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Abstract

We present a BGK approximation of a kinetic Boltzmann model for a mixture
of polyatomic gases, in which non–translational degrees of freedom of each gas are
represented by means of a set of discrete internal energy levels. We deal also with
situations in which even chemical reactions implying transfer of mass may occur.
The consistency of the proposed BGK model is proved in both inert and reactive
frames, and numerical simulations in space homogeneous settings are presented.
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1 Introduction

A kinetic description of rarefied gas mixtures has been proposed in scientific litera-
ture several years ago [11, 10], and suitable generalizations to physical situations with
non–conservative collisions, implying transfer of energy and of mass, have been also
widely investigated both from the analytical and the numerical point of view (see for
instance [23, 13, 4, 18] and the references therein). These kinetic models usually describe
the evolution of the distribution functions f i of single gases by means of suitable integro–
differential equations of Boltzmann type. However, such equations are quite awkward
to deal with, especially because of energy thresholds appearing in the collision operators
relevant to endothermic interactions, that may occur only if the impinging kinetic energy
overcomes a suitable potential barrier [22]. For this reason, in recent years interest has
been gained by proper extensions to gas mixtures of the relaxation model proposed for a
single gas by Bhatnagar, Gross and Krook in [2], in which Boltzmann collision operator is
replaced by ν(M− f) where ν stands for a collision frequency and M is a suitable local
Maxwellian attractor. Besides BGK–type descriptions for inert mixtures, considered for
instance in [19, 1, 7], relaxation models taking into account also simple chemical reactions
have been deeply investigated [17, 20, 5, 9]. Such models are able to reproduce the main
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features of the kinetic Boltzmann equations they want to approximate, as Maxwellian col-
lision equilibria, the correct collision invariants, classical H–theorem. In reactive frames,
the proof of the consistency of a BGK approximation is much more involved than in in-
ert situations, since a transcendental relation between single number densities and global
temperature (the mass action law of chemistry [4]) has to be fulfilled by the equilibrium
states, and consequently it deeply affects the relations between the fictitious parameters
of the Maxwellian attractors and the actual macroscopic fields. Because of these diffi-
culties, to our knowledge all non–conservative BGK models for mixtures deal only with
monoatomic gases, even if it is well known that physically meaningful chemical processes
usually involve also polyatomic gases.

Kinetic Boltzmann descriptions for polyatomic gases have been proposed in [21, 16, 12],
in which single gases are endowed also with a (discrete or continuous) energy variable, to
mimic non–translational degrees of freedom. The main aim of this paper is to build up
a consistent BGK approximation of the Boltzmann model presented in [16], considering
a mixture of Q polyatomic gases Gs, s = 1, . . . , Q, each one with a structure of N > 1
discrete energy levels. At first we will assume that particles may interact only through
binary elastic or inelastic collisions, the latter ones implying changes of the energy levels
of the colliding pair; then, we will take into account more complicated situations allowing
also chemical reactions with transfer of mass. The BGK models we are proposing follow
the same lines as [5, 6], and they will be validated by both analytical proofs and numerical
simulations in space homogeneous frames. We know that a drawback of such kind of BGK
approach is that the corresponding hydrodynamic equations do not reproduce the correct
Prandtl number; to this aim, quite complicated BGK models of ellipsoidal type have been
proposed in the literature even for an elastically scattering mixture [14] or for a single
polyatomic gas [8], but their extension to polyatomic and reacting gas mixtures is left to
a future work.

More precisely, the article is organized as follows. In Section 2, the main features
of the kinetic Boltzmann model for polyatomic gases proposed in [16] are summarized,
forgetting for now chemical reactions. Then, in Section 3 a BGK relaxation model for
(inert) polyatomic gas mixtures is built up in the spirit of [5], determining in a unique
way parameters of the Maxwellian attractors in terms of species number densities, mass
velocities and temperatures; moreover, fulfillment of correct H–theorem is analytically
proved. Section 4 deals with possible generalizations of such BGK model to reactive
frames, in which a suitable mass action law affects collision equilibria and, consequently,
attractor parameters; at first we deal with a binary reacting mixture, for which mass
action law is an explicit relation between number densities of the two gases, and then we
consider the case of four reacting species, for which the analytical proof of consistency of
the BGK model turns out to be much more complicated. Finally, Section 5 is devoted
to the presentation of some numerical results in space homogeneous conditions (both for
inert and reacting polyatomic mixtures); time evolution of distribution functions and of
macroscopic fields is shown to illustrate the adherence of the BGK model to physical
expectations, and to test its response to variation of initial data and of internal energies.
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2 Kinetic Boltzmann model for polyatomic gases

We shall start from the kinetic model for internal state transitions proposed in [16], in
which a mixture of Q gases Gs, s = 1, . . . , Q, is considered, each one endowed with a
structure of N > 1 discrete energy levels, to mimic non–translational degrees of freedom.
In other words, each polyatomic gas Gs is represented as a mixture of monoatomic gases,
and each particle is characterized by the usual continuous variable representing its center
of mass velocity and also by a discrete variable representing its internal state. For a proper
mathematical treatment, the QN different components are labeled according to a single
index and ordered in such a way that the s–th chemical species may be regarded as the
equivalence class of the indices i which are congruent to s modulo Q (we shall write simply
i ≡ s). Each component Ai, 1 ≤ i ≤ QN , is then identified by the energy Ei of its state,
while obviously all molecules Ai with i ≡ s share the same mass ms. Energies Ei ≥ 0 are
assumed monotonically increasing with their index in the frame of each species.

We deal with binary interactions in which a collision between two particles of compo-
nents i and j yields a pair of molecules of the same gases, but with possibly different energy
levels (we neglect for now more complicated chemical reactions implying also transfer of
mass, which will be taken into account in Section 4). The general binary interaction may
thus be written as

Ai + Aj
⇋ Ah + Ak h ≡ i k ≡ j . (1)

We will denote by ∆Ehk
ij the net increase of internal energy Eh + Ek − Ei − Ej , whose

gain or loss must be compensated by an opposite variation of the kinetic energies.
The kinetic equations for the evolution of the distribution functions f i(x,v, t) may be

cast as [16]

∂f i

∂t
+ v · ∇

x
f i =

∑

(j, h, k)∈Di

∫∫

Kijhk
i [f ](v,w, n̂′)dwdn̂′, 1≤ i≤QN

Kijhk
i [f ](v,w, n̂′) = Θ(g2 − δhkij )B

hk
ij (g, n̂ · n̂′) (2)

×

[

(

µij

µhk

)3

fh
(

vhk
ij

)

fk
(

whk
ij

)

− f i(v)f j(w)

]

.

Here g = v−w = g n̂, and the post–collision velocities are given by vhk
ij = εijv + εjiw +

εkh ghkij n̂
′ and whk

ij = εijv + εjiw − εhk ghkij n̂
′, with ghkij =

[

µij

µhk (g
2 − δhkij )

]1/2

, εij standing

for the mass ratio mi/(mi + mj) and µij for the reduced mass εijmj . For mechanical
interactions (1) it obviously holds µij/µhk = 1, but we prefer to write here the scattering
operator in the most general form, able to describe also collisions with mass transfer that
will be dealt with in Section 4. Moreover Bhk

ij = g σhk
ij denotes the collision kernel (σhk

ij

is the differential cross section of the interaction Ai + Aj → Ah + Ak), while δhkij stands
for 2∆Ehk

ij /µ
ij; when the latter is positive, the unit step function Θ actually introduces a

threshold for the collision. Finally, the set Di includes all possible collisions, namely it is
made up by all triplets (j, h, k) with h ≡ i and k ≡ j.
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Major moments of each component Ai (number density ni, drift velocity ui, kinetic
temperature T i) reconstruct in the usual way [4] the corresponding moments of each
gas Gs and of the whole mixture as

N s =
∑

i≡s

ni , us =
1

N s

∑

i≡s

niui , N sKT s =
∑

i≡s

niKT i +
1

3
ms
∑

i≡s

ni(|ui|2 − |us|2),

(3)
and

n =

Q
∑

s=1

N s , ρ =

Q
∑

s=1

msN s ,

u =
1

ρ

Q
∑

s=1

msN sus , nKT =

Q
∑

s=1

N sKT s +
1

3

Q
∑

s=1

msN s(|us|2 − |u|2)

(4)

where K is the Boltzmann constant. Analogous relations hold for the pressure tensor P
and the thermal heat flux q.

The main properties of the collision operator (collision invariants, equilibria, H-theorem)
are a byproduct of the detailed investigation performed in [16]. In our frame there exist
Q + 4 independent collision invariants for the global collision operator, and they corre-
spond to the preservation of species number densities N s, of global mass velocity u, and
of total energy, sum of the kinetic contribution and of the internal one. Consequently,
Q+ 4 exact non–closed macroscopic conservation equations hold

∂N s

∂t
+∇

x
· (N sus) = 0 , s = 1, . . . , Q,

∂

∂t
(ρu) +∇

x
· (ρu⊗ u+P) = 0 ,

∂

∂t

(

1

2
ρ |u|2 +

3

2
nKT +

QN
∑

i=1

Eini

)

+∇
x
·

[(

1

2
ρ |u|2 +

3

2
nKT

)

u

+P · u+ q+

QN
∑

i=1

Einiui

]

= 0 .

(5)

Collision equilibria are a (Q + 4)–parameter family of Maxwellians with a common drift
velocity and temperature

f i
M(v) = ni

(

ms

2πKT

)3/2

exp

[

−
ms

2KT
|v− u|2

]

∀i ≡ s, ∀s = 1, . . . , Q , (6)

with equilibrium number densities related by the constraints

ni = N s ψ(Ei, T ) , (7)

where

ψ(Ei, T ) =
exp

(

−Ei
−Es

KT

)

∑

i≡s

exp

(

−
Ei −Es

KT

) =
exp

(

−Ei
−Es

KT

)

Zs(T )
. (8)
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Note that ψ(Ei, T ) represents the fraction of particles of species Gs (s ≡ i) that belongs
to the component Ai in any equilibrium configuration. For any component i = 1, . . . , QN
we have 0 ≤ ψ(Ei, T ) ≤ 1, and for any gas Gs it holds

∑

i≡s ψ(E
i, T ) = 1. Moreover,

for any i, j with i ≡ j and i < j, we have ψ(Ei, T ) > ψ(Ej , T ), hence in any equilibrium
state the highest fraction of particles Gs has the lowest energy level Es.

In space homogeneous conditions, a strict entropy inequality can also be established
in terms of the classical H–functional

H =

Q
∑

s=1

∑

i≡s

∫

f i log f i dv , (9)

quantifying relaxation rate to the unique collision equilibrium corresponding to the initial
data.

3 BGK relaxation model for polyatomic gas mixtures

BGK approaches for mixtures proposed in the literature are usually not trivial generaliza-
tion of the classical BGK model for a single gas, since one must take care of reproducing
some further basic principles, as positivity of densities and temperatures of all interact-
ing species, and “indifferentiability”, namely the requirement that when all species are
identical one must recover the BGK model for a single gas. These fundamental issues
are satisfied by the model proposed in [1] for inert monoatomic gas mixtures and ex-
tended in [5, 6] to reactive frames, and for this reason we build up here a BGK model
for polyatomic gases following the same lines. The crucial idea of this kind of relaxation
models consists in replacing the actual i–th Boltzmann collision operator by a single BGK
operator νi(Mi − f i), i = 1, . . . , QN , where νi are suitable v-independent macroscopic
collision frequencies (or inverse relaxation times), and the “attractors” Mi are fictitious
Maxwellians with macroscopic parameters to be properly determined:

∂f i

∂t
+ v · ∇

x
f i = νi(Mi − f i), i = 1, . . . , QN . (10)

Attractors Mi are assumed accommodated at a common auxiliary velocity ũ and tem-
perature T̃

Mi(v) = ñi

(

mi

2πKT̃

)3/2

exp

[

−
mi

2KT̃
|v− ũ|2

]

, (11)

while fictitious densities ñi are taken bound together as

ñi = Ñ s ψ(Ei, T̃ ) . (12)

Note that the attractors (11)–(12) are chosen in such a way that they fulfill all equilibrium
conditions, namely they are Maxwellian distributions with a unique drift velocity and tem-
perature, and with number densities provided by (12), the equilibrium constraint specific
of the polyatomic structure of gases. Therefore, this BGK model will describe a general
relaxation of all components Ai towards an equilibrium configuration, loosing in some
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sense the details of interactions between different species: in the Boltzmann equations (2)
there is a collision operator for each admissible interaction Ai+Aj

⇋ Ah+Ak, while in the
BGK approximation (10) the effects on velocity ui and temperature T i due to collisions
with all possible other components have to be included in the parameters of Mi(ñi, ũ, T̃ ).
Relaxation–type kinetic models with attracting distributions M̃i(ñi, ũi, T̃ i) having a dif-
ferent fictitious velocity and temperature for each species have been widely used (for
monoatomic mixtures) in a recent past, but the proof of their consistency from the math-
ematical point of view still has some open problems (for instance, for the model proposed
in [17] a rigorous proof of H–theorem is lacking).

Our attractors (11) are then defined in terms of the QN + 4 auxiliary variables ñi,
ũ, T̃ , related by the constraints (12), so that only the Q + 4 quantities Ñ s, ũ, T̃ are
actually disposable parameters to be suitably determined to make the BGK approximation
consistent.

Following the procedure described in [1, 5, 6], we impose that the BGK model (10)
shares the same collision invariants of the original Boltzmann kinetic model (2). This
yields the equations

∑

i≡s

νi
∫

(Mi − f i)dv = 0 s = 1, . . . , Q , (13)

Q
∑

s=1

∑

i≡s

νi
∫

msv(Mi − f i)dv = 0 , (14)

Q
∑

s=1

∑

i≡s

νi
∫
(

1

2
ms|v|2 + Ei

)

(Mi − f i)dv = 0 , (15)

representing preservation of species number densities, global mass velocity, and total
energy, respectively. These are Q+4 equations for the Q+4 unknowns Ñ s, ũ, T̃ , and the
main part of this section will be devoted to proving that system (13)–(15) has a unique
admissible solution for any choice of collision frequencies νi, masses ms and internal
energies Ei.

For any s = 1, . . . , Q, condition (13) provides
∑

i≡s

νiñi =
∑

i≡s

νini (16)

(relation that will be very useful in the sequel), from which, bearing in mind the con-
straint (12) for the auxiliary number densities, we get

Ñ s =

(

∑

i≡s

νini

)

/

(

∑

i≡s

νiψ(Ei, T̃ )

)

. (17)

Thus Ñ s are positive quantities, uniquely determined in terms of actual number densi-
ties ni and auxiliary temperature T̃ .

Coming to equation (14), it yields

Q
∑

s=1

ms
∑

i≡s

νi(ñiũ− niui) = 0 , (18)
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that owing to (16) provides

ũ =

(

Q
∑

s=1

ms
∑

i≡s

νiniui

)

/

(

Q
∑

s=1

ms
∑

i≡s

νini

)

, (19)

hence ũ is explicitly given as combination of actual number densities ni and mass veloci-
ties ui.

The investigation of constraint (15) turns out to be much more complicated, since it
gives the relation

Q
∑

s=1

∑

i≡s

νi
[

1

2
msñi|ũ|2 +

3

2
ñiKT̃ + Eiñi −

1

2
msni|ui|2 −

3

2
niKT i − Eini

]

= 0 , (20)

that resorting again to (12) and (16) may be cast as

3

2

Q
∑

s=1

(

∑

i≡s

νini

)

KT̃ +

Q
∑

s=1

Ñ s
∑

i≡s

νiEiψ(Ei, T̃ )

=
1

2

Q
∑

s=1

ms
∑

i≡s

νini
(

|ui|2 − |ũ|2
)

+
3

2

Q
∑

s=1

∑

i≡s

νiniKT i +

Q
∑

s=1

∑

i≡s

νiEini .

(21)

This is a transcendental equation for the auxiliary temperature T̃ of the form

F (T̃ ) =
1

2

Q
∑

s=1

ms
∑

i≡s

νini
(

|ui|2 − |ũ|2
)

+
3

2

Q
∑

s=1

∑

i≡s

νiniKT i +

Q
∑

s=1

∑

i≡s

νiEini , (22)

where

F (T̃ ) =

Q
∑

s=1

(

∑

j≡s

νjnj

)









3

2
KT̃ +

∑

i≡s

νiEiψ(Ei, T̃ )

∑

j≡s

νjψ(Ej, T̃ )









. (23)

The BGK approximation is consistent if equation (22) has a unique solution, since the
auxiliary variable Ñ s is determined in a unique way in terms of T̃ (see (17)) and ũ is
explicitly given by the expression (19). Uniqueness of solution to the transcendental
equation (22) is a consequence of the two following lemmas:

Lemma 3.1 For the right hand side of (22) the following lower bound holds:

1

2

Q
∑

s=1

ms
∑

i≡s

νini
(

|ui|2−|ũ|2
)

+
3

2

Q
∑

s=1

∑

i≡s

νiniKT i +

Q
∑

s=1

∑

i≡s

νiEini ≥

Q
∑

s=1

(

∑

i≡s

νini

)

Es.

(24)
As a consequence the right hand side of (22) is positive.

7



Proof.- Since Ei ≥ Es ∀i ≡ s, it suffices to prove that

Q
∑

s=1

ms
∑

i≡s

νini
(

|ui|2 − |ũ|2
)

≥ 0 , (25)

which, bearing in mind the expression (19) for ũ, is equivalent to

(

Q
∑

s=1

ms
∑

j≡s

νjnj

)(

Q
∑

r=1

mr
∑

i≡r

νini|ui|2

)

−

(

Q
∑

s=1

ms
∑

i≡s

νiniui

)2

≥ 0 .

The left hand side of this latter formula is nothing but

Q
∑

s=1

∑

j≡s

Q
∑

r=1

∑

i≡r

msmrνiνjninj
(

|ui|2 − ui · uj
)

=
1

2

Q
∑

s=1

∑

j≡s

Q
∑

r=1

∑

i≡r

msmrνiνjninj |ui − uj|2

(last equality has been obtained by exchanging the indices s ↔ r and i ↔ j), and this
concludes the proof.

Lemma 3.2 The function F (T̃ ) defined in (23) is a monotonically increasing function.

Proof.- We want to prove that the first derivative F ′(T̃ ) is positive for any admissible
values of masses, energies, collision frequencies and number densities.

After some computations we get

F ′(T̃ ) =

Q
∑

s=1

(

∑

j≡s

νjnj

)







3

2
K +

1

KT̃ 2

[

∑

j≡s

νj exp

(

−
Ej −Es

KT̃

)

]

−2

G(T̃ )







, (26)

where

G(T̃ ) =
∑

i≡s

∑

j≡s

νiνj exp

(

−
Ei − Es

KT̃

)

exp

(

−
Ej − Es

KT̃

)

[

(Ei)2 − EiEj
]

.

Exchanging the indices i↔ j yields

G(T̃ ) =
1

2

∑

i≡s

∑

j≡s

νiνj exp

(

−
Ei − Es

KT̃

)

exp

(

−
Ej − Es

KT̃

)

(Ei − Ej)2 ≥ 0 ,

so that F ′(T̃ ) > 0.
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To conclude the proof of existence and uniqueness of solution to equation (22) we
observe that, since energy levels Ei ≥ 0 relevant to any gas Gs are assumed increasing
with their index, we get

∑

i≡s

νiEiψ(Ei, T̃ )

∑

j≡s

νjψ(Ej , T̃ )
=

νsEs +
∑

i≡s
i6=s

νiEi exp

(

−
Ei −Es

KT̃

)

νs +
∑

i≡s
i6=s

νi exp

(

−
Ei − Es

KT̃

) ≥ min
i≡s

Ei = Es , (27)

therefore

lim
T̃→0

F (T̃ ) =

Q
∑

s=1

(

∑

i≡s

νini

)

Es , lim
T̃→+∞

F (T̃ ) = +∞ .

In conclusion, we have proved that F (T̃ ) is a strictly increasing function that for posi-
tive T̃ varies from the minimum admissible value for the right hand side of (22) to +∞,
hence existence and uniqueness of solution to equation (22) is guaranteed. The BGK
algorithm proposed in this section works then properly, since all auxiliary variables may
be determined in a unique way (through relations (17), (19), (22)) in terms of the ac-
tual macroscopic fields, without no restriction on the collision model, or on energy level
properties.

3.1 Steady states of the BGK model for the homogeneous case

As regards collision equilibria of the relaxation model (10), they are defined by f i=Mi,
∀i = 1, . . . , QN , hence they are Maxwellian distributions sharing a common mass velocity
u = ũ and a common temperature T = T̃ , and with number densities ni = ñi satisfying
thus the relations (12) (assumed for ñi from the beginning), so that they reproduce the
correct (Q+4)–parameter family (6)–(7) of collision equilibria deduced from the original
Boltzmann equations.

This BGK model yields immediately by its construction the preservation of the same
conservation equations obtained from the Boltzmann model. In particular, in space ho-
mogeneous conditions, Q + 4 conservation laws hold:

N s =
∑

i≡s

ni = constant , s = 1, . . . , Q , ρu = constant ,

1

2
ρ |u|2 +

3

2
nKT +

Q
∑

s=1

∑

i≡s

Eini = constant .

(28)

Because of these first integrals, once the initial parameters ni
0, u

i
0, T

i
0 are assigned, the
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corresponding equilibrium values ni
M , uM , TM are related to them by

∑

i≡s

ni
M =

∑

i≡s

ni
0 s = 1, . . . , Q ,

Q
∑

s=1

ms
∑

i≡s

ni
MuM =

Q
∑

s=1

ms
∑

i≡s

ni
0u

i
0 ,

Q
∑

s=1

∑

i≡s

[

1

2
msni

M |uM |2 +
3

2
ni
MKTM + Eini

M

]

=

Q
∑

s=1

∑

i≡s

[

1

2
msni

0|u
i
0|

2 +
3

2
, ni

0KT
i
0 + Eini

0

]

,

(29)

and, in addition, they have to fulfill the equilibrium constraint (7). This system is actually
a special case of conditions (16), (18), (20) already investigated above, with νi = 1 for
each gas component, ni

M , uM , TM in place of ñi, ũ, T̃ , and with ni
0, u

i
0, T

i
0 in place of

ni, ui, T i. Therefore the proof of existence and uniqueness of a solution is the same as
above, and guarantees that equilibrium values may be uniquely determined in terms of
initial data. In particular, it holds uM = u0, n

i
M = N s

0 ψ(E
i, TM), and TM is given by the

solution of an equation of the form (21) with νi = 1:

3

2
n0KTM +

Q
∑

s=1

N s
0

∑

i≡s

Eiψ(Ei, TM)

=
1

2

Q
∑

s=1

ms
∑

i≡s

ni
0

(

|ui
0|

2 − |u0|
2
)

+
3

2

Q
∑

s=1

∑

i≡s

ni
0KT

i
0 +

Q
∑

s=1

∑

i≡s

Eini
0 .

(30)

3.2 H-Theorem for the BGK model for the homogeneous case

Another significant result of the present BGK model is that it is possible to prove that, in
space homogeneous conditions, the physical entropy (9) holding at Boltzmann level is a
suitable Lyapunov functional also for the approximated relaxation model (10). Indeed, it
has been already proved [16] that such a functional, in the class of admissible distribution
functions f = (f 1, . . . , fQN) for which conservations (28) are in order, attains its minimum
exactly at the unique Maxwellian stationary point f

M
relevant to the conserved quantities:

for any f in that class, we have H [f ] > H [f
M
], ∀f 6= f

M
. In order to achieve the H-

theorem it suffices then to prove the dissipation property

Ḣ [f ] =

Q
∑

s=1

∑

i≡s

νi
∫

(Mi − f i) log f i dv < 0 ∀f 6= f
M
. (31)

We start by proving the following equality:

Lemma 3.3
Q
∑

s=1

∑

i≡s

νi
∫

(Mi − f i) logMi dv = 0 ∀f . (32)
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Proof.- It can be easily checked that

Q
∑

s=1

∑

i≡s

νi
∫

(Mi − f i) logMi dv

=

Q
∑

s=1

∑

i≡s

νi
∫

(Mi−f i)

[

log ñi +
3

2
logms −

3

2
log(2πKT̃ )−

ms

2KT̃
(|v|2− 2 ũ · v + |ũ|2)

]

dv

and the right hand side, bearing in mind conservations (13), (14), (15), simplifies to

Q
∑

s=1

∑

i≡s

νi(ñi−ni)

[

log ñi+
Ei

KT̃

]

=

Q
∑

s=1

∑

i≡s

νi(ñi−ni)

[

log Ñ s +
Es

KT̃
− log

(

Zs(T̃ )
)

]

= 0 ,

(33)
where in last equality we resorted again to condition (16).

Previous lemma allows to write

Ḣ [f ] = −

Q
∑

s=1

∑

i≡s

νi
∫

(f i −Mi) log
f i

Mi
dv (34)

and now the usual convexity argument applies for the function (x− 1) log x, and we may
conclude that Ḣ[f ] ≤ 0, with equal sign if and only if f i = Mi, ∀i, i.e. correspondingly
to the unique collision equilibrium f

M
determined by initial conditions. This completes

the proof of (31) and of the H–theorem.

4 Generalization of the BGK approximation to chem-

ically reactive frames

In this section we consider mixtures of polyatomic gases that, besides elastic and inelastic
mechanical scattering dealt with in previous sections, may undergo also (bimolecular
and reversible) chemical interactions implying also transfer of mass between the colliding
particles. More precisely, we will include interactions of the type

Ai + Aj
⇋ Ah + Ak

with the input particles (Ai, Aj) belonging to gases (Gs, Gr) and the output ones (Ah, Ak)
belonging to different species (Gp, Gq). Without loss of generality we may order species
in such a way that ∆Epq

sr = Ep +Eq −Es −Er > 0; moreover, notice that conservation of
total mass in each chemical encounter impliesms+mr = mp+mq. The additional reactive
processes entail that collision equilibria of the Boltzmann equations are again Maxwellian
distributions (6) with number densities and temperature satisfying conditions (7), but a
further constraint appears relating total number densities (N s, N r, Np, N q) of the gases
involved in chemical reactions, that is the mass action law of chemistry [22, 16]. We will
emphasize in the sequel how this additional requirement deeply affects the proof of the
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consistency of our BGK model. For this reason, we divide this section in two separate
parts.

At first, in Subsection 4.1, we consider a binary mixture (of gases G1, G2), whose
particles are subject to the reaction

Ai + Aj
⇋ Ah + Ak i ≡ j ≡ 1 , h ≡ k ≡ 2 , (35)

with the assumption ∆E22
11 = 2(E2 − E1) > 0. Conservation of mass simply yields m1 =

m2 = m therefore in this very simplified case mass transfer disappears; in this sense this
may not be considered a real chemical process and G1 and G2 should be represented as two
different components of the same gas (G1 in the fundamental state and G2 in an excited
one). However, we believe this case meaningful from the mathematical point of view, to
study the effects on the BGK parameters of the simplest mass action law, that is nothing
but a linear relation between N1 and N2, with a temperature depending coefficient:

N2 =
Z2(T )

Z1(T )
e−

E2−E1

KT N1 . (36)

Then, we shall consider a more realistic situation, namely a mixture of four gases Gs,
s = 1, 2, 3, 4, each one with N different energy levels, subject to a chemical reaction in
which a collision between a pair of species G1 and G2 may give rise to a pair of particles
G3 and G4 or vice versa:

Ai + Aj
⇋ Ah + Ak i 6≡ j 6≡ h 6≡ k , i+ j ≡ 3 , h+ k ≡ 3 , (37)

with ∆E34
12 = E3 + E4 − E1 − E2 > 0. Now conservation of mass yields the relation

m1 +m2 = m3 +m4, and mass action law characterizing collision equilibria reads as

N1N2

N3N4
=

(

µ12

µ34

)3/2
Z1(T )Z2(T )

Z3(T )Z4(T )
e

∆E34
12

KT , (38)

that is a transcendental equation involving number densities of all interacting gases. The
further difficulties in the construction of the BGK model for this reactive frame will
be outlined in Subsections 4.2 and 4.3, and also in the relevant numerical simulations
presented in Section 5.

4.1 BGK model for a binary mixture

We start considering a mixture of two gases G1, G2 subject to the chemical reaction (35).
Collision equilibria of the relevant Boltzmann equations are provided by (6)–(7)–(36),
hence they constitute a 5–parameter family. We aim at building up BGK equations
like (10)

∂f i

∂t
+ v · ∇

x
f i = νi(Mi − f i), i = 1, . . . , 2N , (39)

where Maxwellian attractor parameters fulfil the constraints

ñi = Ñ sψ(Ei, T̃ ) , (40)

12



Ñ2 = Ñ1 Z
2(T̃ )

Z1(T̃ )
e−

E2−E1

KT̃ . (41)

We want to obtain the auxiliary parameters in terms of the actual ones by imposing that
BGK equations preserve the same collision invariants of the Boltzmann model, that for
the present problem read as

∑

i≡1

νi
∫

(Mi − f i)dv +
∑

i≡2

νi
∫

(Mi − f i)dv = 0 , (42)

m

2
∑

s=1

∑

i≡s

νi
∫

v(Mi − f i)dv = 0 , (43)

2
∑

s=1

∑

i≡s

νi
∫
(

1

2
m |v|2 + Ei

)

(Mi − f i)dv = 0 ; (44)

equations (43), (44) coincide with (14), (15) for a non reactive mixture, corresponding to
preservation of global momentum and energy, while the Q = 2 equations for single gas
densities (13) are here replaced by a unique equation (42) representing conservation of
total density only.

Condition (42) provides
∑

i≡1

νi(ñi − ni) +
∑

i≡2

νi(ñi − ni) = 0 , (45)

hence
2N
∑

i=1

νiñi =
2N
∑

i=1

νini . (46)

By inserting the expressions (40) into (45) we get

Ñ1
∑

i≡1

νiψ(Ei, T̃ ) + Ñ2
∑

i≡2

νiψ(Ei, T̃ ) =
2N
∑

i=1

νini , (47)

from which, taking into account (41) and the expression of ψ(Ei, T̃ ) given in (8), we get

Ñ1

Z1(T̃ )
=

(

2N
∑

i=1

νini

)/

2N
∑

i=1

νie−
Ei−E1

KT̃ . (48)

Consequently, again from (41),

Ñ2

Z2(T̃ )
=

(

2N
∑

i=1

νini

)/

2N
∑

i=1

νie−
Ei−E2

KT̃ (49)

hence, in compact form,

Ñ s

Zs(T̃ )
=

(

2N
∑

i=1

νini

)

e−
Es−E1

KT̃

/

2
∑

s=1

∑

i≡s

νi e−
Ei−E1

KT̃ s = 1, 2 . (50)
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Equations (48), (49) (or, equivalently, (50)) give the auxiliary number densities Ñ1, Ñ2

in terms of the actual densities ni and the auxiliary temperature T̃ .
Analogously to previous section, equation (43) yields

ũ =

(

2N
∑

i=1

νiniui

)/

2N
∑

i=1

νini ; (51)

finally, skipping intermediate details, constraint (44) provides, analogously to (21),

3

2

(

2N
∑

i=1

νini

)

KT̃ +

2
∑

s=1

Ñ s

Zs(T̃ )

∑

i≡s

νiEi e−
Ei−Es

KT̃

=
1

2
m

2N
∑

i=1

νini
(

|ui|2 − |ũ|2
)

+
3

2

2N
∑

i=1

νiniKT i +
2N
∑

i=1

νiEini .

(52)

This is a transcendental equation for T̃ that may be cast as

H(T̃ ) =

(

2N
∑

i=1

νini

)−1 [

1

2
m

2N
∑

i=1

νini
(

|ui|2 − |ũ|2
)

+
3

2

2N
∑

i=1

νiniKT i +

2N
∑

i=1

νiEini

]

, (53)

where, taking into account (50) for Ñ s/Zs(T̃ ),

H(T̃ ) =
3

2
KT̃ +

(

2
∑

s=1

∑

i≡s

νiEi e−
Ei−E1

KT̃

)/(

2
∑

r=1

∑

j≡r

νj e−
Ej−E1

KT̃

)

. (54)

As already done for a non reactive mixture, we are able to prove that H(T̃ ) is an
increasing function of its argument. In fact

H′(T̃ ) =
3

2
K +

(

2
∑

r=1

∑

j≡r

νj e−
Ej−E1

KT̃

)−2

1

KT̃ 2
G(T̃ )

where

G(T̃ ) =

2
∑

s=1

2
∑

r=1

∑

i≡s

∑

j≡r

νiνj e−
Ei+Ej−2E1

KT̃ [(Ei)2 − EiEj ]

=
1

2

2
∑

s=1

2
∑

r=1

∑

i≡s

∑

j≡r

νiνj e−
Ei+Ej−2E1

KT̃ (Ei − Ej)2 ≥ 0 .

Moreover, since E1 < E2 and energy levels of each gas are assumed increasing with their
index, we have

lim
T̃→0

H(T̃ ) = E1 , lim
T̃→+∞

H(T̃ ) = +∞ ,

and these are exactly the lower and upper bounds of the right hand side of (53), therefore
existence of a unique solution to (53) is guaranteed. In conclusion, following a strategy
very similar to the one explained in Section 3 for a non reacting mixture, we have proved
that all auxiliary parameters are well defined in terms of the actual ones.
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4.2 BGK model for a four–species mixture

The proof of consistency of our BGK model turns out to be much more involved if we
consider a mixture of four polyatomic gases Gs, s = 1, 2, 3, 4, with chemical reactions (37)
in which encounters between particles of species G1 and G2 may provide, as output, a
pair of gases G3 and G4 or vice versa. For this physical situation equilibria are given
by distributions (6), with the constraints (7) and (38) for the macroscopic parameters,
hence they constitute a 7–parameter family. Consequently, we impose that Maxwellian
attractor parameters of our BGK model fulfil the analogous constraints

ñi = Ñ sψ(Ei, T̃ ) , (55)

Ñ1Ñ2

Ñ3Ñ4
=

(

µ12

µ34

)3/2
Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
e

∆E34
12

KT̃ . (56)

Independent collision invariants for the Boltzmann equations correspond to preservation
of global momentum and total (kinetic plus internal) energy, and of three suitable com-
binations of gas densities, for instance N1 +N3, N1+N4, N2+N4. Hence, imposing the
same also for the BGK model yields

∑

i≡1

νi
∫

(Mi − f i)dv +
∑

i≡3

νi
∫

(Mi − f i)dv = 0 , (57)

∑

i≡1

νi
∫

(Mi − f i)dv +
∑

i≡4

νi
∫

(Mi − f i)dv = 0 , (58)

∑

i≡2

νi
∫

(Mi − f i)dv +
∑

i≡4

νi
∫

(Mi − f i)dv = 0 , (59)

4
∑

s=1

∑

i≡s

νi
∫

msv(Mi − f i)dv = 0 , (60)

4
∑

s=1

∑

i≡s

νi
∫
(

1

2
ms|v|2 + Ei

)

(Mi − f i)dv = 0 . (61)

Equations (57)–(59) provide

∑

i≡s

νi(ñi − ni) +
∑

i≡r

νi(ñi − ni) = 0 (s, r) = (1, 3), (1, 4), (2, 4) .

Linear combinations of these equalities yield

4N
∑

i=1

νiñi =

4N
∑

i=1

νini (62)

and
4
∑

s=1

ms
∑

i≡s

νiñi =

4
∑

s=1

ms
∑

i≡s

νini . (63)
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More precisely, bearing in mind the expression (55), conditions (57)–(59) allow to express
three among the auxiliary number densities (i.e. Ñ2, Ñ3, Ñ4) in terms of the fourth
one (Ñ1), the auxiliary temperature T̃ and the actual number densities ni:

Ñ2 =
1

∑

i≡2

νiψ(Ei, T̃ )

{

∑

i≡2

νini −
∑

i≡1

νini +

(

∑

i≡1

νiψ(Ei, T̃ )

)

Ñ1

}

,

Ñ3 =
1

∑

i≡3

νiψ(Ei, T̃ )

{

∑

i≡3

νini +
∑

i≡1

νini −

(

∑

i≡1

νiψ(Ei, T̃ )

)

Ñ1

}

,

Ñ4 =
1

∑

i≡4

νiψ(Ei, T̃ )

{

∑

i≡4

νini +
∑

i≡1

νini −

(

∑

i≡1

νiψ(Ei, T̃ )

)

Ñ1

}

,

(64)

that may be written in compact form as

Ñ s

Zs(T̃ )
=

1
∑

i≡s

νie−
Ei−Es

KT̃

{

∑

i≡s

νini − λs
∑

i≡1

νini + λs

(

∑

i≡1

νie−
Ei−E1

KT̃

)

Ñ1

Z1(T̃ )

}

(65)

where λs are the stoichiometric coefficients λ1 = λ2 = 1, λ3 = λ4 = −1.
Momentum conservation (60), analogously to previous sections and taking into ac-

count (63), yields

ũ =

(

4
∑

s=1

ms
∑

i≡s

νiniui

)/(

4
∑

s=1

ms
∑

i≡s

νini

)

, (66)

while energy conservation (61) provides an equation very similar to (52)

3

2

(

4N
∑

i=1

νini

)

KT̃ +

4
∑

s=1

Ñ s

Zs(T̃ )

∑

i≡s

νiEi e−
Ei−Es

KT̃

=
1

2

4
∑

s=1

ms
∑

i≡s

νini
(

|ui|2 − |ũ|2
)

+
3

2

4N
∑

i=1

νiniKT i +
4N
∑

i=1

νiEini .

(67)

At this point (and this is the main difference with respect to the inert case and the
binary mixture), last equality (67) together with the mass action law (56) are a set of
two transcendental equations for the two unknown fields Ñ1 and T̃ , and the rest of this
subsection will be devoted to proving that, for any values of actual parameters and collision
frequencies, equations (56)–(67) have a unique admissible solution

(Ñ1, T̃ ) ∈
{

Ñ1 > 0 , T̃ > 0 : Ñ2 > 0 , Ñ3 > 0 , Ñ4 > 0
}

,

where Ñ2, Ñ3, Ñ4 are provided by (64). For future convenience it is better to write the
system which is investigated using as unknown variables T̃ and

Y 1 =
Ñ1

Z1(T̃ )

∑

i≡1

νie−
Ei−E1

KT̃ . (68)
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With these notations, equations (67) and (56) may be cast as

3

2

(

4N
∑

i=1

νini

)

KT̃ +

4
∑

s=1

Y s

∑

i≡s

νiEi e−
Ei−Es

KT̃

∑

j≡s

νj e−
Ej−Es

KT̃

= Λ , (69)

Y 1Y 2

Y 3Y 4
=

(

µ12

µ34

)3/2

∑

i≡1

νie−Ei/KT̃
∑

j≡2

νje−Ej/KT̃

∑

h≡3

νhe−Eh/KT̃
∑

k≡4

νke−Ek/KT̃
(70)

where Λ is simply the right hand side of (67), thus it is a known explicit function of the
actual parameters (it is independent from our unknown fields), and

Y s =
Ñ s

Zs(T̃ )

∑

i≡s

νie−
Ei−Es

KT̃ =
∑

i≡s

νini − λs
∑

i≡1

νini + λs Y 1 s = 2, 3, 4 . (71)

We note that by inserting expressions (71) into (69), this becomes a linear equation in
the unknown Y 1, so it is possible to obtain a (very complicated, but explicit) expression
for Y 1 in terms of T̃ . Skipping calculation details, we get

Y 1 =
∑

i≡1

νini + S(T̃ ) (72)

with

S(T̃ ) =
N (T̃ )

D(T̃ )
, (73)

where the numerator N takes the form

N (T̃ ) = Λ−
3

2

4
∑

s=1

(

∑

i≡s

νini

)

KT̃ −
4
∑

s=1

(

∑

i≡s

νini

)

∑

i≡s

νiEi e−
Ei−Es

KT̃

∑

j≡s

νj e−
Ej−Es

KT̃

, (74)

and the denominator D is given by

D(T̃ ) =
4
∑

s=1

λs

∑

i≡s

νiEi e−
Ei−Es

KT̃

∑

j≡s

νj e−
Ej−Es

KT̃

. (75)

Therefore there remains only one transcendental equation, coming from mass action
law (70); using (71) and (72), it may be cast as

G(T̃ ) =

(

µ12

µ34

)3/2

, (76)
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where

G(T̃ ) =

[

∑

i≡1

νini + S(T̃ )

][

∑

j≡2

νjnj + S(T̃ )

]

[

∑

h≡3

νhnh − S(T̃ )

][

∑

k≡4

νknk − S(T̃ )

]

∑

h≡3

νhe−
Eh−E3

KT̃

∑

k≡4

νke−
Ek−E4

KT̃

∑

i≡1

νie−
Ei−E1

KT̃

∑

j≡2

νje−
Ej−E2

KT̃

e−
∆E34

12

KT̃ .

(77)
We must prove that equation (76) admits a positive solution in the range for which all
densities, hence all Y s, are positive; this means that we have to prove existence and
uniqueness of a solution to (76) in the set

A =

{

T̃ > 0 : max

(

−
∑

i≡1

νini, −
∑

i≡2

νini

)

< S(T̃ ) < min

(

∑

i≡3

νini,
∑

i≡4

νini

)}

.

(78)
The proof will be divided into several steps:

- at first we prove that in any interval (T̃1, T̃2) ⊆ A in which the sign of the denomi-
nator D(T̃ ) does not change, the function S(T̃ ) is strictly monotone;

- then, we actually notice that A is a connected set of R+ and, except for a very
particular choice of initial data, the sign of D(T̃ ) does not change in A;

- finally we prove that G(T̃ ) is strictly monotone in A and it ranges from 0 to +∞,
providing does a unique solution to equation (76).

Let us start by the first point:

Lemma 4.1 In any interval (T̃1, T̃2) ⊆ A in which the sign of D(T̃ ) (given in (75)) does
not change, the function S(T̃ ) (given in (73)) is strictly monotone: more precisely, S(T̃ )
is increasing if D(T̃ ) < 0, and S(T̃ ) is decreasing if D(T̃ ) > 0.

Proof.- Since S(T̃ ) = N (T̃ )/D(T̃ ) with N and D given in (74) and (75), respectively,
we have

S ′(T̃ ) =
1

D2(T̃ )

(

N ′(T̃ )D(T̃ )−N (T̃ )D′(T̃ )
)

=
N ′(T̃ )

D(T̃ )
− S(T̃ )

D′(T̃ )

D(T̃ )
. (79)

It can be easily checked that

D′(T̃ ) =

4
∑

s=1

λs
1

[

∑

k≡s

νk e−
Ek−Es

KT̃

]2

1

KT̃ 2

∑

i≡s

∑

j≡s

νiνj
[

(Ei)2 − EiEj
]

e−
Ei−Es

KT̃ e−
Ej−Es

KT̃

hence, by exchanging indices i↔ j,

D′(T̃ ) =

4
∑

s=1

λs F s(T̃ ) (80)
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where

F s(T̃ ) =
1

2KT̃ 2

1
[

∑

k≡s

νk e−
Ek−Es

KT̃

]2

∑

i≡s

∑

j≡s

νiνj(Ei −Ej)2e−
Ei−Es

KT̃ e−
Ej−Es

KT̃ ≥ 0 . (81)

On the other hand, owing to analogous arguments,

N ′(T̃ ) = −
3

2
K

4
∑

s=1

(

∑

i≡s

νini

)

−
4
∑

s=1

(

∑

i≡s

νini

)

F s(T̃ ) < 0 . (82)

Coming back to (79) we get

S ′(T̃ ) = −
1

D(T̃ )

{

3

2
K

4
∑

s=1

(

∑

i≡s

νini

)

+

4
∑

s=1

(

∑

i≡s

νini

)

F s(T̃ ) + S(T̃ )
4
∑

s=1

λs F s(T̃ )

}

= −
1

D(T̃ )

{

3

2
K

4
∑

s=1

(

∑

i≡s

νini

)

+

4
∑

s=1

[

∑

i≡s

νini + λsS(T̃ )

]

F s(T̃ )

}

(83)
where the content of the curly brackets is strictly positive for T̃ ∈ A, hence the sign
of S ′(T̃ ) is opposite to the one of D(T̃ ), and this concludes the proof.

From the proof of the previous lemma we can note that the numerator N is a strictly
decreasing function (see (82)) ranging from

lim
T̃→0

N (T̃ ) = Λ−
4
∑

s=1

∑

i≡s

νiniEs

=
1

2

4
∑

s=1

ms
∑

i≡s

νini
(

|ui|2 − |ũ|2
)

+
3

2

4N
∑

i=1

νiniKT i +

4
∑

s=1

∑

i≡s

νi(Ei − Es)ni > 0

(see also Lemma 3.1) to
lim

T̃→+∞

N (T̃ ) = −∞ ,

therefore S(T̃ ) admits a unique root T̃ ⋆ ∈ A. In order to avoid special singularities in
the definition of S(T̃ ) we neglect here the very particular situation in which initial data,
internal energies and collision frequencies are chosen in such a way that even D(T̃ ⋆) = 0:
in this case T̃ = T ⋆ would be a trivial solution of (69), and correspondingly equation (70)
would become an algebraic second order equation for the unknown Y 1.

As concerns D(T̃ ), using the same technique as in (27) we note that

lim
T̃→0

D(T̃ ) = −∆E34
12 < 0 , lim

T̃→+∞

D(T̃ ) =

4
∑

s=1

λs

∑

i≡s

νiEi

∑

j≡s

νj
. (84)
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The sign of limT̃→+∞
D(T̃ ) depends on internal energies and collision frequencies; in any

case, if there is a change of sign of the function D(T̃ ), namely a value T̃ ♯ 6= T̃ ⋆ such
that D(T̃ ♯) = 0, correspondingly we have limT̃→T̃ ♯ S(T̃ ) = ±∞, hence in a suitable
neighborhood of T̃ ♯ the constraint (78) is certainly not fulfilled, and this zone is thus
out of interest for our physical problem. Therefore we may assert that in each interval
(T̃1, T̃2) ⊆ A, the sign of D(T̃ ) does not change. Consequently, we may prove the following:

Lemma 4.2 The set A defined in (78) is a connected set of R+; in other words, if T̃1, T̃2 ∈
A (with T̃1 < T̃2), then also each T̃ ∈ R

+ such that T̃1 < T̃ < T̃2 belongs to the set A.

Proof.- First of all notice that in each maximal connected subset (T̃a, T̃b) (i.e. “con-
nected component”) of A the function S(T̃ ) = N (T̃ )/D(T̃ ) is a continuous and strictly
monotone function ranging from its infimum admissible value, that is max

(

−
∑

i≡1 ν
ini,

−
∑

i≡2 ν
ini
)

if T̃a 6= 0 or S(0) < 0 if T̃a = 0, to its supremum: min
(
∑

i≡3 ν
ini,

∑

i≡4 ν
ini
)

.

Hence there is a suitable value in (T̃a, T̃b) making the function S vanish; this is of course T̃ ⋆,
the unique root of N (T̃ ), and this implies that the set A is connected.

Finally, we may prove the last step:

Lemma 4.3 In the set A, the function G(T̃ ) ranges from 0 to +∞ in a strictly monotone
way: more precisely, G(T̃ ) increases if D(T̃ ) < 0, and decreases if D(T̃ ) > 0.

Proof.- Skipping details, it can be checked that the derivative of G(T̃ ) may be cast as

G ′(T̃ ) =

= G(T̃ )



















S ′(T̃ )

4
∑

s=1

1
∑

i≡s

νini + λsS(T̃ )
−

1

KT̃ 2

4
∑

s=1

λs

∑

i≡s

νi(Ei − Es)e−
Ei−Es

KT̃

∑

j≡s

νj e−
Ej−Es

KT̃

+
∆E34

12

KT̃ 2



















= G(T̃ )















S ′(T̃ )

4
∑

s=1

1
∑

i≡s

νini + λsS(T̃ )
−

1

KT̃ 2
D(T̃ )















(85)
and, bearing in mind also Lemma 4.1, the content of the curly brackets has a sign opposite
to the one of D(T̃ ). Moreover, notice that for T̃ ranging in the interval A = (T̃min, T̃max)
defined in (78), the function G(T̃ ) varies (in a monotonic way) from 0 to +∞. This is true
even if T̃min = 0 since limT̃→0 G(T̃ ) = 0. Therefore existence of a unique solution to (76)
in the range (78) is guaranteed.

4.3 H-Theorem for the homogeneous case

To conclude this section we show that, in space homogeneous conditions, the H-Theorem
holds also when chemical reactions are considered. At the Boltzmann level, it has been
already proved [16] that the physical entropy (9) attains its minimum exactly at the unique
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Maxwellian stationary point f
M

relevant to the conserved quantities: H [f ] > H [f
M
],

∀f 6= f
M
. Therefore, H-theorem is proved if the entropy production is negative:

Ḣ [f ] =

4
∑

s=1

∑

i≡s

νi
∫

(Mi − f i) log f i dv < 0 ∀f 6= f
M
.

To obtain the sign of entropy production we follow a well known strategy (as in Subsec-
tion 3.2), whose principal ingredient is the following equality (as Lemma 3.3 for the case
without chemical reactions):

Lemma 4.4
4
∑

s=1

∑

i≡s

νi
∫

(Mi − f i) logMi dv = 0 ∀f . (86)

Proof.- We can generalize the calculations done in [5] to the case of several energy
levels. Using the conservation equations (57), (58), (59), (60) and (61) and the fact that
equations (57)-(59) can be rewritten as:

∑

i≡s

νi(ñi − ni) = λs
∑

i≡1

νi(ñi − ni),

it can be easily checked that

4
∑

s=1

∑

i≡s

νi
∫

(Mi − f i) logMi dv

=

4
∑

s=1

∑

i≡s

νi(ñi − ni)

[

log Ñ s +
Es

KT̃
− log

(

Zs(T̃ )
)

+
3

2
logms

]

=
∑

i≡1

νi(ñi − ni)

4
∑

s=1

λs
[

log Ñ s +
Es

KT̃
− log

(

Zs(T̃ )
)

+
3

2
logms

]

=
∑

i≡1

νi(ñi − ni) log

[

Ñ1Ñ2

Ñ3Ñ4

(

m3m4

m1m2

)3/2
Z3(T̃ )Z4(T̃ )

Z1(T̃ )Z2(T̃ )
e−

∆E34
12

KT̃

]

= 0 ,

where last equality holds because of the constraint (56).

And again, using this lemma we can write

Ḣ [f ] = −
4
∑

s=1

∑

i≡s

νi
∫

(f i −Mi) log
f i

Mi
dv (87)

and the usual convexity argument applies for the function (x−1) log x giving us Ḣ[f ] ≤ 0,
with equal sign if and only if f i = Mi, ∀i, i.e. correspondingly to the unique collision
equilibrium f

M
determined by initial conditions. This completes the proof of the H–

theorem.
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5 Numerical simulations

In this section we report some calculations in order to check the response of the BGK
model proposed in the previous sections both for inert and for reactive situations. Some
preliminary test cases will be shown only for illustrative purposes, while the comparison
between Boltzmann and BGK descriptions for physically meaningful problems, such as
travelling shock waves or Riemann problem, is left as future work.

At first, we specialize our BGK equations to gases drifting only along the axial direction
(with respect to x1 = x), but with distribution functions still depending on the three–
dimensional velocity vector v. As pointed out in [3], in this frame it is convenient to
introduce the new unknowns

Φi =

∫

R

∫

R

f i dv2 dv3 , Ψi =

∫

R

∫

R

(v22 + v23)f
i dv2 dv3 , i = 1, . . . , QN, (88)

depending only on one space and one velocity variable. With these new unknowns, the
fundamental macroscopic fields may be reconstructed as

ni =

∫

R

Φi dv , ui =
1

ni

∫

R

vΦi dv ,

3KT i

mi
=

1

ni

[
∫

R

(v − ui)2Φi dv +

∫

R

Ψi dv

]

, i = 1, . . . , QN,

(89)

while the BGK equations for Φi, Ψi, for i = 1, . . . , QN , read as

∂Φi

∂t
+ v

∂Φi

∂x
= νi(M i − Φi)

∂Ψi

∂t
+ v

∂Ψi

∂x
= νi

(

2KT̃

mi
M i −Ψi

)

,

(90)

where

M i(v) = Ñ s
exp

(

−Ei
−Es

K T̃

)

Zs(T̃ )

(

mi

2 πK T̃

)1/2

exp

[

−
mi

2K T̃
(v − ũ)2

]

, (91)

and Ñ s, ũ and T̃ are the auxiliary parameters of our BGK model.
In this paper we simulate only the space homogeneous version of system (90), using

a third order TVD (Total Variation Diminishing) Runge-Kutta explicit method which
describes its evolution on time. In this way, we can get the distribution functions for
every time step and, consequently, all the macroscopic quantities, by simple integrations
of the distribution functions. Moreover, the evolution on time of the entropy functional is
obtained using the solutions f i, which are approximated by means of an explicit Runge-
Kutta scheme, since the collision operator (namely right hand side of equation (10)) can
be approximated through the macroscopic quantities. To define auxiliary macroscopic
quantities we follow the described algorithms in Section 3, for the case with only mechan-
ical interaction, and Section 4, where chemical effect is also taken into account. We recall
that for inert mixtures expressions of Ñ s and ũ are given in (17) and (19), respectively,
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while temperature T̃ is provided by the transcendental equation (22); in the case of four
reactive gases, ũ has the same expression (see (66)), number densities are provided by
(64) and (72) (with Y 1 defined in (68)), while temperature is defined through the tran-
scendental equation (76). Thus, in both cases we must solve a trascendental equation
and we do it numerically using the bisection method. Notice that the numerical scheme
to solve the equation (76) has an additional ingredient (not necessary for equation (22)):
we need to find the solution of the equation in the range of values of T̃ which are in A
(see (78)). This means that, for the bisection method, at every time step the left and
the right T̃ values have to be suitably determined in order to restrict our analysis to the
admissible set A. To do that, we start with a small value of T̃ which is increasing, with
a tiny step, until it satisfies

max

(

−
∑

i≡1

νini, −
∑

i≡2

νini

)

< S(T̃ ).

This value is fixed as left value, a, for the bisection method. To obtain the right value, b,
we proceed in analogous way, starting with a plus a small positive quantity, which is
increasing, with a tiny step, until it is satisfying

S(T̃ ) < min

(

∑

i≡3

νini,
∑

i≡4

νini

)

;

last value fulfilling this inequality is taken as right value b.
The analytical proofs performed in Sections 3 and 4 hold independently from the

choice of collision frequencies νi involved in the BGK operator. On the other hand, in
numerical simulations relaxation parameters νi are essential quantities which measure
the rate at which BGK equations drive distributions towards equilibrium, hence they
should be somehow related to the rate of convergence predicted by the original Boltzmann
equations. As already assumed in numerical simulations relevant to different BGK models
for mixtures [15, 3], we impose here that averaged loss terms of Boltzmann equations equal
the BGK ones. More precisely, for a non reacting mixture we impose

1

ni

∑

(j, h, k)∈Di

∫∫∫

(Kijhk
i )−[f ](v,w, n̂′)dvdwdn̂′ =

1

ni
νi
∫

f i(v) dv, 1≤ i≤QN

where (Kijhk
i )− denotes the second (negative) addend in Kijhk

i given in (2), hence

νi =
1

ni

∑

(j, h, k)∈Di

∫∫∫

Θ(g2 − δhkij )B
hk
ij (g, n̂ · n̂′)f i(v)f j(w)dvdwdn̂′, 1≤ i≤QN .

(92)
For all exothermic collisions, namely for all encounters Ai + Aj → Ah + Ak such that
∆Ehk

ij ≤ 0, we assume that differential cross sections are of Maxwell molecule type:

∫

Bhk
ij (g, n̂ · n̂′)dn̂′ = constant = νhkij , (93)
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and, for symmetry reasons, νkhji = νhkij . The differential cross sections Bij
hk relevant to

the reverse (endothermic) collisions are related to the exothermic ones by means of the
micro–reversibility condition [16]

(µij)2g Bhk
ij (g, n̂ · n̂′) = (µhk)2ghkij Θ(g2 − δhkij )B

ij
hk(g

hk
ij , n̂ · n̂′) ,

hence it can be easily checked that

∫

Bij
hk(g, n̂ · n̂′)dn̂′ =

(

µij

µhk

)3/2
√

1−
δijhk
g2

νhkij . (94)

Therefore, the integrals appearing in (92) result immediately in νhkij n
j for the exothermic

collisions, while the endothermic ones have to be managed numerically; however, an
explicit solution is possible if we replace distributions by Maxwellian shapes characterized
by actual number densities ni, mass velocity u and temperature T , and this will be the
choice adopted here. Skipping all intermediate details, if we set

Dex

i =
{

j, h, k ≤ QN : h ≡ i , k ≡ j , ∆Ehk
ij ≤ 0

}

,

Den

i =
{

j, h, k ≤ QN : h ≡ i , k ≡ j , ∆Ehk
ij > 0

}

,
(95)

collision frequencies in our numerical examples for inert mixtures will be

νi =
∑

(j, h, k)∈Dex

i

νhkij n
j +

∑

(j, h, k)∈Den

i

νijhk n
j e−

∆Ehk
ij

KT (96)

(ratios between reduced masses simplify to 1 since there is no transfer of mass). Analo-
gously, to analyze the BGK model with chemical reaction we set:

Dex−mechanical

i =
{

j, h, k ≤ 4N : h ≡ i , k ≡ j , ∆Ehk
ij ≤ 0

}

,

Dex−chemical

i =
{

j, h, k ≤ 4N : i 6≡ j 6≡ h 6≡ k , i+ j ≡ 3 , h + k ≡ 3 , ∆Ehk
ij ≤ 0

}

,

Den−mechanical

i =
{

j, h, k ≤ 4N : h ≡ i , k ≡ j , ∆Ehk
ij > 0

}

,

Den−chemical

i =
{

j, h, k ≤ 4N : i 6≡ j 6≡ h 6≡ k , i+ j ≡ 3 , h + k ≡ 3 , ∆Ehk
ij > 0

}

,

(97)
and collision frequencies in our simulations will be

νi =
∑

(j, h, k)∈Dex−mechanical

i

νhkij n
j +

∑

(j, h, k)∈Dex−chemical

i

νhkij n
j

+
∑

(j, h, k)∈Den−mechanical

i

νijhkn
je−

∆Ehk
ij

KT +
∑

(j, h, k)∈Den−chemical

i

νijhkn
j

(

µhk

µij

)3/2

e−
∆Ehk

ij
KT .

(98)

In our examples we consider for simplicity a mixture of four gases, each one endowed
with two energy levels (a fundamental state and an excited one); of course all could be
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extended to an higher number of mechanically interacting species and of energy levels.
Masses of the four gases are m1 = 11.7, m2 = 3.6, m3 = 8 and m4 = 7.3, while collision
frequencies of the exothermic interactions are taken as νhkij = i+j

20 (h+k)
. With this choice,

several numerical tests have been done, and some illustrative ones are reported here below.

Reference Test:
In the reference test we consider, initial conditions are given by Maxwellian shapes char-
acterized by velocities

u10 = 0.2 u20 = 0.1 u30 = 0.3 u40 = 0.4

u50 = 0.3 u60 = 0.1 u70 = 0.2 u80 = 0

and temperatures

T 1
0 = 1 T 2

0 = 3.5 T 3
0 = 2 T 4

0 = 2.5

T 5
0 = 3 T 6

0 = 1.5 T 7
0 = 5 T 8

0 = 4.5

while initial number densities and internal energies are reported in the following table:

n1
0 = 11 n2

0 = 9 n3
0 = 10 n4

0 = 7 n5
0 = 10 n6

0 = 8 n7
0 = 9 n8

0 = 6
E1 = 3 E2 = 2 E3 = 4 E4 = 7 E5 = 5 E6 = 4 E7 = 6 E8 = 9

Consequently, u0 ≈ 0.23 and T0 ≈ 2.8. Figure 1 shows the evolution in time, until the
steady state, of the unknowns Φ8 and Ψ8 describing the distribution of the second energy
level (the most excited one) of the gas G4, and also the evolution of the densities and the
temperatures for every gas at both energy levels. We see that equilibrium temperature
holds TM ≈ 3 higher than the initial one, hence this mixture (with the chosen initial
data) is macroscopically slightly exothermic, with transformation of internal energy into
thermal energy.

We repeat then the reference test starting from initial distributions f i
0 given by sums

of two Gaussians symmetric with respect to ui0, with the same macroscopic densities and
temperatures reported above. Figure 2 shows the behaviour of Φ8 and Ψ8 in this case, and
it compares the steady state (that of course is exactly the same) and the evolution of the
entropy functional for initial data given by single Maxwellians or by sums of Gaussians.
In this comparison and also in the other tests we will describe below, quantities relevant
to the original reference case (with Maxwellian initial distributions) are denoted by a
subscript t.

Test 1: We modify now the reference case considering different values for the internal
energies:

n1
0 = 11 n2

0 = 9 n3
0 = 10 n4

0 = 7 n5
0 = 10 n6

0 = 8 n7
0 = 9 n8

0 = 6
E1 = 3 E2 = 2 E3 = 4 E4 = 7 E5 = 10 E6 = 12 E7 = 8 E8 = 9

Figure 3 illustrates the results relevant to this test, also in comparison with the reference
test case. Steady states are again Maxwellian distributions with (constant) mean veloc-
ity u ≈ 0.23, but equilibrium temperature and, consequently, number densities, change
with respect to the reference plots. More precisely, since energies in the second level have
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been increased, also equilibrium temperature increases to TM ≈ 4.055 providing thus equi-
librium densities of the excited levels lower (and, because of conservation of global N s,
the ones of the fundamentals states higher) than the ones of the reference test. This
mixture is thus really exothermic, since during the evolution a lot of particles de–excite,
and transform their internal energy into thermal one.

Test 2: Now, with respect to the reference case, we modify (precisely, we increase)
densities of the excited energy levels:

n1
0 = 11 n2

0 = 9 n3
0 = 10 n4

0 = 7 n5
0 = 13 n6

0 = 11 n7
0 = 12 n8

0 = 9
E1 = 3 E2 = 2 E3 = 4 E4 = 7 E5 = 5 E6 = 4 E7 = 6 E8 = 9

This test is described and compared to the reference one in Figure 4. Changing initial
densities provides a different mass velocity u ≈ 0.22, and a different global temperature,
ranging from T0 ≈ 2.9 to TM ≈ 3.18. As noticed since Section 2 relevant to the Boltzmann
description, in any equilibrium configuration for a mixture of polyatomic gases we have
the the highest fraction of each gas Gs belongs to the fundamental (de–excited) level, and
we show here that this fact is true even if we choose as initial situation the reverse one,
in which highest number densities characterize the excited components.

Test 3: Finally, we consider the same initial conditions as for the reference test, but
we assume that the four gases are subject also to the chemical reaction with transfer of
mass described in Subsection 4.2. Simulations of this reactive case are shown in Figures 5
and 6. First, Figure 5 confirms numerically the Mass Action Law and the conservation of
the sums of total densities N1 + N3, N1 + N4, N2 + N4 and of ρ u; moreover. it shows
the evolution of the collision frequencies νi versus time. Last, in Figure 6 we present a
comparison between the reference test, without chemical collisions, and the test 3. Mean
velocity does not change, while equilibrium temperature is now TM ≈ 3.2. As concerns
the evolution of number densities, we note that the chemical reaction can produce loss
of monotony (see n6). It would be of course interesting to extend such simulations of
reactive polyatomic mixtures to several different situations, varying for instance the order
of magnitude of the involved collision frequencies, changing thus the dominant processes
in the evolution (elastic scattering, or excitation/de–excitation of interacting particles,
or chemical reactions). Such investigation, together with comparisons with experimental
data or with numerical simulations of the Boltzmann system, is left as future work.
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Figure 1: Reference test, for Maxwellian initial data.

Top: Time evolution of the distribution functions Φ8 and Ψ8 until the steady states.
Bottom: Left: Evolution of the number densities. Right: Evolution of the temperatures.
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Figure 2: Reference test, for initial data given by sums of Maxwellians.

Top: Time evolution of the distribution functions Φ8 and Ψ8 until the steady states, for
the reference test with initial data given by sums of Maxwellians.
Bottom: Left: Steady state of Ψ8; Right: Entropy functional: comparison between the
reference test with Maxwellian initial data and the test with initial data given by sums
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Figure 3: Test 1.

Top: Comparison between the steady states, for the gas G2 at level 2, of the reference
test and the test 1.
Middle: Comparison between the densities and the velocities of the reference test and the
test 1.
Bottom: Left: Comparison between the temperatures of the reference test and the test 1.
Right: Evolution of the temperatures for the test 1.
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Figure 4: Test 2.

Top: Comparison between the steady states, for the gas G2 at level 2, of the reference
test and the test 2.
Middle: Comparison between the densities and the velocities of the reference test and the
test 2.
Bottom: Left: Comparison between the temperatures of the reference test and the test 2.
Right: Evolution of the densities for the test 2.
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Figure 5: Test 3.

Top: Left: Mass Action Law: RHS and LHS of (56) and of (38). Right: Conservation of
sum of total densities.
Bottom: Left: Conservation of ρu. Right: Evolution of νi.
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Figure 6: Test 3.

Top: Comparison between the steady states, for the gas G2 at level 2, of the reference
test and the test 3.
Middle: Comparison between the densities and the velocities of the reference test and the
test 3.
Bottom: Comparison between the temperatures and the entropy functional of the refer-
ence test and the test 3.
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