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Object Detection and Pose Estimation Algorithms
for Underwater Manipulation

Fabjan Kallasi1 and Fabio Oleari1 and Marco Bottioni1 and Dario Lodi Rizzini1 and Stefano Caselli1

Abstract— In this paper, we describe object detection al-
gorithms designed for underwater environments, where the
quality of acquired images is affected by the peculiar light
propagation. We propose an object detection method operating
as a pipeline in which each phase works at a different level
of abstraction. After a preprocessing phase, the input image
is segmented into clusters according to the extracted features
and each cluster is classified by exploiting the specific object
properties. Finally, object pose estimation is performed by
comparing the object model and the 3D point cloud obtained
from stereo processing applied to the region found in the
previous step. The algorithms have been tested on a dataset
acquired using an embedded prototype stereo vision system
consisting of commodity sensors. In spite of the poor quality of
the stereo reconstruction, the dataset has allowed the evaluation
of the object detection algorithms in underwater environment
from single-images and of the pose estimation techniques. The
application of the proposed object detection methods in object
manipulation tasks has been also evaluated with experiments
in a laboratory setup.

Index Terms— Underwater imaging, Image segmentation,
Stereo vision, Object detection.

I. INTRODUCTION

In recent years, the interest of the scientific community
for underwater computer vision has increased taking advan-
tage from the evolution in sensor technology and image
processing algorithms. The main challenges of underwater
perception are due to the higher device costs, the complex
setup, and the distortion in signals and light propagation
introduced by the water medium. In particular, light propa-
gation in underwater environments suffers from phenomena
such as absorption and scattering which strongly affect
visual perception. This paper describes algorithms for object
detection and pose estimation in underwater environments
with stereo-vision perception. The algorithms have been
developed in the context of the Marine Autonomous Robotics
for InterventionS project (MARIS, Italian National Project).
The MARIS project aims at developing a coordinated multi-
AUV (Autonomous Underwater Vehicle) system able to
execute generic intervention, search-and-rescue and scientific
tasks in underwater environments [4].

The proposed suite of algorithms is designed to operate
in four steps. The first two steps aim at detecting the
target object in single images through image enhancement
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and feature-based segmentation. The resulting image seg-
mentation produces a Region of Interest (ROI) that may
represent or at least contain an object. Several approaches
for ROI generation have been investigated adopting different
assumptions on the target object. The third step uses the
stereo image pair, combined with the generated ROI, to
obtain a point-cloud representing the target in the scene
w.r.t. the stereo vision frame. The final phase performs a
geometric alignment between a model of the target object
and the obtained point-cloud to estimate the object pose.
Several algorithms, including bio-inspired approaches, have
been exploited for object pose estimation. Evaluation of the
algorithms has been based on a dataset generated with a
low-cost embedded stereo vision system developed as initial
prototype of the MARIS vision system [15].

The paper is organized as follows. Section II reviews the
state of the art in object detection for underwater environ-
ments. Section III describes the image processing pipeline.
Section IV reports the results on object detection and pose
estimation in underwater environments and the results of
object localization in a laboratory setup. Section V provides
some final remarks and observations.

II. RELATED WORK

Computer vision is a major perception modality in
robotics. In underwater environments, however, vision is
not as widely used due to the problems arising with light
transmission in water. Instead, sonar sensing is largely used
as robust perception modality for localization and scene
reconstruction in underwater environment. In [19] Yu et al.
describe a 3D sonar imaging system used for object recog-
nition based on sonar array cameras and multi-frequency
acoustic signals emissions. An extensive survey on ultrasonic
underwater technologies and artificial vision is presented in
[10]. Underwater laser scanners guarantee accurate acqui-
sition [8]; however, they are very expensive and are also
affected by problems with light transmission in water.

Computer vision provides information at lower cost and
with higher acquisition rate compared to acoustic perception.
Artificial vision applications in underwater environments
include detection and tracking of submerged artifacts [13],
seabed mapping with image mosaicing [14], and underwater
SLAM [6]. Kim et al. [11] present a vision-based object
detection method based on template matching and track-
ing for underwater robots using artificial objects. Garcia
et al. [7] compare popular feature descriptors extracted
from underwater images with high turbidity. Stereo vision
systems have been only recently introduced in underwater



applications due to the difficulty of calibration and the
computational performance required by stereo processing. To
improve homologous point matching performance, Queiroz-
Neto et al. [17] introduce a stereo matching system specific
for underwater environments. Disparity of stereo images can
be exploited to generate 3D models, as shown in [2], [3].
Leone et al. [12] present a 3D reconstruction method for an
asynchronous stereo vision system.

III. ALGORITHMS

Vision-based object detection may be addressed by differ-
ent techniques according to the input data: through image
processing of an image acquired by a single camera or
through more complex shape matching algorithms based on
stereo processing. The algorithm pipeline for underwater
object detection proposed in this paper consists of several
phases (fig. 1), each operating at decreasing level of abstrac-
tion and under different assumptions. The initial step aims at
detecting salient regions w.r.t. the background representing
candidate objects, possibly with no prior knowledge about
the object. The final pose estimation, instead, requires a de-
tailed geometric description of the target object. Furthermore,
the first two phases operate on a single image to detect the
object, whereas the two final phases process stereo images
to obtain the object pose. In our evaluation, the target to be
detected has cylindrical shape and can be represented by a
geometric parametric model. This assumption is exploited
only in the later phases of the pipeline.

Fig. 1. Algorithm pipeline for object detection and pose estimation.

A. Image Pre-Processing

Underwater object detection requires the vision system
to cope with the difficult underwater light conditions. In
particular, light attenuation produces blurred images with
limited contrast, and light back-scattering results into ar-
tifacts in acquired images. Object detection becomes even
more difficult in presence of suspended particles or with an
irregular and variable background. Hence, for underwater

Fig. 2. An underwater image before (left) and after (right) the application
of contrast mask and CLAHE.

perception special attention must be paid to algorithmic
solutions improving image quality.

The first phase of the algorithmic pipeline in Figure 1
is designed to compensate the color distortion due to the
light propagation in water through image enhancement. No
information about the object is used in this phase since the
processing is applied to the whole image. Popular techniques
for image enhancement are based on color restoration [1].
The approach adopted in this paper focuses on strengthening
contrast to recover the blurry underwater images. A contrast
mask method is first applied to the component L of CIELAB
color space of the input image. In particular, the component
Lin,i of each pixel i is extracted, a median filter is applied
to the L-channel of the image to obtain a new blurred
value Lblur,i, and the new value is computed as Lout,i =
1.5 Lin,i − 0.5 Lblur,i. The effect of the contrast mask is a
sharpened image with increased contrast.

Next, in order to re-distribute luminance, a contrast-limited
adaptive histogram equalization (CLAHE) [16] is performed.
The combined application of contrast mask and CLAHE
compensates the light attenuation and removes some of the
artifacts in the image. Figure 2 shows an example of the
effect of pre-processing for an underwater image. In our
experiments, the image enhanced by CLAHE alone is not
discernible from the one obtained after applying both filters.
Hence, the contrast mask may not be required, thereby
reducing processing time.

B. Mono-Camera Processing

Processing of individual images is performed on the image
stream produced by one of the cameras and aims at detecting
the region of the image that contains the target object. This
phase provides several advantages. First, identification of a
ROI restricts the search region of the target object in later
processing stages and therefore prevents detection errors in
later, more expensive steps. Second, since object recognition
on a 3D point cloud is computationally expensive, mono-
camera processing helps in decreasing the requested overall
computation time. Third, based on the amount of prior
knowledge, in some cases the object can be accurately
detected in a single image, although the estimation of its
pose remains rather difficult.

This phase of the algorithm pipeline, therefore, operates
to detect a ROI that may represent or at least contain an
object. The ROI may be searched according to different



criteria based on a specific feature of the object to be found.
We have developed three approaches that exploit different
assumptions on the properties of the target. The HSV (Hue
Saturation Value) color space is used to improve the color
segmentation results [18] since it better represents the human
color perception. In particular, to quantize the total color
level a color reduction is performed on the H channel of
the input image. The method described in this paper uses 16
levels of quantized color.

The first segmentation method is based on the assumption
that the unknown object never occupies more than a given
portion of image pixels and has a uniform color. The input
image is partitioned into subsets of (possibly not connected)
pixels with the same hue level according to the value of
reduced channel H . The rough level quantization is not
affected by the patterns generated by light back-scattering.
The region corresponding to a given hue level is estimated as
the convex hull of the pixels. Only regions whose area is less
than 50% of the image are selected as part of the ROIarea.
This heuristic rule rests on the hypothesis that the object
is observed from a distance such that only the background
occupies a large portion of the image. ROI estimation only
exploits the relative color uniformity of a texture-less object,
but it does not identify a specific object. This approach tends
to overestimate the area that potentially contains the object.

The second approach exploits the information on the target
color. When the object color is known, a more specific color
mask (ROIcolor) can be applied to detect the object with an
accurate estimation of object contour. Hence, the ROIcolor is
obtained composing the regions where color is close (up to
a threshold) to the target color.

The third method is based on target shape. Detection
of object shape requires an accurate image segmentation
that cannot be achieved through color. Indeed, a feature
vector can be associated to each pixel in order to better
partition the image. A vector of two features, the value
of channel H and the gradient response to Sobel, is used
to cluster with a K-means algorithm [5] and to label the
corresponding pixels. The feature vector can be expanded
to include other features in the future. Each pixel is labeled
according to the Euclidean metric in the feature space. The
goal of the clustering algorithm is to label each pixel as
part of either an object or the background according to its
feature vector. Thus, the result of this step is to partition
the image into connected regions, each with a uniform label.
The method can potentially distinguish more than one object
from the background if the two features are salient w.r.t. the
background.

In our application, the ROIshape is obtained by matching
each cluster-region to a projected cylinder. In particular, since
the cluster-region representing the target shape is unknown,
external contours for each cluster are obtained. Each closed
contour represents a cluster-region, and shape matching
between the contours and the target shape allows identifi-
cation of the target region. Since this work is focused on
the detection of cylindrical object, parallel lines effectively
approximate the contour of a projected cylindrical shape.

Under this assumption, the target region is recognized by
detecting the two longest parallel segments in the shape.
These segments are obtained using the Hough Transform of
each contours. The longest parallel lines are computed with
a cumulative histogram of the line angle w.r.t. the image
origin. One of the two cluster-regions is classified as the
target object if the pixel number is close to the area of the
rotated rectangle generated with the parallel line angle. In
contrast to the other two approaches (ROIarea and ROIcolor),
this method is able to detect whether the target object belongs
to the image before performing pose estimation. An example
of ROI generated by the second phase is shown in figure 3.

Fig. 3. Mask generation example.

In general, object pose estimation cannot be performed
on a single image and requires 3D perception. However, if
the object shape is known, as in our case, pose estimation
is possible also with a monocular camera. In particular, a
cylinder is defined once the cylinder radius cr and its axis, a
line with equation c(t) = cp+cd t, are given. The contour of
a cylinder in the image plane is delimited by two lines with
equations lTi u = 0 with i = 1, 2, where u = [ux, uy, 1]T is
the pixel coordinate vector and l1, l2 are the coefficients. Let
l0 be the parameters of the line representing the projection of
the cylinder axis in the image. The two lines with parameters
l1 and l2 are the projections on the image plane of the two
planes, which are tangent to the cylinder and contain the
camera origin. The line with parameter l0 is the projection
of the plane passing through the cylinder axis and the camera
origin. The equations of these three planes in the 3D space
are given by

lTi (Kp) = (KT li)
T p = nT

i p = 0 (1)

where K is the camera matrix obtained from the intrinsic
calibration, ni = KT li the normal vectors of the planes
corresponding to the lines li with i = 0, 1, 2 (in the
following, the normalized normals n̂i = ni/‖ni‖ are used),
and p a generic point in camera reference frame coordinates.
The direction of the cylinder axis is given by direction vector
cd = n̂1 × n̂2. If the cylinder radius cr is known, then the
distance of the cylinder axis from the camera center is

d =
cr

sin
(
1
2
acos (|n̂1 · n̂2|)

) (2)

The projection of the camera origin on the cylinder axis
is equal to cp = d(cd × n̂0) (if cp,z < 0, then substitute
cp ← −cp). These geometric constraints allow estimation
of the object pose in space using only a single image. The
accuracy of such estimation depends on the image resolution



and on the extraction of the two lines. It can be used as an
initial estimation or as a validation criterion of the object
pose computed on the 3D point cloud generated from stereo
vision.

C. Stereo-Camera Processing

The generated ROI is used as a filtering mask in the third
phase to generate a lighter point-cloud that represents the
3D scene limited to the object. This filtering permits to
estimate the pose of the object, with no need for further
detection, in the final phase. The benefit of restricting the
region size where stereo processing is performed is limited
when the disparity image is computed using incremental
block-matching SAD (sum of absolute differences) algorithm.
Since the SAD of a block is computed using the SAD values
of adjacent blocks, the advantage of computing the disparity
image only on the ROI is reduced. Indeed, estimation of
point clouds limited to the ROI saves about 15% of the time
for each frame.

D. Pose estimation

The final phase of the pipeline uses the geometric informa-
tion of the target object to estimate the pose w.r.t. the stereo
vision frame. The importance of a ROI is more apparent in
object recognition, since this step requires computationally
expensive operations on point clouds. In particular, the ROI
can be used to select the point cloud C where to search
objects. In our investigation the objects to be recognized
have a cylindrical shape and can be represented by a para-
metric model. In particular, we represent cylinders using 7
parameters: the three coordinates of a cylinder axis point
cp = [cp,x, cp,y, cp,z]T , the axis direction vector cd =
[cd,x, cd,y, cd,z]T , and the radius cr. The model matching
algorithm simultaneously searches for a subset of the point
cloud that better fits a cylindrical shape and computes the
value of the cylinder parameters c = [cTp , c

T
d , cr]T . For pose

estimation three algorithms have been applied:
• PSO: Particle Swarm Optimization. Bio-inspired global

optimization algorithm based on the movement of indi-
viduals swarms.

• DE: Differential Evolution. Bio-inspired global opti-
mization algorithm based on the evolution of a set of
individuals.

• RANSAC: RANdom SAmple Consensus. Model fitting
algorithm.

The pose estimation is obtained through geometric align-
ment of the model of the searched object and the point cloud
obtained from stereo processing. These algorithms require a
fitness function that measures the consensus of a subset of
the point cloud C over a candidate model c. A natural fitness
function is the percentage of points pi ∈ C such that their
distance to the cylinder c is less than a given threshold dthr.
The more obvious measure of the displacement between a
point pi and a cylinder c is the Euclidean distance

dE(pi, c) =

∣∣∣∣‖cp × (cp − pi)‖
‖ld‖

− r
∣∣∣∣ (3)

However, the Euclidean distance may not take into account
some orientation inconsistencies. If the normal vector ni on

Fig. 4. An example of pose estimation by matching the raw point cloud
(orange) and a cylinder model (blue).

point pi can be estimated, the angular displacement between
the normal and the projection vector of the point pi on the
cylinder c (called proj(pi, c) henceafter) provides

dN (pi, ni, c) = min(αi, π − αi) (4)

αi = arcos

(
ni · proj(pi, c)
‖ni‖ ‖proj(pi, c)‖

)
proj(pi, c) = pi − cp −

(
pi · cd − cp · cd
‖cd‖2

)
cd

The chosen distance function is a weighted sum of two
distances

d(pi, ni, c) = w · dE(pi, c) + (1− w) · dN (pi, ni, c) (5)

Figure 4 shows an example where the cylinder pose is
approximately recovered from the point cloud. It should be
observed that the cylinder model parameters and the point-to-
model distance are the only parts of the algorithm depending
on the specific object shape.

IV. EXPERIMENTAL EVALUATION

A. Underwater Image Processing

An underwater dataset adopted for the experimental eval-
uation of the algorithm suite has been acquired using a
stereo vision system consisting of non-synchronized C270
Logictech webcams in a sealed waterproof transparent can-
ister [15]. The image dataset has been acquired at the Lake
of Garda (Italy) in two distinct experimental sessions, each
comprising multiple ambient situations and different objects
(Fig. 5). The dataset includes images with several submerged
cylindrical objects at depth ranges from 1.8m to 3m. In both
sessions the average depth of the camera was about 40cm
below water surface.

The image pre-processing algorithms discussed in sec-
tion III-A significantly influence underwater object detection
performance. In order to assess the effectiveness of the pre-
processing algorithms, the ROIcolor and the ROIarea have
been computed on a set of 304 sample images. Results
have been computed on both the raw and the pre-processed
images. The average percentage of ROIcolor and ROIarea
pixels over the whole image and the ratio between the two
quantities are reported in Table I. The region found by the
ROIcolor only slightly depends upon the quality of the input
image (since it exploits the information about the color of the
object), whereas the computed ROIarea is more affected by
the image quality. The ROIarea in the pre-processed image



Fig. 5. Images of the experimental sessions.

Fig. 6. Example of ROI (left) and CMask (right) computed on the same
input frame.

is on average only one third of the ROIarea computed in
the raw image. Thus, assuming that the ROIcolor reasonably
approximates the ground truth, the ROIarea provides an
adequate estimate of the object for underwater detection as
long as appropriate pre-processing is performed. Figure 6
shows an example of ROIarea and ROIcolor computed on the
same input frame. The complete mono-camera processing is
performed on average, on a current platform, in 74.82 ms,
with a standard deviation of 3.20 ms.

Pre-processing Frames ROIcolor ROIarea ROIarea
ROIcolor

no 304 9.32% 33.18% 3.72
yes 304 9.07% 11.98% 1.31

TABLE I
ROIarea AND ROIcolor COMPUTATION W.R.T. IMAGE PRE-PROCESSING.

The third mono-processing method presented in sec-
tion III-A is somewhat different than the area/color based
segmentation. This algorithm, besides the subset pixel rep-
resenting the target object, also detects whether the image
contains the target. An evaluation of the effectiveness of
the shape-based ROI generation has performed on a set of
965 frames including two kinds of color for the cylindrical
object (orange and gray) and images with or without the
target object. Table II illustrates the performance of shape
based segmentation. The values of precision, recall and
accuracy are above 90% for this method. The execution time
of segmentation and recognition algorithms is on average
149.6 ms with a standard deviation of 11.3 ms (Intel R Core
i7-3770 CPU 3.40GHz, 8 GB RAM). We expect to improve
this performance by using a customized clustering algorithm
instead of the generic general purpose implementation used

Gray target Orange target Total
Frame number 304 443 965

TP 522 248 665
TN 417 153 216
FP 63 29 66
FN 37 13 18

Precision 91.9% 89.5% 91.0%
Recall 98.8% 95.0% 97.4%

Accuracy 92.0% 90.5% 91.3%
1-FPRate 64.0% 84.1% 76.6%

F-Measure 95.2% 92.2% 94.1%

TABLE II
SHAPE BASED SEGMENTATION PERFORMANCE.

in these experiments.
Mono-camera images have been used to estimate the

pose of a cylindrical pipe, as discussed in section III-B.
The algorithm computes all the parameters of the cylinder
axis that allow localization of the target object. However,
during experiments at the Garda lake, the embedded system
swung rather fast attached to the floating support, due to
the continuous waves and close to surface operations (see
Figure 5). In such experiments no groundtruth is usually
available, therefore a parameter invariant to camera motion is
required to assess the precision of the proposed method. The
object lies on the lake floor and the camera depth remains ap-
proximately constant. Thus, the distance between the camera
center and the cylinder axis in equation (2) approximately
meets this pre-requisite. Table III illustrates the average
distance and the standard deviation of the axis computed in
a sequence of 302 frames. The standard deviation of 17 cm
is due to both the estimation error of the algorithm and the
slight variation of distance caused by waves.

Num. Frames Avg. Distance [mm] Std.Dev. Distance [mm]
302 1441 169

TABLE III
MONO-CAMERA ESTIMATED DISTANCE.

A second set of experiments has aimed at assessing the
object detection and pose estimation performance on the
point cloud acquired in the stereo camera configuration.
Unfortunately, the point clouds obtained from the underwater
dataset turned out to be rather sparse and noisy. As men-
tioned above, in water the embedded system was attached
to a floating support, and the camera baseline swang due
to waves. Since the webcams are not synchronized by a
hardware trigger, the computed disparity image turned out
to be noisy and inaccurate. Thus, an alternative dataset of
images has been acquired in air to obtain an evaluation
of the full stereo-processing pipeline. In this alternative
setting, the target cylindrical pipes were placed in a dry river
bed among sand and stones, and the embedded acquisition
box was manually moved. Figure 7 summarizes the object
recognition results for RANSAC, PSO, and DE recogni-
tion algorithms. The three algorithms obtain comparatively
similar but unsatisfactory recognition results. As could be
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Fig. 7. Object recognition results on the point cloud.

Fig. 8. The laboratory protototype used to experiment object detection
and approaching. The axes of the target object ĉx, ĉy and ĉz , the stereo
camera optical axis ŝz and the axes of the desired viewpoint frame for the
eye-in-hand v̂x, v̂y and v̂z are also shown.

expected, RANSAC is at least one order of magnitude faster
than the alternative algorithms. Additional investigation is
required to obtain reliable 3D perception in complex under-
water or outdoor scenes. Although methods for asynchronous
stereo vision processing [12] could be used, we will include
synchronized camera acquisition in our next stereo vision
system prototype.

B. Application Scenario

The proposed algorithms have been designed to operate
with a specific underwater perception and manipulation sys-
tem, which consists of a manipulator, a stereo camera, and
an eye-in-hand camera placed in the hand of the manipulator
[4]. In the main application scenario, the target object is
detected by processing an image acquired by one of the
two cameras and its pose is estimated from the point cloud
obtained from stereo vision processing. Then, the robot
approaches the detected object and grasps it using the gripper
in the end-effector of the manipulator. During this operation

eye-in-hand camera provides a perceptual feedback, since the
stereo camera may be occluded by the manipulator itself.

x (mm) y (mm) z (mm) qx × 103 qy × 103 qz × 103

Mean 10.46 -47.95 194.08 18.89 1.36 -0.39
St.Dev. 0.22 1.61 3.44 0.52 0.66 1.33

TABLE IV
MEAN VALUE AND STANDARD DEVIATION OF EYE-IN-HAND CAMERA

POSE W.R.T. THE ROBOT WRIST FRAME (ORIENTATION AS QUATERNION).

The execution of this task is an important test-bed for
the proposed object detection algorithms and for the anal-
ysis of occlusions. Unfortunately, a complete underwater
system will not be available until the final phases of the
MARIS UAV construction. We have therefore decided to
develop a laboratory prototype to study visibility conditions
and the issues arising in the cooperation between sensing
and actuation, although without the specific features of
the underwater environment. Figure 8 illustrates the system
developed at RIMLab, which consists of a Comau Smart Six
manipulator equipped with a Schunk PG70 gripper, a Logitec
C270 camera pair for stereo processing and another eye-in-
hand Logitec C270. Since an item is detected w.r.t. sensor
reference frames, the estimation of the relative sensor poses
is required to correctly operate with objects. The calibration
of the eye-in-hand camera is performed using the method
described in [9], which compares the relative motion of the
manipulator wrist frame and the corresponding motion of
the camera frame. The sensor egomotion is estimated using
a known checkerboard marker. Table IV illustrates the mean
value and standard deviation of the camera pose parameters
computed on 20 trials. The orientation parameters are ex-
pressed in unitary quaternion form. Although the groundtruth
is not available, these results show that the estimated values
are rather stable. The eye-in-hand pose w.r.t. to the robot
base frame is computed using the manipulator state data.
The pose of the stereo camera has been estimated using a
checkerboard marker used as a common reference with the
eye-in-hand camera.

∆θ (deg)
Mean 2.09

St.Dev. 1.71

TABLE V
MEAN VALUE AND STANDARD DEVIATION OF CYLINDER OBJECT AXIS

W.R.T. THE EYE-IN-HAND CAMERA.

The described setup has been used to test the accuracy
of target object pose estimation. Of course, the observation
conditions of the laboratory are rather different from un-
derwater environment, but such results represents a bound
on the achievable accuracy of the proposed detection and
localization algorithms. If the object pose provided by the
stereo camera is accurate enough, then a viewpoint focused
on the target object can be computed for the eye-in-hand
camera. The main hypothesis is that the manipulator can



Fig. 9. Target cylindrical object observed from the eye-in-hand camera. The
alignment angular error ∆θ is the angle between the cylinder axis (dashed
blue line) and image axis (dashed black line).

move in a relatively free space without risking collisions. In
particular, we assume that the manipulator can approach the
object from the direction of stereo camera optical axis ŝz . Let
ĉx, ĉy and ĉz be the axes of cylindrical target object frame
computed by the stereo image w.r.t. the robot base frame. The
ĉz axis corresponds to the symmetry axis of cylinder. The
axes of eye-in-hand camera desired viewpoint are computed
as

v̂x = v̂y × v̂z
v̂y = m̂z

v̂z = ŝz −
ŝz · ĉz
‖ŝz‖‖ĉz‖

The eye-in-hand camera optical axis v̂z is computed through
the orthonormalization of stereo camera direction ŝz on
cylinder axis ĉz . The choice of v̂y aligns image plane with
the symmetry axis of the cylindrical object. Thus, the angle
∆θ between cylinder axis and image axis can be used as a
measure of the accuracy of object pose estimation. Figure 9
illustrates the image observed from the eye-in-hand camera
and the corresponding alignment angular error. Table V
illustrates the mean value and standard deviation of ∆θ on
15 trials. The orientation error is on average about 2◦ and is
rather negligible in the execution of grasping tasks.

V. CONCLUSIONS

This paper has presented an algorithm suite, consisting
of several steps, for underwater object detection and recog-
nition, and its experimental evaluation in real underwater
environment. Suitable preprocessing and image enhancement
algorithms have proven effective in improving underwater
images, thereby enabling detection of regions of interest
as well as detection and localization of known objects in
sequential image streams gathered from a single camera.
Three techniques for the detection of the ROI containing the
target object have been compared. The shape-based detection
algorithm is able to correctly detect objects in a single
image with precision and accuracy both above 90%. The
3D point clouds obtained from stereo processing of multiple
underwater camera streams have not allowed reliable object
detection and localization due to the very noisy dataset.
The stereo processing pipeline has been eventually evaluated

on a dataset obtained in outdoor, in-air conditions. Several
approaches have been investigated for object pose recovery
from the 3D point cloud and for further classification of
objects. The accuracy of object pose estimation has been
assessed in a laboratory setup that simulates an application
scenario. Although the laboratory operating conditions are
rather different from underwater environment, object local-
ization is sufficiently accurate for the execution of grasping
tasks.
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