
13 October 2022

University of Parma Research Repository

A service-based testbed for Trust Negotiation / Agazzi, Filippo; Tomaiuolo, Michele. - In: M&S MAGAZINE. -
4:3(2014), pp. 65-76.

Original

A service-based testbed for Trust Negotiation

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available

Availability:
This version is available at: 11381/2797759 since: 2016-08-23T15:29:27Z

This is a pre print version of the following article:



A SERVICE-BASED TESTBED FOR TRUST NEGOTIATION

Filippo Agazzi, Michele Tomaiuolo
Dipartimento di Ingegneria dell'Informazione

Università di Parma, Italy

ABSTRACT

Trust Negotiation allows users to develop trust incrementally, by disclosing credentials step by step. 
This way, services and resources can be shared in an open environment, and access rights can be 
granted on the basis of peer-to-peer trust relationships. This article presents a service-based testbed 
for Trust Negotiation. At its core, it is created as a generic framework based on the WS-Trust 
standard. It integrates a modular trust engine and a rule engine, which is used as a policy checker. 
The system is mainly oriented at Web services composition and location-based social networking 
scenarios.

1 INTRODUCTION

The interoperability promised by Web services standards paves the way for the provision and use of 
services not just in intranets, but also in the global Internet. Online interactions may involve human 
users together with software agents, either autonomous or simply reactive. Such an open and 
dynamic environment is characterized by: (i) unreliable behaviour of users and agents, because of 
conflicting objectives and different ownership, (ii) incomplete knowledge of the global 
environment, and (iii) absence of central authority and globally trusted institutions, in general. 
Moreover, the potential user base of an application provided on the open Internet is still growing, 
with the mass adoption of social networking tools. Contacts among people often develop fully 
online, possibly with no body of previous knowledge to associate with an online identity. Given 
such a new way the Internet is being used today, the automatic or assisted management of trust 
relationships is a concrete necessity. Thus, the approach of Automated Trust Negotiation (ATN) is 
becoming relevant, because it allows unknown users and agents, desiring to share any resource or 
service, to establish a level of trust in an incremental way through the exchange of credentials.

In this scenario, the open selection and composition of services is made possible, since ATN 
simplifies the creation and management of trust bounds. In fact, delegation and workflow 
composition may only be applied on the basis of careful protection of resources and information. 
This problem can be solved in a fully distributed way if local trust relations are taken into account, 
for example using a Trust Management scheme, possibly in association with a Trust Negotiation 
protocol. However, to our knowledge, there is virtually no implementation of ATN for Web services 
which is practically and freely available. This situation motivated us to design and implement an 
open source generic framework for ATN, which is distributed together with some components 
allowing its use in a Web services scenario. Another application area for the framework is 
constituted by social networking, especially in the case of pervasive and distributed platforms, 
exploiting location-based services. 

The rest of the article is organized as follows: Section II presents an overview and a literature 
review of ATN; Section III describes a generic Trust Negotiation framework for Web services, 
based on the WS-Trust standard; Section IV provides details about practical implementation and use 
of such a framework, as a testbed for generic Web services; Section V describes in particular the use 
of the framework in the context of location-based social networking; finally, some concluding 
remarks are provided.



2 BACKGROUND

Trust is an important aspect of human life, and it has been studied under different points of view, 
for example in the context of psychological and sociological sciences, or to draw specific 
economical models (Luhmann 1979, Barber 1959, Deutsch 1962). Gambetta (2000) defines trust 
as a “subjective probability with which an agent assesses that another agent or a group of agents 
will perform a particular action...”. Though this definition is founded on the mathematical 
concept of probability, Castelfranchi and Falcone (2001) argue it still hides many important 
details. Instead, they present trust using a socio-cognitive approach, providing a deep analysis of 
a party’s believes, and the way they can influence trust. In particular, they list the beliefs about 
competence, disposition, dependence and fulfillment as important components of trust in every 
delegation, even towards non-cognitive software service providers. Instead, delegation towards 
people, organizations and social entities requires the delegating entity to hold additional believes 
about willingness, persistence and self-confidence of the partner, at least for the specific domain 
of the delegation. Then, using the socio-cognitive approach, trust can be evaluated as a 
continuous function of its constituents (Castelfranchi and Falcone 2003), more precisely of the 
certainty of its constituent beliefs.

One source of trust is based on direct experience and knowledge, arising from past 
interactions with a certain agent. Another source of trust is based on societal experience, or 
reputation, which consists of observations by a society of an agent’s past behaviour. Such 
observations can then be made available to other agents, who themselves have not interacted 
directly with the evaluated agent. Various mechanisms are being used to manage reputation, i.e. 
to aggregate these indirect observations of the various experiences of participants in the system 
and to provide aggregate results or raw data to interested agents. Sabater and Sierra (2002) 
classify such mechanisms as: (i) witness reputation, where information about the target agent is 
requested to witnesses and collected directly by the evaluator, (ii) neighborhood reputation, 
which uses the social environment of the target agent and its relations with neighbors, and (iii) 
system reputation, which requires the presence of institutional structures considered trustworthy 
by all involved agents. Huynh, Jennings and Shadbolt (2006) deal in particular with open 
environments and use slightly different forms of data aggregation: (i) witness information, to be 
acquired directly, (ii) role-based trust, granted according to the membership in a trustworthy 
group, and (iii) certified reputation, based on authenticated references collected by the target 
agent itself.

Though trust is a continuous function, evaluated on the basis of its various considered 
constituents, the decision to delegate is necessarily discontinuous in its nature. The delegating 
entity can just decide to delegate or don’t delegate, and this decision has to take into account not 
only the degree of trust, but even other factors. These factors, including the importance of the 
goal, the perceived risk of frustrating the goal, the increased dependence on the trustee, and all 
other costs or possible damages associated with the delegation, will all influence a threshold 
function which will be eventually compared with the degree of trust for deciding whether to 
delegate or not.

Following this approach, security is deeply intertwined with both the degree of trust and the 
threshold function. In fact, security can certainly influence positively the trust on the partner, 
especially if security includes auditing mechanisms, certifications and confidentiality. On the 
other hand, trust can provide a foundation for delegation. Delegation often comes in the twofold 



aspect of delegation of duties (performing actions or achieving goals), and delegation of 
corresponding permissions (rights to access the needed resources). In Trust Management 
schemes (Li, Mitchell and Winsborough 2005), delegation can be effectively modulated 
according to the degree of trust.

An actual Trust Negotiation process is intended as the flow of credentials and policies 
between two entities through a sequence of requests and releases. In this process, digital 
credentials and policies are exchanged step by step, to increase the level of trust between 
involved parties (Winsborough, Seamons and Jones 2000; Winslett et al. 2002). In such a 
process, credentials and policies are considered as sensitive resources, to be protected by 
appropriate access policies, along with other kinds of resources. 

With respect to the management and computation of policies in Trust Negotiation, a 
particularly important element is the policy compliance checker. Starting from a policy and a set 
of credentials, the policy compliance checker must be able to find the credentials which satisfy 
the policy, if they are effectively available as a subset of all disclosed credentials. For this 
purpose, it is also necessary to translate each credential from its original format into an assertion 
of the policy language.

Considering the example of a client requesting a service, one of the problems to solve is how 
the client comes to know which credentials it is required to present, and how the policies 
protecting the service and the credentials are disclosed. A negotiation strategy defines when and 
which credentials and policies must be disclosed and inserted into a message to send to the other 
party; how much computational load to dedicate to the negotiation (e.g., the maximum number 
of rounds) and other decisions about the behaviour to pursue during the negotiation. Moreover, a 
successful negotiation is not always possible, since for example one of the two parties does not 
possess sufficient credentials: the strategy has to determine the moment to abandon the 
negotiation, since it is not possible to conclude it with success. There is a vast choice of possible 
negotiation strategies, each one with its peculiar features. An important distinction can be drawn 
upon the level of prudence in the disclosure of credentials and policies. Winsborough, Seamons 
and Jones (2000) consider an Eager Strategy, a Parsimonious Strategy, a Prudent Strategy. A 
family of strategies is defined as a set of reciprocally compatible and interoperable strategies. Yu, 
Winslett and Seamons (2001) present the DST (Disclosure Tree Strategy) family. An important 
advantage regards the fact that a negotiating agent can choose, among a set of strategies 
belonging to the same family, the closest one to its own requisites. Moreover, this way it can 
adopt different strategies, during the different stages of a negotiation.

3 A STANDARD-COMPLIANT ATN PROTOCOL FOR WEB SERVICES

Web services are an important application area for Trust Negotiation, especially if they are 
provided in an open global context. For this reason, we'll introduce here a generic Trust 
Negotiation protocol for Web services. The protocol is designed in conformance to relevant 
standards for Web services security. Thus, the description of the protocol will be preceded by a 
brief overview of those standards.

1.1 Relevant standards for Web services security

SOAP Web services can exploit the SOAP header as an extensible container for message 
metadata, which provides developers with a set of options also covering the most typical security 
issues. The so-called WS-* specifications are designed in order to be composed with each other. 



WS-Security supports the definition of security tokens inside SOAP messages and uses XML 
Security specifications to sign or encrypt those tokens or other parts of a SOAP message. Other 
specifications, including WS-SecureConversation, WS-Trust, WS-Policy, WS-SecurityPolicy, 
provide additional SOAP-level security mechanisms. The WS-Trust standard defines 
mechanisms for mediating trust relations among entities in the context of Web Services. It 
considers a security model in which a Web service can request that a received message proves a 
set of claims (e.g. name, key, privileges, etc) or, more commonly, that it carries a security token 
representing a relation between the sender and some other entity, trusted by the service provider. 
In this context, a service provider can request a client, before accessing its services, to present a 
token released by a trusted entity. A new client would probably not possess a proper token to 
access the service, in advance. For this reason, WS-Trust defines a protocol for allowing a client 
to contact an authority, trusted by the service provider, to request the token. Such an authority is 
defined as a Security Token Service (STS). An STS, on his turn, can define the requirements 
which clients have to satisfy to obtain the release of a token. As an STS is responsible for 
releasing those tokens, it is also known as a “token issuer”.

In Fig.1, arrows represent possible paths of communication among the Requestor (client), the 
Web service Provider, and the STS. The Requestor contacts the STS for receiving a token. The 
STS has the duty to verify that the Requestor possesses the necessary attributes for obtaining a 
token. If the policy of the STS is satisfied, the STS releases a token. At this point, the Requestor 
can send a message to the Web service Provider, attaching the obtained token.

Figure 1: WS-Trust architecture

The security token released by the STS must have some features, in particular: (i) being 
verifiable as effectively released by the STS, and (ii) effectively authorizing the requester to use 
certain services. These features depend on the type of token being released: various technologies 
may be used to implement the token, such as X.509 and SAML. SAML is well fit for this 
scenario as it provides a secure way to make assertions about some subjects and their attributes. 
Otherwise these features may be guaranteed on the basis of a previous agreement, i.e., a secret, 
shared between the Web service and the STS bound to the service. In fact, an STS can be a 
platform-level Web service, bound to one or more Web services, for which it plays the role of a 



trusted authority. A Web service may trust the signature of the STS, or it may request an STS to 
validate the token, or validate it autonomously.

A Requestor may be informed about the necessity to use a security token released by an STS, 
as the needed Web service can publish a WS-Policy document where a certain IssuedToken is 
requested. The interaction between a client and an STS occurs through a request-response 
protocol.

In particular, a RequestSecurityToken is used to request a token, and a 
RequestSecurityTokenResponse for responding to the request. Each request must be associated 
with an action. According to the WS-Trust standard, an STS may be requested to release, renew, 
cancel or validate a token. The Requestor may add claims, expressed in a certain “dialect” 
depending on the application. The Requestor may also specify a service which the request 
applies to, if the STS is associated with multiple Web services; in this case, the exact endpoint 
reference of the Web service has to be specified.

The response may convey a token through a RequestedSecurityToken element. Additionally, 
it may convey other proofs through an RequestedProofToken element, containing data which the 
Requestor may use to demonstrate to be authorized for using the token. For example, it may 
contain a secret encrypted with the public key of the Requestor.

1.2 Definition of a generic service-oriented ATN protocol

An STS is normally integrated into a system using a single round of messages, i.e. a 
RequestSecurityToken (RST), sent from the Requestor to the STS, followed by a 
RequestSecurityTokenResponse (RSTR), sent from the STS to the Requestor. However, in some 
scenarios, more steps may be needed before a token is obtained. In fact, the WS-Trust standard 
foresees the extension of this basic mechanism, named “Negotiation and challenge framework”, 
which is depicted in Fig.2.

Figure 2: WS-Trust - Negotiation and challenge framework

The message exchange starts with a RST message, for requesting the token. Then, an arbitrary 
number of RSTR messages can be exchanged between the Requestor and the STS. Those RSTR 
messages may convey any additional information needed for completing the transaction, before 
finally transmitting the token. The WS-Trust standard defines some elements for proposing a 
“challenge” to the other end, including: SignChallenge, BinaryExchange, KeyExchangeToken. 



However, it does not specify how to use such elements, or even other arbitrary elements, in a 
transaction. For example, Policy elements may be used by both parties to exchange their 
respective policies.

In this work, we propose a generic protocol for ATN. We decided to use some elements of the 
model proposed in (Lee and Winslett 2008), with particular reference to the content schemas. 
However, we organized the protocol to better distinguish the two fundamental phases of the 
negotiation: (i) the initialization, and (ii) the real exchange of credentials and policies. The aim is 
to deal with the transmission of credentials only if the two parties can reach an agreement about 
the protocol to use.

In particular, in the initialization phase, the parties use an extensible TNInit element in a 
single turn of messaging. It contains information useful for defining the parameters of the 
following negotiation, and for verifying if there is the necessary compatibility, before beginning 
a real negotiation. A TNInit element can contain: a SignatureMaterial, for proving the possession 
of a private credential; a StrategyFamily, for identifying a supported family of strategies; a 
TokenFormat, for specifying the supported type of security token. Essentially, the token can be 
handled as an opaque object by the client.

In the negotiation phase, the parties use an extensible TNExchange element. It can contain 
PolicyCollection and TokenCollection elements, for transporting policies and credentials, 
respectively, disclosed to the other party during the negotiation. Moreover, it can contain 
TokenType, RequestedSecurityToken and OwnershipProof elements, for conveying the requested 
token and the associated proofs of ownership.

4 A TESTBED FOR ATN IN OPEN WEB SERVICES

Following the design of a generic ATN protocol for Web services, we have also realized a 
working implementation. It is mainly intended as an experimentation framework, for testing both 
the functionality and performance of the proposed protocol in various scenarios. However, most 
of its components are reusable for creating specific open SOA-based applications, especially in 
the case of dynamic service selection and workflow composition through agents (Negri et al. 
2006; Poggi, Tomaiuolo and Turci 2004, 2007).

The framework is available as part of the open source dDelega project (Tomaiuolo 2013), at 
https://github.com/tomamic/dDelega. dDelega is the result of ongoing work started with the 
development of a security layer for JADE, one the most widespread FIPA-compliant multi-agent 
systems (Poggi, Tomaiuolo and Vitaglione 2005).

In particular, it integrates a trust engine, in compliance to WS-Trust specifications. It also 
integrates an advanced rule engine for compliance checking against disclosure policies. These 
engines can be used by parties in a WS environment, by means of translator components that 
have been realized, in order to complete the integration. At a more basic level, the 
implementation exploits a number of frameworks developed under the Apache Foundation 
umbrella, including Axiom, Axis, Rahas, Rampart.

1.3 Integrating a modular trust engine

The trust engine must be able to evaluate which policies and credentials have to be inserted into 
the message at each round of the negotiation, on the basis of current state of negotiation and 
policies and credentials received at the previous round.

TrustBuilder2 (TB2) is a framework for Trust Negotiation, developed at the University of 

https://github.com/tomamic/dDelega


Illinois for providing a flexible and extensible tool for this research area (Lee, Winslett and 
Perano, 2009).

TrustBuilder2 has not been realized for usage in the context of Web services. However his 
modular structure allows it to be extended for: (i) using different policy languages, (ii) 
implementing different negotiation strategies, and (iii) providing support for different types of 
credentials.

In particular, after a proper translation we defined, it is able to evaluate policies expressed 
according to the WS-SecurityPolicy language. Starting from received policies and credentials, it 
is able to analyze them and take decisions about which credentials and policies to disclose, 
according to the chosen negotiation strategy. It uses a policy compliance checker, which has the 
duty of finding one or more minimal sets of credentials satisfying a given policy. In TB2, the 
main components of ATN are represented as interfaces, which can be implemented and extended 
to add new functionalities. They can be distinguished as:

 Strategy module: regarding negotiation strategies.
 Policy compliance checker: to find a set of credentials satisfying a policy.
 Query interfaces: to provide access to resources, including local policies and credentials.
 Credential chain module: to build and validate chains of credentials, during a negotiation.

TrustBuilder2 is designed according to a model of negotiation with two main phases. The first 
phase is characterized by the exchange of messages containing data structures, called InitBrick, 
for communicating the information needed to initialize a negotiation. After this phase, the main 
negotiation rounds take place, characterized by the exchange of data structures called 
TrustMessage, i.e. objects containing policies and credentials to exchange during the negotiation.

As shown in Fig. 3, in this research work TrustBuilder2 is used as a trust engine for 
Automated Trust Negotiation. A mechanism has been realized for translating “TB2 messages”, 
i.e. InitBrick and TrustMessage objects, into “WS-Trust messages”, i.e. RSTR messages 
containing TNInit and TNExchange elements, which are exchanged in the context of a 
“Negotiation and challenge framework”, as defined by WS-Trust. The translation process uses 
some Apache libraries, including Axiom for creating XML structures, and Rahas for representing 
WS-Trust elements, in particular. This way, a client agent and/or an STS service may realize a 
negotiation using the TB2 framework internally, but exchanging standard WS-Trust messages 
publicly. After a successful negotiation, the client may finally access the desired service. 
Depending on the nature of the access token, the Web server may be able to verify it 
autonomously, or it may need the participation of the STS. In our tests, we implemented a token 
based on a signed structure, including a secret value, the client key, and a lifetime value, which 
could be verified directly by the Web service.

Policy and credentials are represented as abstract classes and interfaces in TB2, in such a way 
to make the tool independent from the type of policies and credentials used. The current 
implementation of this research work uses X.509 credentials, with a possible extension to 
SAML. In TB2, credentials are organized in chains; i.e. when a credential, released by an 
authority, is sent, then the whole chain has also to be sent. The CredentialChainMediator 
component uses algorithms to build, process and validate chains of credentials. This allows 
administrators to create decentralized authorities, valid for the different parties participating in a 
negotiation process. It allows TB2, when processing a chain, to verify the issuer of a credential 
released by an entity, starting from the verification of the root certificate of the chain.



Figure 3: A testbed for ATN in open Web services

Our implementation also requires a user to specify, though configuration files, information about 
some components to be used by a client and a server, with respect to TB2 functionalities. This 
allows users to customize negotiation strategies, types of credentials and policy languages to be 
used in a certain application. The credential loader module can also be customized to load 
particular credentials into the system; it has access to a list of available credentials. The profile 
manager module uses the same customization to decide which class loader to use, according to 
the type of credentials used by the PolicyManager. A policy loader contains information for the 
PolicyManager, to decide which policy class loader to use.

1.4 Using a rule engine as a policy checker

A fundamental aspect of TB2 is the logic it uses for the functioning of its compliance checker 
component. In TB2, the problem of finding a set of credentials satisfying a policy is reformulated 
into the so-called “many pattern/many object match” problem, i.e., to find the objects matching 
the given patterns. Here, credentials are considered as objects and policies as patterns, in a 
problem which can be solved using a production rule engine. The rules of such engines have a 
standard format, with: an LHS (left hand side), the part of the rule defining the conditions; and 
an RHS (right hand side), the part of the rule defining the action to perform in the case when the 
conditions of the LHS are satisfied.

TB2 includes the Clouseau component, that is an expert system using the Jess (Java Expert 
System Shell) rule engine, which provides APIs for integration into a Java application. The rules, 
representing the policies of a Trust Negotiation process, define constraints on credentials. Jess 
implements the Rete algorithm (Forgy 1982), which allows to solve the “many pattern/many 



object match” problem. Using an engine of this kind in a Trust Negotiation process requires to 
introduce rules for representing policies, which specifies the patterns. The knowledge base, 
instead, is determined by acquired credentials. An inference can be realized by finding a set of 
credentials satisfying the policy, which is exactly the duty of the policy checker in TB2. Thus, a 
policy checker is nothing more than an expert system based on production rules. Jess does not 
support natively any object for representing credentials or policies. Instead, to use credentials in 
Jess and to insert them into its working memory, it is necessary to define their format explicitly. 
Then, through JessComplianceChecker class, an assert command must be constructed and 
executed. This requires quite cumbersome code, for constructing these commands as an 
“assert(...)” string, starting from the object representing the credential.

Instead, in this work we have customized the TrustBuilder2, extending it for using a different 
rule engine as a policy checker. In particular, we used the Drools rule engine (Sottara, Mello and 
Proctor 2010) for the policy checker component instead of Jess, supported by the currently 
available version of TB2. Drools is based on the so-called ReteOO algorithm, i.e., an adaptation 
of the Rete algorithm for object oriented systems. In Drools there are two main storage areas: a 
Production Memory, where rules are stored, and a Working Memory, where known facts are 
stored. For Trust Negotiation, the Production Memory can be used for storing the policies as 
rules, while the Working Memory can be used for storing the credentials as facts. As an 
important advantage with respect to Jess, facts in Drools are represented as Java objects and they 
can be put directly into the Working Memory. This has allowed us to develop a policy checker 
with a much leaner code than the Jess policy checker. Moreover, the tool is completely open-
source, on the contrary of Jess; it is continuously updated, with the addition of new features, and 
it has the attentions of a vast and lively community of developers.

1.5 Performance evaluation

The ATN process, as described in the previous sections, was analyzed from the point of view of 
performance. The evaluation regarded the influence of the various components of the system and 
the conversions required by those components for communicating. For these tests, a scenario has 
been realized, in which:

 the client requests a token;
 the STS sends a policy requesting a chain of credentials;
 the client, protects one of the credentials in the chain with a policy, which he discloses to 

the STS;
 then, the STS discloses the credentials satisfying the client's policy;
 thus, the client discloses the credential chain initially requested by the STS;
 finally, the STS sends the requested token.

Including the initialization phase, the whole process takes 4 rounds, in which both the client and 
the STS send a message to the other party.

As shown in Tab.1, the execution times vary around a mean value of 6 seconds, including the 
signature and encryption of SOAP messages, and 4.8 seconds without any signature and 
encryption. Considering instead a minimal negotiation process of three rounds, the execution 
time is around 4 seconds. Decreasing the credentials required by the policy from 3 to 1, the 
execution time does not vary proportionally, but it is reduced only by around 1 second. This 
means that a significant part of the computation load is absorbed by TB2, for the evaluation of 
policies, in addition to the basic workload imposed by the WS-* stack (Novakouski et al. 2010, 



Rodrigues et al. 2011).
The results are in accordance with those obtained by some authors of TB2 (Lee 2008), which 

report that almost half of the total time of execution is used by the policy checker. Another 
significant comparison is with the execution of a negotiation using only the TB2 tool, in which a 
TB2Client and a TB2Server communicate directly, through a dedicated socket, without any 
conversion, signature or encryption: in the same scenario with 4 rounds, as described above, the 
process takes 1.2s in TB2, against the 6s required by the whole Web services infrastructure 
implemented in this work.

Table 1. Initial performance results

4 rounds, with Enc & Sign 6.0s
4 rounds, w/o Enc & Sign 4.8s
3 rounds, w/o Enc & Sign 4.0s
3 rounds, 1 credential requested by STS 3.0s
4 rounds, TB2, no WS 1.2s

It is worth noting that more efforts may be dedicated to the optimization and fine tuning of 
various components of the system. Thus, performance may be improved in many aspects. For 
example, the inclusion of policy statements into Drools is now a process involving various steps 
and conversions. In future releases of the framework, this process will be streamlined, enabling a 
more direct inclusion of policies and improving efficiency.

5 A TESTBED FOR ATN IN PROXIMITY-BASED SOCIAL NETWORKING

Another potential area of application for Trust Negotiation is constituted by online social 
networks, especially in the case of distributed pervasive platforms, supporting location-based 
activities. In fact, this kind of social networks provides a good example of an open scenario, 
where it is interesting to develop and evaluate pervasive adaptive applications. Our 
experimentation with Trust Negotiation, in this case, was performed over Blogracy (Franchi, 
Poggi and Tomaiuolo 2013), a distributed social networking system, exploiting at its core an 
OpenSocial Container and the BitTorrent protocol. OpenSocial is a public specification that 
defines a component hosting environment (container) and a set of common application 
programming interfaces (APIs) for web-based applications and was originally developed to 
support interoperability among social networking platforms. Moreover, Blogracy has an 
additional P2P layer that can be used for the devices to share resources in a decentralized way 
and it uses Attribute-Based Encryption in order to make resources (especially on the P2P layer) 
and communications accessible only to those having the appropriate permissions. We have 
decided to implement a pervasive layer built on top of Blogracy, named for simplicity UBA, 
modeled as an agent based system. In fact, agent-based technologies are well-suited for online 
social networks (Franchi and Tomaiuolo 2012, Poggi and Tomaiuolo 2013), especially 
considering: (i) the networks massive scale and (ii) the interoperability requirements that are 
becoming increasingly relevant, especially in the context of pervasive computing. In some cases, 
agents may also share with users a common understanding of the exchanged messages, on the 
basis of Semantic Web technologies (Poggi 2009, Tomaiuolo et al. 2006).

Users in a social network can be linked with multiple kinds of relationships. In Blogracy, 



these relationships are expressed as belonging to a group. These groups essentially work like 
Google Plus circles and are: (i) unique to a user, and (ii) associated with other users. When a user 
adds other users to a given group, those users can access the resources associated with the group. 
We also have two additional kinds of groups: (i) Proximity groups and (ii) Location groups. 
Proximity groups are centered on each member of the social networking system and represent 
physical closeness to such member. Proximity groups are extremely fluid, in the sense that users 
can physically move and consequently the set of users belonging to a Proximity group varies in 
time. Each user configures the hysteresis of his Proximity group, i.e., how long the other users 
are considered part of it after they are no longer physically close to him. On the other hand, a 
Location group (i) is associated with the users in the proximity of a given location (e.g., a 
classroom or a museum room), (ii) has a host, i.e., a node that both identifies and supports the 
group and (iii) is associated with a location profile, which can be hosted either on the device 
itself or on a different node. In fact, a location, although logically different from a regular user, 
works in the same way and a Location group is essentially a Proximity group for the location.

For providing these functionalities, each node of the social network hosts multiple agents, 
with different levels of agency. As shown in Fig. 4, some of the more important agents are (i) the 
Neighborhood Manager agent (NM), which cooperates with lower level agents to discover the 
users in its neighborhood; (ii) the Trust Negotiator agent (TN), that is involved in the decisions 
regarding privacy and data access, and (iii) the OpenSocial agent, that provides a bridge towards 
the underlying Blogracy modules (Franchi and Tomaiuolo 2012, Poggi and Tomaiuolo 2013). In 
particular, a Neighbourhood Manager (NM) and a Trust Negotiator (TN) are directly involved in 
the Trust Negotiation process. Since a typical mobile device has several ways to scan its 
surroundings – Bluetooth, WiFi Direct, regular WiFi, Near Field Communication (NFC) etc. – a 
node has specific agents to discover other nodes using these protocols. The NM Agent is 
responsible for aggregating information from these agents, trying to present a consistent view. 
The Neighborhood Manager agent informs the OpenSocial agent when users enter and leave a 
Proximity or Location group and the latter notifies the OpenSocial container about it.

Then, the TN Agent of the discovering node can start a trust negotiation with the discovered 
agent, disclosing some information. If the negotiation succeeds, the discovering node: (i) knows 
the actual user-id of the discovered node; (ii) adds the discovered node to its Proximity group, 
which means that it is able to access only resources part of the Proximity group. However, 
typically during the negotiations each of the two TN Agents obtains some information on the 
other user and consequently decides to which additional groups to add him. This process can be 
automatic or semi-automatic (awaiting human confirmation) depending on the preferences.

One particular source of trust in social networks may be represented by reputation, which 
may be available in various forms. In the case of open systems, certified reputation may 
represent a quite simple source of trust. Certified reputation, in fact, requires an agent to provide 
a number of references about its past behaviour, certified and authenticated by third-party agents. 
It is a simple protocol which resembles the references provided by a person who applies for a 
job.



Figure 4. A testbed for ATN in proximity-based social networking

 Those references has to be previously obtained and collected by the referee agent, by asking its 
partners to certify their ratings about its performance during past interactions. Then, collected 
references can be made available when some other agent needs to evaluate its trustworthiness, 
for granting access to resources or membership into a protected group. These ratings may allow 
the referee to gain the trust of new partners, as they attest its achievable performance in a 
particular task, according to its previous interaction partners. However, a rational agent will 
possibly present only the best ratings, which may overestimate its performance in a particular 
task, without guaranteeing a minimum level. In fact, trust evaluations based on certified 
references tend to be less accurate than other models, like witness reputation, collecting all bad 
and good ratings. Neverthless, certified references can be useful for trust evaluation in the 
absence of other sources of information and because of their wide applicability. In fact, 
references may be obtained also from just a small number of interactions, and they require few 
computational and communicational resources, since they are collected and provided directly to 
the evaluator (Huynh, Jennings and Shadbolt 2006). Authenticated references may also be easily 
used in a Trust Negotiation process, while other forms of direct trust and reputation may require 
additional protocols. As with other credentials, references need to be evaluated on the basis of 
their issuer. This fits better the case of open MAS, where there is no guarantee about the honesty 
of agents, lies and collusions have to be considered possible, and in general no single institution 
is supposed to be absolutely trustful or omniscient.

6 CONCLUSIONS

The presented framework provides the ground for experimenting Trust Negotiation protocols in 
the context of generic Web services. It allows users to create trust automatically, by 
incrementally disclosing credentials. Modular applications can integrate services provided in an 
open environment, on the basis of peer-to-peer trust relationships. Interoperability among such 
services is guaranteed by the conformance to standard protocols for Web services. The realized 
ATN system is composed of various components and requires various format conversions for 
messages, policies and credentials. After an evaluation of the computational overhead of a 



complete negotiation process, we suggest the use of Trust Negotiation for releasing session 
tokens, granting access to a number of cohesive services in a given time interval. Besides service 
composition and generic Web-based applications, the framework can also be used as a testbed for 
Trust Negotiation in distributed social platforms. In fact, especially in the case of location-aware 
applications, unknown users may need to establish some level of trust before interacting, when 
meeting at a certain place or at a certain event. In this sense, this research work paves the way for 
further analysis in this kinds of application scenarios, where the developed framework may be 
used to adapt a powerful trust engine and a well known rule engine for use with very different 
kinds of protocols and credentials.

References

Bertino, E., L. D. Martino, F. Paci, and A. C. Squicciarini. 2010. “Standards for web services 
security.” In Security for Web Services and Service-Oriented Architectures, 45-77. Springer.

Forgy, C. L. 1982. “Rete: A fast algorithm for the many pattern/many object pattern match 
problem.” Artificial intelligence 19, no. 1: 17-37.

Franchi, E., A. Poggi, and M. Tomaiuolo. 2013. “Open social networking for online 
collaboration.” International Journal of e-Collaboration (IJeC) 9(3):50–68. IGI Global.

Franchi, E., and M. Tomaiuolo. 2012. “Software Agents for Distributed Social Networking.” In 
Proceedings of the 13th Workshop on Objects and Agents (WOA), Milan, Italy.

Huynh, T. D., N. R. Jennings, and N. R. Shadbolt. 2006. “An integrated trust and reputation 
model for open multi-agent systems.” Autonomous Agents and Multi-Agent Systems 
13(2):119–154.

Lee, A. J. 2008. Towards practical and secure decentralized attribute-based authorization 
systems. ProQuest.

Lee, A. J., and M. Winslett. 2008. “Towards standards-compliant trust negotiation for web 
services.” In Trust Management II, 311–326. Springer.

Lee, A. J., M. Winslett, and K. J. Perano. 2009. “Trustbuilder2: A reconfigurable framework for 
trust negotiation.” In Trust Management III, 176–195. Springer.

Li, N., J. C. Mitchell, and W. H. Winsborough. 2005. “Beyond proof-of-compliance: security 
analysis in trust management.” Journal of the ACM (JACM) 52(3):474–514.

Negri, A., A. Poggi, M. Tomaiuolo, and P. Turci. 2006. “Dynamic Grid tasks composition and 
distribution through agents.” Concurrency and Computation: Practice and Experience 
18(8):875–885.

Negri, A., A. Poggi, M. Tomaiuolo, and P. Turci. 2006. “Agents for e-business applications.” In 
Proceedings of the 5th International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 907–914. ACM.

Novakouski, M., S. Simanta, G. Peterson, E. Morris, and G. Lewis. 2010. Performance analysis 
of WS-Security mechanisms in SOA-based Web services. No. CMU/SEI9-2010-TR-023. 
Carnegie-Mellon.

Poggi, A. 2009. “Developing ontology based applications with O3L.” WSEAS Transactions on 
Computers 8(8):1286–1295.

Poggi, A., and M. Tomaiuolo. 2013. “A DHT-based multi-agent system for semantic information 
sharing.” In New Challenges in Distributed Information Filtering and Retrieval, Studies in 
Computational Intelligence (SCI) 439:197–213. Springer.

Poggi, A., M. Tomaiuolo and P. Turci. 2007. “An Agent-Based Service Oriented Architecture,” in 



Proceedings of the 8th Workshop on Objects and Agents (WOA), 157–165.
Poggi, A., M. Tomaiuolo and P. Turci. 2004. “Extending JADE for agent grid applications,” in 

Proceedings of the 13th IEEE International Workshops on Enabling Technologies: 
Infrastructure for Collaborative Enterprises (WETICE), 352–357.

Poggi, A., M. Tomaiuolo, and G. Vitaglione. 2005. “A security infrastructure for trust 
management in multi-agent systems.” In Trusting Agents for Trusting Electronic Societies, 
Lecture Notes in Computer Science (LNCS) 3577:162-179. Springer.

Rodrigues, D., D. F. Pigatto, J. C. Estrella, and K. R. Branco. 2011. “Performance evaluation of 
security techniques in web services.” In Proceedings of the 13th International Conference on 
Information Integration and Web-based Applications and Services, 270–277. ACM.

Sabater, J., and C. Sierra. 2002. “Reputation and social network analysis in multi-agent systems.” 
In Proc. 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS), 475-
482. ACM.

Sottara, D., P. Mello, and M. Proctor. 2010. “A configurable Rete-OO engine for reasoning with 
different types of imperfect information.” IEEE Transactions on Knowledge and Data 
Engineering, 22(11):1535–1548.

Tomaiuolo, M. 2013. “dDelega: Trust Management for Web Services.” International Journal of 
Information Security and Privacy (IJISP) 7(3):53–67. IGI Global.

Tomaiuolo, M., P. Turci, F. Bergenti, and A. Poggi. 2006. “An ontology support for semantic 
aware agents.” In Agent-Oriented Information Systems III, Lecture Notes in Computer 
Science (LNCS) 3529:140–153. Springer.

Venanzi, M., M. Piunti, R. Falcone, and C. Castelfranchi. 2011. “Facing openness with socio-
cognitive trust and categories.” In Proc. 22nd Int. Conf. on Artificial Intelligence, 400–405. 
AAAI Press.

Winsborough, W. H., K. E. Seamons, and V. E. Jones. 2000. “Automated trust negotiation.” In 
Proc. of DARPA Information Survivability Conference and Exposition (DISCEX), 88–102. 
IEEE.

Winslett, M., T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith, and L. Yu. 2002. 
“Negotiating trust in the Web.” Internet Computing 6(6):30–37. IEEE.

Yu, T., M. Winslett, and K. E. Seamons. 2001. “Interoperable strategies in automated trust 
negotiation.” In Proc. of the 8th ACM Conference on Computer and Communications 
Security, 146–155.

Author biographies

FILIPPO AGAZZI is a freelance computer engineer working in Parma. His research focuses on 
Web services, rule-based systems and information security. His email address is 
agazzi@ce.unipr.it.

MICHELE TOMAIUOLO is an assistant professor at University of Parma. His research 
interests include trust management, peer-to-peer and social networks. His email address is 
tomamic@ce.unipr.it.

mailto:tomamic@ce.unipr.it
mailto:agazzi@ce.unipr.it

