

will be used to generate the transient self- and mutual-impedances curves, to be processed by

the non-linear Foster fit algorithm.



Fig. 10. Measured temperature (top) and simulated temperature (bottom) of the test board top surface with M2 ON dissipating

640 mW, M1, M3, . . . , M6 OFF, and Tamb = 298 K.

D. Determination of the Z-matrix representing the system

Indexing with m the location of interest (i.e., the response location), and with n the device

dissipating a certain power P , the terms of the Z-matrix are calculated as:

Zmn =
∆Tm
Pn

∣∣∣∣
Pl=0,∀l 6=n

for m = 1, . . . ,M and n = 1, . . . , N (11)



TABLE III

ERRORS EVALUATION AT STEADY STATE IN THE THREE CASES CONSIDERED TO TEST THE 3-BY-3 MIMO LUMPED

ELEMENT MODELLING (LEM) WITH NON-LINEAR RESISTANCES

Case study M2 |ε%| M4 |ε%| M6 |ε%|

1 3.28 3.30 3.27

2 4.20 2.94 1.98

3 0.55 2.54 2.59

where ∆Tm = Tm − Tamb . Considering the q-th level of the power steps, Equation (11) can be

rewritten as:

Zmn,q =
∆Tm,q
Pn,q

∣∣∣∣
Pl=0,∀l 6=j

for m = 1, . . . ,M and n = 1, . . . , N (12)

Once all the non-linear Zmn(T ) are obtained, it is possible to fill the Z-matrix whose terms are

non-linear Foster networks. The validated FEM model of the board depicted in Fig. 7 was used

to generate a 3-by-3 MIMO description of the system, where each input is the dissipated power

in the MOSFETs M2, M4 and M6, and the outputs are the temperatures of the same devices T2,

T4, and T6: 
∆T2

∆T4

∆T6

 =


Z22 Z24 Z26

Z42 Z44 Z46

Z62 Z64 Z66

 ·

P2

P4

P6

 (13)

An implementation of the matrix (13) in SPICE can be shown in Fig. 11.

The Zmn terms were extracted from FEM simulations with Tamb = 298 K and Q = 7 different

power steps with Pq = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 W. Each device was turned on with the

different power steps, while the others were kept off. Then, (3 × 7) transient simulations were

ran to obtain the (3×3×7) Zmn,q(t) needed to extract the non-linear Foster networks associated

to the Z-matrix.

The number of simulations which are actually needed to fill any Z-matrix is defined by the

product (M ×Q), where M is the number of independent heat sources which will be actually



operating in the system (in this case, M2, M4 and M6, each of which turned on singularly),

and Q is the number of power dissipation levels needed to accurately capture the non-linearity

in the system. The number of observed responses will not create the need of new simulations,

since from the FEM simulation, every point in the structure is already available as an observable

response.

Back to the system here considered, once computed the (3 × 7) non-linear Foster networks,

the responses of the lumped element model with the ones obtained by FEM simulations in three

different cases were compared:

1) Application of three equal steps at the same time to M2, M4, and M6 with a power level

of 0.4 W;

2) Application of three different steps at the same time to M2, M4, and M6 with power levels

of 0.2, 0.35 and 0.5 W respectively;

3) Application of three different steps at the same time to M2, M4, and M6 with power levels

of 0.55, 0.15 and 0.025 W respectively.

In order to challenge the model, thermal situations which are different from those used to

generate the model were chosen Table III shows the relative errors at steady state between FEM

and SPICE simulations in these three cases. Fig. 12 shows this difference relatively to the third

case.

Results are quite good and prove the validity of the proposed approach with multiple heat

sources. The maximum recorded |ε%| is smaller than 5%.



Fig. 11. Schematic of the equivalent electric circuit of a 3-by-3 MIMO system, which can be processed to extract a 3-by-3

matrix of non-linear Foster networks using the board of Fig. 7.



Fig. 12. Ti − Tamb of the (3 × 3) MIMO system applying contemporary power steps of levels P2 = 550 mW to M2,

P4 = 150 mW to M4 and P6 = 25 mW to M6. Tamb is 298 K.



VI. DISCUSSION AND CONCLUSIONS

This work proposes a robust and general way to determine non-linear Foster networks which

can be suited to describe accurately the behaviour of thermal systems with strong non-linearities,

multiple power dissipation nodes and multiple observed respones.

The natural and straightforward application of such models lies in its coupling with other

models (e.g. electro-thermal models of electron devices) to build a fully-coupled, multi-physical

simulation framework which can be solved by electrical simulators, or to simulate long and

complex mission profiles, where a fast solving model is needed.

The methodology is based on a family of thermal impedance curves, which capture the effect

of non-linearities in the system. These curves may well be obtained by a carefully tuned FEM

model of the system, as showed in this work, or directly from measurements, if available. The

author’s suggestion is to proceed firstly by a careful development of an appropriate FEM model,

from which extracting all the needed thermal impedance curves.

The validation of the approach has followed two steps. Firstly, the determination of the non-

linear Foster network has been performed using a non-linear transient FEM benchmark simulation

of a MOSFET under high power dissipation levels.

Modelling of MIMO systems is performed assuming that the different non-linear contributions

can be linearly superposed, thus allowing a Z-matrix description which can be directly imple-

mented in a SPICE simulator. The validity and the limitations of this assumption were evaluated

on an ad-hoc developed PCB. Good agreement between measurements, FE model and compact

model was achieved. Despite the linear superposition would theoretically not be justified, it leads

anyway to small errors.

The great benefit of such models relies in the small amount of time needed for their simu-

lations. Once computed, the lumped element model requires a lower computational effort to be

simulated compared to the one needed for FEM simulations, and it can be easily integrated with

electro-thermal models of electron devices, contrarily to FEM. For example, with the workstation

used for this work, a transient FEM simulation can be completed in about 4 hours, while the

SPICE equivalent simulation terminates in around 1 minute.

As a final remark, the algorithm to extract the non-linear Foster networks has been developed

entirely in Python. The graphs have been produced by Matplotlib [35], [36]. The electrical



simulations were performed by using LT-Spice IV [37] which offers the capability to define

non-linear elements (resistors, in this context) via use of LUTs and behavioral models.
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