

University of Parma Research Repository

Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies

This is a pre print version of the following article:

Original

Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies / Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; DE ANGELIS, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio. - In: RESEARCH IN VETERINARY SCIENCE. -ISSN 0034-5288. - 114:(2017), pp. 51-58. [10.1016/j.rvsc.2017.02.019]

Availability: This version is available at: 11381/2823328 since: 2021-10-08T11:45:39Z

Publisher: Elsevier B.V.

Published DOI:10.1016/j.rvsc.2017.02.019

Terms of use: openAccess

Anyone can freely access the full text of works made available as "Open Access". Works made available

Publisher copyright

(Article begins on next page)

Elsevier Editorial System(tm) for Research

in Veterinary Science

Manuscript Draft

Manuscript Number: RVSC-16-653R1

Title: Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies

Article Type: Research Paper

Section/Category: Anatomy

Keywords: mesenchymal stem cells, dog, adipose tissue, species-specific antibody, immunophenotyping

Corresponding Author: Dr. Francesca Ravanetti,

Corresponding Author's Institution: University of Parma

First Author: Ana Ivanovska

Order of Authors: Ana Ivanovska; Stefano Grolli; Paolo Borghetti; Francesca Ravanetti; Virna Conti; Elena De Angelis; Francesca Macchi; Roberto Ramoni; Paolo Martelli; Ferdinando Gazza; Antonio Cacchioli

Abstract: Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue, with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29+, CD44+, CD73+, CD90+, CD34-, CD45- and MHC-II- with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90+, CD73+, CD105+, CD44+, CD13+, CD29+, Oct-4+ gene and CD31- and CD45- expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures.

Suggested Reviewers:

- 1 Immunophenotypical characterization of canine mesenchymal
- 2 stem cells from perivisceral and subcutaneous adipose tissue by
- 3 a species-specific panel of antibodies

4 Authors:

- Ana Ivanovska^a, Stefano Grolli^a, Paolo Borghetti^a, Francesca
 Ravanetti^a, Virna Conti^a, Elena De Angelis^a, Francesca
 Macchi^a, Roberto Ramoni^a, Paolo Martelli^a, Ferdinando Gazza^a
- 8 and Antonio Cacchioli^a
- 9 ^a Department of Veterinary Science, University of Parma Via
- 10 del Taglio 10, 43126, Parma, Italy

11 Corresponding author:

- 12 Dr.Francesca Ravanetti
- 13 Department of Veterinary Science
- 14 University of Parma
- 15 Via del Taglio 10, 43126 Parma
- 16 Italy
- 17 00 39 0521 032648
- 18 francesca.ravanetti@unipr.it
- 19
- 20
- 21

22 Abstract

23 Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound 24 experimental and clinical studies. The scarce availability of 25 species-specific antibodies for canine antigens has hampered 26 the immunophenotypical characterization of canine 27 mesenchymal stem cells (MSC). The aim of this study was to 28 select a panel of species-specific direct antibodies readily 29 30 useful for canine mesenchymal stem cells MSC 31 characterization. MSC They were isolated from perivisceral (pAT-MSC) and subcutaneous (sAT-MSC) adipose tissue 32 samples collected during regular surgeries from 8 dogs.. Single 33 34 color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue 35 sAT-MSC and pAT-MSC (P3) with a panel of 7 direct anti-36 canine antibodies revealed two largely homogenous cell 37 populations with a similar pattern: CD29⁺, CD44⁺, CD73⁺, 38 CD90⁺, CD34⁻, CD45⁻ and MHC-II⁻ with no statistically 39 significant differences among them. Antibody Antibodies 40 reactivity was demonstrated on canine peripheral blood 41 mononuclear cells. The similarities are reinforced by their in 42 vitro cell morphology, trilineage differentiation ability and RT-43 PCR analysis $(CD90^+, CD73^+, CD105^+, CD44^+, CD13^+,$ 44 CD29⁺, Oct-4⁺ gene and CD31⁻ and CD45⁻ expression). Our 45 results report for the first time a comparison between the 46

47	immunophenotypic profile of canine MSC deriving from
48	perivisceral and subcutaneous adipose tissue sAT-MSC and
49	pAT MSC. The substantial equivalence between the two
50	populations has practical implication on clinical applications,
51	giving the opportunity to choose the source depending on the
52	patient needs. The results contribute to routine characterization
53	of MSC populations grown in vitro, a mandatory process for
54	the definition of solid and reproducible laboratory and
55	therapeutic procedures.
56	Key words: mesenchymal stem cells, dog, adipose tissue,
57	species-specific antibody, immunophenotyping
58	
59	
60	
61	
62	
63	
64	
65	
66	

68 **1. Introduction**

69 Regenerative medicine and tissue engineering are promising novel therapeutic approaches in veterinary medicine. In 70 71 particular, mesenchymal stem cells (MSC) are the most commonly used as a option as a therapeutic tool within the field 72 of cell based therapies and have been the subject of a number of 73 74 preclinical and clinical studies. Mesenchymal stem cells MSC are self-renewing, multipotent adult stem cells found near 75 blood vessels in different organs such as bone marrow, adipose 76 77 tissue, blood, umbilical cord, muscle, bone and cartilage. Due to their ability to differentiate into other cell types and to 78 produce a wide range of immunomodulatory, trophic, 79 80 angiogenic and anti-apoptotic bioactive molecules, MSC have a practical application in the field of cell therapy (Marx et al., 81 82 2015). The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy defined them as a 83 84 population of cells that satisfies the following criteria in vitro: 85 1) adherence to a plastic surface and typical spindle-like shape; 2) ability to differentiate in osteogenic, adipogenic and 86 chondrogenic lineage and 3) the expression of a set of cell 87 88 surface markers (Dominici et al., 2006).

89 Cell surface marker characterization of human MSC by flow

90 cytometry has recently been carried out (Nery et al., 2013).

91 The expression of cell surface markers on MSC deriving from
92 veterinary species is subject of intense research at the moment.
93 On the contrary, there is little data regarding the expression of
94 cell surface markers on MSC derived from animal species.

Detailed immunophenotyping analysis of equine MSC from 95 multiple sources was reported, including the expression of 96 97 CD29, CD44, CD73, CD90, CD105, CD14, CD34, CD45, CD79a, and MHC-II. Although a wide range of markers was 98 included in the study, the interpretation of the results was 99 100 strongly influenced by the use of anti-human antibodies 101 (Paebst, et al., 2014). Several research groups have published studies about the marker expression of canine MSC isolated 102 103 from subcutaneous or perivisceral adipose tissue, but the current data are still incomplete. MSC from perivisceral 104 105 adipose tissue have been characterized as CD90, CD44, 106 CD140a and CD117 positive and CD34 and CD45 negative, 107 however there were no data about the origin of the antibodies 108 that were used (Martinello et al., 2011).

109 Another flow cytometric analysis of canine MSC derived from 110 subcutaneous adipose tissue demonstrated a high expression of 111 CD29 and CD44, while CD90 was modestly expressed and 112 there was no expression of CD73, CD34 and CD45. In this 113 case, not all the antibodies used cross reacted with canine cells 114 and furthermore no control group was included for the 115 evaluation of antibody reactivity (Takemitsu et al., 2012). The immunophenotyping profile and gene expression of cell
surface markers was further studied on adipose derived MSC
that resulted positive for CD44, CD90 and MHC-II; negative
for CD29, CD34 and MHC-II using a panel of non-specific
canine antibodies (Screven et al., 2014).

121 Recently, the dog gained interest as a preclinical/clinical model for cell-based therapies, and canine MSC have been isolated 122 and studied in vitro. Furthermore, there is growing interest in 123 the use of MSC in the treatment of injuries and diseases in 124 125 dogs. Different sources and procedures for the preparation of 126 canine MSC have been proposed and it is difficult to make a clear comparison between the various therapeutic approaches 127 128 proposed and the clinical outcomes.

Therefore, in order to design and perform robust experimental
and clinical studies in veterinary medicine, a fundamental step
would be a sound characterization and description of the MSC.

132 The aim of our study was twofold, (1) to design a panel of canine species specific antibodies able to recognize the markers 133 134 defining MSC (Dominici et al., 2006), readily useful for the 135 immunophenotypic characterization of canine MSC. (2) To 136 evaluate and compare the immunophenotypic profile of canine adipose-tissue derived MSC (AT-MSC) isolated from 137 138 subcutaneous and perivisceral fat tissue, using the above defined panel of antibodies. Both information would be useful 139

for researchers involved in the set-up of cells-based
regenerative therapies at both preclinical and experimental
level in the dog.

- 143 **2.** Materials and methods
- 144 *2.1. Study design*

Eight client owned canine patients from different breeds, 5 145 females and 3 males, weighing from 4 to 60 kg, aged between 146 1,5 and 12 years were selected for adipose tissue sampling 147 148 during scheduled surgical procedures (Table 1). Patients underwent routine clinical, biochemical and haematological 149 examination prior the surgical procedure. All animal 150 151 procedures and protocols were performed by licensed 152 veterinary surgeons under standard ethical and sterile conditions. The owners signed an informed consent and agreed 153 on the participation of their dogs. 154

- 155
- 156 2.2.Sample collection

Perivisceral and subcutaneous adipose tissue samples were
collected during regular surgical procedures from 8 dogs with
stable systemic conditions.

After collection each sample was transferred to a vial
containing 20 ml of Dulbecco's Eagle Modified Medium
(DMEM low glucose, Gibco) additioned with penicillin

163 (0.10U/ml), streptomycin (0,10 μ g/ml) and amphotericin B (2,5 164 μ g/ml, Gibco) until cell isolation (not more than 4 hours). 165 Peripheral blood samples for the isolation and flow cytometry 166 analysis of peripheral blood mononuclear cells were collected 167 from 3 healthy dogs prior to orthopaedic surgery. All the 168 samples were collected following owner consent, under 169 standard ethical and sterile conditions.

170 *2.3.Cell culture*

MSC from subcutaneous adipose tissue (sAT-MSC) and 171 perivisceral adipose tissue (pAT-MSC) were isolated from 172 173 adipose tissue samples weighing 2 grams. The samples were cut with scalpels in small pieces of 0,5 cm diameter and 174 afterwards were transferred in a 15mL Conical Centrifuge 175 176 Falcon Tube containing 10 ml of collagenase solution (DMEM 177 low glucose, Gibco; penicillin 0,10 U/ml, Gibco; streptomycin 0,10µg/ml, Gibco; amphotericin B 2,5 µg/ml, Gibco; 178 179 collagenase type I 0,1% p/v). Enzymatic digestion was performed under a mechanical stirrer at 37°C for 45min. 180

The digested sample was then centrifuged (210xg for 8 min).
After removal of the collagenase solution and the fat
supernatant, the cell pellet was resuspended in 500µl
maintenance medium (DMEM low glucose, Gibco added with
10% fetal bovine serum (FBS), Gibco; penicillin 0,10U/ml,
Gibco; streptomycin 0,10µg, Gibco; amfotericine B 2,5 µg/ml,

Gibco) and seeded in 25 cm² (Orange Scientific Tissue Culture 187 Flasks) containing 5 ml of DMEM. The cells were maintained 188 in an incubator at 37°C at 5% CO₂. The medium was changed 189 190 each 2-3 days. Cells were cultured to 80% confluence and then trypsinized with 0,05% Trypsin-EDTA solution (Gibco) The 191 cell culture was grown until passage 3 (P3) when cells were 192 193 used for the evaluation of the differentiation capacity, flow 194 cytometric analysis and RT-PCR.

- 195 2.4.Tri-lineage cell differentiation
- 196 1. Adipogenic differentiation

197 MSC deriving from subcutaneous and perivisceral adipose 198 tissue, at P3 were seeded in six-well plates at a density of 6 x 10^3 cells/cm². In each well, 3 ml of DMEM was added and the 199 200 cells were incubated at 37°C and 5% CO₂. At a confluency of 80% they were treated with adipogenic differentiation media 201 202 (StemPro Adipogenesis Differentiation Kit). The flasks were 203 then put in an incubator with humidified atmosphere of 5% 204 CO₂ and temperature of 37°C. Medium was changed each 2-3 205 days. After 21 days the cells were fixed with 70% ethanol and 206 stained with Oil Red O coloration.

207 2. Chondrogenic differentiation

208 MSC deriving from subcutaneous and perivisceral adipose 209 tissue, at passage 3 were seeded in six-well plates at a density

of 6 x 10^3 cells/cm². In each well 3 ml of DMEM was added 210 and the cells were incubated at 37°C and 5% CO2. At a 211 confluency of 80% they were treated with with chondrogenic 212 213 differentiation mediun (StemPro Chondrogenesis 214 Differentiation Kit). The flasks were then put in an incubator with humidified atmosphere of 5% CO₂ and temperature of 37 215 216 °C. Medium was changed each 2-3 days. After 21 days the cells were fixed with 4% formaldehyde and stained with Alcian blue. 217

218 3. Osteogenic differentiation

MSC deriving from subcutaneous and perivisceral adipose 219 220 tissue, at passage 3 were seeded in six-well plates at a density of 6 x 10^3 cells/cm². In each well 3 ml of DMEM was added 221 and the cells were incubated at 37°C and 5% CO2. Arriving at 222 confluency of 80%, the cells were treated with osteogenic 223 224 induction medium (DMEM additioned with 100nM 225 dexamethasone, 10µM glycerophosphate and 0.250 mM ascorbic acid). Medium was changed each 2-3 days. After 21 226 days the cells were fixed with 1% paraformaldehyde and 227 228 stained with von Kossa staining (Bio Optica).

229 2.5.Immunophenotyping

Single color flow cytometry analysis was performed for the
assessment of surface marker expression of cells from both
sources of adipose tissue. The expression of the following

markers was evaluated: CD29, CD34, CD44, CD45, CD73,
CD90 and MHC-II, using a panel of seven antibodies (Table 1).

At P3, MSC were trypsinized (0,05% Trypsin-EDTA, Gibco) 235 236 and centrifuged at 210xg for 8 minutes. They were then resuspended in 3 ml of complete medium for cell count using a 237 Burker's hemocytometer. Then, 2.5×10^4 cells were transferred 238 in conical and round bottom tubes for flow cytometry analysis, 239 washed with 1 ml sterile PBS supplemented with 1% fetal 240 bovine serume (FBS), and then centrifuged at 210x g for 8 241 242 minutes. The supernatant was eliminated and, in every tube, 5 243 µl of each antibody was added.

For every sample, one tube containing the same number ofunmarked cells was evaluated as a negative control.

After dark incubation for 15 minutes at room temperature, 1ml of PBS was added and the cells were centrifuged at 210xg for 8 minutes. The pellet was then added 0,5ml of PBS and evaluated by flow cytometry analysis (Cytomics FC 500, Beckman Coulter). Dead cells were excluded using SytoxAAdvanced Dead Cell Stain Kit (Life Technologies), according to the manufacturer's instructions.

Antibodies were tested on peripheral blood mononuclear cells (PBMC) of 3 healthy dogs to confirm reactivity. PBMC were isolated from 2 ml of 3 dog blood samples collected in lithium– heparin as anticoagulant by density gradient in Histopaque257 1077 solution (Sigma, St. Louis, MO) according to the manufacturer's instructions. Blood samples were taken and 258 then stratified on Histopaque-1077 solution (1:1, v/v, Sigma) 259 260 and centrifuged at $400 \times g$ for 30 min; purified PBMC were washed with sterile Phosphate Buffer Solution (PBS) (Sigma) 261 supplemented with 1% fetal FBS and resuspended in RPMI-262 263 1640 (Gibco, Carlsbad, CA, USA) supplemented with 10% FBS, 2 mM l-glutamine, 100mM non-essential amino-acids, 50 264 265 mM 2-mercaptoethanol (Sigma) and 100 U/ml penicillin G, 100 μ g/ml streptomycin and 0.25 μ g/ml amphotericin B. 266

Cells were counted by inverted optical microscope and 267 concentration was assessed before being used for surface 268 269 staining flow cytometry analysis. 400,000 cells were mixed 270 with 5µl of the specific antibody for each surface antigen in a 271 plastic tube, after an incubation for 15' in the dark at room temperature, cells were washed with PBS with 1% FBS, 272 273 centrifuged for 5' at 400xg and re-suspended in 0.5 ml of PBS/1%FCS and finally set aside for flow cytometry analysis 274 275 (Cytomics FC 500, Beckman Coulter).

276 *2.6.RT-PCR*

Assessment of the phenotypic expression of different cell
markers was performed by Reverse-Transcriptase-PCR (RTPCR). Total RNA was extracted from 1.5x10⁶ cells at P3 (80%
of confluence) using the kit Nucleospin® RNA II (Macherey-

281 Nagel) following manufacturer's instructions. cDNA was then obtained via reverse transcription of 1.5µg of total RNA using 282 RevertAit[™] First Strand cDNA Synthesis Kit (Fermentas). 283 284 PCR was performed using 2µl of cDNA. The final PCR mixture contained 1x amplification buffer with 2.5 mM MgCl₂. 285 10mM dNTP Mix (Thermo Scientific), 0,25µm specific 286 287 forward and reverse primers, 1 U Dream Taq (Thermo Scientific) in a final volume of 25µl. 288

Table 2 reports the list of genes whose expression was 289 290 analyzed, their gene accession number, the sequence of forward and reverse specific set of primers and the length of the relative 291 292 amplicons. All PCRs were performed using the following protocol: denaturation at 94°C for 30 sec; annealing at 55°C for 293 30 sec; extension at 72°C for 30 sec, with 35 cycles The 294 295 products of the RT-PCR were separated on agarose gel (1,5% 296 P/V) in TAE buffer stained with 3,5µl ethidium bromide (10mg/ml). Amplicons were visualized under UV light with a 297 trans-illuminator and images acquired by a Canon digital 298 camera. The analysis was repeated with two different replicates 299 for each tissue sample. A semi-quantitative analysis of the 300 301 expression of MSCs markers was performed evaluating the 302 optical density of each positive band by means of the ImageJ image processing software normalized to the expression of the 303 housekeeping gene GAPDH. 304

305 *2.7.Statistical analysis*

The results of the immunophenotypic characterization of MSC deriving from perivisceral and subcutaneous adipose tissue were compared. Data was expressed as mean± standard deviation (SD). The differences among the groups were considered statistically significant for P<0.05 and Mood's median test was made as non-parametric statistics analysis. All the tests were made using SPSS 16 IBM software.

- **313 3. Results**
- 314 *3.1.Cell culture and isolation*

After 24 – 48 hours, cells were adherent to the surface of the
flasks. Medium was changed after two-three days in order to
eliminate non-adherent cells. During their growth, cells
appeared as a homogeneous population of typical fibroblastlike cell morphology with elongated spindle like shape.

320 *3.2.Tri-lineage cell differentiation*

321 Cell cultures at P3 have were able to differentiate into osteogenic, adipogenic and chondrogenic lineages. A large 322 323 number of Cells stimulated with adipogenic medium contained 324 intracellular lipid vacuoles stained with Oil Red O, confirming the adipogenic differentiation of sAT-MSC and pAT-MSC, 325 following the appropriate stimulation in vitro. Cells stimulated 326 327 with osteogenic induction medium formed aggregates and had numerous extracellular calcium deposits, as by with von Kossa 328

staining confirmed the osteogenic differentiation of cells from
both sources. The cell cultures treated with chondrogenic
medium contained aggregates of proteoglycans stained in blue
with Alcian Blue coloration. Control groups for each treatment
showed no evidence of differentiation (Fig. 1).

334 *3.3.FACS analysis*

All antibodies tested on canine PBMC showed the expected reactivity (data not shown). For immunophenotypical analysis, the live population of MSC was gated in the scatter plot for further fluorescence intensity analysis in the histogram plot (Fig. 2).

Our data showed that MSC at P3 deriving from perivisceral and subcutaneous adipose tissue were positive for: CD29, CD44, CD73, CD90; and negative for CD34, CD45 and MHC-II (Tables 3, 4). There was no significant difference in surface antigen expression between the two groups of MSC.

345 *3.4.Reverse transcription analysis of gene expression*

Expression analysis of a panel of genes consisting of CD90, CD73, CD105, CD45, CD34, CD44, CD13, CD29, CD31 and Oct-4 was performed on sAT-MSC and pAT-MSC at P3. Both populations were negative for CD45 and CD31. pAT-MSC were also negative for CD34 expression, while sAT-MSC showed weak expression. All other genes of the panel were

expressed in both sAT-MSC and pAT-MSC. Semiquantitative
analysis of marker profile, demonstrated a substantial
equivalence between the two cell populations (Table 5).

355 **4. Discussion**

356 MSC-based treatment has been increasingly applied in veterinary medicine in the recent years. Several studies have 357 reported the beneficial effects for different pathological states 358 359 in dogs (Black et al., 2008, Hall et al., 2010, Pogue et al., 2013, Alamoudi et al., 2014, Marx et al., 2014, Penha et al., 2014, 360 361 Villatoro et al., 2015, Perez-Merino et al., 2015, Kim et al., 362 2015 and Lee et al., 2015). horses (Del Bue et al., 2008, Rich et al, 2014 and Govoni et al, 2015) and cats (Trzil, et al., 2015, 363 Quimby, et al., 2016). Although the majority of the studies 364 365 carried out contain a limited number of patients and often lack 366 of appropriate controls, the results can be considered encouraging for the set-up of clinical protocols to be applied in 367 veterinary medicine. 368

For the reliability of research studies dealing with biological properties of MSC and for the safety of clinical treatments based on these cells, it is necessary to have accurate cell characterization. The availability of several possible tissue sources, different methods of cell culture, expansion and handling, as well as a variety of possible therapeutic

approaches, represent a limit to the correct evaluation of thehealing potential of these cells.

Following the basic criteria for the characterization of human 377 378 MSC (Dominici et al., 2006), equivalent MSC derived from laboratory and domestic animals were demonstrated to have 379 fibroblast-like shape, ability to differentiate into osteogenic, 380 chondrogenic and adipogenic lineages and to have a 381 determinate cell surface antigen pattern. However, the lack of 382 383 species-specific antibodies has been a major drawback towards 384 the full and accurate immunophenotypic characterization of animal derived MSC. Therefore, The first aim of our study was 385 to select a panel of species-specific antibodies for the 386 387 evaluation of cell surface CD marker markers expression in canine adipose tissue derived MSC that could be routinely used 388 for the cell characterization prior to their use. Having read 389 390 previous studies addressing the same topic, we encountered a common statement declared by researchers, saying that their 391 392 findings can be found unexpected or contradictory due to the low binding affinity of non species-specific antibodies used for 393 the screening of cell surface markers (Screven et al., 2014). 394 We hypothesized that by using a panel of species-specific 395 antibodies this variable would be eliminated. The panel would 396 give more reliable and reproducible results that are necessary 397 for the correct characterization of MSC, since they have 398

become an attractive cell therapy product for small as well aslarge animal veterinary practitioners.

401	A further aim was to compare the marker expression of MSC
402	derived from subcutaneous and perivisceral adipose tissue.
403	Indeed, the characterization of these two populations of MSC
404	would be of practical relevance for their clinical use.
405	Subcutaneous adipose tissue is an easily available source of
406	MSC. Samples of a few grams of fat tissue can be collected
407	quickly and safely during surgery in dogs of different sizes,
408	avoiding the potential risk associated with abdominal surgery
409	or bone marrow aspiration. We hypothesized that by defining
410	and comparing the cell surface pattern of subcutaneous and
411	perivisceral adipose tissue, we could obtain data that will offer
412	researchers and veterinary practitioners the opportunity to
413	choose the source of MSC for their applications.

414

MSC derived from the two tissue sources were analysed at P3, 415 416 as this passage is considered appropriate for obtaining an adequate number of cells, safe in terms of chromosome 417 418 variability and genetic abnormalities, and, therefore, adequate 419 for therapeutic applications (Binato et al., 2013). Cells-MSC 420 from both tissue sources had a similar fibroblast-like morphology, were able to adhere to plastic surface, grew in 421 monolayer and demonstrated the capacity to differentiate in 422

423 osteogenic, chondrogenic and adipogenic lineages when stimulated with appropriate induction medium. A previous 424 study reported similar results (Guercio et al., 2013), but lacked 425 426 the immunophenotypic characterization of the cell population. Thus, in the present study, we chose to determine the 427 expression of a panel of cell surface CD markers (CD29, CD34, 428 429 CD44, CD45, CD90, CD73 and MHC-II), typical for the MSC (Dominici et al., 2006) using species-specific anti-canine 430 431 antibodies.

CD 105 - one of the three surface markers that define human
MSC (Dominici et al., 2006), was not taken in consideration in
our study since we were not able to find any commercially
available anti canine - CD105 antigen. canine antibodies.
However, by means of RT-PCR we analysed the CD105
expression and it was found positive in both sAT-MSC and in
pAT-MSC.

439 Antibody reactivity was confirmed by flow cytometry of canine PBMC (Peripheral Blood Mononucleated Cells) that served as 440 a positive control. Interestingly, canine AT-MSC derived from 441 442 subcutaneous and perivisceral adipose tissue showed a similar immunophenotypic pattern, which from a practical point of 443 444 view indicates that both tissues can be used as a valid source for the isolation of MSC. Both cell populations can be defined 445 as CD29⁺CD44⁺CD90⁺CD45⁻CD34⁻CD73⁻MHC-II⁻. As far as 446 447 we know, this is the first study that characterized cAT-MSC by

448	using a panel of canine species specific antibodies for both
449	positive as well as negative markers. We are aware that culture
450	conditions influence the immunophenotypic profile of MSC, as
451	it has been demonstrated for example, by bFGF (Gharibi and
452	Hughes, 2012). Therefore for each future characterization in
453	different culture conditions it is recommended to take this fact
454	in consideration. Different researchers included anti-human
455	antibodies in their protocols, however, they cannot be
456	considered fully reliable for the characterization of canine
457	MSC. Rozemuller et al., 2010 studied the expression of surface
458	cell surface marker expression on canine BM-MSC using a
459	panel of 43 anti-human antibodies. 24 of them, among which
460	CD73, CD90 and CD105 did react with human MSC, but failed
461	to cross-react with canine MSC, therefore cannot be considered
462	adequate for the definition of the immune phenotype of canine
463	MSC Takemitsu et al., isolated and characterized canine AT-
464	MSC obtaining surprisingly low results for the expression of
465	CD90 and CD105, finding that can be justified by the fact that
466	they used non canine specific antibodies. Similar findings were
467	obtained by Screven et al. for CD105, as they stated that the
468	low binding activity can be a conseguence to the use of a
469	nonspecific canine antibody.
470	By RT-PCR analysis, we analyzed the gene expression of the

471 same markers analyzed with FACS analysis, including472 additionally Oct-4, CD105, CD13 and CD31. The positive

473	expression of Oct-4 demonstrated the pluripotency of both
474	sAT-MSC as well as pAT-MSC, as it has already been
475	described in canine (Neupane et al., 2008, Reich et al., 2012)
476	and human (Han et al., 2014) AT-MSC. Furthermore, the cells
477	resulted positive for CD13 and negative for CD 31. Although
478	we did not evaluate CD105 expression by flow cytometry
479	analysis, the RT-PCR revealed a positive expression for both
480	sAT-MSC and pAT-MSC. As a whole the results obtained by
481	flow cytometry were confirmed by RT-PCR, as the two cell
482	populations demonstrated a similar qualitative pattern of
483	expression, with the only exception of CD34. According to
484	Takemitsu et al. (2012), and Screven et al. (2014), canine AT-MSC
485	do not express CD34. However Russell et al. (2016) found a
486	moderately high expression of CD34 on AT-MSC, explaining that
487	actually the fat harvesting site does have an influence on surface
488	markers expression. We indeed detected a positive, although low
489	expression of CD34 at mRNA level in sAT-MSC. On the other hand
490	at a protein level CD34 was absent. This finding could be explained
491	with the observation that sometimes low level of gene transcription
492	does not result in a significant protein synthesis (Screven et al.,
493	2014).

496 The comparison of the immunophenotypical profile of AT-497 MSC among canine, human and other species adipose tissue

derived MSC would be of interest, as the dog is considered a
suitable animal model for the study of human diseases
(Hoffman and Dow, 2016).

501 In comparison to laboratory animals, canine anatomy and physiology, as well as the prevalence in this species of natural 502 503 occurring diseases with similar pathogenesis, more closely 504 resemble humans. Dogs have a longer life-span, live in environments similar to humans and therefore are exposed to 505 different external factors that are part of the aetiology of 506 507 common diseases and conditions such as diabetes, obesity and tumors. Furthermore, the clinical follow-up is similar and there 508 is a wide range of imaging techniques developed for veterinary 509 510 patients (Volk and Theoret, 2013) suitable to provide solid knowledge about the clinical evolution of the diseases. 511

512 A complete overlap of marker expression between human MSC has yet to be demonstrated due to the lack of an extensive cell 513 characterization in some species. However, similarities can be 514 515 found between MSCs derived from domestic and laboratory animals and humans. Most of the markers analyzed in this 516 study share a similar distribution in the different species, with 517 the exception of CD73. We encountered a similar identical 518 519 expression of CD29, CD34, CD44, CD45, CD90 and MHC-II which could suggest that in vitro cultured canine MSC 520 possibly share a similar immunophenotypic profile with human 521 522 MSC (Takemitsu et al., 2012; Nery et al., 2012). The unique

523 difference found was in the expression of CD73, one of the 524 three positive markers proposed for defining hMSC (\geq 95%) (Dominici et al., 2006). Interestingly, we report here for the 525 first time that the expression of CD73 is lower in other animal 526 527 an animal species compared to humans (Table 6). This would suggest that there is a slightly different immunophenotypic 528 529 profile that should be taken in consideration for the correct interpretation and characterization of AT-MSC in veterinary 530 531 patients.

532 Bone marrow has been commonly used in veterinary medicine 533 as a source of MSC. Their immunophenotype has been described in different works. Malagola et al., (2016) by FACS 534 cBM-MSC 535 analysis characterized as CD105⁺CD90⁺CD166⁺CD29⁺CD45⁻. Additionally, Takemitsu 536 et al. (2012) and Screven et al., (2014) compared the 537 538 immunophenotypic profile of cAT-MSC and cBM-MSC, which resulted to be similar. However Screven et al., did not report 539 any statistical analysis and compared cells collected at a 540 541 different in vitro passage. Takemtsu et al., compared cells deriving from dogs having the same gender, similar age and 542 weight, and bred in similar conditions. In the present work, on 543 544 the other hand we have isolated cAT-MSC from canine patients having different age, gender, weight and living in different 545 environments. Therefore, we compared our results with the 546

547 immunophenotypical characteristics previously described for bone marrow derived MSC Takemitsu et al., 2012. (Table 7). 548 Both profiles are similar in terms of CD29 and CD44 as 549 550 positive markers and CD34, CD45 and MHC-II as negative 551 markers. A difference exists in the expression of CD73 and CD90, which appears to be lower in BM-MSC. However, the 552 553 authors used noncanine-specific antibodies for the analysis, which can have an influence on the interpretation of the 554 555 percentage of expression. Altogether, the results presented in Table 7 indicate a quite similar profile between canine adipose 556 tissue and bone marrow derived MSC. 557

558 **5.** Conclusions

In the present paper we suggest a panel of antibodies 559 specific to canine antigens suitable for the characterization 560 of canine MSC by cytofluorimetry, i.e. CD29, CD34, CD44, 561 562 CD45, CD90, CD73 and MHC-II. Using this panel of antibodies, we demonstrated that MSC derived from 563 subcutaneous and perivisceral fat tissue samples shares an 564 565 overlapping immune-profile, suggesting that the choice of the source of adipose tissue collected to expand MSC to be 566 used in clinical practice, could be decided by the 567 568 veterinarian of the basis of clinical considerations and not 569 as a consequence of biological difference between cells derived from the two different sources. Furthermore, the 570

571 immunophenotype described by our panel of antibodies 572 also suggests that adipose tissue derived MSC and bone marrow derived MSC show a similar profile. However, we 573 574 would like to point out that additional studies are necessary to broaden the above listed panel of antibodies, in order to 575 576 obtain a more accurate characterization of the 577 immunophenotype of MSC.

578

579 Conflict of interest statement

- 580 This research did not receive any specific grant from funding
- agencies in the public, commercial, or not-for-profit sectors.

582 Acknowledgements

- 583 The authors would like to thank the Surgery Unit of the Private
- 584 Veterinary Clinic "Jenner", Parma, led by Dr. Emanuele
- 585 Cabibbo for the help in collecting adipose tissue samples.
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594

	Patient	Gender	Age	Breed	Weight	Sampling collection location
	Dog 1	Female	1.5	Mixed-breed	10kg	Tela subserosa of the perimetrium
	Dog 2	Female	years 9	German	35kg	Abdominal subcutaneous adipose
	Dog 3	Female	years 8	shepherd Newfoundland	60kg	tissue Mesenteric adipose tissue
	Dog 4	Female	12 years	Mixed-breed	30kg	Abdominal subcutaneous adipose tissue
	Dog 5	Female	6	Mixed-breed	23kg	Tela subserosa of the perimetrium
	Dog 6	Male	years 2 years	Mixed-breed	4kg	Falciform ligament
	Dog 7	Female	11 11	Mixed-breed	8kg	Abdominal subcutaneous adipose
	Dog 8	Male	4 years	German shepherd	40kg	Abdominal subcutaneous adipose tissue
596			2	•		
597						
598						
599						
600						
601						
602						
603						
604						
605						
606						
607						

595 Table 1. Canine patients' donors of adipose tissue samples

	Target cell marker	Clone	Isotype	Antibody Label	Reactivity	Production company
	CD 29	TS2/16	IgG1,k	PE	Human;Dog; Bovine	BioLegend
	CD 34	1H6	IgG1	PE	Dog	eBioscience
	CD 44	YKIX337. 8	IgG2a,k	FITC	Dog	eBioscience
	CD 45	YKIX716. 13	IgG2b,k	FITC	Dog	eBioscience
	CD 73	Polyclonal	IgG	Alexa Fluor 647	Human;Mouse;Rat; Dog; Chicken	Bioss
	CD 90	YKIX337. 217	IgG2b,k	PE	Dog	eBioscience
	MHC-II	YKIX337. 8	IgG2a,k	APC	Dog	eBioscience
609						
610						
611						
612						
613						
614						
615						
616						
617						
618						
619						
620						
621						
622						
623						
624						
625						
626						

Table 2. Description of the panel of antibodies

Markers	Accession	Primers	Amplicon
	Number		size
CD 13	NM_00114	Fw:	335bp
	6034.1	GGTCCTTACCATCACCTG	
		GC	
		Rv:	
		CCTAAGGCCATCCATCGT	
		CC	
CD 29	XM_00561	Fw:	356bp
	6949.1	AGGATGTTGACGACTGCT	
		GG	
		ACCITIGCATICAGIGIT	
CD 11	XXX 04022		4101
CD 31	XM_84832		410bp
	0	AC	
		ACCT	
CD 34	NM 00100	Fw [.]	383hn
00 04	3341.1	GAGATCACCCTAACGCCT	5050p
	001111	GG	
		Rv:	
		GGCTCCTTCTCACACAGG	
		AC	
CD 44	NM_00119	Fw:	408bp
	7022.1	CCCATTACCAAAGACCAC	-
		GA	
		Rv:	
		TTCTCGAGGTTCCGTGTC	
		TC	
CD 45	XM_00562	Fw:	432bp
	2282.1	TGITICCAGITCIGITICC	
		CCA Derr	
CD 73	XM 53222	Ew:	317hn
CD 75	1 4	GATGGGAAAGGCAAGAG	5170p
	1.1	GCT	
		Rv:	
		TTCCTGGCATCTTGCTAC	
		GG	
CD 90	NM_00128	Fw:	285bp
	7129.1	AAGCCAGGATTGGGGAT	
		GTG	
		Rv:	
		TGTGGCAGAGAAAGCTCC	
		TG	10.11
CD 105	XM_00562	Fw:	421bp
	5330.2	GUIGAGGACAGAGAIGA	

Table 3. Markers used for the evaluation of cell surface
markers expression of MSC by RT-PCR

			ССА	
	Oct-4	XM_53883	Rv: CACGGAGGAGGAAGCTG AAG Fw:	286bp
		0.1	AAGCCTGCAGAAAGACCT G Rv: GTTCGCTTTCTCTTTCGGG C	
629				
630				
631				
632				
633				
634				
635				
636				
637				
638				
639				
640				
641				
642				
643				
644				
645				
646				
647				
648				
649				
650				

Markers	sAT-MSC ^a	pAT-MSC ^b
CD 29	99.5%±0.6	99.2%±1.5
CD 34	$0.5\%{\pm}1$	$0.25\% \pm 0.5$
CD 44	78%±17	$76.7\% \pm 18$
CD 45	$0.25\% \pm 0.5$	$0.5\% \pm 0.6$
CD 73	$14\% \pm 12.3$	$17\%{\pm}14$
CD 90	89%±6.7	$79.5\% \pm 7.1$
MHC-II	$4.5\% \pm 6.3$	$4.5\% \pm 6.4$
a and b: Data are dis	splayed as percentages express	sed as mean \pm SD. Mood's median
test was applied and	no statistical difference for P	<0.05 was found.

Table 4. Flow cytometric analysis of adipose tissue derivedMSC

674	Table 5.	Summary	of cel	surface	markers	expression
675	measured b	y flow cyto	metry a	nalysis		

Cells	CD29	CD34	CD44	CD45	CD73	CD90	MHC-II
sAT- MSC	+++ ^b	- ^c	+++ ^b	- ^c	++ ^a	+++ ^b	- ^c
pAT- MSC	+++ b	_ c	+++ b	_ c	++ ^a	+++ ^b	_ c
PBMC	+++ b	+++ b	+++ b	+++ b	+++ b	+++ b	+++ ^b

- **a** ++ (10-40% positive cells)
- **b** +++ (>40% positive cells)
- **c** (<5% positive cells).
- Different groups are classified as described by Screven et al 2014

	Cell marker	pAT-MSC	sAT-MSC
	CD90	+++ ^d	+++ ^d
	CD73	++ ^c	++ c
	CD105 CD45	++ ' _ a	++ ' _ a
	CD34	_ ^a	+ ^b
	CD44	+++ ^d	+++ ^d
	CD13	+++ ^d	+++ ^d
	CD29 CD31	+++ ~ _a	+++ ~ _ a
	Oct-4	- + ^b	- + ^b
697	a – (not expressed)		
698	b + (<25% of GAPDH sig	gnal)	
699	c ++ (25-50% of GAPDH	signal)	
700	d +++ (>50% of GAPDH	signal)	
701			
702			
703			
704			
705			
706			
707			
708			
709			
710			
/11			
/12 712			
717			
715			
716			
717			
718			
719			

Table 6. Gene expression analysis of pAT-MSC and sAT-695 MSC using semi-quantitative RT-PCR

720 Table 7. Comparison of the immunophenotypic profile of

			war	ker exp	ression		
	CD	CD	CD	CD	CD	CD	MHC-
TT e	29	34 a	44	45 a	73	90	II a
Mouse ^f	+++ +++ ^c	- / d	+++ +++ ^c	- _ a	+++ ++ ^b	+++ ^c	- / d
Rat ^g	+++ ^c	- ^a	/ d	- ^a	/ d	/ d	/ d
Dog ⁿ Horso ⁱ	+++ ^c /d	- ^a a	+++ ^c	- ^a a	++ ^a a	+++ ^c	- ^a a
Cat ^j	/ d	_ ^a	+++ ^c	_ ^a	/ d	+++ ^c	/ d
a - (<5	5% positive	cells)					
b ++ (10	-40% positi	ve cells)					
c +++ (>4	0% positive	e cells)					
d / (n	ot known)						
Different gr	oups are cla	ssified as	described	by Screve	en et al 20	14	
e (Dominic	i et al., 200	5)					
f (Taha and	l Hedayati, 2	2010) (L	aschke et al	., 2013)			
g (Lotfy et a	al., 2014) (T	app et al.	, 2008)				
h our result	ts						
i (de Matto	s Carvalho	et al., 200	9)(Pascucc	i et al., 20)11)(Barbe	erini et al.,	2014)
j (Kono et a	al., 2014)						

721 adipose derived MSC from multiple species

747 Table 8. Comparison of the expression of the
748 immunophenotypic profile between MSC deriving from
749 subcutaneous adipose tissue, perivisceral adipose tissue and
750 bone marrow

Markers	sAT-MSC	pAT-MSC	BM-MSC^a
CD 29	99.5%±0.6	99.2%±1.5	98.41±0.53
CD34	$0.5\%{\pm}1$	$0.25\%{\pm}0.5$	0.88 ± 0.21
CD 44	78%±17	$76.7\%{\pm}18$	98.90±0.25
CD 45	$0.25\%{\pm}0.5$	$0.5\%{\pm}0.6$	0.24 ± 0.07
CD 73	$14\% \pm 12.3$	$17\%{\pm}14$	0.0081 ± 0.01
CD 90	89%±6.7	$79.5\%{\pm}7.1$	19.10±2.10
MHC-II	$4.5\% \pm 6.3$	$4.5\% \pm 6.4$	2.85±1.35

751 ^a Takemitsu et al., 2012

152	
753	
754	
755	
756	
757	
758	
759	
760	
761	
762	
762 763	
762 763 764	
762 763 764 765	
Figure 1 In vitro tri-lineage cell differentiation

Photomicrographs of canine perivisceral adipose tissue derived 768 MSC- (pAT-MSC: b, f, j) and canine subcutaneous adipose 769 770 tissue derived MSC (sAT-MSC: d, g, l), after 21 days of culture in adipogenic (**b**, **d**), chondrogenic (**f**, **h**), osteogenic 771 (j,l) induction medium. Parallely a control culture of pAT-MSC 772 (a, e, i) and sAT-MSC (c, g, k) was grown for 21 days in 773 774 DMEM. Adipogenic differentiation is evidenced with the presence of intracellular vacuoles colored in red (black arrow) 775 776 with Oil Red O staining, in pAT-MSC (b) and sAT-MSC (d), which are absent in control groups (a,c) (40X, scale bar 777 200µm). Alcian blue staining indicated the presence of 778 aggregates of proteglycans present in treated pAT-MSC (f) and 779 sAT-MSC (h), and their absence in the control cultures (e,h) 780 781 (10X, scale bar 100µm). Osteogenic differentiation was 782 indicated with extracellular calcium aggregates stained with von Kossa coloration in pAT-MSC (j) and sAT-MSC (l) 783 784 stimulated with ostegenic medium. Control groups did not contain any calcium aggregates (i, k) (10X, scale bar 100um). 785

786

787

789	Figure 2 Flow cytometry analysis of the expression of cell
790	surface markers on sAT-MSC and pAT-MSC
791	The expression of cell surface markers is presented in two
792	panels. The upper panel (a) contains data regarding the MSC
793	deriving from subcutaneous adipose tissue and the low panel
794	(b) data about MSC deriving from perivisceral adipose tissue.
795	Live cell populations were gated in forward and side scatter for
796	further analysis. Each histogram contains two peaks. The
797	shaded red peak represents the actual expression of the markers
798	for each cell group, on the other hand the transparent one is the
799	negative control.
800	

814	Alamoudi , N. M., El Ashiry, E. A., Farsi, N. M., El Derwi, D.
815	A., Atta, H. M., 2014. Treatment of Oral Ulcers in
816	Dogs Using Adipose Tissue-Derived Mesenchymal
817	Stem Cells. J Clin Pediatr Den. 38(3), 215-222.
818	Barberini, D.J., Freitas, N.P.P., Magnoni, M.S., Maia, L.,
819	Listoni, A.J., Heckler, M.C., Sudano, M.J., Golim, M.A.,
820	da Cruz Landim-Alvarenga, F., Amorim, R.M., 2014.
821	Equine mesenchymal stem cells from bone marrow,
822	adipose tissue and umbilical cord: immunophenotypic
823	characterization and differentiation potential. Stem Cell
824	Res. Ther. 5, 25.
825	Binato, R., de Souza Fernandez, T., Lazzarotto-Silva, C., Du
826	Rocher, B., Mehcalha, A., Pizzatti, L., Bouzas, LF.,
827	Abdelhay, E., 2013. Stability of human mesenchymal stem
828	cells during in vitro culture: considerations for cell
829	therapy. Cell Prolif. 46(1), 10-22.
830	Black, L. L., Gaynor, J., Adams, C., Dhupa, S., Sams, A. E.,
831	Taylor, R., Harman, S., Gingerich, D., Harman, R.,
832	2008. Effect of Intraarticular Injection of Autologous
833	Adipose-Derived Mesenchymal Stem and Regenerative
834	Cells on Clinical Signs of Chronic Osteoarthritis of the
835	Elbow Joint in Dogs. Vet. Ther. 9(3), 192-200.
836	de Mattos Carvalho, A., Alves, A.L.G., Golim, M.A., Moroz,
837	A., Hussni, C.A., de Oliveira, P.G.G., Deffune, E., 2009.

838	Isolation and immunophenotypic characterization of
839	mesenchymal stem cells derived from equine species
840	adipose tissue. Vet. Immunol. Immunopathol. 132, 303-
841	306.
842	Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I.,
843	Marini, F., Krause, D., Deans, R., Keating, A, Prockop,
844	D., Horwitz, E., 2006. Minimal criteria for defining
845	multipotent mesenchymal stromal cells. The International
846	Society for Cellular Therapy position statement.
847	Cytotherapy. 8(4), 315-317.
848	Gharibi, B. and Hughes, F.J., 2012. Effects of Medium
849	Supplements on Proliferation, Differentiation Potential,
850	and In Vitro Expansion of Mesenchymal Stem Cells. Stem
851	Cells Transl Med. 1, 771-782.
852	Guercio, A., Di Bella,S., Casella, S., Di Marco, P., Russo, C.,
853	Piccione G., 2013. Canine Mesenchymal Stem Cells
854	(MSCs): characterization in relation to donor age and
855	adipose tissue- harvesting site. Cell. Biol. Int. 37(8),
856	789-98.
857	Hall, M. N., Rosenkrantz, W. S., Hong, J. H., Griffin, C. E., &
858	Mendelsohn, C. M., 2010. Evaluation of the Potential

859 Use of Adipose-Derived Mesenchymal Stromal Cells in

860	the Treatment of Canine Atopic Dermatitis: a Pilot
861	Study. Vet.Ther. 11(2), E1-14.
862	Han, S.M., Han, S.H., Coh, Y.R., Jang, G., Chan, R.J., Kang,
863	S.K., Lee, H.W., Youn, H.Y. 2014. Enhanced
864	proliferation and differentiation of Oct-4- and Sox2-
865	overespressing human adipose tissue mesenchymal stem
866	cells. 20(46), 1-9.
867	Hoffman, A.M., Dow, S.W., 2016. Concise review: Stem Cell
868	Trials Using Companion Animal Disease Models. Stem
869	Cells. 34(7), 1709-1729.
870	Kim, Y., Lee, S. H., Kim, W. H., Kweon, OK., 2015.
871	Transplantation of Adipose Derived Mesenchymal Stem
872	Cells for Acute Thoracolumbar Disc Disease with no
873	Deep Pain Perception in Dogs. J. Vet. Sci. 17(1), 123-
874	126.
875	Kono, S., Kazama, T., Kano, K., Harada, K., Uechi, M.,
876	Matsumoto, T., 2014. Phenotypic and functional
877	properties of feline dedifferentiated fat cells and adipose-
878	derived stem cells. Vet. J. 199, 88–96.
879	Laschke, M.W., Schank, T.E., Scheuer, C., Kleer, S., Schuler,
880	S., Metzger, W., Eglin, D., Alini, M., Menger, M.D.,
881	2013. Three-dimensional spheroids of adipose-derived
882	mesenchymal stem cells are potent initiators of blood

883	vessel formation in porous polyurethane scaffolds. Acta
884	Biomater. 9, 6876–6884.

885	Lee, S. H., Kim, Y., Rhew, D., Kuk, M., Kim, M., Kweon, O.
886	K., 2015. Effect of the Combination of Mesenchymal
887	Stromal Cells and Chondroitinase ABC on Chronic
888	Spinal Cord Injury. Cytotherapy, 17(10), 1374-1383.
889	Lotfy, A., Salama, M., Zahran, F., Jones, E., Badawy, A., Sobh,
890	M., 2014. Characterization of mesenchymal stem cells
891	derived from rat bone marrow and adipose tissue: a
892	comparative study. Int J Stem Cells, 7, 135–142.
893	Malagola, E., Teunissen, M., van der Laan, L.J., Verstegen,
894	M.M., Schotanus, B.A., van Steenbeek, F.G., Penning,
895	L.C., van Wolferen, M.E., Tryfonidou, M.A., Spee, B,.
896	2016. Characterization and Comparison of Canine
897	Multipotent Stromal Cells Derived from Liver and Bone
898	Marrow. Stem Cells Dev., 25(2), 139-150.
899	Marx, C., Silveira , M. D., Selbach, I., da Silva, A. S., Braga, L.
900	M., Camassola, M., Nardi, N.B. 2014. Acupoint
901	Injection of Autologous Stromal Vascular Fraction and
902	Allogeneic Adipose-Derived Stem Cells to Treat Hip
903	Dysplasia in Dogs. Stem Cells Int. 391274.
904	Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose-

905 derived stem cells in veterinary medicine: characterization

906	and therapeutic applications. Stem Cells Dev. 24, 803-
907	813.

- 908 Neupane, M., Chang, C.C., Kiupel, M., Yuzbasiyan-Gurkan,
- 909 V., 2008. Isolation and characterization of canine adipose-
- 910 derived mesenchymal stem cells. Tissue Eng Part A.,
- 911 14(6), 1007-1015.
- 912 Nery, A.A., Nascimento, I.C., Glaser, T., Bassaneze, V.,
- 913 Krieger, J.E., Ulrich, H., 2013. Human mesenchymal stem
- 914 cells: from immunophenotyping by flow cytometry to
- 915 clinical applications. Cytometry. A 83, 48–61
- 916 Pascucci, L., Curina, G., Mercati, F., Marini, C., Dall'Aglio, C.,
- 917 Paternesi, B., Ceccarelli, P., 2011. Flow cytometric
- 918 characterization of culture expanded multipotent
- 919 mesenchymal stromal cells (MSCs) from horse adipose
- 920 tissue: Towards the definition of minimal stemness
- 921 criteria. Vet. Immunol. Immunopathol. 144, 499–506.
- 922 Penha, E. M., Meira, C. S., Guimaraes, E. T., Pinheiro
- 923 Mendoca, M. V., Gravely, F. A., Bahia Pinheiro, C. M.,
- Bahia Pinheiro, T.M., Barrouin-Melo, S.M., Ribeiro-
- 925 Dos-Santos, R., Pereira Soares, M.B., 2014 Use of
- 926 Autologous Mesenchymal Stem Cells Derived from
- 927 Bone Marrow for the Treatment of Naturally Injured
- 928 Spinal Cord in Dogs. Stem Cells Int. 437521.

929	Perez-Merino, E. M., Uson-Casaus, J. M., Zaragoza-Bayle, C.,
930	Duque-Carrasco, J., Marinas-Pardo, L., Hermida-Prieto,
931	M., Barrera-Chacon, R., Gualtieri, M., 2015. Safety and
932	Efficacy of Allogeneic Adipose Tissue-Derived
933	Mesenchymal Stem Cells for Treatment of Dogs with
934	Inflammatory Bowel Disease: Clinical and Laboratory
935	Outcomes. Vet J. 206, 385-390.
936	Pogue , B., Estrada, A. H., Sosa-Samper, I., Maisenbacher , H.
937	W., Lamb, K. E., Mincey, B. D., Erger, K.E., Conlon,
938	T.J., 2013. Stem-Cell Therapy for Dilated
939	Cardiomyopathy: a Pilot Study Evaluating Retrograde
940	Coronary Venous Delivery. J. Small Anim. Pract.
941	54(7), 361-366.
942	Reich, C.M., Raabe, O., Wenisch, S., Bridger, P.S., Kramer,
943	M., Arnhold, S. 2012. Isolation, culture and
944	chondrogenic differentiation of canine adipose tissue-
945	and bone marrow-derived mesenchymal stem cells-a
946	comparative study. Vet Res Commun. 36(2), 139-148.
947	Rozemuller, H., Prins, H., Naaijkens, B., Staal, J., Bühring, H.,
040	Martens, A.C., 2010. Prospective Isolation of
940	
948 949	Mesenchymal Stem Cells from Multiple Mammalian
948 949 950	Mesenchymal Stem Cells from Multiple Mammalian Species Using Cross-Reacting Anti-Human Monoclonal

952	Russell, K.A., Chow, N.H., Dukoff, D., Gibson, T.W.,			
953	LaMarre, J., Betts, D.H., Koch, T.G. 2016.			
954	Characterization and immunomodulatory effects of canine			
955	adipose tissue and bone marrow-derived mesenchymal			
956	stromanl cells. PLoS One, 11(12), 1-18.			
957	Screven, R., Kenyon, E., Myers, M.J., Yancy, H.F., Skasko,			
958	M., Boxer, L., Bigley III, E.C., Borjesson, D.L., Zhu,			
959	M., 2014. Immunophenotype and gene expression			
960	profiles of mesenchymal stem cells derived from canine			
961	adipose tissue and bone marrow. Vet. Immunol.			
962	Immunopathol. 161, 21–31.			
963	Taha, M.F., Hedayati, V., 2010. Isolation, identification and			
964	multipotential differentiation of mouse adipose tissue-			
965	derived stem cells. Tissue Cell 42, 211–216.			
966	Takemitsu H, Zhao D, Yamamoto I, Harada Y, Michishita M,			
967	A.T., 2012. Comparison of bone marrow and adipose			
968	tissue-derived canine mesenchymal stem cells. BMC Vet			
969	Res. 8, 150.			
970	Tapp, H., Deepe, R., Ingram, J.A., Kuremsky, M., Hanley,			
971	E.N., Gruber, H.E., 2008. Adipose-derived mesenchymal			
972	stem cells from the sand rat: transforming growth factor			
973	beta and 3D co-culture with human disc cells stimulate			
974	proteoglycan and collagen type I rich extracellular matrix.			
975	Arthritis Res. Ther. 10, R89.			

976	Villatoro, A., Fernández, V., 2014. Use of Adipose-Derived
977	Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in
978	a Canine Model. Biomed Res. Int. 2015, 527926.
979	Volk, S.W., Theoret, C., 2013. Translating stem cell therapies:
980	the role of companion animals in regenerative medicine.
981	Wound Repair Regen. 21, 382–394.
982	

1	Highlights
---	------------

- 2
- The design of MSC based therapeutic protocols requires an
- 4 accurate cell characterization
- 5 Selection of a panel of 7 species specific anti-
- 6 canine antibodies for flow cytometric
- 7 characterization of canine AT-MSC
- 8 Canine AT-MSC from subcutaneous and perivisceral
- 9 adipose tissue have a similar
- 10 immunophenotypic profile
- 11 Comparison of the immunophenotypical profile of
- 12 AT-MSC from veterinary species,
- 13 laboratory animals and human origin
- AT-MSC derived from animal species have a lower CD73
- 15 expression compared to human
- 16 AT-MSC

- 1 Immunophenotypical characterization of canine mesenchymal
- 2 stem cells from perivisceral and subcutaneous adipose tissue by
- 3 a species-specific panel of antibodies

4 Authors:

- 5 Ana Ivanovska^a, Stefano Grolli^a, Paolo Borghetti^a, Francesca
- 6 Ravanetti^a, Virna Conti^a, Elena De Angelis^a, Francesca
- 7 Macchi^a, Roberto Ramoni^a, Paolo Martelli^a, Ferdinando Gazza^a
- 8 and Antonio Cacchioli^a
- 9 ^a Department of Veterinary Science, University of Parma Via
- 10 del Taglio 10, 43126, Parma, Italy

11 Corresponding author:

- 12 Dr.Francesca Ravanetti
- 13 Department of Veterinary Science
- 14 University of Parma
- 15 Via del Taglio 10, 43126 Parma
- 16 Italy
- 17 00 39 0521 032648
- 18 francesca.ravanetti@unipr.it
- 19
- 20
- 21

22 Abstract

23 Immunophenotypical characterization of mesenchymal stem cells (MSC) is fundamental for the design and execution of 24 sound experimental and clinical studies. The scarce availability 25 of species-specific antibodies for canine antigens has hampered 26 the immunophenotypical characterization of canine MSC. The 27 28 aim of this study was to select a panel of species-specific direct 29 antibodies readily useful for canine MSC characterization. MSC isolated from perivisceral (pAT-MSC) and subcutaneous 30 31 (sAT-MSC) adipose tissue samples collected during regular surgeries from 8 dogs, were cultured in vitro under standard 32 conditions. Single color flow cytometric analysis of sAT-MSC 33 34 and pAT-MSC (P3) with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations 35 36 with a similar pattern: $CD29^+$, $CD44^+$, $CD73^+$, $CD90^+$, $CD34^-$, CD45⁻ and MHC-II⁻ with no statistically significant differences 37 among them. Antibodies reactivity was demonstrated on canine 38 peripheral blood mononuclear cells. The similarities are 39 reinforced by their in vitro cell morphology, trilineage 40 differentiation ability and RT-PCR analysis (CD90⁺, CD73⁺, 41 CD105⁺, CD44⁺, CD13⁺, CD29⁺, Oct-4⁺ gene and CD31⁻ and 42 CD45⁻ expression). Our results report for the first time a 43 comparison between the immunophenotypic profile of canine 44 sAT-MSC and pAT-MSC. The substantial equivalence between 45 the two populations has practical implication on clinical 46

47	applications, giving the opportunity to choose the source
48	depending on the patient needs. The results contribute to
49	routine characterization of MSC populations grown in vitro, a
50	mandatory process for the definition of solid and reproducible
51	laboratory and therapeutic procedures.
52	Key words: mesenchymal stem cells, dog, adipose tissue,
53	species-specific antibody, immunophenotyping
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

67 **1. Introduction**

68 Regenerative medicine and tissue engineering are promising novel therapeutic approaches in veterinary medicine. In 69 70 particular, mesenchymal stem cells (MSC) are the most common option as a therapeutic tool and have been the subject 71 72 of a number of preclinical and clinical studies. MSC are self-73 renewing, multipotent adult stem cells found near blood vessels in different organs such as bone marrow, adipose tissue, blood, 74 umbilical cord, muscle, bone and cartilage. Due to their ability 75 76 to differentiate into other cell types and to produce a wide range of immunomodulatory, trophic, angiogenic and anti-77 apoptotic bioactive molecules, MSC have a practical 78 79 application in the field of cell therapy (Marx et al., 2015).

The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy defined them as a population of cells that satisfies the following criteria in vitro: 1) adherence to a plastic surface and typical spindle-like shape; 2) ability to differentiate in osteogenic, adipogenic and chondrogenic lineage and 3) the expression of a set of cell surface markers (Dominici et al., 2006).

87 Cell surface marker characterization of human MSC by flow88 cytometry has recently been carried out (Nery et al., 2013).

On the contrary, there is little data regarding the expression ofcell surface markers on MSC derived from animal species.

91 Detailed immunophenotyping analysis of equine MSC from multiple sources was reported, including the expression of 92 CD29, CD44, CD73, CD90, CD105, CD14, CD34, CD45, 93 94 CD79a, and MHC-II. Although a wide range of markers was 95 included in the study, the interpretation of the results was strongly influenced by the use of anti-human antibodies 96 97 (Paebst, et al., 2014). Several research groups have published studies about the marker expression of canine MSC isolated 98 99 from subcutaneous or perivisceral adipose tissue, but the current data are still incomplete. MSC from perivisceral 100 101 adipose tissue have been characterized as CD90, CD44, 102 CD140a and CD117 positive and CD34 and CD45 negative, however there were no data about the origin of the antibodies 103 104 that were used (Martinello et al., 2011).

Another flow cytometric analysis of canine MSC derived from subcutaneous adipose tissue demonstrated a high expression of CD29 and CD44, while CD90 was modestly expressed and there was no expression of CD73, CD34 and CD45. In this case, not all the antibodies used cross-reacted with canine cells and furthermore no control group was included for the evaluation of antibody reactivity (Takemitsu et al., 2012).

The immunophenotyping profile and gene expression of cell
surface markers was further studied on adipose derived MSC
that resulted positive for CD44, CD90 and MHC-II; negative

for CD29, CD34 and MHC-II using a panel of non-specificcanine antibodies (Screven et al., 2014).

There is growing interest in the use of MSC in the treatment of injuries and diseases in dogs. Different sources and procedures for the preparation of canine MSC have been proposed and it is difficult to make a clear comparison between the various therapeutic approaches proposed and the clinical outcomes.

Therefore, in order to design and perform robust experimental
and clinical studies in veterinary medicine, a fundamental step
would be a sound characterization and description of the MSC.

125 The aim of the present work was to select a panel of species-126 specific direct antibodies that can be readily used for the characterization of canine MSC. In particular, taking in 127 consideration the relatively easy and low invasive procedures 128 needed to collect tissue samples, we chose to perform the 129 immunophenotype characterization of adipose tissue derived 130 131 MSC. Using a defined panel of antibodies, we compared MSC deriving from two different adipose tissue sources, i.e. 132 133 subcutaneous and perivisceral adipose tissue.

134

135

136

138 **2.** Materials and methods

139 2.1.Sample collection

Perivisceral and subcutaneous adipose tissue samples were
collected during regular surgical procedures from 8 dogs with
stable systemic conditions.

After collection each sample was transferred to a vial 143 containing 20 ml of Dulbecco's Eagle Modified Medium 144 (DMEM low glucose, Gibco) additioned with penicillin 145 146 (0,10U/ml), streptomycin $(0,10 \mu g/ml)$ and amphotericin B (2,5 µg/ml, Gibco) until cell isolation (not more than 4 hours). 147 148 Peripheral blood samples for the isolation and flow cytometry 149 analysis of peripheral blood mononuclear cells were collected 150 from 3 healthy dogs prior to orthopaedic surgery. All the samples were collected following owner consent, under 151 standard ethical and sterile conditions. 152

153 *2.2.Cell culture*

MSC from subcutaneous adipose tissue (sAT-MSC) and perivisceral adipose tissue (pAT-MSC) were isolated from adipose tissue samples weighing 2 grams. The samples were cut with scalpels in small pieces of 0,5 cm diameter and afterwards were transferred in a 15mL Conical Centrifuge *Falcon* Tube containing 10 ml of collagenase solution (DMEM low glucose, Gibco; penicillin 0,10 U/ml, Gibco; streptomycin 161 0,10µg/ml, Gibco; amphotericin B 2,5 µg/ml, Gibco;
162 collagenase type I 0,1% p/v). Enzymatic digestion was
163 performed under a mechanical stirrer at 37°C for 45min.

The digested sample was then centrifuged (210xg for 8 min). 164 After removal of the collagenase solution and the fat 165 supernatant, the cell pellet was resuspended in 500µl 166 maintenance medium (DMEM low glucose, Gibco added with 167 10% fetal bovine serum (FBS), Gibco; penicillin 0,10U/ml, 168 Gibco; streptomycin 0,10µg, Gibco; amfotericine B 2,5 µg/ml, 169 Gibco) and seeded in 25 cm² (Orange Scientific Tissue Culture 170 Flasks) containing 5 ml of DMEM. The cells were maintained 171 in an incubator at 37°C at 5% CO₂. The medium was changed 172 173 each 2-3 days. Cells were cultured to 80% confluence and then trypsinized with 0,05% Trypsin-EDTA solution (Gibco) The 174 cell culture was grown until passage 3 (P3) when cells were 175 176 used for the evaluation of the differentiation capacity, flow cytometric analysis and RT-PCR. 177

- 178 2.3.Tri-lineage cell differentiation
- 179 1. Adipogenic differentiation

180 MSC deriving from subcutaneous and perivisceral adipose 181 tissue, at P3 were seeded in six-well plates at a density of 6 x 182 10^3 cells/cm². In each well, 3 ml of DMEM was added and the 183 cells were incubated at 37°C and 5% CO₂. At a confluency of 184 80% they were treated with adipogenic differentiation media (StemPro Adipogenesis Differentiation Kit). The flasks were
then put in an incubator with humidified atmosphere of 5%
CO₂ and temperature of 37°C. Medium was changed each 2-3
days. After 21 days the cells were fixed with 70% ethanol and
stained with Oil Red O coloration.

190 2. Chondrogenic differentiation

191 MSC deriving from subcutaneous and perivisceral adipose 192 tissue, at passage 3 were seeded in six-well plates at a density of 6 x 10^3 cells/cm². In each well 3 ml of DMEM was added 193 and the cells were incubated at 37°C and 5% CO₂. At a 194 195 confluency of 80% they were treated with with chondrogenic differentiation mediun (StemPro Chondrogenesis 196 197 Differentiation Kit). The flasks were then put in an incubator with humidified atmosphere of 5% CO₂ and temperature of 37 198 °C. Medium was changed each 2-3 days. After 21 days the cells 199 200 were fixed with 4% formaldehyde and stained with Alcian blue.

201 3. Osteogenic differentiation

202 MSC deriving from subcutaneous and perivisceral adipose tissue, at passage 3 were seeded in six-well plates at a density 203 of 6 x 10^3 cells/cm². In each well 3 ml of DMEM was added 204 and the cells were incubated at 37°C and 5% CO2. Arriving at 205 confluency of 80%, the cells were treated with osteogenic 206 207 induction medium (DMEM additioned with 100nM dexamethasone, 10µM glycerophosphate and 0.250 mM 208

ascorbic acid). Medium was changed each 2-3 days. After 21
days the cells were fixed with 1% paraformaldehyde and
stained with von Kossa staining (Bio Optica).

212 2.4.Immunophenotyping

Single color flow cytometry analysis was performed for the
assessment of surface marker expression of cells from both
sources of adipose tissue. The expression of the following
markers was evaluated: CD29, CD34, CD44, CD45, CD73,
CD90 and MHC-II, using a panel of seven antibodies (Table 1).

At P3, MSC were trypsinized (0,05% Trypsin-EDTA, Gibco) 218 219 and centrifuged at 210xg for 8 minutes. They were then 220 resuspended in 3 ml of complete medium for cell count using a Burker's hemocytometer. Then, 2.5×10^4 cells were transferred 221 in conical and round bottom tubes for flow cytometry analysis, 222 washed with 1 ml sterile PBS and then centrifuged at 210x g 223 224 for 8 minutes. The supernatant was eliminated and, in every 225 tube, 5 µl of each antibody was added.

226 For every sample, one tube containing the same number of227 unmarked cells was evaluated as a negative control.

After dark incubation for 15 minutes at room temperature, 1ml
of PBS was added and the cells were centrifuged at 210xg for 8
minutes. The pellet was then added 0,5ml of PBS and evaluated
by flow cytometry analysis (Cytomics FC 500, Beckman

Coulter). Dead cells were excluded using SytoxAAdvanced
Dead Cell Stain Kit (Life Technologies), according to the
manufacturer's instructions.

235 Antibodies were tested on peripheral blood mononuclear cells (PBMC) of 3 healthy dogs to confirm reactivity. PBMC were 236 237 isolated from 2 ml of 3 dog blood samples collected in lithiumheparin as anticoagulant by density gradient in Histopaque-238 239 1077 solution (Sigma, St. Louis, MO) according to the manufacturer's instructions. Blood samples were taken and 240 241 then stratified on Histopaque-1077 solution (1:1, v/v, Sigma) and centrifuged at $400 \times g$ for 30 min; purified PBMC were 242 washed with sterile Phosphate Buffer Solution (PBS) (Sigma) 243 244 supplemented with 1% fetal bovine serum (FBS) and resuspended in RPMI-1640 (Gibco, Carlsbad, CA, USA) 245 246 supplemented with 10% FBS, 2 mM l-glutamine, 100mM nonessential amino-acids, 50 mM 2-mercaptoethanol (Sigma) and 247 100 U/ml penicillin G, 100 µg/ml streptomycin and 0.25 µg/ml 248 249 amphotericin B.

250 Cells were counted by inverted optical microscope and 251 concentration was assessed before being used for surface 252 staining flow cytometry analysis. 400,000 cells were mixed 253 with 5µl of the specific antibody for each surface antigen in a 254 plastic tube, after an incubation for 15' in the dark at room 255 temperature, cells were washed with PBS with 1% FBS,

centrifuged for 5' at 400xg and re-suspended in 0.5 ml of
PBS/1%FCS and finally set aside for flow cytometry analysis
(Cytomics FC 500, Beckman Coulter).

259 *2.5.RT-PCR*

Assessment of the phenotypic expression of different cell 260 markers was performed by Reverse-Transcriptase-PCR (RT-261 PCR). Total RNA was extracted from 1.5x10⁶ cells at P3 (80% 262 of confluence) using the kit Nucleospin® RNA II (Macherey-263 Nagel) following manufacturer's instructions. cDNA was then 264 obtained via reverse transcription of 1.5µg of total RNA using 265 266 RevertAit[™] First Strand cDNA Synthesis Kit (Fermentas). PCR was performed using 2µl of cDNA. The final PCR 267 mixture contained 1x amplification buffer with 2.5 mM MgCl₂. 268 269 10mM dNTP Mix (Thermo Scientific), 0,25µm specific 270 forward and reverse primers, 1 U Dream Taq (Thermo Scientific) in a final volume of 25µl. 271

272 Table 2 reports the list of genes whose expression was analyzed, their gene accession number, the sequence of forward 273 274 and reverse specific set of primers and the length of the relative 275 amplicons. All PCRs were performed using the following 276 protocol: denaturation at 94°C for 30 sec; annealing at 55°C for 30 sec; extension at 72°C for 30 sec, with 35 cycles The 277 278 products of the RT-PCR were separated on agarose gel (1,5% P/V) in TAE buffer stained with 3,5µl ethidium bromide 279

280 (10mg/ml). Amplicons were visualized under UV light with a trans-illuminator and images acquired by a Canon digital 281 282 camera. The analysis was repeated with two different replicates 283 for each tissue sample. A semi-quantitative analysis of the 284 expression of MSCs markers was performed evaluating the optical density of each positive band by means of the ImageJ 285 286 image processing software normalized to the expression of the 287 housekeeping gene GAPDH.

288 2.6.Statistical analysis

The results of the immunophenotypic characterization of MSC deriving from perivisceral and subcutaneous adipose tissue were compared. Data was expressed as mean± standard deviation (SD). The differences among the groups were considered statistically significant for P<0.05 and Mood's median test was made as non-parametric statistics analysis. All the tests were made using SPSS 16 IBM software.

3. Results

3.1.Cell culture and isolation

After 24 – 48 hours, cells were adherent to the surface of the flasks. Medium was changed after two-three days in order to eliminate non-adherent cells. During their growth, cells appeared as a homogeneous population of typical fibroblastlike cell morphology with elongated spindle like shape.

303 *3.2.Tri-lineage cell differentiation*

304 Cell cultures at P3 have were able to differentiate into osteogenic, adipogenic and chondrogenic lineages. A large 305 306 number of cells contained intracellular lipid vacuoles stained with Oil Red O, confirming the adipogenic differentiation of 307 308 sAT-MSC and pAT-MSC, following the appropriate 309 stimulation in vitro. Cells stimulated with osteogenic induction medium formed aggregates and had numerous extracellular 310 calcium deposits, as by with von Kossa staining confirmed the 311 312 osteogenic differentiation of cells from both sources. The cell 313 cultures treated with chondrogenic medium contained aggregates of proteoglycans stained in blue with Alcian Blue 314 315 coloration. Control groups for each treatment showed no evidence of differentiation (Fig. 1). 316

317 *3.3.FACS analysis*

All antibodies tested on canine PBMC showed the expected reactivity (data not shown). For immunophenotypical analysis, the live population of MSC was gated in the scatter plot for further fluorescence intensity analysis in the histogram plot (Fig. 2).

Our data showed that MSC at P3 deriving from perivisceral and subcutaneous adipose tissue were positive for: CD29, CD44, CD73, CD90; and negative for CD34, CD45 and MHC-II

326 (Tables 3, 4). There was no significant difference in surface327 antigen expression between the two groups of MSC.

328 *3.4.Reverse transcription analysis of gene expression*

Expression analysis of a panel of genes consisting of CD90, 329 CD73, CD105, CD45, CD34, CD44, CD13, CD29, CD31 and 330 Oct-4 was performed on sAT-MSC and pAT-MSC at P3. Both 331 populations were negative for CD45 and CD31. pAT-MSC 332 333 were also negative for CD34 expression, while sAT-MSC showed weak expression. All other genes of the panel were 334 expressed in both sAT-MSC and pAT-MSC. Semiquantitative 335 336 analysis of marker profile, demonstrated a substantial 337 equivalence between the two cell populations (Table 5).

338 **4. Discussion**

339 MSC-based treatment has been increasingly applied in veterinary medicine in the recent years. Several studies have 340 341 reported the beneficial effects for different pathological states in dogs (Black et al., 2008, Hall et al., 2010, Pogue et al., 2013, 342 Alamoudi et al., 2014, Marx et al., 2014, Penha et al., 2014, 343 344 Villatoro et al., 2015, Perez-Merino et al., 2015, Kim et al., 2015 and Lee et al., 2015), horses (Del Bue et al., 2008, Rich 345 346 et al, 2014 and Govoni et al, 2015) and cats (Trzil, et al., 2015, Quimby, et al., 2016). Although the majority of the studies 347 carried out contain a limited number of patients and often lack 348 349 of appropriate controls, the results can be considered encouraging for the set-up of clinical protocols to be applied inveterinary medicine.

For the reliability of research studies dealing with biological 352 353 properties of MSC and for the safety of clinical treatments based on these cells, it is necessary to have accurate cell 354 characterization. The availability of several possible tissue 355 sources, different methods of cell culture, expansion and 356 handling, as well as a variety of possible therapeutic 357 approaches, represent a limit to the correct evaluation of the 358 359 healing potential of these cells.

360 Following the basic criteria for the characterization of human MSC (Dominici et al., 2006), equivalent MSC derived from 361 laboratory and domestic animals were demonstrated to have 362 363 fibroblast-like shape, ability to differentiate into osteogenic, 364 chondrogenic and adipogenic lineages and have a determinate cell surface antigen pattern. However, the lack of species-365 366 specific antibodies has been a major drawback towards the full 367 and accurate immunophenotypic characterization of animal derived MSC. Therefore, the first aim of our study was to select 368 a panel of species-specific antibodies for the evaluation of cell 369 surface CD markers expression in canine adipose tissue derived 370 371 MSC that could be routinely used for the cell characterization prior to their use. 372

373 A further aim was to compare the marker expression of MSC derived from subcutaneous and perivisceral adipose tissue. 374 Indeed, the characterization of these two populations of MSC 375 376 would be of practical relevance for their clinical use. 377 Subcutaneous adipose tissue is an easily available source of MSC. Samples of a few grams of fat tissue can be collected 378 379 quickly and safely during surgery in dogs of different sizes, avoiding the potential risk associated with abdominal surgery 380 381 or bone marrow aspiration.

382 Cells from both tissue sources had a similar fibroblast-like morphology, were able to adhere to plastic surface, grew in 383 monolayer and demonstrated the capacity to differentiate in 384 385 osteogenic, chondrogenic and adipogenic lineages when stimulated with appropriate induction medium. A previous 386 387 study reported similar results (Guercio et al., 2013), but lacked the immunophenotypic characterization of the cell population. 388 Thus, in the present study, we chose to determine the 389 expression of a panel of cell surface CD markers (CD29, CD34, 390 CD44, CD45, CD90, CD73 and MHC-II), typical for the MSC 391 (Dominici et al., 2006) using anti-canine antibodies. CD 105 -392 393 one of the three surface markers that define human MSC (Dominici et al., 2006), was not taken in consideration in our 394 study since we were not able to find any commercially 395 available anti-CD105 canine antibodies. 396

397 Antibody reactivity was confirmed by flow cytometry of canine PBMC that served as a positive control. Interestingly, canine 398 399 AT-MSC derived from subcutaneous and perivisceral adipose 400 tissue showed a similar immunophenotypic pattern, which from 401 a practical point of view indicates that both tissues can be used 402 as a valid source for the isolation of MSC. RT-PCR analysis 403 confirmed the results obtained with flow cytometry, as the two cell populations demonstrated a similar qualitative pattern of 404 405 expression.

The comparison of the immunophenotypical profile of AT-MSC among canine, human and other species adipose tissue derived MSC would be of interest, as the dog is considered a suitable animal model for the study of human diseases.

In comparison to laboratory animals, canine anatomy and 410 411 physiology, and the prevalence of natural occurring diseases with similar pathogenesis, more closely resemble humans. 412 413 Dogs have a longer life-span, live in environments similar to 414 humans and therefore are exposed to different external factors that are part of the aetiology of common diseases and 415 416 conditions such as diabetes, obesity and tumors. The clinical follow-up is similar and there is a wide range of imaging 417 418 techniques developed for veterinary patients (Volk and Theoret, 2013). 419

420 A complete overlap of marker expression between human MSC has yet to be demonstrated due to the lack of an extensive cell 421 422 characterization in some species. However, similarities can be 423 found between MSC derived from domestic and laboratory 424 animals and humans. Most of the markers analyzed in this study share a similar distribution in the different species, with 425 426 the exception of CD73. The identical expression of CD29, CD34, CD44, CD45, CD90 and MHC-II suggest that in vitro 427 428 cultured canine MSC share most of their characteristics with human MSC. The unique difference found was in the 429 430 expression of CD73, one of the three positive markers proposed for defining hMSC ($\geq 95\%$) (Dominici et al., 2006). 431 Interestingly, we report here for the first time that the 432 expression of CD73 is lower in an animal species compared to 433 434 humans (Table 6). This would suggest that there is a slightly 435 different immunophenotypic profile that should be taken in 436 consideration for the correct interpretation and characterization 437 of AT-MSC in veterinary patients.

Since bone marrow is commonly used in veterinary medicine
for the isolation of MSC, we also compared our results with the
immunophenotypical characteristics previously described for
bone marrow derived MSC (BM-MSC) (Takemitsu et al.,
2012) (Table 7). Both profiles are similar in terms of CD29,
CD44 as positive markers and CD34, CD45 and MHC-II as
negative markers. A difference exists in the expression of

445 CD73 and CD90, which appears to be lower in BM-MSC. 446 However, the authors used non-canine specific antibodies for 447 the analysis, which can have an influence on the interpretation 448 of the percentage of expression. Altogether, the results 449 presented in the table indicate a quite similar profile between 450 canine adipose tissue and bone marrow derived MSC.

451 **5.** Conclusions

452 In conclusion, the present study reports the evaluation of a panel of 7 primary antibodies suitable for the flowcytometric 453 characterization of canine MSC isolated from adipose tissue. 454 455 Marker expression was the same in subcutaneous-derived and perivisceral-derived fat tissue. The substantial equivalence 456 between the two sources of MSC has practical consequences in 457 the clinical application of cell therapy, giving the veterinarian 458 459 the opportunity to choose the source depending on the needs of 460 each patient.

461 Conflict of interest statement

462 This research did not receive any specific grant from funding

463 agencies in the public, commercial, or not-for-profit sectors.

464 Acknowledgements

- 465 The authors would like to thank the Surgery Unit of the Private
- 466 Veterinary Clinic "Jenner", Parma, led by Dr. Emanuele
- 467 Cabibbo for the help in collecting adipose tissue samples.

	Target cell	Clone	Reactivity	Production company	
	CD 29	TS2/16	Human;Dog; Bovine		BioLegend
	CD 34	1H6	Dog		eBioscience
	CD 44	YKIX337.	Dog		eBioscience
	CD 45	8 YKIX716. 13	Dog		eBioscience
	CD 73	Polyclonal	Human;Mouse;Rat; I Chicken	Dog;	Bioss
	CD 90	YKIX337. 217	Dog		eBioscience
	MHC-II	YKIX337. 8	Dog		eBioscience
469					
470					
471					
472					
473					
474					
475					
476					
477					
478					
479					
480					
481					
482					
483					
484					
485					
486					

Table 1. Description of the panel of antibodies

Markers	Accession	Primers	Amplicon
	Number		size
CD 13	NM_0011	Fw:	335bp
	46034.1	GGTCCTTACCATCACCT	
		GGC	
		Rv:	
		CCTAAGGCCATCCATC	
		GTCC	
CD 29	XM_0056	Fw:	356bp
	16949.1	AGGATGTTGACGACTG	
		CTGG	
		Rv:	
		ACCITIGCATICAGIGI	
CD 11	XXX 0.402	TGIGC	41.01
CD 31	XM_8483	Fw:	410bp
	26	GCCCGAAGIICACICIC	
		RV:CACICCITIGACCCA	
CD 34	NIM 0010	EACC1	282hn
CD 34	03341.1		3830p
	05541.1	CTGG	
		Rv [.]	
		GGCTCCTTCTCACACAG	
		GAC	
CD 44	NM_0011	Fw:	408bp
	97022.1	CCCATTACCAAAGACC	*
		ACGA	
		Rv:	
		TTCTCGAGGTTCCGTGT	
		CTC	
CD 45	XM_0056	Fw:	432bp
	22282.1	TGTTTCCAGTTCTGTTT	
		CCCCA	
CD 73	XM 5322	EUCA Env:	317hn
CD 75	$\frac{\mathbf{A}\mathbf{W}\mathbf{I}_{\mathbf{J}}\mathbf{J}\mathbf{J}\mathbf{J}\mathbf{J}\mathbf{J}\mathbf{J}\mathbf{J}\mathbf{J}$		3170p
	21.4	GGCT	
		Rv:	
		TTCCTGGCATCTTGCTA	
		CGG	
CD 90	NM_0012	Fw:	285bp
	87129.1	AAGCCAGGATTGGGGA	
		TGTG	
		Rv:	
		TGTGGCAGAGAAAGCT	
		CCTG	
CD 105	XM_0056	Fw:	421bp
	25330.2	GUTGAGGACAGAGATG	

Table 2. Markers used for the evaluation of cell surface
markers expression of MSC by RT-PCR

			1001	
	Oct-4	XM_5388 30.1	Rv: CACGGAGGAGGAAGCT GAAG Fw: AAGCCTGCAGAAAGAC CTG Rv: GTTCGCTTTCTCTTTCG	286bp
_			GGC	
)				
)				
L				
2				
3				
ļ				
5				
5				
,				
3				
)				
)				
,				
<u>-</u>				
-				
ŀ				
5				
5				
7				
3				
)				
)				

Markers	sAT-MSC ^a	pAT-MSC ^b
CD 29	99.5%±0.6	99.2%±1.5
CD 34	$0.5\%{\pm}1$	$0.25\% \pm 0.5$
CD 44	78%±17	$76.7\% \pm 18$
CD 45	$0.25\% \pm 0.5$	$0.5\% \pm 0.6$
C D 73	$14\% \pm 12.3$	$17\% \pm 14$
CD 90	89%±6.7	$79.5\% \pm 7.1$
MHC-II	$4.5\% \pm 6.3$	$4.5\% \pm 6.4$
and b: Data are di	splayed as percentages express	sed as mean \pm SD. Mood's median
est was applied and	l no statistical difference for P	<0.05 was found.

511 Table 3. Flow cytometric analysis of adipose tissue derived 512 MSC

	Cells	CD29	CD34	CD44	CD45	CD73	CD90	MHC- II
	sAT- MSC	+++ ^b	- ^c	+++ ^b	- ^c	++ ^a	+++ p	_ ^c
	pAT- MSC	+++ b	_ c	+++ ^b	_ ^c	++ ^a	+++ ^b	_ ^c
537	a ++	(10-40% p	ositive cell	s)				
538	b +++	(>40% pos	itive cells)					
539	c -	(<5% posit	ive cells).					
540	Differer	nt groups are	e classified	as describe	d by Screve	en et al 2014	4	
541								
542								
543								
544								
545								
546								
547								
548								
549								
550								
551								
552								
553								
555								
556								
550								
558								

Table 4. Summary of cell surface markers expression
measured by flow cytometry analysis
	Cell marker	pAT-MSC	sAT-MSC
	CD90	+++ ^d	+++ ^d
	CD73	++ ^c	++ ^c
	CD105	++ ^c a	++ ^c a
	CD45 CD34	- ⁻	
	CD34 CD44	- +++ d	$^+$ +++ d
	CD13	$^{+++}_{+++}$ d	++++ d
	CD29	+++ ^d	+++ d
	CD31	- ^a	- ^a
	Oct-4	+ ^b	+ ^b
561	\mathbf{a} – (not expressed)		
562	b + (<25% of GAPDH s	ignal)	
563	c ++ (25-50% of GAPD	H signal)	
564	d +++ (>50% of GAPD)	H signal)	
565			
FGG			
500			
567			
568			
569			
570			
571			
572			
E72			
575			
574			
575			
576			
577			
578			
579			
580			

Table 5. Gene expression analysis of pAT-MSC and sAT-559 MSC using semi-quantitative RT-PCR

	Species			Mar	ker exp	ression		
		CD	CD	CD	CD	CD	CD	MHC-
	Uumon ^e	29	34 a	44	45 a	73 c	90	II a
	Mouse ^f	+++ ^c	- / d	+++ ^c	- _ a	+++ ^b	+++ ^c	- / d
	Rat ^g	+++ ^c	- ^a	/ d	- ^a	/ d	/ d	/ d
	Dog ⁿ Horac ⁱ	$+++^{c}$	- ^a a	+++ ^c	- ^a a	$^{++a}_{a}$	+++ ^c	- ^a a
	Horse Cat ^j	/ d	- _ a	+++ ^c	- _ a	- / d	+++ +++ ^c	- / d
583	a - (<5	% positive	cells)					
584	b ++ (10-	-40% positi	ve cells)					
585	c +++ (>40	0% positive	e cells)					
586	d / (ne	ot known)						
587	Different gro	oups are cla	assified as	s described	by Screve	en et al 202	14	
588	e (Dominici	et al., 200	6)					
589	\mathbf{f} (Taha and	Hedayati, 2	2010) (L	aschke et al	l., 2013)			
590	g (Lotfy et a	l., 2014) (T	Capp et al	., 2008)				
591	h our result	S						
592	i (de Mattos	Carvalho	et al., 200)9)(Pascucc	i et al., 20	011)(Barbe	erini et al.,	2014)
593	j (Kono et a	ıl., 2014)						
594								
FOF								
595 596								
597								
598								
599								
600								
601								
602								
<u> </u>								
603								
604								
605								

Table 6. Comparison of the immunophenotypic profile ofadipose derived MSC from multiple species

Table 7 Comparison of the expression of the
immunophenotypic profile between MSC deriving from
subcutaneous adipose tissue, perivisceral adipose tissue and
bone marrow

Markers	sAT-MSC	pAT-MSC	BM-MSC^a
CD 29	$99.5\%{\pm}0.6$	99.2%±1.5	98.41±0.53
CD34	$0.5\%{\pm}1$	$0.25\%{\pm}0.5$	0.88 ± 0.21
CD 44	78%±17	$76.7\% \pm 18$	98.90±0.25
CD 45	$0.25\%{\pm}0.5$	$0.5\%{\pm}0.6$	0.24 ± 0.07
CD 73	$14\% \pm 12.3$	$17\%{\pm}14$	0.0081 ± 0.01
CD 90	89%±6.7	$79.5\%{\pm}7.1$	19.10±2.10
MHC-II	$4.5\% \pm 6.3$	$4.5\%{\pm}6.4$	2.85±1.35

610 ^a Takemitsu et al., 2012

611
612
613
614
615
616
617
618
619
620
621
622
623

625

Figure 1 In vitro tri-lineage cell differentiation

627 Photomicrographs of canine perivisceral adipose tissue derived MSC- (pAT-MSC: b, f, j) and canine subcutaneous adipose 628 629 tissue derived MSC (sAT-MSC: d, g, l), after 21 days of culture in adipogenic (**b**, **d**), chondrogenic (**f**, **h**), osteogenic 630 631 (**j**,**l**) induction medium. Parallely a control culture of pAT-MSC 632 (a, e, i) and sAT-MSC (c, g, k) was grown for 21 days in DMEM. Adipogenic differentiation is evidenced with the 633 presence of intracellular vacuoles colored in red (black arrow) 634 635 with Oil Red O staining, in pAT-MSC (b) and sAT-MSC (d), 636 which are absent in control groups (a,c) (40X, scale bar 200µm). Alcian blue staining indicated the presence of 637 638 aggregates of proteglycans present in treated pAT-MSC (f) and sAT-MSC (h), and their absence in the control cultures (e,h) 639 640 (10X, scale bar 100µm). Osteogenic differentiation was indicated with extracellular calcium aggregates stained with 641 von Kossa coloration in pAT-MSC (j) and sAT-MSC (l) 642 643 stimulated with ostegenic medium. Control groups did not contain any calcium aggregates (i, k) (10X, scale bar 100um). 644

645

Figure 2 Flow cytometry analysis of the expression of cell

647 surface markers on sAT-MSC and pAT-MSC

648The expression of cell surface markers is presented in two

649 panels. The upper panel (a) contains data regarding the MSC

650	deriving from subcutaneous adipose tissue and the low panel
651	(b) data about MSC deriving from perivisceral adipose tissue.
652	Live cell populations were gated in forward and side scatter for
653	further analysis. Each histogram contains two peaks. The
654	shaded red peak represents the actual expression of the markers
655	for each cell group, on the other hand the transparent one is the
656	negative control.
657	
658	
659	

675	Alamoudi , N. M., El Ashiry, E. A., Farsi, N. M., El Derwi, D.
676	A., Atta, H. M., 2014. Treatment of Oral Ulcers in
677	Dogs Using Adipose Tissue-Derived Mesenchymal
678	Stem Cells. J Clin Pediatr Den. 38(3), 215-22.
679	Barberini, D.J., Freitas, N.P.P., Magnoni, M.S., Maia, L.,
680	Listoni, A.J., Heckler, M.C., Sudano, M.J., Golim, M.A.,
681	da Cruz Landim-Alvarenga, F., Amorim, R.M., 2014.
682	Equine mesenchymal stem cells from bone marrow,
683	adipose tissue and umbilical cord: immunophenotypic
684	characterization and differentiation potential. Stem Cell
685	Res. Ther. 5, 25.
686	Black, L. L., Gaynor, J., Adams, C., Dhupa, S., Sams, A. E.,
687	Taylor, R., Harman, S., Gingerich, D., Harman, R.,
688	2008. Effect of Intraarticular Injection of Autologous
689	Adipose-Derived Mesenchymal Stem and Regenerative
690	Cells on Clinical Signs of Chronic Osteoarthritis of the
691	Elbow Joint in Dogs. Vet. Ther. 9(3), 192-200.
692	de Mattos Carvalho, A., Alves, A.L.G., Golim, M.A., Moroz,
693	A., Hussni, C.A., de Oliveira, P.G.G., Deffune, E., 2009.
694	Isolation and immunophenotypic characterization of
695	mesenchymal stem cells derived from equine species
696	adipose tissue. Vet. Immunol. Immunopathol. 132, 303-
697	306.

698	Del Bue, M., Riccò, S., Ramoni, R., Conti, V., Grolli, S., 2008.
699	Equine Adipose-Tissue Derived Mesenchymal Stem
700	Cells and Platelet Concentrates: Their Association In
701	Vitro and In Vivo. Vet. Ress. Commun. 32(Suppl 1),
702	S51-S55.
703	Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I.,
704	Marini, F., Krause, D., Deans, R., Keating, a, Prockop,
705	D., Horwitz, E., 2006. Minimal criteria for defining
706	multipotent mesenchymal stromal cells. The International
707	Society for Cellular Therapy position statement.
708	Cytotherapy 8, 315–7.
709	Govoni, K. E., 2015. Horse Species Symposium: Use of
710	Mesenchymal Stem Cells in Fracture Repair in Horses.
711	J. Anim. Sci. 93(3), 871-878.
712	Guercio, A., Di Bella,S., Casella, S., Di Marco, P., Russo, C.,
713	Piccione G., 2013. Canine Mesenchymal Stem Cells
714	(MSCs): characterization in relation to donor age and
715	adipose tissue- harvesting site. Cell. Biol. Int. 37(8):
716	789-98.
717	Hall, M. N., Rosenkrantz, W. S., Hong, J. H., Griffin, C. E., &
718	Mendelsohn, C. M., 2010. Evaluation of the Potential

719 Use of Adipose-Derived Mesenchymal Stromal Cells in

720	the Treatment of Canine Atopic Dermatitis: a Pilot
721	Study. Vet.Ther. 11(2), E1-14.
722	Kim, Y., Lee, S. H., Kim, W. H., Kweon, OK., 2015.
723	Transplantation of Adipose Derived Mesenchymal Stem
724	Cells for Acute Thoracolumbar Disc Disease with no
725	Deep Pain Perception in Dogs. J. Vet. Sci. 17(1), 123-
726	126.
727	Kono, S., Kazama, T., Kano, K., Harada, K., Uechi, M.,
728	Matsumoto, T., 2014. Phenotypic and functional
729	properties of feline dedifferentiated fat cells and adipose-
730	derived stem cells. Vet. J. 199, 88–96.
731	Laschke, M.W., Schank, T.E., Scheuer, C., Kleer, S., Schuler,
732	S., Metzger, W., Eglin, D., Alini, M., Menger, M.D.,
733	2013. Three-dimensional spheroids of adipose-derived
734	mesenchymal stem cells are potent initiators of blood
735	vessel formation in porous polyurethane scaffolds. Acta
736	Biomater. 9, 6876–6884.
737	Lee, S. H., Kim, Y., Rhew, D., Kuk, M., Kim, M., Kweon, O.
738	K., 2015. Effect of the Combination of Mesenchymal
739	Stromal Cells and Chondroitinase ABC on Chronic
740	Spinal Cord Injury. Cytotherapy, 17(10), 1374-83.
741	Lotfy, A., Salama, M., Zahran, F., Jones, E., Badawy, A., Sobh,
742	M., 2014. Characterization of mesenchymal stem cells

743	derived from rat bone marrow and adipose tissue: a
744	comparative study. Int J Stem Cells 7, 135–142.
745	Martinello, T., Bronzini, I., Maccatrozzo, L., Mollo, A.,
746	Sampaolesi, M., Mascarello, F., Decaminada, M., Patruno,
747	M., 2011. Canine adipose-derived-mesenchymal stem
748	cells do not lose stem features after a long-term
749	cryopreservation. Res. Vet. Sci. 91, 18-24.
750	Marx, C., Silveira , M. D., Selbach, I., da Silva, A. S., Braga, L.
751	M., Camassola, M., Nardi, N.B. 2014. Acupoint
752	Injection of Autologous Stromal Vascular Fraction and
753	Allogeneic Adipose-Derived Stem Cells to Treat Hip
754	Dysplasia in Dogs Stem Cells Int 391274
734	Dysplasia in Dogs. Stein Cens int. 571274.
755	Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose-
755 756	Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization
755 756 757	Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13.
755 756 757 758	 Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13. Nery, A. a, Nascimento, I.C., Glaser, T., Bassaneze, V.,
755 756 757 758 759	 Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13. Nery, A. a, Nascimento, I.C., Glaser, T., Bassaneze, V., Krieger, J.E., Ulrich, H., 2013. Human mesenchymal stem
755 756 757 758 759 760	 Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13. Nery, A. a, Nascimento, I.C., Glaser, T., Bassaneze, V., Krieger, J.E., Ulrich, H., 2013. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to
755 756 757 758 759 760 761	 Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13. Nery, A. a, Nascimento, I.C., Glaser, T., Bassaneze, V., Krieger, J.E., Ulrich, H., 2013. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry. A 83, 48–61.
755 756 757 758 759 760 761 762	 Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13. Nery, A. a, Nascimento, I.C., Glaser, T., Bassaneze, V., Krieger, J.E., Ulrich, H., 2013. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry. A 83, 48–61. Paebst, F., Piehler, D., Brehm, W., Heller, S., Schroeck, C.,
755 756 757 758 759 760 761 762 763	 Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13. Nery, A. a, Nascimento, I.C., Glaser, T., Bassaneze, V., Krieger, J.E., Ulrich, H., 2013. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry. A 83, 48–61. Paebst, F., Piehler, D., Brehm, W., Heller, S., Schroeck, C., Tarnok, A., Burk, J., 2014. Comparative
755 756 757 758 759 760 761 762 763 764	 Marx, C., Silveira, M.D., Beyer Nardi, N., 2015. Adipose- derived stem cells in veterinary medicine: characterization and therapeutic applications. Stem Cells Dev. 24, 803–13. Nery, A. a, Nascimento, I.C., Glaser, T., Bassaneze, V., Krieger, J.E., Ulrich, H., 2013. Human mesenchymal stem cells: from immunophenotyping by flow cytometry to clinical applications. Cytometry. A 83, 48–61. Paebst, F., Piehler, D., Brehm, W., Heller, S., Schroeck, C., Tarnok, A., Burk, J., 2014. Comparative Immunophenotyping of Equine Multipotent

766	Standardized Definition. Cytometry Part A(85A), 678-
767	687.

768	Pascucci, L., Curina, G., Mercati, F., Marini, C., Dall'Aglio, C.,
769	Paternesi, B., Ceccarelli, P., 2011. Flow cytometric
770	characterization of culture expanded multipotent
771	mesenchymal stromal cells (MSCs) from horse adipose
772	tissue: Towards the definition of minimal stemness
773	criteria. Vet. Immunol. Immunopathol. 144, 499–506.
774	Penha, E. M., Meira, C. S., Guimaraes, E. T., Pinheiro
775	Mendoca, M. V., Gravely, F. A., Bahia Pinheiro, C. M.,
776	Bahia Pinheiro, T.M., Barrouin-Melo, S.M., Ribeiro-
777	Dos-Santos, R., Pereira Soares, M.B., 2014 Use of
778	Autologous Mesenchymal Stem Cells Derived from
779	Bone Marrow for the Treatment of Naturally Injured
780	Spinal Cord in Dogs. Stem Cells Int. 437521.
781	Perez-Merino, E. M., Uson-Casaus, J. M., Zaragoza-Bayle, C.,
782	Duque-Carrasco, J., Marinas-Pardo, L., Hermida-Prieto,
783	M., Barrera-Chacon, R., Gualtieri, M., 2015. Safety and
784	Efficacy of Allogeneic Adipose Tissue-Derived
785	Mesenchymal Stem Cells for Treatment of Dogs with
786	Inflammatory Bowel Disease: Clinical and Laboratory
787	Outcomes. Vet J. 206, 385-390.
788	Pogue, B., Estrada, A. H., Sosa-Samper, I., Maisenbacher, H.

789 W., Lamb, K. E., Mincey, B. D., Erger, K.E., Conlon,

790	T.J., 2013. Stem-Cell Therapy for Dilated
791	Cardiomyopathy: a Pilot Study Evaluating Retrograde
792	Coronary Venous Delivery. J. Small Anim. Pract.
793	54(7), 361-6.
794	Quimby, J. M., Webb, T. L., Randall, E., Marolf, A., Valdes-
795	Martinez, A., Dow, S. W., 2016. Assessment of
796	Intravenous Adipose-Derived Allogeneic Mesenchymal
797	Stem Cells for the Treatment of Feline Chronic Kidney
798	Disease: a Randomized , Placebo-Controlled Clinical
799	Trial in Eight Cats. J. Feline Med. Surg. 18(2), 165-171.
800	Rich, F. R., 2014. Single-Center Study of 83 Horses with
801	Suspensory Injuries Treated with Adipose-Derived
802	Stem and Regenerative Cells. Stem Cell Discovery, 4,
803	44-53.
804	Screven, R., Kenyon, E., Myers, M.J., Yancy, H.F., Skasko,
805	M., Boxer, L., Bigley III, E.C., Borjesson, D.L., Zhu, M.,
806	2014. Immunophenotype and gene expression profiles of
807	mesenchymal stem cells derived from canine adipose
808	tissue and bone marrow. Vet. Immunol. Immunopathol.
809	161, 21–31.
810	Taha, M.F., Hedayati, V., 2010. Isolation, identification and
811	multipotential differentiation of mouse adipose tissue-
812	derived stem cells. Tissue Cell 42, 211–216.

813	Takemitsu H, Zhao D, Yamamoto I, Harada Y, Michishita M,
814	A.T., 2012. Comparison of bone marrow and adipose
815	tissue-derived canine mesenchymal stem cells. BMC Vet
816	Res 8.
817	Tapp, H., Deepe, R., Ingram, J.A., Kuremsky, M., Hanley,
818	E.N., Gruber, H.E., 2008. Adipose-derived mesenchymal
819	stem cells from the sand rat: transforming growth factor
820	beta and 3D co-culture with human disc cells stimulate
821	proteoglycan and collagen type I rich extracellular matrix.
822	Arthritis Res. Ther. 10, R89.
823	Trzil, J. E., Masseau, I., Webb, T. L., Chang, C. H., Dodam, J.
824	R., Liu, H., Quimby, J.M., Dow, S.W., Reinero, C.R.,
825	2015. Intravenous Adipose-Derived Mesenchymal Stem
826	Cell Therapy for the Treatment of Feline Asthma : A
827	Pilot Study. J. Feline Med. Surg.17.
828	Villatoro, A., Fernández, V., 2014. Use of Adipose-Derived
829	Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in
830	a Canine Model. Biomed Res. Int. 2015, 10.
831	Volk, S.W., Theoret, C., 2013. Translating stem cell therapies:
832	the role of companion animals in regenerative medicine.
833	Wound Repair Regen. 21, 382–94.

Expression of cell surface markers on sAT-MSC measured by flow cytometry