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Simultaneously applying hierarchy and recursion enables 

self-awareness and self-expression in distributed systems, 

which can provide greater efficiency and scalability in tasks 

such as network exploration and message routing.

Self-aware computing systems and applications 
proactively maintain information about their 
own environments and internal states. The 
term self-expression includes goal revision and 

the self-adaptive behavior that derives from cooperative 
reasoning about the knowledge associated with the sys-
tem’s self-awareness. 

An individual node’s self-expression occurs “as a 
result of the node’s review of its state, context, goals 
and constraints and subsequent behavior adaptation.”1 
Many techniques exist to enable self-awareness and 
self-expression in a single node, but the self-awareness 
challenge is much greater in a distributed system in 
which multiple autonomous nodes must communicate 

efficiently to achieve a global goal. Abstractly, a node is a 
computational entity that conceptualizes locality within 
a global system; concretely, it is any element in a distrib-
uted system, from a router characterized by its protocols 
or a subnetwork with a specific IP domain to a client or 
server application or a set of peers in a large network.

In a network with the global goal of high efficiency, 
simple search algorithms such as random walk (RW), 
which randomly selects the next hop from among nodes 
generating probe messages, will not suffice because they 
fail to exploit the network’s recursive or hierarchical fea-
tures. Thus, exploring the entire network requires many 
probe message propagations, even for networks with 
favorable topological features, such as scale invariance.2

Toward Collective
Self-Awareness and
Self-Expression in
Distributed Systems
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To address this and other chal-
lenges, we have developed a strategy 
based on the simultaneous applica-
tion of hierarchy and recursion (HR) to 
enable self-expression and self-aware-
ness in ensembles of cooperating com-
putational entities. Ensembles with 
these properties can lead to the entire 
system’s global awareness. 

Hierarchy, the categorization of 
nodes in a group according to their 
capability or status, is an important 
concept in dealing with scalability 
issues in the Internet of Things (IoT) 
and is a key notion in strategies such 
as content-centric networking.3

Recursion is the repeated use of 
a single, flexible functional unit to 
enable different capabilities over dif-
ferent areas of a distributed system. 
An example is recursive network-
ing, which was developed to describe 
multilayer virtual networks that 
embed networks as nodes inside other 
networks. In the past decade, recursive 
networking has evolved to become 
a possible IoT architectural design 
approach4 and is a well-known quan-
tum network design method.5

We applied our HR-based strategy 
to the exploration of a sample network 

and determined that it can enable col-
lective (systemwide) self-awareness 
and self-expression, which in turn 
can improve distributed system effi-
ciency and scalability relative to tra-
ditional approaches, such as the RW 
algorithm, with only a minor increase 
in design complexity. 

PROPERTIES OF A 
SELF-AWARE NODE
Figure 1 shows one representation of 
a self-aware and self-expressive node 
as it interacts with other self-aware 
nodes and its physical environment. 
The representation is based on a model 
proposed by Funmilade Faniyi and 
colleagues, who define a self-aware 
node as possessing information about 
its internal state and having suffi-
cient environmental knowledge to 
determine how other parts of the 
system perceive it.1 In their interpre-
tation, self-awareness produces the 
node’s behavioral model, while self-
expression is concerned with goal 
revision and self-adaptive behavior. 

Their representation is based on 
cognitive psychologist Ulric Neisser’s 
self-awareness model, which con-
sists of five increasingly complex 

levels: stimulus, interaction, time, 
goal, and meta–self-awareness, the 
latter being the node’s perception of 
its self-aware capabilities.6

COLLECTIVE SELF-
AWARENESS
Complex systems are dynamic entities 
of interconnected parts that in their 
entirety exhibit properties that could 
not be inferred from examining parts 
individually.7 For example, parts of 
an ant colony have different roles that 
when observed individually might 
lead to a false conclusion about how 
the entire colony performs. The same 
is true for human society.1

In computing and networking sys-
tems, an individual node’s adaptive-
ness is reflected in its self-expression, 
which in turn is based on the node’s 
self-awareness capabilities. However, 
collective or global, self-awareness 
and self-expression in a distributed 
system must consider outcomes for the 
entire network. One obvious strategy 
is to provide the system with a central-
ized omniscient monitor. However, 
the advantage of simplified central 
control rapidly diminishes in the face 
of the overhead required for nodes to 
constantly communicate their status.

COLLECTIVE  
SELF-EXPRESSION 
A computing node exhibits self-
expression if it can assert its behavior 
on itself or other nodes.1 Node behav-
ior is affected by state, goals, and con-
straints. Collective self-expression 
(also referred to as ensemble self-

expression) can be defined as the abil-
ity to change the coordination pattern 
at run time.8 That is, the distributed 
system performs its intended opera-
tions and meets its understood goals 
independent of unexpected situations 
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FIGURE 1. Representing a self-aware and self-expressive node. The node uses informa-
tion from its internal and external sensors to construct private and public self-awareness. 
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by modifying its original internal 
organization. For example, suppose 
that each component of a distrib-
uted system has three collaborative 
approaches to complete a task: master-
slave, peer-to-peer, and swarm. The 
system exhibits self-expression if its 
components can collaboratively select 
the most suitable strategy.

Thus, ensemble self-expres-
sion implies the assertion of collec-
tive self-adaptive behavior based 
on collective self-awareness. Like 
global self-awareness, global self-
expression in a distributed system 
that lacks centralized control can be 
difficult to achieve. 

HIERARCHY AND RECURSION
To illustrate the value of simultane-
ously using HR to enable collective 
self-expression and self-awareness, 
consider the network in Figure 2, in 
which packets are forwarded accord-
ing to HR-based routing tables. The 
routing table at node 4.2 accommo-
dates scalability by providing infor-
mation about nearby destinations, in 
this case nodes 4.4 and node 4.7,  as 
well as routes to remote destinations, 
such as subnetwork 9 (NET9).

Thus, through HR, every node 
has global self-awareness and self-
expression. Forwarding too many 
packets to the same neighbor can 
cause congestion on that node. Feed-
back from congested nodes will lead 
to some modification in routing table 
use—an alternative packet destina-
tion or routing table update. The rout-
ing table update might also stem from 
the exchange of routing informa-
tion from other known nodes. These 
behavior modifications, which account 
for changing hierarchies, gradually 
achieve global awareness. Indeed, the 
simultaneous and collaborative update 

of HR-based routing tables is actually a 
global self-expression process.

In this way, our HR-based approach 
satisfies all five levels of Neisser’s 
self-awareness model:

›› stimulus awareness—nodes know 
how to manage messages; 

›› interaction awareness—when 
exchanging messages and con-
trol information, nodes and sub-
nets can distinguish other nodes 
and subnets;

›› time awareness—the network 
knows of past events or likely 
future ones, as in learning-based 
routing;

›› goal awareness—the system 
enforces the goal of achieving 
high efficiency by simplifying 
the search for the shortest path 
to a specific destination; and

›› meta–self-awareness—the system 
concurrently applies different 
routing strategies, choosing the 
best one at run time. 

These examples are specific to mes-
sage routing, but they illustrate the 
degree of system adaptiveness with 

the HR-based strategy. Goal aware-
ness, for example, is implicit in how 
the system populates and updates 
routing tables. If a global goal 
changes, the system could change its 
behavior accordingly.

NETWORK EXPLORATION
Exploring a sample network illus-
trates the advantages of using our 
HR-based method. For a network of 
N nodes and S subnetworks, the goal 
is to evaluate the approximate num-
ber of forwards that a probe mes-
sage needs to propagate through the 
whole graph. A random node gener-
ates the probe message and sends it to 
one of its neighbors, which forwards 
it to another neighbor, and so on. A 
node that receives the probe message 
is marked as visited. 

Because our HR-based strategy 
accounts for the presence of sub-
networks and exploits collective 
self-awareness, fewer propagations 
are necessary. Every node is a member 
of a NET s, where s is an element of the 
set {1,…,S}. Every NET s has an identi-
fier node n, where n is an element of 
the set {1,…,N} and is unique within 
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FIGURE 2. Hierarchy and recursion (HR) in a network that forwards packets according to 
HR-based routing tables. Each routing table (shown at node 4.2) contains information on 
how to reach any other known node.
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that subnetwork. Each node has a 
NETs.noden designation. 

A node can have neighbors that 
are members of other subnetworks. 
For example, the routing table in 
Figure 2 allows NET4.node2 to for-
ward messages to 

›› other nodes of NET4 that are 
directly reachable,

›› NET1 and NET6 through directly 
reachable nodes that belong to 
those subnetworks, and

›› NET9 through NET6. 

Figure 3 is a flowchart of our HR 
method’s application to the sample net-
work. Every node forwards the probe 
message to one unvisited neighbor in 
the same subnetwork. If all neighbors of 
the same subnetwork are visited nodes, 
the probe is forwarded to one random 
neighbor from a subnetwork that dif-
fers from the one in the previous hop. 
If only one neighbor belongs to other 
subnetworks and it is the previous hop, 
our method selects the neighbor that 
grants access to the longest route. 

To simplify the routing table con-
figuration in simulation, we assume 

that every node knows which sub-
networks it can reach through its 
direct neighbors; the neighbors pro-
vide no additional knowledge. That 
is, S is the same order of magnitude 
as the mean node degree 〈k〉, the 
mean number of links from the start 
node. For large networks, where S ≫ 
〈k〉, additional knowledge is needed 
to build meaningful collective 
self-awareness.

We conducted simulations with 
two network topologies, character-
ized by different node degree sta-
tistics, which we described in terms 
of probability mass function (PMF):  
P(k) = P{node degree = k}.

Scale-free network topology
In the scale-free topology, the net-
work’s PMF decays according to a 
power law—a polynomial relation-
ship that exhibits scale invariance  
[P(bk) = baP(k), ∀a,b ∈ ℝ], such as 

P(k) = ck–τ   ∀k = 0,..., N – 1 ,

where τ ∈ ℝ, and τ > 1 to be normaliz-
able and c is a normalization factor. In 
simulation, we used the well-known 

Barabási-Albert (BA) generative 
model,9 which constructs scale-free 
networks with τ ≅ 3 on the basis of 
growth and preferential attachment. 
In the BA model, every added node 
connects to m existing nodes, selected 
with probability proportional to their 
node degree. The resulting PMF is

P(k)  ≅  2m2 k−3  ∀k > m ,

and the mean node degree is 〈k〉 = 2m.

Erdös-Rényi network topology 
Networks based on the Erdös-Rényi (ER) 
model have N nodes, each connected to 
an average of 〈k〉 = α nodes. The pres-
ence or absence of a link between two 
vertices is independent of the presence 
or absence of any other link, so each 
link can be considered to be present 
with independent probability p. It is 
trivial to show that p = α / (N–1)

If nodes are independent, the 
degree distribution of the network is 
binomial:

P k N p p( ) 1 (1 )
k

k N k1( )= − − − − ,

which for large values of N converges 
to the Poisson distribution

P k e
k

( )
!

kα
=

α−

 
where α = 〈k〉 = σ2 .

Simulation results
Scale-free and ER are the extremes of 
meaningful network topologies, since 
they are based on the presence of strong 
hubs (a hub being a highly connected 
node) on the one hand and a total lack 
of hubs on the other. Typical networks 
lie somewhere between the two. 

Hubs are determined by the 
extent of Internet distribution, 
which researchers have shown is 
the combined contribution of the 
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FIGURE 3. An HR-based method for exploring the sample network. D is the cardinality of 
the set 𝒟 of the considered peer’s neighbors, Y is the cardinality of the set 𝒴 of neighbors 
belonging to the considered peer’s subnetwork that have not yet been visited, O is the 
cardinality of the set 𝒪 of neighbors that belong to other subnetworks, and h–1 denotes 
the previous hop. Routing table size is of the same order of magnitude as S.
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provider–customer and peer-to-
peer connection classes.10 Provider–
customer connections are consis-
tent with a scale-free distribution, 
while peer-to-peer connections fol-
low a Weibull distribution. The devi-
ation from scale-free distribution 
is largely due to Internet exchange 
points (IXPs)—physical infrastruc-
tures that allow autonomous systems 
to exchange Internet traffic, usually by 
means of mutual peering agreements, 
leading to lower costs (and, sometimes, 
lower latency) than in upstream pro-
vider–customer connections. Because 
IXPs introduce a high number of peer-
ing relationships, the higher the num-
ber of connections identified as cross-
ing IXPs, the larger the deviation from 
the scale-free distribution.

Figure 4 shows simulation results 
in networks of 1,000 nodes, and either 
20 or 100 subnetworks. With the scale-
free (BA model) topology, when m is 5 
and 20, the mean node degree is 10 and 
40, respectively.

To have the same mean node degree 
for the ER topology, we set α to equal 10 
and 40. Initially, the network is grown 
and configured—that is, the routing 
tables are filled after 1,000 nodes have 
been created and connected. At 3,000 
simulation steps, the probe message 
is generated and forwarded at every 
simulation step. Because the number 
of subnetworks does not affect the RW 
algorithm, we plotted only one curve 
for each number of nodes. Conversely, 
subnetwork awareness plays a funda-
mental role in HR.  

Both graphs show clearly that our 
HR-based algorithm outperforms the 
RW algorithm. For the two topolo-
gies, the HR-based algorithm requires 
about 4,000 message propagations to 
visit the whole network, whereas RW 
visits only 90 percent of the network 

with the same number of propaga-
tions. The difference is more evident 
with the BA model, because with the 
HR method, the probe message visits 
every hub just once, whereas with the 
RW method, the probe message must 
visit hubs frequently. On the other 
hand, neither RW nor our HR method 
exploits hubs conveniently, so the per-
formance difference is less dramatic 
with the ER topology, which assumes 
no hubs and thus more fairly distrib-
utes node degree values.

MESSAGE ROUTING
Message routing also benefits from 
collective self-awareness. To illus-
trate, consider again the network in 
Figure 2 and assume that node 4.2 
must send a message to node 9.6. If 
routing tables were filled with only 
local information (only node 4.2’s 
direct neighbors), routing would be 
quite inefficient. HR-based routing 
exploits collective self-awareness, 
enabling the network to find the route 
more quickly. Node 4.2 knows that 
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FIGURE 4. Fraction of visited nodes when the network topology is (a) scale free 
(Barabási-Albert [BA] model) or (b) the Erdös-Rényi (ER) model. S is the number of sub-
networks, m is the initial number of connections of each node for the BA model, and α is 
the mean node degree for the ER model. 
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NET9 is reachable through NET6, 
whose node 6.1 is directly reachable. 
Thus, node 4.2 sends the message to 
node 6.1. Figure 5 shows the flow of 
this routing algorithm.

HR-based routing—in which nodes 
populate routing tables with infor-
mation about subnetworks—is suit-
able for both intra- and inter-domain 
scenarios. Compared to the two main 
intradomain routing classes—link-
state and distance-vector11—HR-based 
routing has two main advantages. 
First, unlike link-state routing, nodes 
need not know the whole network 
topology. Second, unlike distance-vec-
tor routing, nodes build collective 
awareness by exchanging recursive 
and hierarchical information not only 
with direct neighbors but also with 
neighbors of neighbors. Because of 
collective awareness, messages can be 
routed within the same subnetwork 
or from one subnetwork to another. In 
that sense, HR-based routing enables 
novel architectures, such as the Uni-
fied Architecture for Interdomain 
Routing proposed in RFC 1322 (www 
.rfc-editor.org/rfc/rfc1322.txt).

Simulation results
To evaluate the HR-based routing strat-
egy’s success rate and average route 
length, we simulated an application 
with different networks, each with a 
thousand nodes. As a baseline, we also 
simulated a no-HR routing strategy in 
which nodes do not populate routing 
tables with subnetwork information 
but rather only keep a trace of direct 
neighbors and neighbors of neigh-
bors. The no-HR strategy is similar to 
distance-vector routing, but it does 
not manipulate vectors of distances to 
other nodes in the network. 

As Figure 6 shows, HR-based rout-
ing outperformed no-HR when the 
average node degree was suitably 
high. Interestingly, with low node 
degree values and the ER model topol-
ogy, HR-based routing performed 
more poorly. Overall, however, with 
HR-based routing, a small increase in 
average node degree corresponded to 
a large performance increase. 

Alternative scenario
Another network scenario that might 
benefit from HR-based message 

routing is n-layered trees of subnet-
works. For example, suppose that NETx 
is the union of several subnetworks:  
NETx = ∪i NETx.i. 

In this case, for a node that belongs 
to another subnetwork NETy such 
that there is no intersection between 
NETx and NETy, it is sufficient to know 
how to reach NETx to send a message 
to a node that belongs to NETx.i. This 
notion extends to any value of n (not 
just 2), as Figure 7 illustrates.

Networking and computing 
research communities are 
already considering HR-based 

strategies, but much work remains, 
particularly in finding novel strategies 
to efficiently maintain information 
that enables the simultaneous appli-
cation of HR. In addition to network 
exploration and message routing, dis-
tributed sensing, mapping, and geo-
localization systems can also benefit 
from HR-based strategies.

Our HR-based approach is a sig-
nificant first step toward collective 
self-awareness and self-expression in 
distributed systems. Groups of special-
ized servers with HR-aware routing 
tables could enable novel and highly 
efficient decentralized job dispatching 
and load balancing. Such a scenario is 
particularly appealing when jobs are 
part of complex workflows, each of 
which involves a different type of spe-
cialized servers.

Load-balancing and -sharing pol-
icies can be either static, using only 
information about average system 
behavior, or dynamic, adaptive pol-
icies that use continuously updated 
system state information. In an adap-
tive policy, both transfer and location 
policies are key elements. The trans-
fer policy determines whether a job 
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is to be processed locally or remotely, 
whereas the location policy deter-
mines the server to which a remotely 
executed job should be sent. Typically, 
transfer policies use thresholds to 
determine whether the server is heav-
ily loaded; when the server exceeds 
that threshold, the policy initiates the 
transfer mechanism. 

Suitably filled HR-based routing 
tables would effectively support the 
location policy. Indeed, if servers 
share descriptors of their own capa-
bilities and those of the nodes or node 
groups they know, they can quickly 
fill their routing tables with founda-
tional information for locating suit-
able remote-job execution servers. 
To be even more effective, such static 
information might also be enriched 
by dynamic state variables that repre-
sent, for example, CPU queue length 
and utilization. Such strategies can be 
the basis for greatly increasing system 
efficiency. 
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