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We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first
address the solution of a complex zero-dimensional ϕ4 theory. Although very simple, this toy model makes
us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting
of all the thimbles giving a contribution to the partition function and we will discuss a number of
algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM)
theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple
of fundamental questions: How many thimbles contribute to the solution? How can we make sure that we
correctly sample configurations on the thimble? Since the exact result is known for the observable we study
(a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and
that the algorithmic solution that we set up works well, despite its very crude nature. The deviation of
results from phase quenched ones highlights that in a certain region of parameter space there is a quite
important sign problem. In view of this, the success of our thimble approach is quite a significant one.
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I. INTRODUCTION

The so-called sign problem is one of the current big
challenges for lattice field theories. It is in fact the major
obstacle to tackling a nonperturbative study of the QCD
phase diagram. Following pioneering work by Witten [1],
Lefschetz thimble regularization has been proposed as a
possible solution [2,3] (for more recent contributions, see
also [4–7]): the functional integral is defined in terms of
fields taking values on nontrivial manifolds on which the
imaginary part of the action stays piecewise (i.e., on the
distinct thimbles attached to different critical points) con-
stant. It is an elegant, although with many respects non-
trivial alternative to the standard formulation of field
theories. It has intriguing connections with resurgence
theory, a few results of which motivate the conjecture that
the semiclassical expansion of the path integral can be
geometrized as a sum over Lefschetz thimbles1 [8]. Morse
theory [9] is the natural framework for discussing the
thimble regularization, even though it could be that it does
not necessarily have the last word on the subject. In this
work we will discuss the thimble solution of two different
models, having in mind two big issues. First of all, since
there is a thimble attached to every critical point of the
(complexified) theory one is considering, we need to
understand how many thimbles do give contribution to
the solution of a given theory. A second relevant problem is
that of devisingMonte Carlo algorithms to correctly sample

thimbles, which are manifolds for which we lack a local
description.
Toy models can be a precious tool to approach hard

problems in theoretical physics, with the hope that a
simplified model can nevertheless capture the relevant
issues. Given that the sign problem is both relevant and
hard, it does not come as a surprise that toy models have
been around for a while. Quite interestingly, some of these
have been resisting the efforts to solve them in much the
same way as the real problem is still far from being fully
solved. The first application we discuss is the solution of a
toy model that dates back to almost 30 years ago [10]. It can
be regarded as a zero-dimensional version of a ϕ4 field
theory. This simple model became a benchmark for the
complex Langevin treatment of the sign problem, and quite
interestingly only partial success has been claimed over the
years. We will show that the thimble regularization com-
pletely solves the model. In this case we will show how in
different regimes one or more thimbles give contribution to
the solution. Moreover, it is possible to perform numerical
simulations on the thimble(s): in this simple case we will
have a number of algorithmic solutions at work. A partial
account of these results has already been given in [11].
We will then address the solution of a chiral random

matrix theory. This is a somehow more realistic problem,
for which once again the application of the complex
Langevin method has been shown to be nontrivial: in a
given parametrization it fails [12], while in a different one it
works [13]. Actually one can show that the sign problem
can be quite severe for this model. The theory has an
adjustable parameter (the dimension N of the matrices)
which controls the dimensionality of the problem one has to

1This is a literal citation from [8]; we will have more to quote
later on the subject of resurgence.
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solve. Since the analytical solution for the observable we
will study (a mass condensate) is known, it appeared to us a
perfect setting for testing a conjecture: it could well be that
more than one thimble contributes (just like in the zero-
dimensional ϕ4 theory) in low dimensions, but as N grows
it could be that a single thimble dominates in the thermo-
dynamic limit. While we were ready for a richer scenario, in
the region of parameters we studied we actually did not find
any other thimble but the one attached to the global
minimum. We did not find any problem related to the
parametrization of the theory; in particular, the parametri-
zation that was failing in the case of the complex Langevin
was absolutely fine for the thimble treatment of the theory.
In this case algorithmic problems are nontrivial. We will
show how a natural parametrization of the thimble can be
the starting point for an algorithmic solution that in this
case works in its simplest version (admittedly a very
crude one).
The paper is organized as follows. In Sec. II we give a

brief account of the Lefschetz thimble approach to field
theories: this is a short review of results that are collected to
facilitate the reader. Section III is dedicated to the zero-
dimensional ϕ4 toy model, showing that thimbles provide a
complete solution; in particular we show that we can
effectively numerically simulate the model, making use
of different algorithms. In Sec. IV we address the chiral
random matrix theory, showing that we can numerically
solve it by thimble regularization: all the analytical results
are correctly reconstructed. In the final section we draw a
few conclusions and mention natural steps forward.

II. THIMBLE REGULARIZATION
IN A NUTSHELL

In the following we collect the basics of thimble
regularization: the interested reader is referred to [1–3]
for further details and references.
A conceptual starting point to approach the thimble

regularization is that of generalizing saddle point integra-
tion. The latter displays a couple of features which appear
as good candidates to tackle the sign problem: stationary
phase and localization. The full generalization of saddle
point techniques is formulated in the framework of Morse
theory [9].

(i) One starts with an integral on a real domain of the
form Z

C
dnxgðx1;…; xnÞe−Sðx1;…;xnÞ; ð1Þ

in which C is a real domain of real dimension n2 and
both Sðx1;…; xnÞ ¼ SRðx1;…; xnÞ þ iSIðx1;…; xnÞ

and gðx1;…; xnÞ are holomorphic functions. The
notation for the exponential makes it clear that we
have already in mind a functional integral (even if
the normalizing factor Z−1 is missing). For such an
integral the following decomposition holds:

Z
C
dnxgðx1;…; xnÞe−Sðx1;…;xnÞ

¼
X
σ

nσ

Z
J σ

dnzgðz1;…; znÞe−Sðz1;…;znÞ; ð2Þ

in which an extension from a real domain to a
complex one has been performed (see the complex
variables zi ¼ xi þ iyi as opposed to the real ones
xi). Equation (2) holds in the homological sense,
i.e., C ¼ P

σnσJ σ .
(ii) The index σ labels the critical points of the complex

(ified) Sðz1;…; znÞ and to each critical point pσ a
stable thimble J σ is attached. Each J σ is defined as
the union of all the steepest ascent (SA; we will also
write SD for steepest descent) paths falling into pσ at
(minus) infinite time, i.e., the union of the solutions of

dxi
dτ

¼ ∂SRðx; yÞ
∂xi

dyi
dτ

¼ ∂SRðx; yÞ
∂yi ; ð3Þ

satisfying zðτ¼−∞Þ¼xðτ¼−∞Þþiyðτ¼−∞Þ¼pσ.
The real dimension of each thimbleJ σ is n. It is quite
natural to regard thimbles as manifolds embedded in
Cn (which is instead of real dimension 2n).

(iii) For each critical point one also defines unstable
thimbles Kσ as the union of all flows satisfying
Eq. (3) and going to the critical point in the opposite
time limit, i.e., such that zðτ ¼ ∞Þ ¼ pσ . The
coefficients nσ count the intersections of the Kσ

with the original domain of integration nσ ¼hC;Kσi.
(iv) The imaginary part SI stays constant on thimbles;

i.e., there is a phase associated to each thimble.
Note that in the framework of field theories a natural
picture of universality emerges. A single thimble can
give us a formulation of a field theory with the same
degrees of freedom, the same symmetries3 and symmetry

2In what follows we will be a little bit sloppy in our notation:
whenever there is not subscript attached to a symbol (e.g., x), that
will denote an n-dimensional coordinate.

3Since we have discussed the case of a nondegenerate Hessian,
one could wonder how the method can be applied in the case
where spontaneous symmetry breaking (SSB) is in place. In [14]
a solution has been described and shown to be effective: one
introduces an explicit symmetry breaking term h and studies the
limit h → 0. This is not the only way to proceed: for a different
thimble approach to SSB the reader is referred to [3]. Symmetries
are dealt in yet another way in the case of gauge theories: the
construction of thimbles was discussed in [15] and reviewed in
[1]; see also the discussion in [2,16].
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representations, and the same perturbation theory and naive
continuum limit of the original formulation (see [2] for
details). In force of universality we expect that these
properties essentially determine the behavior of physical
quantities in the continuum limit. Moreover a simple
argument suggests that in the thermodynamic limit only
thimbles attached to global minima can survive, as it is
easily seen (we now call ϕσ the critical points, having in
mind field configurations, and consider the partition
function of the field theory)

Z ¼
X
σ

nσe−iSIðϕσÞ
Z
J σ

dnze−SRðzÞ

¼
X
σ

nσe−SðϕσÞ
Z
J σ

dnze−ðSRðzÞ−SRðϕσÞÞ:

In the end, it could well be that a full resolution in terms of
all the thimbles could turn out to be in many respects
overkilling the original problem. Having said this, we
nevertheless stress that both the universality argument
and the thermodynamic argument cannot be regarded as
conclusive. It is worth noting that resurgence theory [17] in
many respects even asks for more than one thimble in view
of the interpretation of the semiclassical approximations as
trans-series.4 All in all, the fact that in certain cases a single
thimble dominance can take place has to be regarded as a
conjecture: as we will see, this was in a sense one of the
motivations of this work on a random matrix model. The
subject deserves deeper investigation and we think it will
certainly receive it.
It is good to have a somehowmore constructive approach

to the thimble formulation. We therefore now sketch a few
more technical details that the reader will see at work in the
following sections. The integral we have in mind will be the
functional integral of a field theory. Let us first of all
parametrize the field in the vicinity of a critical point as
Φi ¼ ϕi − ϕσ;i. Here and in the following i is a multi-index;
in particular it can refer to a real or imaginary part. The real
part of the action can be expressed as

SRðϕÞ ¼ SRðϕσÞ þ
1

2
ΦTHΦþ Oðϕ3Þ; ð4Þ

where the 2n × 2n matrix H is the Hessian evaluated at the
critical point

Hij ¼
∂2SR
∂ϕi∂ϕj

����
ϕ¼ϕσ

:

H can be put in diagonal form,

Λ ¼ diagðλ1;…; λn;−λ1;…;−λnÞ;

by a transformationH ¼ WΛWT defined by the orthogonal
matrix W whose columns are given by the normalized
eigenvectors of H, that is, fvðiÞgi¼1���2n. Half of the
eigenvalues of H are positive; the corresponding eigen-
vectors span the tangent space to the thimble at the critical
point. Any combination of these vectors is a direction along
which the real part of the action grows. If we leave the
critical point along these directions integrating the SA
equations we span the thimble. On the other side, the other
directions (which are attached to the negative eigenvalues)
would take us along the unstable thimble.
At a generic point Z ∈ J σ we miss a priori the

knowledge of the tangent space TZJ σ; in general we
expect that the latter is not parallel to the canonical basis of
Cn whose duals appear in dnz ¼ dz1 ∧ � � � ∧ dzn. We thus
want to perform the relevant change of coordinates from the
canonical ones (of Cn) to the basis of TZJ σ , given by the
(complex) vectors fUðiÞgi¼1���n (these are orthonormal with
respect to the standard Hermitian metric of Cn). Let φ∶N ⊂
J σ → Rn be a local chart in a neighborhood N ⊂ J σ

of Z:

φ

�
Z þ

Xn
i¼1

UðiÞyi

�
¼ Y þ Oðy2Þ ∈ Rn:

If we denote U the n × n complex unitary matrix whose
columns are the vectors fUðiÞg, we can express the integral
of a generic function fðZÞ on the thimble as

Z
N
dnzfðZÞ ¼

Z
φðNÞ

Yn
i¼1

dyifðφ−1ðYÞÞdetUðφ−1ðYÞÞ: ð5Þ

In this expression the quantity detU ¼ eiω (U is unitary)
has appeared; this is what has been termed the residual
phase [2] (see [19] for further details). This could in
principle reintroduce a sign problem in the thimble for-
mulation, but it is expected that this is not the case. Not
every phase gives rise to a serious sign problem, and in
particular one expects that a phase changing rather
smoothly can be safely taken into account by reweighting.
This expectation could appear optimistic, but it has been till
now confirmed (see [3]) and will be confirmed also in
this work.
We end this brief introduction to the thimble formulation

by going back to the constructive point of view: we can
span the thimble by integrating the SA equations for the
field ϕ5:

4A nice account of many issues connected to resurgence has
been recently provided in [18].

5It is worth recalling here that the subscript i is a multi-index,
in which real and imaginary parts are on the same footing.
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dϕi

dt
¼ ∂SR

∂ϕi
i ¼ 1 � � � 2n:

This has a counterpart in parallel-transport equations for the
n basis vectors which defines the tangent space to the
thimble (see [2,3]):

dVðiÞ
j

dt
¼

X2n
k¼1

∂2SR
∂ϕk∂ϕj

VðiÞ
k i ¼ 1 � � � n j ¼ 1 � � � 2n: ð6Þ

We can set up a similar equation for any other vector with
an initial condition on the tangent space at the critical point;
(6) expresses the parallel transport of a vector along the
gradient flow. In the vicinity of the critical point one knows
the asymptotic (t → −∞) solutions

t≪1

(
ϕjðtÞ≈ϕσ;jþ

P
n
i¼1v

ðiÞ
j eλitni j¼ 1 � � �2n j~nj2¼1

VðiÞ
j ðtÞ≈vðiÞj eλit j¼ 1 � � �2n i¼1 � � �n

:

ð7Þ

Note that from a practical point of view the former
parametrization is viable only provided one introduces a
reference time t0 ≪ 1 at which the former asymptotic
solution holds. We will make extensive use of the former
equations, which in particular can be regarded as initial
conditions for a given flow on the thimble, e.g., for Eq. (6).
A natural picture thus emerges in which a generic point
Φ ∈ J σ is unambiguously defined by a choice of n̂6 and the
time t∶Φ ¼ Φðn̂; tÞ (this has been very effectively dis-
cussed in [3]). Note also that one could insist on regarding
(7) as valid all over; this would in turn mean one is
considering a purely quadratic action (i.e., the free field
approximation).

III. THE ZERO-DIMENSIONAL ϕ4 TOY MODEL

We will now put to work what we have just seen,
applying the thimble regularization to the study of the
action

SðϕÞ ¼ 1

2
σϕ2 þ 1

4
λϕ4;

with ϕ ∈ R, λ ∈ Rþ, and σ ¼ σR þ iσI ∈ C. This is
obviously a toy model, and one regards as correlators
plain one-dimensional integrals such as

hϕni ¼ 1

Z

Z
R
dϕϕne−SðϕÞ; ð8Þ

with the partition function given by

Z ¼
Z
R
dϕe−SðϕÞ:

The solution is given in terms of a modified Bessel

function, i.e., Z ¼ ffiffiffiffi
σ
2λ

p
e
σ2

8λK−1
4
ðσ2
8λÞ, differentiating appropri-

ately which one can get any of Eq. (8). The choice of a
complex σ is a prototypal case of the sign problem: with a
complex action, we miss a positive semidefinite measure
and hence a probability distribution to start with; in
particular, a direct access to Monte Carlo methods is
ruled out.
It was realized a long time ago that a solution to the sign

problem could be sought in the context of stochastic
quantization: the Langevin equation admits a formal
solution also for complex actions, in particular via the
Fokker-Planck formulation [20,21]. Turning the formal
arguments into a rigorous proof eventually turned out to
be hard and numerical instabilities (suggesting problems)
were in particular discussed in the context of the theory at
hand [10]. Much experience has been gained over the years
and much progress has been done [22]. The question of
convergence of the complex Langevin equation remains a
subtle one, and quite interestingly even the simple model at
hand displays delicate issues. For a recent and thorough
study of the complex Langevin dynamics of this model, the
reader can refer to [23]. One peculiar feature of this model
is that complex Langevin simulations display divergences
for hϕni with n > 4 in a certain region of parameters. The
relation between complex Langevin and thimbles has been
investigated in [24,25].
We can complexify the field by setting ϕ ¼ xþ iy. As a

result, the real and imaginary parts of the action read

SR ¼ 1

2
½σRðx2 − y2Þ − 2σIxy� þ

1

4
λðx4 þ y4 − 6x2y2Þ

SI ¼ 1

2
½σIðx2 − y2Þ þ 2σRxy� þ λðx3y − xy3Þ:

The Hessian is built from the second derivatives of SR
and takes the form

Hðx;yÞ¼
�
σRþ3λx2−3λy2 −σI −6λxy

−σI −6λxy −σR−3λx2þ3λy2

�
: ð9Þ

There are three critical points: ϕ0 ¼ 0 and ϕ� ¼ � ffiffiffiffiffiffi
− σ

λ

p
(which are the two, complex valued “Higgs vacua”). The
question is now which thimbles do give a contribution to
the integrals we want to compute, and the answer is quite
different in the three cases σR > 0, σR < 0, and σR ¼ 0: in
each case we computed the stable and unstable thimbles
associated to each critical point. This can be done by
putting to work the constructive definition of thimbles we
discussed in the previous section.

6The hat notation reminds us of the normalization condition;
i.e., n̂ singles out a direction in the tangent space at the critical
point.
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In practice, we want to integrate the equations of SA
starting in the vicinity of the critical point ϕσ for an
arbitrarily long flow time t. We can do this provided that
the initial condition is chosen correctly: for the stable thimble
this means we leave the critical point along the direction (in
the xy plane) which is given by the eigenvector of positive
eigenvalue of the Hessian (9) computed at the critical point.
Once we have singled out the relevant direction, we can
ascend in two ways (namely, increasing or decreasing x),
both of which we have to take to cover the entire thimble. By
holomorphicity the Hessian has two eigenvalues opposite in
sign. Since SR always increases along the flow, exp ð−SRÞ
goes to 0 as t → þ∞, thus ensuring convergence of the
integrals along the thimble. To obtain the unstable thimble

Kσ , we can repeat the same procedure described above, but
picking up the eigenvector of the Hessian of SR with
negative eigenvalue. Note that the unstable thimble is needed
because the coefficient nσ in our master equation (2) counts
the intersection of such thimbles with the original domain of
integration, which in our case is the real axis (the sign
ambiguity is not resolved just by this definition, but it can be
deduced by means of other considerations). Figures 1 (left
panel) and 2 show the results for the three cases σR > 0,
σR < 0, and σR ¼ 0 (see also [26]).
From Fig. 1, we see that when σR > 0 the unstable

thimbles related to the Higgs vacua do not intersect the real
axis. Therefore these points do not contribute to the
integrals, that is, n� ¼ 0 and n0 ¼ 1. By integrating along

FIG. 1 (color online). Thimbles structure for σ ¼ 0.5þ i0.75, λ ¼ 2 (left panel). In this case only the unstable thimble attached to
z ¼ 0 intersects the real axis and thus only one critical point contributes. On the right we can see how the Langevin simulation correctly
covers the relevant thimble.

FIG. 2 (color online). Thimbles structure for σ ¼ −0.5þ i0.75 (left panel) and σ ¼ i0.75 (right); in both cases λ ¼ 2. For σR < 0 (left)
all three critical points contribute. σR ¼ 0 (right) is an example of a Stokes phenomenon.
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the stable thimble attached to ϕ0, we recover the correct
results for, say, Z ¼ R

e−S (the integration can be easily
carried on along the real axis both analytically and numeri-
cally). The case σR < 0 depicted in the left panel of Fig. 2 is
a totally different matter, as we cross the Stokes ray σR ¼ 0
while changing sign to σR. Now we see that the unstable
thimbles connected to the Higgs vacua do intersect the real
axis and therefore n� ≠ 0, as well as n0 ≠ 0. The correct
combination which recovers the expected results for the
integrals turns out to be n0 ¼ −1 and n� ¼ þ1. What is the
origin of this discontinuity? Above all, if we had not known
the correct result from the beginning, how would we have
calculated the nσ? The answer lies in considering the case
σR ¼ 0, shown in the right panel of Fig. 2. The stable
thimble connected to 0 exhibits the Stokes phenomenon: in
fact it “collapses” into the Higgs vacua, from which it does
not “move” any more; the unstable thimble continues to say
that n0 ≠ 0. The stable thimbles connected to the Higgs
vacua display the same shape, but their unstable counter-
parts collapse into 0 (by overlapping its stable thimble) and
therefore there is intersection with the real axis; so, n� ≠ 0.
However, there is no integer-valued combination of nσ that
recovers the correct results for σR ¼ 0. This is quite
expected, as the Morse decomposition along thimbles is
not legitimate when we are on a Stokes ray, on which we
clearly are (the imaginary axis in the complex σ plane is a
“Stokes ray”).7 Now, the original integral is continuous (in
fact, it is holomorphic) in σ and therefore there cannot be
any discontinuity in the computation of the partition
function Z in σR ¼ 0. Thus, we must have Z½σR → 0þ� ¼
Z½σR → 0−� ¼ Z½σR ¼ 0�. By examining the integration
along the thimble connected to 0, we find that it is
discontinuous in σR ¼ 0, and again, this is not surprising
as the thimble shape undergoes a radical change between
the two cases. The change in sign of the nσ is precisely the
only one which keeps the original integral continuous while
crossing the Stokes ray.

A. A variety of algorithmic solutions

Within the thimble regularization we were able to
perform numerical simulations of the quartic toy model,
making use of different algorithms. In particular, we were
able to numerically compute all the possible moments (8).
It was observed in [2] that the Langevin algorithm is the

obvious candidate for sampling configurations on the
thimble. In

dϕi

dt
¼ −

∂SR
∂ϕi

þ ηi; i ¼ 1 � � � 2n; ð10Þ

the drift term constrains the field on the thimble by
definition, so that the problem boils down to extracting a

convenient noise, i.e., a noise tangent to the thimble.
We do not discuss here the original solution which was
put forward in [2] (the Aurora algorithm); there will be a
convenient time for such a discussion when we later
approach the CRM model. Here it suffices to say that, the
thimble being one dimensional, at every point the tangent
space reduces to the direction singled out by the drift term
itself. As a matter of fact, Langevin works pretty well; in the
right panel of Fig. 1 one can see how the simulation correctly
samples configurations on the thimble. Here parameters are
the same as in the left panel, so one thimble is relevant, i.e.,
the one attached to the origin [which in the notation of (2) we
denote p0]. The (Aurora) Langevin algorithm samples points
according to the measure normalized by8

Zð0Þ ≡
Z
J 0

dτe−SR: ð11Þ

We now denote

hOi0 ≡
R
J 0

dτOe−SR

Zð0Þ ð12Þ

and stress that this is not what we have to compute. Properly
including the residual phase, the correct result was
computed as

hOi ¼ heiωOi0
heiωi0

: ð13Þ

When σR < 0 the thimbles associated to all three critical
points9 contribute and we have to compute

hOi ¼
P

2
i¼0 nie

−iSIðpiÞ R
J i

dτe−SROeiωP
2
i¼0 nie

−iSIðpiÞ R
J i

dτe−SReiω
; ð14Þ

which can be written

hOi ¼ heiωOi0 þ α1heiωOi1 þ α2heiωOi2
heiωi0 þ α1heiωi1 þ α2heiωi2

; ð15Þ

with

αi ¼
nie−iSIðpiÞ ZðiÞ

n0e−iSIðp0Þ Zð0Þ ; i ¼ 1; 2: ð16Þ

On each thimble J i (i ¼ 0, 1, 2) the quantities heiωOii
and heiωii can be computed via (Aurora) Langevin simu-
lations. The (complex) unknown coefficients αi can then be
fixed by relations which can be regarded as renormaliza-
tion conditions in a physical scheme, i.e.,

7See [1] for a detailed explanation of the Stokes phenomenon
with respect to the Airy integral.

8τ is the real coordinate on the (one-dimensional) thimble.
9In the notation of (2) we now denote ϕþ ¼ p1 and ϕ− ¼ p2.
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heiωOii0 þ α1heiωOii1 þ α2heiωOii2
heiωi0 þ α1heiωi1 þ α2heiωi2

¼ Xi; i ¼ 1; 2;

ð17Þ

where the Xi are known values of given observables Oi
[e.g., in the case of moments (8), two of them]. As always
in such an approach, one gives up predicting everything,
but after normalizing results to a (minimum) number of
external inputs, one has full predictive power for (all the)
other quantities. Of course computing the moments (8) for
the toy model at hand is not such a big numerical success;
nevertheless the outline of the method is quite general.
In particular, we will refer to it in Sec. IV C.
Another algorithmic solution for this simple setting is

provided by the Metropolis algorithm which is described in
[27]. The method relies on a correspondence between the
full model one has to simulate and a Gaussian approxi-
mation associated to it. The latter is obtained by diagonal-
izing the Hessian at a critical point and truncating the
expansion of the action around it, i.e.,

SRðηÞ ¼ SRðϕσÞ þ
1

2

X2n
k¼1

λkη
2
k ≡ SRðϕσÞ þ SGðηÞ; ð18Þ

where the ηk are the Φk ¼ ϕk − ϕσ;k of Eq. (4) expressed in
the basis provided by the eigenvectors of the Hessian, with
a convenient ordering in which λk > 0 for k ¼ 1…n and
λk < 0 for k ¼ nþ 1…2n. For the Gaussian action (18) it is
very simple to construct the associated stable thimble. It is a
flat thimble in which the tangent space is known once and
for all, i.e., the span of the eigenvectors associated to
fλkjk ¼ 1…ng: we term it a Gaussian thimble. For the
Gaussian thimble the solution in the right-hand side of (7)
is valid all over the manifold.
The simulation is run as a quite standard Metropolis

algorithm controlled by an accept/reject test, with a mecha-
nism for proposing configurations which is dictated by the
correspondence between the thimble one has to sample and
its Gaussian approximation. We sketch the method in the
case ofmore than one thimble contributing to the final result,
to stress how also in this case we were able to run numerical
simulations on thimbles, for both σR > 0 and σR < 0.
The method always handles a couple of configurations,

i.e., one ϕ field on the thimble we have to sample and one
auxiliary η field on the associated Gaussian thimble. In
order to extract a new ϕ0 field one proceeds as follows:

(i) One proposes a thimble σ0 (i.e., a critical point) with
a probability

jnσ0 jP
σjnσj

:

(ii) One extracts a configuration η0 on the Gaussian
thimble associated to that critical point according to

the weight e−SG . This is trivial, given the Gaus-
sian form.

(iii) One starts a SD on the Gaussian thimble with η0 as
initial condition. The integration is carried on over a
time extent τ̄ such that one ends up close enough to
the critical point, namely, at a point where the
Gaussian thimble and the thimble one has to sample
effectively sit on top of each other [this means that
the solution (7) holds for both thimbles]. We call η̄
the configuration that has been obtained in this way.

(iv) Taking η̄ as the initial condition, one integrates
the SA equations for the complete theory over
the same time extent τ̄. This generates the new
configuration ϕ0.

(v) ϕ0 is accepted with probability

Pacc ¼ min f1; e−½SRðϕ0Þ−SRðϕÞ�þ½SGðη0Þ−SGðηÞ�g:

The result for a given observable O is obtained as

hOi ¼
1
T

P
T
t¼1 e

iωðϕtÞOðϕtÞ
1
T

P
T
t¼1 e

iωðϕtÞ ;

where the index t runs over all the configurations sampled
by Metropolis.
Notice that the previous accounting of the Metropolis

algorithm is technically different from the proposal of
[27].10 The latter relies on an exponential mapping for the
integration time (i.e., r ¼ e−t) and an adjustable parameter
is introduced to control convergence properties (the inter-
ested reader can refer to Fig. 4 of [11]). For a given,
effective choice of this parameter Fig. 3 displays how the
three thimbles giving contribution in the region σR < 0 are
sampled in a Metropolis simulation.
We stress that also in this case one could think of

situations in which the weights nσ are unknown. However,
here the situation is different from that of Langevin, since
we only need to know a few integers’ values. In other terms,
given the knowledge of the set of relevant integers fnσg, the
problem is solved on an entire region of parameter space: in
the case at hand, for each σR < 0 (technically, over the
entire region which ends up in a point where a Stokes
phenomenon shows up). Notice that in principle there can
be different ways of finding the relevant set of integers (e.g.,
known asymptotic solutions in a convenient region).11

Both (Aurora) Langevin and Metropolis could correctly
compute the moments (8), in both regions σR > 0 and
σR < 0. For example, Fig. 3 (right panel) displays the

10We decided to enlighten the rationale of the algorithm,
leaving out the technicalities.

11The αi introduced for the (Aurora) Langevin algorithm entail
instead the values of partition functions and are given at a given
point of parameter space; in the case at hand, for a given value of
σR < 0.
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computed values of hϕ8i over a range of both σR > 0 (one
thimble being relevant) and σR < 0 (three thimbles to be
taken into account) values.
Note that there is another natural way of computing on a

thimble, and this takes advantage of the fact that on a
thimble there is a one-to-one correspondence in between
configurations and values of SR. To make things simple, let
us consider the case in which only one thimble is relevant
and let us write the partition function Z ¼ Zup þ Zdown:
these are the two contributions resulting from the two
pieces of the thimble we have already referred to. Namely,
they are associated to leaving the critical point along the
direction dictated by the eigenvector of the Hessian in one
of the two possible ways (i.e., increasing or decreasing x
values). Each Zup=down has the global phase e−iSIðpσÞ as a
factor and features an integrand which is the residual phase
times a monotonic function of SR. It thus can be written
taking the action as the integration variable, e.g.,

Zup ¼ e−iSIðpσÞ
Z

∞

Spσ

dSe−SR j∇SRj−1eitan−1ð∂ySR=∂xSRÞ: ð19Þ

We could have written the integral by taking the flow time
as the integration variable (also in this case there is a one-to-
one correspondence with the configurations along the
thimble, each reached at a given flow time). Note that in
computing (19) one proceeds by integrating the SA. We
illustrated the issue by taking into account the Z, but we
showed that all the moments (8) can be successfully
computed in this way. In a sense, (19) is the prototype
of a parametrization we will see at work for the CRM
model.
All in all, we think that the simple toy model we

discussed is a perfect playground to see thimble regulari-
zation at work: it is instructive both from the point of view

of inspecting the structure of relevant thimbles and from the
algorithmic point of view (we can compute on thimbles).

IV. CHIRAL RANDOM MATRIX MODEL

We now address the chiral random matrix model defined
by the partition function

Z
Nf

N ðmÞ ¼
Z

dΦdΨdetNfðDðμÞ þmÞ

× exp ð−N · Tr½Ψ†Ψþ Φ†Φ�Þ; ð20Þ

where

DðμÞþm

¼
�

m icoshðμÞΦþ sinhðμÞΨ
icoshðμÞΦ†þ sinhðμÞΨ† m

�
:

ð21Þ

The degrees of freedom of the model are N × N general
complex matrices Ψ and Φ. Since its introduction it has
attracted attention due to the many features which it shares
with QCD [28–30]: they both have in their functional
integral the determinant of a Dirac operator and the flavor
symmetries and explicit breaking hereof are identical.
Chiral perturbation theory at leading order in the ϵ-domain
is the relevant low energy theory in the microscopic limit
for both theories, which resulted in a lot of interesting
insights into QCD coming from the (much simpler) random
matrix theory. The microscopic limit in which contact is
made with the ϵ-regime of chiral perturbation theory is that
of N → ∞ with ~m≡ Nm and ~μ≡ ffiffiffiffi

N
p

μ kept constant.
A sign problem is there for this theory as it is for QCD.

This sign problem can be a severe one, as it is made
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exact (real part)

exact (imaginary part)

Metropolis simulation

FIG. 3 (color online). Left panel: The three thimbles associated to σ ¼ −0.5þ i0.75 correctly sampled by a Metropolis simulation.
Right panel: For the same choice of parameters, the computed values of hϕ8i over a range of both σR > 0 and σR < 0.
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manifest by considering the observable we will be con-
cerned with, i.e., the mass dependent chiral condensate

1

N
hη̄ηi ¼ 1

N
∂m logðZÞ: ð22Þ

Figure 4 displays both the exact (solid red line) and the
phase quenched (dashed blue line) results for 1

N hη̄ηi as a
function of ~m for N ¼ 1, 2, 3, 4 and fixed Nf ¼ 2, ~μ ¼ 2.
As it can be seen, the sign problem is indeed severe in
certain regimes of small (rescaled) masses.12

Our interest in the model was triggered by [12,13]: the
nature of the sign problem (which is due to the determinant)
has a counterpart in a nontrivial success of the complex
Langevin method (which needs to take the logarithm of the
determinant to define the standard effective action dictating
the drift term of the Langevin equation). While the
application of the complex Langevin in the most direct
parametrization of the theory fails [12], a different para-
metrization (resulting in a different complexification)
reproduces the right results [13].

A. How many thimbles should we take into account?

We take the most direct path to complexification; i.e., for
each field (we directly deal with the matrix elements) Φij ¼
aij þ ibij and Ψij ¼ αij þ iβij, each real component gets

complexified [e.g., βij ¼ βðRÞij þ iβðIÞij ]. We adhere to the
notation of [12] and denote the action as

Sða; b; α; βÞ ¼ N
X
i;j

ða2ij þ b2ij þ α2ij þ β2ijÞ

− NfTr logðm21N×N − XYÞ;

with

Xij ¼ i cosh μðaij þ ibijÞ þ sinh μðαij þ iβijÞ
Yij ¼ i cosh μðaji − ibjiÞ þ sinh μðαji − iβjiÞ:

Once we have complexified the degrees of freedom, the
first step for the thimble approach is the identification of
critical points of the resulting action. The first candidate is
the absolute minimum which is already there for the real
formulation, i.e., Ψ ¼ Φ ¼ 0. All the relevant formulas for
the spectral analysis of the Hessian of SR are collected in
Appendix A. Here we simply state that the Hessian in 0 has
the expected number of positive eigenvalues, i.e., the real
dimension of the thimble attached to 0 is 4N2. Note that
there is a huge degeneracy: we have only two different
eigenvalues, with the two eigenspaces having the same
dimension. As the (rescaled) mass ~m gets smaller, the gap
between the two eigenvalues gets larger. Some insight can
now be gained from Eq. (7): in first approximation, the
closer the eigenvalues, the more isotropic we expect the
thimble to be. This expectation turned out to be correct in
view of the results of our simulations.
We tried to identify other critical points. In our study we

explored different values of ~m (at different values of N)
while keeping fixed Nf ¼ 2 and ~μ ¼ 2. One approach was
solving ∇S ¼ 0 via the Newton-Raphson method. We
cross-checked results by applying the Nelder-Mead sim-
plex method to minimize ∥∇S∥2. We found two classes of

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

N=1

N=2

N=3

N=4

FIG. 4 (color online). Exact (solid red line) and phase quenched (dashed blue line) results for the condensate, at fixed Nf ¼ 2, ~μ ¼ 2.

12The value of the condensate is real. This has to be understood
later when we will compare to our results; we will always plot
only the real part, the imaginary one having been correctly
verified to be zero within errors.
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extrema, both outside the original domain and featuring an
action smaller than SRðΨ ¼ Φ ¼ 0Þ, which turns out to be
the absolute minimum in the original domain. Under such
conditions, since the unstable thimbles attached to the
extrema we found cannot intersect the original domain of
integration, we expect no contribution from their stable
thimbles (nσ ¼ 0; see Sec. II.B.3 of [2] for a more extensive
discussion).

B. Algorithmic issues for the CRM model

While for the zero-dimensional toy model the original
algorithmic solution proposed in [2] is trivial, this is not the
case for the CRM model. However, previous experience
with the Bose gas [14] taught us that there can be lucky
cases. Let us remind the reader of the Aurora algorithm and
of its Gaussian approximation (which successfully deals
with the lucky cases we were referring to).
We want to extract a proper noise vector for the Langevin

dynamics

dϕi

dt
¼ −

∂SR
∂ϕi

þ ηi; i ¼ 1 � � � 2n:

We can proceed as follows [2]:
(i) We extract a Gaussian noise ηð0Þi ð0Þ, where the

superscript qualifies this quantity as an initial
proposal and the argument has to be thought as a
flow time in a sense that will be clear soon.

(ii) We evolve it following the flow (6) downwards [i.e.,
with a change of sign with respect to (6)], aiming at
getting close enough to the critical point in order to
make contact with the regime of (7). This will hold at
a given descent time τ�.

(iii) We then project with

η∥i ¼ Pijη
ð0Þ
j ðτ�Þ; P≡ 1

2

�
Hffiffiffiffiffiffi
H2

p þ 1

�
; ð23Þ

and normalize the result:

ηðτ�Þ ¼ r
η∥

∥η∥∥
; ð24Þ

r being extracted according to the n-dimensional χ
distribution.

(iv) We then ascend along the flow, covering again a time
interval of length τ�. The result is the noise ηi wewill
put in our Langevin equation.

Extracting the noise vector is not yet the end of the story,
since any finite order approximation to Langevin equation,
e.g., the Euler scheme

ϕ0
i ¼ ϕi − δt

∂SR
∂ϕi

þ
ffiffiffiffi
δt

p
ηi;

will introduce systematic effects; since the manifold is not
flat, the final point ϕ0

i will be moved away from the thimble.
The obvious remedy for this effect is to repeat the same
procedure that we carried out for the noise vector (move the
configuration along the flow downward, close to the critical
point, project it onto the tangent space, and move it upward
along the flow for the same time length). Note that it is
expected that, in all the descent/ascent mechanisms we
have just described, the downward flow, i.e., the SD, will be
numerically delicate. It is thus much better to formulate the
descent as a boundary value problem (BVP) rather than as
an initial value problem, as it was observed in [14].
A much more appealing observation was also made in

[14]: there are lucky cases in which a quite rough
approximation holds; with a slight linguistic abuse we call
it a Gaussian approximation.13 Roughly speaking, this
means taking the minimum value for the τ� technical
parameter, i.e., τ� ¼ 0. This formally relies on the
assumption that integrating the system on the vector space
defined by the tangent space at the critical point actually
takes into account the relevant configurations giving the
most important contribution to the functional integral. This
was actually holding in the case of [14].
Does the Gaussian approximation hold true also for the

CRMmodel? Figure 5 reveals that there is actually a regime
in which it can do pretty well. Not surprisingly, it is a
regime in which results are not that far away from the phase
quenched approximation; we know that this is a regime in
which the two different eigenvalues of the Hessian at the
critical point are quite close to each other and the problem
appears all in all quite symmetric and not that far away from
the regime of (7). Note that the value of the (rescaled) mass
at which the solution provided by the Gaussian approxi-
mation departs from the correct one varies with N.
The next step was to leave the Gaussian approximation

aside and try to implement the full Aurora algorithm. There
are a couple of issues one should be aware of: we need a
solid estimate for τ�; also, within a time length of order τ�
we have to make sure we have under good numerical
control both the SA and the SD. The latter is the critical
one, for which we have already made clear that a BVP
formulation is the choice to go for. Our implementation was
along the same lines of the code available at [31]. All in all,
our experience with the complete Aurora algorithm for the
CRM model was at first somehow inconclusive: a clear-cut
indication of values of τ� at the same time safe and
manageable was missing. We will come back to this

13One should not confuse this with the Gaussian approxima-
tion described in Sec. III A. In that case the action is approxi-
mated with its leading (Gaussian) term and the entire thimble
analysis is performed consequently. In this (algorithmic)
Gaussian approximation one pretends that the thimble manifold
we are interested in and the thimble associated to the Gaussian
approximation of the action sit on top of each other also away
from the critical point.
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observation later, in the framework of the other numerical
approach that we chose to implement.

C. A different numerical approach

We now want to take advantage of the parametrization

Φ ∈ J σ ↔ ðn̂; tÞ

(a few of the formulas we will need to implement our
strategy were clearly stated in [3], while the strategy itself
we will see at work in the following was first described in
[32]). Basically one describes a generic point by locating it
on the SA curve it lies on. This means providing n̂ (the
direction one is taking while leaving the critical point) and
the time t at which one reaches Φ while integrating the SA
equations. The first goal is now to rewrite the contribution
to the partition function which is attached to one thimble. In
full detail this reads

ZðσÞ ¼
Z
J σ

dz1 ∧ … ∧ dzne−S

¼
X
charts c

Z
Γc

Yn
i

dyci detðUÞe−S

¼ e−iSI
X
charts c

Z
Γc

Yn
i

dyci e
iωe−SR: ð25Þ

In (25) we have taken into account that SI is constant on
J σ. Moreover, there could be more than one relevant chart
and on a given chart we have to take into account the
residual phase. For the sake of simplicity in notation, we

now take a few shortcuts. First of all, we discard the overall
phase e−iSI ; it will be easy to account for it when we come
back to the actual computation of an observable. We also
discard the fine detail of more than one chart, since in
practice this is not a issue.14 Finally, we leave the residual
phase aside, having in mind that we can take it into account
a posteriori by reweighting. We thus write a new quantity,
which is the one we will further manipulate in order to
single out the contributions from the single ascents. We
define15

ZðσÞ ≡
Z Yn

i¼1

dyie−SR: ð26Þ

Roughly speaking, this is the quantity that can have a
probabilistic interpretation. The key point is now towrite an
expression for 1:

1 ¼ Δn̂ðtÞ
Z Yn

k¼1

dnkδðj~nj2 − 1Þ
Z

dt
Yn
i¼1

δðyi − yiðn̂; tÞÞ;

ð27Þ

where fyiðn̂; tÞg are the coordinates of the field as

expressed in the local (orthonormal) basis fUðiÞ
n̂ ðtÞg
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FIG. 5 (color online). Exact (solid red line), phase quenched (dashed blue line) and Gaussian approximation results for the condensate,
at fixed Nf ¼ 2, ~μ ¼ 2.

14We will be concerned with single ascents, for which we will
revert to a different, smooth parametrization.

15For the sake of notational simplicity we also omit the explicit
indication that the integration is on the thimble, as it is easy to
recognize we are assuming. Notice that (26) is the generalization
of (11) of Sec. III A.
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parallel-transported along the SA defined by n̂ until time t.
The solution for Δn̂ðtÞ is in terms of (the module of) a
determinant

Δn̂ðtÞ ¼

������������
det

0
BBBBBB@

δðj~n0j2−1Þ
δt

δðj~n0j2−1Þ
δn1

� � � δðj~n0j2−1Þ
δnn

δðy1−y1ðn̂;tÞÞ
δt

δðy1−y1ðn̂;tÞÞ
δn1

� � � δðy1−y1ðn̂;tÞÞ
δnn

..

. ..
. . .

. ..
.

δðyn−ynðn̂;tÞÞ
δt

δðyn−ynðn̂;tÞÞ
δn1

� � � δðyn−ynðn̂;tÞÞ
δnn

1
CCCCCCA

������������
or

Δn̂ðtÞ ¼

�����������
det

0
BBBBB@

0 2n1 � � � 2nn
δy1ðn̂;tÞ

δt
δy1ðn̂;tÞ
δn1

� � � δy1ðn̂;tÞ
δnn

..

. ..
. . .

. ..
.

δynðn̂;tÞ
δt

δynðn̂;tÞ
δn1

� � � δynðn̂;tÞ
δnn

1
CCCCCA

�����������
: ð28Þ

The first column of this determinant can be easily related
to the gradient of the action. It turns out that to compute the
generic matrix element we need to do the following:

(i) We need to evolve not only the field, but the entire
basis by integrating (6).

(ii) We construct the 2n × n matrix V whose columns
are the fVðiÞðtÞg.

(ii) We construct the 2n × nmatrix uwhose columns are
the vectors fuðiÞgi¼1���n which are obtained from the
fVðiÞðtÞg by means of the Gram-Schmidt ortho-
normalization procedure.

(iii) The relation V ¼ uE holds, with

Eij ¼
�
VðjÞ · uðiÞ j ≥ i

0 j < i
:

(iv) The entries of the determinant we are looking for are
now given by

( δyi
δt ¼

P
n
k¼1 λknkEik

δyi
δnj

¼ Eij

: ð29Þ

Not surprisingly, there is a lot of information in the
(tremendous amount of) computations we have just
sketched. In particular, if we now introduce the n × 2n
complex space projector P,

P ¼ ð 1n×n i1n×nÞ; ð30Þ

then the n × n complex matrix U ¼ Pu is unitary; this is
precisely the matrix of Eq. (5), whose determinant is the
residual phase eiω.

The details of the previous computation of Δn̂ðtÞ are
given in Appendix B. We now proceed to make use of the
expression for the identity encoded in (27). Inserting it in
(26) we get

ZðσÞ ¼
Z Yn

i¼1

dyie−SR

¼
Z Yn

i¼1

dyie−SRΔn̂ðtÞ
Z Yn

k¼1

dnkδðj~nj2 − 1Þ

×
Z

dt
Yn
i¼1

δðyi − yiðn̂; tÞÞ

¼
Z Yn

k¼1

dnkδðj~nj2 − 1Þ
Z

dt

×
Z Yn

i¼1

dyiδðyi − yiðn̂; tÞÞΔn̂ðtÞe−SR

¼
Z Yn

k¼1

dnkδðj~nj2 − 1Þ
Z

dtΔn̂ðtÞe−SRðn̂;tÞ;

which has a possible interpretation in terms of

ZðσÞ ¼
Z Yn

k¼1

dnkδðj~nj2 − 1Þ ZðσÞ
n̂ ; ð31Þ

i.e., there is a contribution to the partition function for each
SA path

ZðσÞ
n̂ ¼

Z þ∞

−∞
dtΔn̂ðtÞe−SRðn̂;tÞ: ð32Þ

Note that the procedure naturally defines a probability, i.e.,
that for a point reached at time t on the SA defined by n̂:

Pn̂ðtÞ ¼
Δn̂ðtÞe−SRðn̂;tÞ

ZðσÞ
n̂

: ð33Þ

One can also naturally define the cumulative distribution
function (it is manifestly nondecreasing, positive definite,
and has the correct normalization)

Fn̂ðtÞ ¼
1

ZðσÞ
n̂

Z
t

−∞
dt0Δn̂ðt0Þe−SRðn̂;t0Þ: ð34Þ

Since we can easily invert this function numerically, we
have a tool to ideally sample configurations on a single SA.
Namely, we extract a random number ξ ∈ ½0; 1� and then
get the point on the SA (rather, the time at which the point is
reached) by t ¼ F−1

n̂ ðξÞ. Actually this is not that useful. The
fact that we ascend all the way along a given SA in order to

compute ZðσÞ
n̂ suggests that it is rather convenient to

compute the entire contribution which is attached to that
given ascent. On the other hand, the relative weight of a
given SA [within the complete partition function ZðσÞ] is
given by ZðσÞ

n̂ = ZðσÞ.
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We now want to take advantage of the parametrization
Φ ∈ J σ ↔ ðn̂; tÞ in the computation of an observable. In
the following, we will assume we are in a case in which
only one single thimble is relevant. This is not the general
case, but for what we want to obtain it is not a limitation. In
the cases in which more than one thimble contributes, we
can address the problem using the same strategy described
in Sec. III A in the context of the quartic toy model: it will
be easy for the reader to generalize Eq. (14) and the
discussion following it. With this caveat in mind, we first of
all write

hOi ¼
R
J σ

dz1 ∧ … ∧ dznOe−S

ZðσÞ

¼
R Q

n
i¼1 dyiOeiωe−SRR Q
n
i¼1 dyie

iωe−SR
¼ heiωOiσ

heiωiσ
;

where h…iσ ≡ ZðσÞ−1 R Q
n
i¼1 dyi…e−SR . We have till now

simply generalized Eq. (13). We can go further by making
use of the new parametrization we introduced16:

hOi ¼
R
Dn̂

R
dtΔn̂ðtÞe−SRðn̂;tÞeiωðn̂;tÞOðn̂; tÞR

Dn̂
R
dtΔn̂ðtÞe−SRðn̂;tÞeiωðn̂;tÞ

¼
R
Dn̂ZðσÞ

n̂ ðZðσÞ−1
n̂

R
dtΔn̂ðtÞe−SRðn̂;tÞeiωðn̂;tÞOðn̂; tÞÞR

Dn̂ZðσÞ
n̂ ðZðσÞ−1

n̂

R
dtΔn̂ðtÞe−SRðn̂;tÞeiωðn̂;tÞÞ

≡
R
Dn̂ZðσÞ

n̂ heiωOin̂R
Dn̂ZðσÞ

n̂ heiωin̂
: ð35Þ

Equation (35) is in a sense a new average. Namely, the
different directions n̂ can now be regarded as the new
degrees of freedom of the overall integral, the quantities to
be measured are the hOeiωin̂ and heiωin̂ (i.e., partial
averages attached to single SA), and the weights are given

by the ZðσÞ
n̂ . It is rather obvious that

(i) The basic building blocks are complete ascents. This
is good, since we can have their computation under
good numerical control. In other words, sampling on
the thimble is not a problem: we stay on the thimble
by definition.

(ii) The way to importance sampling now appears tricky.
This is easy to understand, since picking up a
contribution means picking up a n̂, whose weight

ZðσÞ
n̂ is not known a priori, but only after the SA

path associated to n̂ has been obtained.
(iii) The crudest approach one can think of is of course a

uniform sampling of the n̂-space; this is a static,
crude Monte Carlo, which can easily become in-
efficient (in particular for large systems).

In the following we will just be satisfied with the last
approach of static, crude Monte Carlo; this will be enough
to show that we can reproduce the correct results for the
model at hand (even in regions where the sign problem is
quite severe) and this holds true taking into account the
contribution of the single critical point we found. From this
very basic approach there will be something to learn also
with respect to the Aurora algorithm (and on the compu-
tation of density of states as well). We will finally report on
a few speculations on smarter algorithms which we are
trying to devise.

D. Results for the CRM model

Figure 6 displays the results we obtained from simu-
lations performed in the static Monte Carlo approach we
have just discussed. All these results come from the
contribution of one single thimble. As we have already
pointed out, one original motivation of ours turned out
to be not relevant: we were ready for looking for dominance
of one thimble in some asymptotic regime (in the thermo-
dynamic limit) and, in the region of parameters we
studied, we actually found no other thimble but the trivial
one. Also, complexifying the theory in the parametrization
that was shown to be problematic for the complex Langevin
[12] did not result in any problem. Results are shown for
N ¼ 1, 2, 3, 4 and fixed Nf ¼ 2, ~μ ¼ 2.
It is interesting to regard the parametrization we have

employed from another point of view. In the upper panel of
Fig. 7 we plot the quantityΔn̂ðtÞe−SRðn̂;tÞ= ZðσÞ

n̂ as a function
of SR along a given ascent (remember that on each ascent
one single value of SR is only read once). This is the real
weight of the functional integral for the configurations
which lie on that given ascent: it can be thought of as a
different way of looking at the density of states (namely,
this is the contribution attached to a given ascent).
In the lower panel of Fig. 7 we plot the same quantity as a

function of the flow time. A first remark is due for the long
initial flat region. Consider Eq. (7). When we want to
compute the contribution from a single ascent (that is, from
a single n̂) we need an initial condition, i.e., an initial value
t0 at which the asymptotic regime holds. In principle, the
more back in time we take t0, the better initial condition we
prepare. There are of course accuracy issues one has to live
with. The flat initial region reflects the fact that we do our
best to ensure we stay on the thimble. On the other side, one
would like to know till what value of the flow time the
asymptotic regime holds to a reasonable confidence. We
can think of more than one indicator for the latter condition,
e.g., the Gaussian approximation of the action is very close
to the actual value of S, or the factor Δn̂ðtÞ is very close to
its Gaussian approximation (see Appendix B.1). We mark
with a (red) star a value of flow time which can be assumed
to be the boundary of the region we have just described.
Now, an efficient dynamic Monte Carlo is supposed to
sample configurations in regions where the weight is16We denote Dn̂≡Q

n
k¼1 dnkδðj~nj2 − 1Þ.
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concentrated. In this sense we can say that the distance (in
flow time) between the region around the maximum of

Δn̂ðtÞe−SRðn̂;tÞ= ZðσÞ
n̂ and the flow time marked with the star

is a reasonable indicator of the τ� parameter of the Aurora
algorithm.
A comment is due concerning the residual phase: we

encountered no problem in taking it into account by

reweighting. As it was expected, it is a smooth function
on the ascents, so that hOeiωin̂ and heiωin̂ can be safely
computed and wild cancellations are never there at any
stage of our computations. The fact that the residual phase
is smooth does not of course mean it has no net effect, as
can be seen in Fig. 8. In the upper panel we show the effect
of neglecting the contribution of the denominator ofEq. (35):
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FIG. 6 (color online). Exact (solid red line), phase quenched (dashed blue line), and thimble simulation results for the condensate, at
fixed Nf ¼ 2, ~μ ¼ 2.
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FIG. 7 (color online). Real weight of the functional integral for the configurations which lie on the SA defined by a particular n̂ as a
function of SR (upper panel) and t (lower panel) for N ¼ 2, ~m ¼ 7, Nf ¼ 2, ~μ ¼ 2.
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this amounts to computingZðσÞ−1 R Dn̂ZðσÞ
n̂ heiωOin̂.17 In the

lower panel we show yet another phase quenched compu-
tation, namely, what we could term a residual phase
quenched result. In this casewe simply omit the contribution

of the residual phase and compute ZðσÞ−1 R Dn̂ZðσÞ
n̂ hOin̂.

Both plots show that reweighting for the residual phase is
essential to get the correct results; this happens to be the case
in particular for low dimensions.
We admittedly made use of the crudest possible appli-

cation of the parametrization contained in Eq. (35), i.e., a
static, crude Monte Carlo sampling of the integral. It is
static; i.e., it is not based on a stochastic process. It is
crude, because it does not implement importance

sampling.18 In general, importance sampling computes
an integral I ¼ R

dxfðxÞ as an average I ¼ R
dxρðxÞ fðxÞρðxÞ

and the entire point is being able to extract configurations
distributed according to ρðxÞ. The natural importance
sampling for (35) would try to sample the space of ascents

(i.e., the different n̂) according to the weights ZðσÞ
n̂ = ZðσÞ

and we have already made the point that this is tricky.
Crude Monte Carlo simply extracts n̂ with constant
probability. As it is well known, the more nontrivial the

profile of ZðσÞ
n̂ = ZðσÞ is, the more inefficient one expects
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FIG. 8 (color online). The effect of not accounting for the residual phase. In the upper panel its contribution is not accounted for in the
denominator of Eq. (35); i.e., we compute ZðσÞ−1 R Dn̂ZðσÞ

n̂ heiωOin̂. In the lower panel we omit the residual phase completely and

compute ZðσÞ−1 R Dn̂ZðσÞ
n̂ hOin̂.

17Note that in this case we take the residual phase into account
in the numerator.

18We recall that the Monte Carlo methods we are mostly
familiar with are dynamic Monte Carlo in which importance
sampling is obtained via convergence to the equilibrium distri-
bution of a stochastic process, which in virtually all the cases is a
Markov chain.
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the crude Monte Carlo to be. This can be clearly seen at low
masses, where the problem is less symmetric with respect
to different choices of the n̂: we have already made this
point while commenting on the failure of the Gaussian
approximation for the Aurora algorithm. The interested
reader is referred to Appendix B.1 to get more insight on
this in the case of the Gaussian action. Here we want to
stress that the problem with crude Monte Carlo does not
necessarily relate to the dimension N (of the matrices):
going low enough in mass at any fixed N can already result
in a difficult computation.19 As the mass gets lower,
one indeed clearly sees larger error bars in Fig. 6.
Needless to say, this is a region in which we had to collect
many ascents: hundreds of thousands, actually, by defi-
nition all statistically independent. This is a huge numerical
effort. On the other side, even accepting that at some
point our crude Monte Carlo has to give up in front of a

nontrivial profile of the weights ZðσÞ
n̂ = ZðσÞ, it is reassuring

to see that we nevertheless solved a nontrivial problem:
Fig. 6 clearly shows that we were able to solve the problem
also in regions in which the sign problem shows up as
quite severe.
All in all, we saw that implementing importance sam-

pling is hard, since the relative weights ZðσÞ
n̂ = ZðσÞ are only

known after the complete SA associated to n̂ has been
computed. This could sound like a very pessimistic con-
clusion. On the other hand, the Gaussian approximation of

the ZðσÞ
n̂ can be easily computed (see Appendix B.1),

which suggests the idea of making use of them to formulate
proposals for the n̂. This is something we are currently
investigating.

V. CONCLUSIONS AND PROSPECTS

We discussed the solution of a simple toy model via
thimble regularization. Quite interestingly, this model,
which dates back to some 30 years ago and was proposed
as a sort of benchmark for the complex Langevin, was still
missing a full solution in the context of the latter. In thimble
regularization the solution is clear and can be implemented
numerically by a number of simulation algorithms.
We then investigated the chiral randommatrix model and

showed that thimble regularization can successfully deal
with the sign problem that the system displays. In the
region of parameters we studied, a single thimble accounts
for the results. We made use of a parametrization in terms of
contributions attached to SA (which are the basic building
blocks to define the thimble). This was done by crude
Monte Carlo, leaving open the problem of devising a
smarter algorithm (importance sampling) to take

advantage of the parametrization we made use of. This
is the subject we are currently investigating in view of other
applications.
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APPENDIX A: THE HESSIAN
FOR THE CRM MODEL

We want to compute the Hessian at the critical point
aij ¼ bij ¼ αij ¼ βij ¼ 0. We need the following second
derivatives (the fields are complexified by setting, e.g.,
aij ¼ aRij þ iaIij, etc.):

∂2SR
∂aRmn∂aRij

����
0

¼ −
∂2SR

∂aImn∂aIij
����
0

¼ A−δmiδnj

∂2SR
∂aRmn∂aIij

����
0

¼ ∂2SR
∂aImn∂aRij

����
0

¼ 0

∂2SR
∂bRmn∂bRij

����
0

¼ −
∂2SR

∂bImn∂bIij
����
0

¼ A−δmiδnj

∂2SR
∂bRmn∂bIij

����
0

¼ ∂2SR
∂bImn∂bRij

����
0

¼ 0

∂2SR
∂αRmn∂αRij

����
0

¼ −
∂2SR

∂αImn∂αIij
����
0

¼ Aþδmiδnj

∂2SR
∂αRmn∂αIij

����
0

¼ ∂2SR
∂αImn∂αRij

����
0

¼ 0

∂2SR
∂βRmn∂βRij

����
0

¼ −
∂2SR

∂βImn∂βIij
����
0

¼ Aþδmiδnj

∂2SR
∂βRmn∂βIij

����
0

¼ ∂2SR
∂βImn∂βRij

����
0

¼ 0

∂2SR
∂aRmn∂bRij

����
0

¼ ∂2SR
∂aImn∂bIij

����
0

¼ ∂2SR
∂aRmn∂bIij

����
0

¼ ∂2SR
∂aImn∂bRij

����
0

¼ 0

19Of course going to higher values of N would result in extra
computational effort, but what is really crucial is to see at each
value of N the threshold in mass below which we have a too-
nontrivial profile of the ZðσÞ

n̂ = ZðσÞ.
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∂2SR
∂aRmn∂αRij

����
0

¼ ∂2SR
∂aImn∂αIij

����
0

¼ 0

∂2SR
∂aRmn∂αIij

����
0

¼ ∂2SR
∂aImn∂αRij

����
0

¼ Bδmiδnj

∂2SR
∂aRmn∂βRij

����
0

¼ ∂2SR
∂aImn∂βIij

����
0

¼ ∂2SR
∂aRmn∂βIij

����
0

¼ ∂2SR
∂aImn∂βRij

����
0

¼ 0

∂2SR
∂bRmn∂αRij

����
0

¼ ∂2SR
∂bImn∂αIij

����
0

¼ ∂2SR
∂bRmn∂αIij

����
0

¼ ∂2SR
∂bImn∂αRij

����
0

¼ 0

∂2SR
∂bRmn∂βRij

����
0

¼ ∂2SR
∂bImn∂βIij

����
0

¼ 0

∂2SR
∂bRmn∂βIij

����
0

¼ ∂2SR
∂bImn∂βRij

����
0

¼ Bδmiδnj

∂2SR
∂αRmn∂βRij

����
0

¼ ∂2SR
∂αImn∂βIij

����
0

¼ ∂2SR
∂αRmn∂βIij

����
0

¼ ∂2SR
∂αImn∂βRij

����
0

¼ 0

where use of the Cauchy-Riemann equations has been
made (the other derivatives are trivially related to these by

the Schwarz theorem, e.g., ∂2SR∂aRmn∂aRij ¼
∂2SR∂aRij∂aRmn

) and the

coefficients are given by

A− ¼ 2

�
N − Nf

cosh2μ
m2

�
Aþ ¼ 2

�
N þ Nf

sinh2μ
m2

�

B ¼ −2Nf
cosh μ sinh μ

m2
:

The Hessian for N ¼ 1 is (with the conventional choice
of ordering: aR, bR, αR, βR, aI , bI, αI, βI)

Hð1Þ ¼

0
BBBBBBBBBBBBB@

A− 0 0 0 0 0 B 0

0 A− 0 0 0 0 0 B

0 0 Aþ 0 B 0 0 0

0 0 0 Aþ 0 B 0 0

0 0 B 0 −A− 0 0 0

0 0 0 B 0 −A− 0 0

B 0 0 0 0 0 −Aþ 0

0 B 0 0 0 0 0 −Aþ

1
CCCCCCCCCCCCCA
:

As the second derivatives are manifestly diagonal with
respect to the indices i, j, m, n, the Hessian for a generic N
is block-diagonal:

HðNÞ ¼ ⨁
N
Hð1Þ:

The model thus features a huge degeneracy of eigen-
values, as the spectrum of N ¼ 1 is repeated N times. The
spectrum for N ¼ 1 features four positive eigenvalues and
four eigenvalues opposite in sign (as expected by

holomorphicity). We are interested in the positive part of
the spectrum. An explicit computation shows that the
distinct positive eigenvalues of Hð1Þ are actually two and
they are

λ� ¼ 1

2m2

���2Nf coshð2μÞ

�
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8m4 − 8Nfm2 þ N2

f þ N2
f coshð4μÞ

q ���:
We note in passing that (here and in many other places)

we could have written formulas in the complex notation of
the Takagi factorization theorem (see [3]), which we
decided not to employ here or in the entire paper to stick
to a completely real notation.

APPENDIX B: COMPUTING Δn̂ðtÞ
Wewant to compute Δn̂ðtÞ, which is defined in (27). The

main point is that we are ascending along a given flow, and
while doing that we are also transporting the basis vectors
along the flow; i.e., we are integrating (6) as well. Near the
critical point Eq. (7) holds, in which the parametrization
Φ ∈ J σ ↔ ðn̂; tÞ is manifest. Given a reference point
t0 ≪ 1, Eq. (7) can be regarded as the initial conditions
for the flow associated to n̂. Near a generic point, under
infinitesimal variations of t and n̂, the variation of the point
δΦ is given by

δΦ ¼ δΦðn̂; tÞ ¼
Xn
i¼1

VðiÞðtÞδcðiÞ:

This is so because δΦ is itself a vector belonging to the
tangent space TΦJ σ. The (constant) coefficients δcðiÞ can
be worked out from the asymptotic form of ΦðtÞ near the
critical point

δΦ ≈ δ

�
ϕσ þ

Xn
i¼1

vðiÞeλitni

�

¼
Xn
i¼1

vðiÞ
�Xn

j¼1

δnj
∂
∂nj þ δt

∂
∂t
�
eλitni

¼
Xn
i¼1

vðiÞeλitðδni þ λiniδtÞ

≈
Xn
i¼1

VðiÞðtÞðδni þ λiniδtÞ;

from which it follows

δcðiÞ ¼ δni þ λiniδt:

Given that δΦ is a vector of TΦJ σ, we can write it as a
decomposition on the (orthonormal) u-basis:
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δΦ ¼
Xn
i¼1

uðiÞδyi;

and from this we have

δyi ¼
X2n
j¼1

uðiÞj δϕj:

Let us now consider the terms δyi
δ⋆ appearing in Δn̂ðtÞ,

where ⋆ is either t or nj. For these we have

δyi
δ⋆ ¼

X2n
j¼1

uðiÞj
δϕj

δ⋆ ¼
X2n
j¼1

uðiÞj
Xn
k¼1

VðkÞ
j

δcðkÞ

δ⋆

¼
X2n
j¼1

uðiÞj
Xn
k¼1

Xn
l¼1

uðlÞj Elk
δcðkÞ

δ⋆

¼
Xn
k¼1

Xn
l¼1

Elk
δcðkÞ

δ⋆
X2n
j¼1

uðiÞj uðlÞj ¼
Xn
k¼1

Xn
l¼1

Elk
δcðkÞ

δ⋆ δil

¼
Xn
k¼1

Eik
δcðkÞ

δ⋆ :

Now we make use of the explicit form of δcðkÞ, which
gives δcðkÞ

δt ¼ λknk and δcðkÞ
δnj

¼ δkj, from which one can easily

derive Eq. (29).

1. Δn̂ðtÞ in the Gaussian approximation

We can compute Δn̂ðtÞ for the Gaussian case (purely
quadratic action), where the asymptotic form for the SA
and parallel-transport equations is correct arbitrarily far
away from the critical point. In that case the entries ofΔn̂ðtÞ
are (E ¼ 1n×n)

δyi
δt

¼ λinieλit

δyi
δnj

¼ eλitδij

and the determinant is

Δn̂ðtÞ ¼ 2

�Xn
i¼1

λin2i

�
e
�P

n
i¼1

λi

�
t:

For the Gaussian action SRðn̂; tÞ ¼ SRðϕσÞ þ
1
2

P
n
k¼1 λkn

2
ke

2λkt, so that collecting everything we can write
an expression for the weight itself:

ZðσÞ
n̂ ¼ 2

�Xn
i¼1

λin2i

�
e−SRðϕσÞ

Z
∞

−∞
dte

P
n
i¼1

λite−
1
2

P
n
i¼1

λin2i e
2λit :

From this expression it is easy to understand that the more
the eigenvalues differ from each other (which in our case
happens for low values of the mass parameter), the more

various ZðσÞ
n̂ can differ.

2. A useful consistency relation

Since in the end we are performing quite a lot of
computations, it is useful to have a consistency relation
to be checked while ascending along the flow. The gradient
of the action is yet another vector belonging to the tangent
space TΦJ σ. Let us write the decomposition

∇ΦSR ¼
Xn
i¼1

VðiÞðtÞgðiÞ:

The coefficients gðiÞ can be found with the aid of the
asymptotic form of the action

∇ΦSR ≈∇Φ

�
SRðϕσÞ þ

1

2
ΦTHΦ

�
¼HΦ ≈H

Xn
i¼1

vðiÞnieλit

¼
Xn
i¼1

vðiÞeλitniλi ≈
Xn
i¼1

VðiÞðtÞniλi;

where we have used the symmetry of the Hessian and the
fact that HvðiÞ ¼ λivðiÞ. We have found that gðiÞ ¼ niλi, so
while integrating the flow equations, we can keep checked
the norm

����∇ΦSR −
Xn
i¼1

VðiÞðtÞniλi
����

and make sure that it is small with respect to the size of the
system.
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