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Numerical relativity simulations of compact binaries with the Z4c and BSSNOK formulations
are compared. The Z4c formulation is advantageous in every case considered. In simulations of
non-vacuum spacetimes the constraint violations due to truncation errors are between one and three
orders of magnitude lower in the Z4c evolutions. Improvements are also found in the accuracy of the
computed gravitational radiation. For equal-mass irrotational binary neutron star evolutions we find
that the absolute errors in phase and amplitude of the waveforms can be up to a factor of four smaller.
The quality of the Z4c numerical data is also demonstrated by a remarkably accurate computation
of the ADM mass from surface integrals. For equal-mass non-spinning binary puncture black hole
evolutions we find that the absolute errors in phase and amplitude of the waveforms can be up to a
factor of two smaller. In the same evolutions we find that away from the punctures the Hamiltonian
constraint violation is reduced by between one and two orders of magnitude. Furthermore, the
utility of gravitational radiation controlling, constraint preserving boundary conditions for the Z4c
formulation is demonstrated. The evolution of spacetimes containing a single compact object confirm
earlier results in spherical symmetry. The boundary conditions avoid spurious and non-convergent
effects present in high resolution runs with either formulation with a more naive boundary treatment.
We conclude that Z4c is preferable to BSSNOK for the numerical solution of the 3+1 Einstein
equations with the puncture gauge.

I. INTRODUCTION

This is the conclusion of a series of papers [1–5] about
the development of a formulation of general relativity
(GR), called Z4c, that attempts to combine the strengths
of two popular evolution systems for applications in free-
evolution numerical relativity. Here we summarize the
logical development of the formulation.

In the BSSNOK formulation [6–8] there is a zero-
speed characteristic variable in the constraint subsys-
tem, which can result in large Hamiltonian constraint
violations in numerical applications; the removal of this
mode is one of the key advantages of the generalized
harmonic formulation [9–12] over BSSNOK. The gener-
alized harmonic formulation also possesses a constraint
damping scheme [13], which exponentially damps away
small, high-frequency constraint violations at the con-
tinuum level. Furthermore the trivial wave-like nature of
the generalized harmonic subsystem allows for the conve-
nient construction of constraint preserving boundary con-
ditions [14–16]. On the other hand, the key advantages
in the BSSNOK formulation are the choice of confor-
mal variables, and the fact that the formulation does not
come tied to a particular gauge, which allows for the se-
lection of the moving puncture gauge [17–22]. The com-
bination of these two strengths allows for the evolution of
black holes represented by coordinate singularities on the
grid without severe numerical difficulties. For BSSNOK
radiation controlling constraint preserving boundary con-
ditions have been proposed [23], but to our knowledge
have not been successfully used in numerical applications.
With these considerations in mind a conformal decompo-

sition of the Z4 formulation [24–30] was proposed in [1].
Because of the close relationship between the Z4 and gen-
eralized harmonic formulations, this conformal decompo-
sition inherits all of the strengths outlined in the previous
discussion. In [1] a set of spherically symmetric (1D) tests
involving single black hole and neutron star spacetimes
demonstrated that, indeed, the Z4c formulation guaran-
tees the robustness of, and better constraint preservation
than BSSNOK, especially for non-vacuum spacetimes. It
was also found that the main advantage of Z4c in the
bulk of the computational domain, namely the propagat-
ing constraint violations, presents problems at the outer
boundary if the constraints are not absorbed but rather
reflected.

A first attempt to tackle this problem was presented
in [2], in which high derivative order constraint preserv-
ing boundary conditions based on those of [16] were pro-
posed for Z4c. Well-posedness of the Z4c constraint
subsystem initial boundary value problem was demon-
strated, and numerical results in explicit spherical sym-
metry demonstrated the efficacy of the constraint pre-
serving boundary conditions. In this work we use con-
straint preserving boundary conditions, motivated by a
forthcoming study [5], in which well-posedness of high
order boundary conditions that are constraint preserving
and control incoming gravitational radiation [31, 32], is
analyzed.

In [3], the performance of the Z4 constraint damping
scheme of [13] applied to Z4c in black hole and neutron
star spacetimes was studied in detail in spherical sym-
metry. The constraint damping scheme is effective, as
expected, in the non-linear system provided that the con-
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straint violation is sufficiently small and resolved on the
numerical grid; in the case of grid noise the combination
of artificial dissipation and damping helps to suppress
constraint violations. But it was found that care should
be taken in the choice of damping parameters. Success in
spherical tests does not necessarily guarantee that of 3D
simulations. Preliminary simulations with Z4c and Som-
merfeld BCs in 3D with pure box in box mesh refinement
showed poor behavior at the outer boundaries in long
evolutions. Therefore to try and bridge the gap between
the evolutions in spherical symmetry and full applica-
tions in astrophysical spacetimes, numerical stability of
Z4c in 3D evolutions was studied in [4], where numerical
stability of the linearized Z4c system coupled to the punc-
ture gauge with a novel discretization was shown, and
numerical evidence from the Apples-with-Apples [33–35]
tests was presented with both the standard and the novel
discretization. The importance of algebraic constraint
projection was highlighted, and limitations of the punc-
ture gauge for applications in cosmology were observed.

The first application of Z4c was the study of the end-
state of a collapsing neutron star with the puncture
gauge [36] in 1D and 3D simulations of spherical config-
urations. The puncture gauge handles collapsing matter
without the need for (matter or metric) excision because,
during the process, the shift condition pushes the spatial
coordinates off of the matter region. This study was fol-
lowed up with a similar discussion of dust collapse in [37].

A variation of the conformal decomposition, CCZ4,
was proposed in [38]. The difference between Z4c and
CCZ4 is that CCZ4 includes parametrized constraint ad-
dition that, for some choice, correspond to the origi-
nal four-covariant Z4 formulation. In the generalized
harmonic formulation it is known that the inclusion of
these non-principal terms can be problematic in some
test cases [39], but constraint growth can be mitigated
by the use of constraint damping, which is the approach
of [38]. For a particular choice of the constraint addition
parameters not corresponding to the four-covariant Z4
system, evolutions of binary black hole spacetimes were
presented and shown to reduce Hamiltonian constraint
violation, by a factor of around four or five (see Fig. 4
of [38]), relative to such simulations for the BSSNOK
formulation. On the other hand, in the Z4c system non-
principal constraint addition that makes the equations
of motion as close as possible to those of the BSSNOK
formulation whilst still obtaining the desired PDE prop-
erties in the constraint subsystem is chosen. It would be
interesting to know in more generality how the addition
of non-principal constraints affects their evolution.

In this paper we present the first long-term 3D evolu-
tions of black hole and neutron star binaries with the Z4c
formulation. In section II the Z4c equations of motion
and boundary conditions are presented. We then dis-
cuss, in section III, changes to the BAM numerical code
since [40]. In particular we describe the implementation
of spherical patches for the wave zone [41] and the radi-
ation controlling constraint preserving conditions of [5].

In sections IV and V we present our simulations of single
and binary compact objects, respectively. Appendices A
and B contain, respectively, descriptions of the spherical
patch implementation and evolution of Teukolsky waves,
the latter of which we use for code validation. We con-
clude in section VI.
We use units G = c = 1 throughout, unless otherwise

stated.

II. THE Z4C EQUATIONS OF MOTION

In this section we summarize for completeness the Z4c
equations of motion, constraints, and boundary condi-
tions. The evolved quantities of the formulation are the
conformal spatial metric γ̃ij , the lapse α, the shift vec-
tor βi, the conformal tracefree part of the extrinsic curva-
ture Ãij , the constraint Θ and, up to constraint addition,

the trace of the extrinsic curvature K̂ = K−2Θ. Finally
we evolve the the conformal contracted Christoffel sym-
bols Γ̃i, which are initially set according to Γ̃i = −∂j γ̃ij .
Evolution equations. The equations of motion for the

Z4c formulation are

∂tχ =
2

3
χ
[

α (K̂ + 2Θ)−Diβ
i
]

, (1)

∂tγ̃ij = −2α Ãij + βk∂kγ̃ij + 2 γ̃k(i∂j)β
k

− 2

3
γ̃ij∂kβ

k , (2)

for the metric components,

∂tK̂ = −DiDiα+ α

[

ÃijÃ
ij +

1

3
(K̂ + 2Θ)2

]

+ 4 π α [S + ρ ] + ακ1 (1− κ2)Θ + βi∂iK̂ , (3)

∂tÃij = χ[−DiDjα+ α (Rij − 8 π Sij)]
tf

+ α
[

(K̂ + 2Θ)Ãij − 2 Ãk
iÃkj

]

+ βk ∂kÃij + 2 Ãk(i ∂j)β
k − 2

3
Ãij ∂kβ

k , (4)

for the extrinsic curvature components and

∂tΓ̃
i = −2 Ãij ∂jα+ 2α

[

Γ̃i
jk Ã

jk − 3

2
Ãij ∂j ln(χ)

−1

3
γ̃ij ∂j(2 K̂ +Θ)− 8 π γ̃ij Sj

]

+ γ̃jk ∂j∂kβ
i

+
1

3
γ̃ij∂j∂kβ

k + βj ∂jΓ̃
i − (Γ̃d)

j ∂jβ
i

+
2

3
(Γ̃d)

i ∂jβ
j − 2ακ1

[

Γ̃i − (Γ̃d)
i
]

, (5)

∂tΘ =
1

2
α
[

R− Ãij Ã
ij +

2

3
(K̂ + 2Θ)2

]

− α
[

8 π ρ+ κ1 (2 + κ2)Θ
]

+ βi∂iΘ , (6)

for the remaining variables. Here the intrinsic curvature
associated with the ADM metric γij = χ−1γ̃ij is written
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as

Rij = Rχ
ij + R̃ij , (7)

R̃χ
ij =

1

2χ
D̃iD̃jχ+

1

2χ
γ̃ijD̃

lD̃lχ

− 1

4χ2
D̃iχD̃jχ− 3

4χ2
γ̃ijD̃

lχD̃lχ, (8)

R̃ij = −1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + (Γ̃d)
kΓ̃(ij)k

+ γ̃lm
(

2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj

)

, (9)

and we employ the shorthand

(Γ̃d)
i = γ̃jkΓ̃i

jk. (10)

The derivative operator Di is that compatible with the
ADM metric. Numerical evolutions are performed with
a particular flavor of the puncture gauge [17, 18, 21, 22]

∂tα = −α2µLK̂ + βi∂iα, (11)

∂tβ
i = α2µS Γ̃

i − ηβi + βj∂jβ
i . (12)

Constraints. The system is subject to constraints

Θ = 0, 2Z̃i = Γ̃i − (Γ̃d)
i = 0, (13)

H = R+ ÃijÃ
ij − 2

3 (K̂ + 2Θ)2 − 16πρ = 0,
(14)

M̃ i = ∂jÃ
ij + Γ̃i

jkÃ
jk − 2

3 γ̃
ij∂j(K̂ + 2Θ)

− 2
3 Ã

ij∂j(logχ)− 8πγ̃ijSj = 0, (15)

ln(det γ̃) = 0, γ̃ijÃij = 0, (16)

of which the latter two, the algebraic constraints, are
explicitly imposed in numerical integration.
Boundary conditions. When the spacetime manifold

has a smooth boundary with spacelike unit (with respect
to the ADM metric) normal si we choose for the trace of
the extrinsic curvature the boundary condition

∂tK̂ =̂− α
√
µL

(

∂sK̂ + 1
r
K̂
)

− ∂A∂Aα+ βi∂iK̂ , (17)

where =̂ denotes equality only in the boundary, we use
the shorthand ∂s ≡ si∂i and we use upper case Latin
indices A,B,C to denote those that have been projected
with the operator qij = δij − sisj . We can alterna-
tively write this as a second order derivative boundary
condition on the lapse. Note that in the expressions for
the boundary conditions we never commute the unit nor-
mal, projection operator qij , or physical projection op-

erator q(P ) kl
ij = qkiq

l
j − 1

2qijq
kl through any derivative

operator. For example, ∂tΓ̃
s = si∂tΓ̃

i. So we have

∂tv
i = si∂tv

s + qiA∂tv
A, (18)

∂tSij = sisj∂tSss +
1
2qij∂tSqq + 2s(iqj)

A∂tSsA

+ q(P )AB
ij∂tS

TF
AB , (19)

for vectors vi and symmetric tensors Sij , respectively.
We refer to the various components of the time deriva-
tive under this 2 + 1 decomposition as the scalar, vector
and tensor sectors in the obvious way. If we are given
conformally flat initial data with βisi = 0 and α2µS is
constant, as is always the case for the data evolved in
this work, we choose the boundary conditions

∂tΓ̃
s=̂ η βi∂iΓ̃

s +
η

α2µS

βiβj∂i∂jβ
s

+
η

α2µS

βi[∂iβ
j ]∂jβ

s − η2

α2µS

βi∂iβ
s , (20)

for the longitudinal part of the shift. We take

∂tΘ=̂ − α∂sΘ+ βi ∂iΘ , (21)

∂tÃss =̂ − αχ

{

2 D̃iÃis −
2

3
D̃s(2 K̂ +Θ)− 2

3
Rss

+
2

3
χ∂s

[

Γ̃s − (Γ̃d)
s
]

− 1

3
χ∂A

[

Γ̃A − (Γ̃d)
A
]

+
1

3
Rqq − 3 D̃i(lnχ)Ãis − κ1

[

Γ̃s − (Γ̃d)s

]

}

+ α
[

Ãss (K̂ + 2Θ)− 2 Ãi
s Ãis

]

− 2

3
χDsDsα

+
1

3
χDADAα+ LβÃss , (22)

for constraint preservation in the scalar sector, where for
example D̃i = γ̃ij∂j when acting on scalars, so that the
tilde denotes that the conformal metric was used in the
contraction. In the vector sector we have

∂tΓ̃
A =̂− α

√

µ̃ST

[

∂sΓ̃
A − ∂̃AΓ̃s

]

+ ∂̃B∂Bβ
A

+
4

3
∂̃A∂sβ

s +
1

3
∂̃A∂Bβ

B − 2

3
α ∂̃A(2K̂ +Θ)

+ βj∂jΓ̃
A , (23)

for the gauge, and

∂tÃsA =̂ − αχ

{

D̃iÃiA − 2

3
D̃AK̂ − 1

3
D̃AΘ̃

− 3

2
D̃i(lnχ) ÃiA − 1

2
κ1

[

Γ̃A − (Γ̃d)A

]

−RsA +
1

2
χ qAi ∂s

[

Γ̃i − (Γ̃d)
i
]

}

− χDADsα

+ α
[

ÃsA (K̂ + 2Θ)− 2 Ãi
AÃis

]

+ LβÃsA ,

(24)

for the constraints, where we denote projected indices by
upper case characters starting from the beginning of the
alphabet. Here we denote Rqq = qijRij . Finally we take

∂tÃ
TF
AB =̂ − α

[

D̃sÃAB − D̃(AÃB)s +
1

2
Ãs(AD̃B)(lnχ)

− 1

2
ÃABD̃s(lnχ) + Ãi

A ÃiB − 2

3
ÃAB (K̂ + 2Θ)

]TF

− χDAD
TF
B α+ LβÃ

TF
AB , (25)
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for the tensor sector. The boundary conditions in the
scalar and vector sectors are designed to absorb outgoing
constraint violations. The last of the conditions (25) are
equivalent to the requirement that Ψ0 =̂ 0 (see [31, 32, 42]
for more details). This condition could also be used with
the BSSNOK formulation, but for constraint preservation
more work may be needed to adapt the other conditions.
In the development of this work we have tried alternative
conditions on K̂ and Γ̃i with only small differences in the
outcome. We do not claim that these gauge boundary
conditions are optimal. In our numerical experiments
we sometimes also employ the more naively constructed
Sommerfeld conditions

∂tK̂=̂−√
µL α

(

∂sK̂ + 1
r
K̂
)

+ βi∂iK̂ , (26)

∂tΓ̃
s=̂− 2√

3

√
µS α

(

∂sΓ̃
s + 1

r
Γ̃s

)

+ βi∂iΓ̃
s , (27)

∂tΓ̃
A=̂−√

µS α
(

∂sΓ̃
A + 1

r
Γ̃A

)

+ βi∂iΓ̃
A , (28)

∂tΘ=̂− α
(

∂sΘ+ 1
r
Θ
)

+ βi∂iΘ , (29)

∂tÃij=̂− α
(

∂sÃij +
1
r
Ãij

)

+ βk∂kÃij . (30)

Note that since the trace constraint on Ãij is constantly
imposed, the last of these conditions (30) constitute only
five boundary conditions. Since the Z4c formulation cou-
pled to the puncture gauge has ten incoming character-
istics in the weak field region, these conditions are not
overdetermined, in contrast to the standard conditions
used with BSSNOK with box-in-box mesh refinement.
Regardless of the formulation, or whether Sommerfeld
conditions are taken for every evolved field or just the
subset K̂, Γ̃i,Θ, Ãij , they are not constraint preserving
and do not control incoming gravitational radiation.

III. NUMERICAL METHOD AND

PARAMETERS

In this section we describe the numerical technique em-
ployed in this work. We use the BAM code [40, 43–
45], a Cartesian-based adaptive mesh refinement (AMR)
infrastructure optimized for the evolution of BBH and
BNS spacetimes in 3+1 GR. Vacuum spacetime evolu-
tions have also been performed with the AMSS-NCKU
code [46], which employs the same methods but with an
independent implementation.
AMSS-NCKU and BAM basics. Before discussing the

upgrades to the codes used in this work, we summarize
the main points of the numerical methods used by AMSS-
NCKU and BAM. The evolution algorithm is based on
the method-of-lines with explicit Runge-Kutta (RK) time
integrators (in this work we employed fourth order RK for
vacuum spacetimes and third order RK for non-vacuum
spacetimes) and finite differences approximation of the
spatial derivatives. The numerical domain is made of a
hierarchy of cell-centered nested Cartesian grids (nested
boxes centered on the punctures [45, 47]). The hierarchy
consists of L levels of refinement labeled by l = 0, ..., L−1.
A refinement level consists of one or more Cartesian grids

with constant grid spacing hl on level l. A refinement fac-
tor of two is used such that hl = h0/2

l. The grids are
properly nested in that the coordinate extent of any grid
at level l, l > 0, is completely covered by the grids at
level l − 1. Some of the mesh refinement levels can be
dynamically moved and adapted during the time evolu-
tion according to the technique of “moving boxes”. The
Berger-Oliger algorithm is employed for the time step-
ping [48], though only on the inner levels [44]. Inter-
polation in Berger-Oliger time stepping is performed at
second order. A Courant-Friedrich-Lewy factor of 0.25 is
employed in all the runs. We refer the reader to [40, 46]
for more details.

Numerical treatment of the field equations. The BSS-
NOK and Z4c equations of motion are implemented
numerically in the same way. Fields derivatives are
approximated by centered finite difference expressions
(fourth order in this work), except for the shift advection
terms which are instead computed with lop-sided expres-
sions [40, 49–51]. Algebraic constraints are enforced af-
ter every time step in BAM and after every Runge-Kutta
substep in AMSS-NCKU. The gauge parameters in our
numerical simulations are fixed to µL = 2/α, µS = 1/α2

and η = 2/MADM, unless otherwise stated. Note that
this is not a choice of parameters for which the calcu-
lations of [5] are expected to guarantee well-posedness
of the initial boundary value problem because we have
not carefully taken µS in such a way as to avoid either
some generically distinct speeds in the system clashing,
or sets of measure zero on which the evolution equations
may be only weakly hyperbolic. In earlier studies [38]
the choice c > 0 with µS ≃ c/α2 was not found to
greatly affect the behavior of the scheme in applications.
As highlighted in Appendix A of [4] it is challenging to
identify problems caused by weak hyperbolicity in appli-
cations, even if the system is weakly hyperbolic every-
where in space. If the degeneracy happens on sets of
measure zero we therefore expect that in practical ap-
plications it will be nearly impossible to identify as the
cause of any concrete numerical problem, although in
principle such degeneracy should of course be avoided.
In the Z4c simulations presented in this work the con-
straint damping scheme with the values κ1 = 0.02 and
κ2 = 0 is used. These values have been suggested in
the detailed 1D numerical analysis of [3]. Preliminary
exploratory runs in 3D indicated the combined use of
artificial dissipation and constraint damping terms is im-
portant (in some cases essential) to avoid instabilities at
the interfaces between boxes and spherical patches, thus
confirming some of the expectations from the 1D runs
(see also the discussion in Appendix A). OpenMP sup-
port in terms of a hybrid OpenMP/MPI implementation
has been added inside BAM to key functions with high
computational cost, such as evolution equations, interpo-
lation and wave extraction, which improves the efficiency
of memory management of the code.

Hydrodynamics treatment (BAM only). The algo-
rithm implemented for the general relativistic hydro-
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dynamics (GRHD, referred to hereafter as “matter”
for brevity) is a robust high-resolution-shock-capturing
(HRSC) method [43] based on primitive reconstruction
and the Local-Lax-Friedrichs (LLF) central scheme for
the numerical fluxes, see e.g. [52]. Metric variables
are interpolated in space by means of sixth order La-
grangian polynomials, while matter ones by a fourth or-
der weighted-essentially-non-oscillatory scheme. Primi-
tive reconstruction is performed here with the 5th order
WENO scheme of [53], which has been found important
for long term accuracy [54, 55].

Spherical patches for the wave zone. Both the AMSS-
NCKU and BAM codes have been upgraded for this
work. The Cartesian box-in-box mesh refinement
has been extended with spherical patches (“cubed
spheres”) [41, 56, 57] for the wave zone. They provide
us with adapted coordinates for waves, and, as demon-
strated in appendix A, improved accuracy in GW extrac-
tion. The presence of a spherical outer boundary further-
more allows a straightforward implementation of BCs (ei-
ther Sommerfeld or CP) due to the absence of corners.
When the spherical patches are being used the Carte-
sian moving boxes, as previously implemented, are em-
ployed only in the strong-field region for the simulation
of the binary orbital motion, or a collapsing star, while
the propagation of gravitational and possibly also electro-
magnetic waves distant from the source is simulated on
cubed spheres [41, 57] (see also [58–60]). The technique
is based on the covering of the sphere by six patches, each
patch having local coordinates that are then mapped to
Cartesian ones in such a way to avoid pathologies as-
sociated with standard spherical polar coordinates. As
opposed to the box-in-box setup, spherical patches al-
low constant radial resolution with linear scaling in the
number of grid points, while the boxes result in effec-
tively constant angular resolution as well. In practice,
the l = 0 Cartesian box is substituted with six patches
overlapping with the Cartesian box at level l = 1 and
among themselves. The resolution of h1 is also the radial
resolution employed in the patches. A grid configuration
is specified by the number of: i) levels L, ii) grid points
in each non-moving box per direction n, iii) grid points
in each moving box per direction nmv, iv) the coarsest
box per direction h1 = h, v) grid points in each patch, nr

and nθ, φ, which are typically chosen as nθ, φ = n/2. More
details on the implementation are given in Appendix A).
Finally, GWs are extracted using the Newman-Penrose
formalism, in particular by computing the ψ4 scalar on
coordinate spheres in the wave zone (see Sec. III of [40]).
Mode decomposition of ψ4 is performed by projections
onto spin weighted spherical harmonics and integration
on the spheres with a Simpson algorithm.

Boundary conditions. The radiation controlling, con-
straint preserving boundary conditions (17-25) are im-
plemented according to the following simple recipe. In-
side every Runge-Kutta substep Lagrange extrapolation,
of sixth order in our experiments, is used to populate
enough ghostzones in a neighborhood of the boundary,

so that the same finite difference and dissipation oper-
ators used in the bulk may be evaluated at the bound-
ary. The metric components α, βi, χ, γ̃ij are updated at
the boundary with their standard equations of motion
from the bulk, whereas the boundary conditions (17-
25) are used in place of the standard equations of mo-

tion for K̂, Γ̃i,Θ, Ãij . Since the evolution system is not
symmetric hyperbolic, at least inside a large class of
symmetrizers [4], with the standard puncture gauge, we
can not rely on a discrete energy method to guaran-
tee numerical stability, even in the linear constant co-
efficient approximation. We will see however that this
implementation of the boundary conditions is numeri-
cally well-behaved in the experiments we perform. Som-
merfeld boundary conditions are implemented in a sim-
ilar way; instead of replacing the equations of motion
for K̂, Γ̃i,Θ, Ãij by (17-25) we choose (26-30) and like-
wise for BSSNOK, but without the Θ boundary condi-
tion.

IV. LONG-TERM EVOLUTION OF SINGLE

COMPACT OBJECTS

In this section we present 3D evolutions of single iso-
lated compact objects and compare systematically BSS-
NOK and Z4c runs. The main focus is on the behavior of
the Hamiltonian constraint violation, due to truncation
and artificial BCs errors. We assess long term stability of
the Z4c formulation in 3D evolutions of puncture black
holes (both non-spinning and rapidly spinning) and com-
pact stars, and demonstrate an overall improvement in
constraint preservation and in some instances accuracy
of physical quantities (absolute numerical errors at finite
resolution) when the Z4c formulation is employed. The
spurious effect of Sommerfeld BCs and the improvement
obtained with the new BCs are discussed in detail. Our
results for spherically symmetric spacetimes are inter-
preted in view of previous results obtained in [1, 2] by
means of 1D simulations. The use of Z4c does not signif-
icantly improve the computation of the gravitational ra-
diation emitted by a rapidly spinning Bowen-York punc-
ture [61]. In particular we find that in both cases we do
not obtain a clear pointwise convergence of the waves at
the resolutions used in these tests. This result is possibly
related to a lack of resolution, or to the use of punctures
in the black hole description, rather than to deficiencies
in either formulation.

A. Non-spinning puncture

Evolutions of a non-spinning puncture of mass M = 1
with BSSNOK and Z4c and Sommerfeld and constraint
preserving BCs are compared. We confirm qualitatively
the results obtained with 1D simulations [1, 2]. In partic-
ular the new BCs reduce significantly the spurious con-
straint violation incoming from the boundary in the case
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FIG. 1: Constraint violations in space at t = 75M (up-
per panel) and t = 1000M (lower panel) in an evolution of
a Schwarzschild puncture. At t = 75M we see an incoming
pulse of Hamiltonian constraint violation in both the BSS-
NOK and Z4c evolutions. The fact that the violation prop-
agates in the BSSNOK evolution test is not in contradiction
with the PDE properties of the BSSNOK constraint subsys-
tem, because the Hamiltonian constraint itself is not a zero-
speed characteristic variable of the constraint subsystem. At
this resolution, the incoming constraint violation with the Z4c
constraint preserving boundary conditions is roughly three
times smaller than that of Z4c with the Sommerfeld bound-
ary condition, but the violations with the constraint preserv-
ing boundary conditions converge away with resolution whilst
those of the Sommerfeld conditions do not. In the lower panel
we can see the effect that the zero-speed mode of the BSS-
NOK constraint subsystem has on the Hamiltonian constraint
violation at the outer boundary at late times.

of Z4c. The largest single constraint violation however
occurs at the puncture, where both formulations give
similar results.

Setup. We employ five levels of box-in-box mesh re-
finement, and attach the shells at r ∼ 21.5M . Each
box has n = 40, and the resolution of level l = 5
is h5 = 0.0625M per direction. We choose nθ, φ = 40
angular and nr = 40 radial points in each spherical patch
so that the outer boundary is located at r = 58.5M . No
symmetries are imposed. The puncture is evolved with
a precollapsed lapse as discussed in [40]. In real applica-
tions the outer boundary is typically placed further out,
perhaps at 500M or 1000M . Although this does not
solve issues caused by the boundary in principle, and is
not an efficient treatment, in practice it reduces some of
the features we will encounter here. By design however,
in these tests, we aim to see the behavior of the constraint
preserving conditions.

Constraint violation in the strong-field region. In each
test we find that the Hamiltonian constraint violation in

a neighborhood of the puncture is large, taking a maxi-
mum value, at this resolution of∼ 103 at around t = 5M ,
before being rapidly suppressed to ∼ 3. These values
should not be taken particularly seriously because of the
finite regularity of the solution at the puncture. Since
much of the physics is concentrated around the puncture
large numerical error and therefore large constraint vio-
lation are to be expected in this region. These violations
converge away more slowly than others in the simula-
tions. The Z4c evolutions do not reduce this violation.
As observed in spherical symmetry (see Fig. 10 of [3]) we
see small amounts of the puncture constraint violation
propagating out of the horizon with either formulation.
Unsurprisingly, the rectangular mesh-refinement bound-
aries in the 3D evolutions obscure the feature. The Z4c
evolutions do not qualitatively affect this behavior, which
seems to improve with resolution.
Constraint violation at large radii. In Fig. 1 the

Hamiltonian constraint violation on the spherical shells
in space at times t = 75M and t = 1000M is plotted.
We find that the incoming constraint violation of the Z4c
Sommerfeld evolution is comparable to that of the BSS-
NOK evolution, although at late times most of the con-
straint violation caused by the outer boundary has been
absorbed by the boundary; the problem is that the con-
straint violation induced by the Sommerfeld boundary
condition, with either BSSNOK or Z4c, does not converge
away with resolution. Note that comparing the BSSNOK
Sommerfeld evolution with the Z4c CPBC data is not
entirely fair, because there is every possibility that con-
straint preserving boundary conditions for BSSNOK, see
for example [23], could also be implemented. In any case,
it is evident that the Z4c constraint preserving bound-
ary conditions are helpful in reducing this violation. It
is possible to reduce further the constraint violation by
using a large constraint damping term, as for example
in [38], but in spherical symmetry we found that values
of κ1 > 0.1M can adversely affect the dynamics of the
evolutions with Z4c at late times. We are therefore wary
of using large damping parameters, but make no claim
about the effect of such damping terms on other confor-
mal decompositions of Z4.

B. Non-rotating star

Our comparison of the new three dimensional numerics
with earlier findings in spherical symmetry is completed
by the evolution of a single stable neutron star. We find
Z4c advantageous in reducing constraint violation that
accumulates in grid regions occupied by the matter. In
particular the L2 norm of the Hamiltonian constraint is
found to be three orders of magnitude smaller for stan-
dard resolutions. The spurious ringing effect due to Som-
merfeld BCs pointed out in spherical symmetry is visible
also in 3D simulations, but does not dominate the er-
ror budget at typical resolutions. In our earlier study [1]
we also evolved an unstable single star in a so-called mi-
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gration test. We suppress such an experiment here; our
tests of strong field dynamics are instead performed with
binary spacetimes in section V.

Setup. We use three levels of box mesh refinement,
and attach the spherical grids at r ∼ 18M . The lowest
resolution runs use n = 48, the star is completely covered
by the innermost grid level l = 2 with a resolution of
h2 = 0.36M per direction. We choose nθ, φ = 48 angular
and nr = 48 radial points in each spherical patch so that
the outer boundary is located at r = 50M . Additional
runs at twice the resolution (n = 96) are performed. No
symmetries are imposed. The star is described by a Γ = 2
polytropic EOS with gravitational massM = 1.4M⊙ and
radius 5.7M, which is exactly the same model evolved
in [1] in bespoke spherical symmetry. The evolutions
are characterized by oscillations triggered by truncation
errors.

Constraint violation and truncation error dynamics.
The key findings of the earlier numerical experiments
in spherical symmetry were: (i) in the BSSNOK re-
gion containing matter, the Hamiltonian constraint in-
side the star grows throughout the evolution, whereas in
the Z4c evolution it does not; (ii) the BSSNOK simu-
lations have larger oscillations (larger truncation errors)
than Z4c; (iii) if Sommerfeld BCs and sufficient resolu-
tion are employed, incoming modes from the boundary
perturb the star amplifying unphysically the oscillations
(see Fig. 1 [2]). In 3D simulations we find some simi-
lar features. The growth of the Hamiltonian constraint
is the dominant one, because of lack of resolution the
oscillations are not significantly affected, and the effect
of Sommerfeld BCs is less pronounced but visible. The
norm of the Hamiltonian constraint is plotted as a func-
tion of time in the left panel of Fig. 2. By the end of the
simulation the constraint violation in the Z4c evolution
is about two orders of magnitude smaller than the BSS-
NOK violation and interestingly smaller even than the
initial violation. The behavior is similar to that shown
in Fig. 5 of [1]. We will demonstrate the growth of the
Hamiltonian constraint also pointwise on the grid in sec-
tion V, in the case of binary spacetimes. Considering
momentum constraint violations one finds, as in spheri-
cal symmetry, that the differences are far less dramatic.
The main difference in this case is that the momentum
constraint violations with BSSNOK are more dynamical,
and slightly larger, although this is probably just because
of reflections from the Sommerfeld outer boundary con-
dition, which propagate many times over the computa-
tional domain. With either BSSNOK or Z4c, the largest
persistent violation in the momentum constraint occurs
at the surface of the star. In the right panel of Fig. 2
we show the oscillations of the central density during the
simulation time. It is not possible to distinguish signif-
icant differences, probably because of the low resolution
employed. The large effect seen in [1] was with a resolu-
tion ten times higher than here.

The Sommerfeld boundary kick. In the left panel of
Fig. 2 one sees the effect of the Sommerfeld BCs with Z4c

on the norm of the Hamiltonian constraint. As in the sin-
gle puncture evolution, roughly when the outer boundary
becomes causally connected to the central body, there is
a large incoming pulse of constraint violation. This pulse
perturbs the central object, but unlike in the spherical
case (see Fig. 1 of [2]), the violation is not the dominat-
ing effect on the dynamics. In the right panel of Fig. 2
we do not see a significant jump in the central density.
A blow-up of the central density plot is however shown
in Fig. 3, together with data from a shorter run at twice
the resolution. The figure demonstrates that at approx-
imately 60M the star is slightly perturbed by the Som-
merfeld BCs. More importantly, the figure shows that
the size of the perturbation is not converging away with
resolution, whereas the amplitude of the oscillations does,
so we expect this error to be dominant at higher resolu-
tions. By contrast CPBCs are characterized by smaller
reflections. The Hamiltonian constraint violations prop-
agating out from the star appear to converge at approxi-
mately second order, in line with our expectation for our
hydrodynamics scheme. This rate of convergence is main-
tained by the constraint preserving boundary conditions
(see also Fig. 5 of [2]).

C. Rapidly spinning puncture

Here we compare the evolutions of a single Bowen-York
spinning puncture [61–63] with spin a = S/M2 ≃ 0.92.
We choose such a comparatively large value of the spin
parameter (see also [64]) to test performance for large val-
ues of the conformal factor. For a ≃ 0.92 the puncture
contributes only 24% of the mass, while the remainder
is in the Brill wave contribution of the conformal factor.
Both formulations give comparable results in terms of
stability, the norms of the constraint violation, the ma-
jority of which occurs at a few points near the puncture,
and gravitational waves. With either system we observe
that pointwise fourth order convergence is not achieved
in the GWs at the resolutions at which we performed
the tests, although global errors scale between third and
fourth order. We expect that this behavior is related to
inaccuracies caused either by lack of resolution, or intrin-
sic to the puncture description of the black hole.
Setup. We use five levels of box mesh refinement, and

attach the spherical grids at r ∼ 50M . In the lowest res-
olution runs each box has n = 48 points per direction,
and the resolution of level l = 5 is h = 0.065M . We
choose nθ, φ = 48 angular and nr = 48 radial points in
each spherical patch so that the outer boundary is lo-
cated at r = 150M . Runs at resolutions n = 64, 96, 128
(with the grid spacing scaled in order to maintain the
same grid setup) are performed. Bitant symmetry is im-
posed. The initial data for this test is constructed in
with an ad-hoc method, used elsewhere in the literature,
in which the BAM spectral binary puncture initial data
solver is applied to a single puncture with large spin and
another, unboosted and unspinning, located very close
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FIG. 2: The L2 norm of the Hamiltonian constraint violation (left) and the central density (right) as a function of time for
evolution of a single stable star with polytropic EOS of index Γ = 2. The Hamiltonian constraint violation is approximately two
orders of magnitude smaller at the end of the experiment when using Z4c. With Z4c, the Sommerfeld boundary conditions (26-
30) cause large violation when the outer boundary becomes causally connected to the central body. The dynamics of all of the
evolutions, the oscillations in the central density, are very similar. The star rings at its radial mode proper frequency.
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FIG. 3: A closer inspection of the oscillation of the central
density at early times, both at the original and twice the
resolution, for the Z4c evolutions. The constraint violation
from the Sommerfeld boundary causes a jump in the central
density, as observed in earlier work [1, 2]. This effect does not
converge away with resolution, but at these resolutions is not
the dominant effect.

by with a relative uncorrected mass of 10−12. There is
no sign of the second puncture on the grid. Problems
with convergence do however make this construction a
point to address.

Basic features of the dynamics. The (2, 0) multipo-
lar mode of r ψ4 emitted during the evolution of this

initial data are shown in Fig. 4, for the lowest resolu-
tion runs. The waves lie on top of each other; as reso-
lution is increased they converge to each other. At late
times, t = 350M , a boundary effect is visible in the BSS-
NOK data. The BCs of Z4c improves this behavior signif-
icantly. Note that t = 350M corresponds roughly to the
time needed by a wave initially near the puncture to prop-
agate to the outer boundary, be reflected from the strong
field region and travel out once again to the extraction
sphere at 90M . No feature is visible as the wave passes
from the outer boundary at around t = 210M , perhaps
because ψ4 is by construction insensitive to incoming
gravitational radiation. We computed the ADM mass in-
tegral (see Eq. (32) later) and find that in the BSSNOK
runs a drift begins exactly when the outer boundary be-
comes causally connected with each observer, although
this drift is then swamped by the effect of the outgoing
gravitational waves. The effect of the Sommerfeld bound-
ary condition on physical quantities is discussed in more
detail for binary neutron star simulations later.

Constraint violation. As in the non-spinning case the
largest Hamiltonian constraint violation is at the punc-
ture. The evolution of the L2 norm of the Hamiltonian
constraint is shown in the top panel of Fig. 5, for the low-
est resolution runs. The results from Z4c and BSSNOK
are comparable. At time t ∼ 220M BSSNOK data are
affected by the Sommerfeld boundary conditions. The
bottom panel of Fig. 5 shows the Hamiltonian violation
in space at t ∼ 220M . The largest violation is at the
puncture and of similar magnitude, but far from the grid
origin Z4c violation behaves better.

Convergence. We looked at self convergence of the
waves presented in the upper panel of Fig. 4. At early



9

0 50 100 150 200 250 300 350 400
−0.04

−0.02

0

0.02

0.04

t/M

r 
ψ

20

 

 

Z4c
BSSNOK

50 100 150 200 250
−1

−0.5

0

0.5

1
x 10

−3

t/M

64
3 −

96
3

50 100 150 200 250
−2

−1

0

1

2
x 10

−4

t/M

96
3 −

12
83

FIG. 4: Comparison of the waves with Z4c and BSSNOK
from the single spinning puncture. The upper panel shows
the (2, 0) multipole mode of the real part of r ψ4 emitted
during the evolution. The data is taken from the lowest reso-
lution (483 points per direction) test. The Z4c and BSSNOK
waves agree extremely well until about t ∼ 300M , roughly the
time when the incoming constraint violation from the BSS-
NOK Sommerfeld boundary condition is reflected from the
central body and reaches the extraction sphere at r = 90M .
The lower two panels show the difference between the same
quantity for the 64 (96) and 96 (128) point runs, respectively.
The two systems are almost perfectly comparable.

times, up to t ∼ 100, only second order pointwise con-
vergence is observed with either BSSNOK or Z4c. Later,
the errors scale at third-to-fourth order rate in magnitude
(norm) but pointwise convergence is lost. The use of ei-
ther more resolution, properly constructed initial data,
or simply more refinement levels, i.e. high resolution at
the puncture, might improve this behavior. In [40] sim-
ilar convergence tests were performed but with a lower
spin a = 0.194, with two more, a total of seven, levels of
mesh refinement, but with a smaller range in resolutions,
and a lower maximum resolution in a neighborhood of
the puncture. Although the plots presented in [40] (see
Fig. 6) are scaled for fourth order convergence, the differ-
ence in resolutions makes it hard to distinguish between
different convergence factors with confidence. The earlier
study also found pointwise convergence is not maintained
in the gravitational waves, thus our findings are consis-
tent. A detailed discussion of spin and higher order finite
differencing can be found in [64].

V. EVOLUTION OF COMPACT BINARY

INITIAL DATA

In this section we assess the performance of the Z4c for-
mulation in the simulation of the merger of two compact
objects. Two standard initial configurations are studied,
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FIG. 5: Hamiltonian constraint violation for the spinning
puncture evolution. As in the upper panel of Fig. 4 data is
taken from the lowest resolution (n = 48 points per direction)
test. The upper panel shows the L2 norm of the constraint
as a function of time. The jump in violation at around t =
200M in the BSSNOK data appears to be caused by the
Sommerfeld boundary conditions, and does not converge away
with resolution. The bottom panel shows the Hamiltonian
violation in space at time t = 220M , approximately at the
peak of the jump in the upper plot, in the near-field (l = 2
box) region.

with a set of approximately 60 simulations, in detail: an
equal-mass, non spinning, black hole binary (BBH), and
an equal-mass, irrotational neutron star binary (BNS).
We discuss evolutions of about three orbits and compare
systematically the results from several convergence series
with the corresponding ones obtained with BSSNOK.
Presentation rubric. In the presentation of the re-

sults, we describe the main features of the dynamics, then
the Hamiltonian constraint violations are compared and
finally the accuracy of the GWs and other physical quan-
tities are discussed in relation with the Hamiltonian con-
straint violations. For brevity we discuss only the main
emission channel, the (2, 2) multipole of the radiation. As
is standard, the (complex) ψ4 projection r ψ4

22, extracted
on a coordinate sphere Sr of radius r, is decomposed into
amplitude and phase according to

r ψ4
22 = A22 e

−iφ22 . (31)

On the same coordinate sphere we compute the integral

EADM(r) =

∫

Sr

dsl
√
γ γijγ

kl (γik,j − γij,k) , (32)

the spatial metric γij = χ−1γ̃ij which approximately rep-
resents the ADM energy. The ADM energy (or mass) of
the system is given by

MADM = lim
r→∞

EADM(r) , (33)
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and it is a conserved quantity. On a given sphere in
the wave zone, however, EADM(r) is expected to devi-
ate from MADM due to the gravitational energy radiated
away from the sphere,

Erad(r) =
r2

16π

∫ t

0

dt′
∫

dΩ

∣

∣

∣

∣

∣

∫ t′

0

dt′′ψ4

∣

∣

∣

∣

∣

2

. (34)

Note that the outer integral in Eq. (34) is performed
by a simple Riemann sum. The angular momentum is
computed with similar ADM-like integrals, see e.g. [65]
and references therein, but note that this quantity re-
mains ambiguously defined (gauge dependent) also in the
asymptotic limit r → ∞ for a generic asymptotically
flat spacetime. We stress that the observed differences,
up to outer boundary effects, seem to converge to the
same continuum solution. They are however significant
at fairly high resolutions in most of the cases we stud-
ied. Particularly relevant are the differences in Hamilto-
nian constraint violation in the evolution of non-vacuum
spacetimes. We show evidence that these violations are
correlated with the quality of the numerical waveforms.
Convergence tests. Standard three level self-

convergence tests are performed using simulations at
different grid resolutions. These tests can be biased
by the choice of the triplet. As discussed in [55]
we consider only triplets in which i) the ratios be-
tween the low and medium and medium and high
resolutions are hL/hM ≃ hM/hH > 1 (ideally > 2);
and ii) the scaling factor is at least of order two,
s = (hpL − hpM )/(hpM − hpH) & 2, where p is the con-
vergence rate. We find that if these criteria are not
met then the measured convergence order from different
triplets is not consistent. Additionally, in our experience
we found it important to verify that the use of different
triplets gives consistent results. Even when the criteria
above are satisfied, different triplets can give differing
convergence factors. The result is acceptable if the rates
consistently improve as higher resolution triplets are
taken.
Initial data. Before discussing the results we sum-

marize the initial data and grids employed. Initial
data for BBHs are conformally flat puncture initial
data constructed using the Brandt-Brügmann puncture
method [66] with the BAM implementation of the spec-
tral puncture initial data solver [67]. The holes have
equal mass, an initial separation of d = 7M and are
placed in a quasi-circular configuration, on which the
Padé resummed eccentricity reduction algorithm of [68]
was applied. The initial data are interpolated onto
the AMSS-NCKU and BAM grids by eighth order La-
grangian barycentric interpolation. Initial data for BNS
assume a conformally flat metric and irrotational flow.
The initial separation is D ∼ 10M , ADM mass and an-
gular momentum areM = 3.005M⊙ and J = 8.3M2, re-
spectively. The stars are described by a Γ = 2 polytropic
EOS, each has baryonic mass of Mb = 1.625M⊙. These
initial data have been produced with the LORENE [69] li-

TABLE I: Summary of the grid configurations and of the runs.
Columns: name of the configuration, maximum refinement
level, moving levels are those with l > Lmv, number of points
per direction in the moving levels, resolution in the level l =
L−1, number of points per direction in the non-moving levels,
resolution in the levels l = 1 (radial resolution in the shells),
number of radial points in the shells, number of angular points
in the shells, outer boundary. Note that the resolution is
given in units of M for BBH runs, but in units of M⊙ for
BNS runs. Runs marked with “*” were reproduced with the
AMSS-NCKU code.

Name L Lmv nmv hL−1 n h1 nr nθ, φ rout

BBH0* 9 2 48 0.0182 72 2.33 865 24 2092

BBH1 9 2 56 0.0156 84 2.0 1008 28 2091

BBH2* 9 2 64 0.0137 96 1.75 1150 32 2089

BBH3 9 2 72 0.0122 108 1.556 1293 36 2088

BBH4* 9 2 80 0.0109 120 1.4 1436 40 2088

BBH5 9 2 88 0.0099 132 1.273 1581 44 2090

BBH6 9 2 96 0.0091 144 1.167 1718 48 2087

BBH7 9 2 112 0.0078 168 1.0 2008 56 2088

BBH8 9 2 128 0.0068 192 0.875 2293 64 2086

BBH9 9 2 144 0.0061 216 0.777 2579 72 2086

BNS0 4 1 48 0.5 72 2.0 212 24 482

BNS0r 4 1 48 0.5 72 2.0 412 24 885

BNS1 4 1 56 0.429 84 1.71 245 28 482

BNS1r 4 1 56 0.429 84 1.71 478 28 882

BNS2 4 1 64 0.375 96 1.5 278 32 481

BNS2r 4 1 64 0.375 96 1.5 545 32 881

BNS2a 4 1 64 0.375 96 1.5 678 32 1081

BNS3 4 1 72 0.333 108 1.33 312 36 477

BNS3r 4 1 72 0.333 108 1.33 612 36 877

BNS4 4 1 80 0.3 120 1.2 345 40 476

BNS4r 4 1 80 0.3 120 1.2 678 40 875

BNS5 4 1 88 0.273 132 1.09 378 44 475

BNS5r 4 1 88 0.273 132 1.09 745 44 875

BNS6 4 1 96 0.25 144 1.0 412 48 476

BNS6r 4 1 96 0.25 144 1.0 812 48 876

brary and have been already evolved in several places [43,
55, 70]. The data are interpolated onto the BAM grid by
spectral interpolation.
Grid setup. All of the runs performed at different res-

olutions are listed in Tab. I, together with details of the
grid setup. Note that several of the BBH simulations,
those marked with a “∗” in Tab. I, have been performed
with both the BAM and AMSS-NCKU codes, indicat-
ing, at least for the chosen grid settings, the robustness
of our findings. Note that our lowest resolution vacuum
setup BBH0 has maximum resolution comparable to that
of the highest resolution in the earlier BAM calibration
paper [40], although the boxes in [40] were larger which
also affects accuracy. The resolutions of the setups BBH2
and BBH3 are comparable to the ones of recent BBH
simulations [71, 72] that required only moderate accu-
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racy, while the maximum BBH9 resolution is similar to
what was used to obtain some of the BAM waveforms
for the NINJA-2 catalog [73]. The highest resolution in
the matter simulations BNS6, BNS6r approaches those in
the accurate runs of [54, 55]. Other details about gauge
conditions, damping parameters, etc. have been already
given in Sec. III.

A. Equal-mass, non-spinning BBH

Basic features of the dynamics. Let us discuss the
evolution of BBH initial data. The black holes evolve
for about 2.5 orbits before merging, radiating energy and
angular momentum in gravitational waves. In Fig. 6 the
puncture tracks are plotted for the grid BBH2 in Tab. I.
The gravitational waves have exactly the same basic pro-
file, but unlike in the evolution of a single spinning punc-
ture (see Fig. 4) they are visually distinguishable, with
the absolute maximum of the (2, 2) multipole mode of the
real part of r ψ4 occurring, approximately 2.2M , earlier
in the BSSNOK data, in accordance with the expectation
from Fig. 6. The differences that accumulate over the
evolution converge away with resolution. In the BBH4
data the delay is only 1.1M . Also in contrast to the
single spinning puncture case, presumably because the
outer boundary is placed so far out at r ≃ 2090M , no
boundary feature is visible in the BSSNOK waves, at
least up to a radius of r = 400M within the run-time of
the simulation.
Constraint violation. In Fig. 7 the Hamiltonian con-

straint log10 |H | is plotted in space for the BBH1 runs
on the orbital plane at a simulation time t = 146M
(roughly 1.5 orbits) on refinement levels l = 3, 4, 5. As
in case of the single puncture evolution the Hamilto-
nian constraint violation is dominated by the punctures
and, for this data, at this time, has a maximum absolute
value of ∼ 10−2 regardless of the formulation. However,
the Hamiltonian constraint violation differs in the strong
field region depending on the formulation. In the BSS-
NOK case a significant Hamiltonian violation extends to
level l = 3 with an almost spherical pattern. In the Z4c
case the violation is mainly restricted to the highest level
around the puncture. Note the effect of Cartesian mesh
refinement in the plot. For the same data the momentum
constraint away from the puncture is also roughly an or-
der of magnitude smaller in the Z4c data. The highest
resolution runs, BBH9, have the smallest constraint vi-
olation even in the strong field region, but the violation
there is dominated by that of the puncture. The differ-
ence between the Hamiltonian constraint violation of the
BBH1 and the BBH9 data in this region is at most a fac-
tor of three for either formulation despite the difference
in resolution.
Gravitational wave accuracy. Quantitative differ-

ences are observed in the gravitational radiation com-
puted in BSSNOK and Z4c simulations. The differences
can be appreciated in self-convergence tests for phase
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FIG. 6: Tracks of the punctures for binary black hole inspi-
ral for the configuration BBH2 in Tab. I. In the continuum
limit, upto outer boundary effects, the tracks should agree
perfectly because we are evolving the same data with the
same gauge choice regardless of the formulation. At finite
resolution however different formulations and discretizations
may give different results. Initially the tracks agree, but a dif-
ference accumulates; the BSSNOK punctures merge slightly
sooner than the Z4c ones. This plot does not indicate either
set of numerical data is better than the other, only that there
is qualitative agreement between the results.

and amplitude. Typical results are presented in Fig. 8.
The phase errors accumulated to merger (t ∼ 270M) are
shown in bottom panels. When the Z4c simulation is em-
ployed we observe a factor three of improvement. This
behavior is common to all of the simulations performed.
Similarly, the amplitude error improves by a factor two-
to-three, as can be appreciated from the top panel of the
figure. The results obtained with the Z4c are not only
characterized by smaller errors, but also by the fact that
convergence is maintained for longer time, in particular
in phase errors. All the errors are observed to converge
with increasing resolution. The Z4c and BSSNOK data
sets also appear to converge to each other, suggesting the
same continuum limit is approached. We conclude that
at finite resolution the use of Z4c results in the compu-
tation of more accurate waveforms.
Convergence issues. For the converge tests presented

in Fig. 8 third order convergence is obtained, despite the
use of fourth order operators for the bulk derivatives (see
below). In our experiments with the described grid set-
tings we find it difficult to achieve fourth order conver-
gence in GWs from orbiting puncture runs, regardless
of the formulation employed. On the other hand clearer
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FIG. 7: Hamiltonian constraint violation in BBH simulations at time t ∼ 146M (after ∼ 1.5 orbits) on the orbital plane and
in the strong field region for the grid setup BBH1 in Tab. I. The plots show log

10
|H | for levels l = 5, 4, 3; the left panel shows

the BSSNOK data, the right that of Z4c. Directly at the punctures the violation is similar in either case, but the surrounding
region has smaller violation in the Z4c data. Some aspects of the grid structure are visible in the violation.

(order approximately 3.5) convergence is demonstrated
in Appendix B for the Teukolsky wave, a simpler prob-
lem which however retains some of the important fea-
tures, namely, nonlinearity, in the sense that we evolve
with the full BAM Z4c infrastructure, constraint viola-
tion, because the wave only satisfies the constraints to
linear order in perturbation theory, present in the BBH
calculations. On the other hand the Teukolsky wave test
has neither moving boxes or punctures. We were un-
able to identify the precise reason for the behavior in
presence of punctures, however we point out the follow-
ing well-known facts: i) punctures have finite regularity,
which can obviously affect the formal order of conver-
gence of high-order finite-differencing stencils; ii) moving
box simulations have several source of errors (second or-
der time interpolation, regridding, the number of mesh
refinement buffer zones, 3D interpolation, data between
boxes and shells, spheres and mode projection), a clearly
defined error budget is very complicated to construct
(for a discussion see e.g. [40, 41, 74]); iii) simulations
have several freely specifiable parameters (grid parame-
ters and/or gauge parameters), and systematically tun-
ing all of them is beyond the aim of this work; iv) the con-
vergence order observed actually depends on the triplets
chosen in the self-converge test. The experimentally mea-
sured convergence factors lie between two and four for
both the formulations during the inspiral. Around the
time of the merger the BSSNOK convergence rate drifts
up to five or six. The drift is on average smaller for
higher resolution triplets. This does not mean that the
BSSNOK data are converging at a high order, but rather
that the errors in the simulation do not allow us to judge
the rate in a meaningful way with a simple error model.

We do not claim that waveforms from either formulation
are unreliable, but we are reluctant to estimate the abso-
lute errors by Richardson extrapolation, which assumes
a certain rate of convergence.

AMSS-NCKU-BAM comparison. The qualitative
features of these results have also been observed in
simulations with the AMSS-NCKU code. Starting
with the puncture tracks as in Fig. 6, we find that
the BSSNOK also merge slightly earlier at a given
resolution, roughly 3.2M for BBH0 and 1.0M for
BBH2, in the same ball-park as the values obtained with
BAM. Note that we do not expect to obtain identical
values from the two codes, because although they share
many ingredients, some specifics, for example the shells
implementation and grid placement, differ. As in Fig. 7
the Hamiltonian constraint appears to be smaller in
the Z4c data when using AMSS-NCKU. To test the
robustness of this finding we have made a number of
experiments with different precollapsed initial profiles
for the lapse. We also tried different constraint damping
factors for κ1, up to κ1 = 0.1. Neither change seems
to make a significant difference; the Z4c Hamiltonian
constraint is always smaller. Note that in the earlier
stability work [4], the Hamiltonian constraint was
computed directly from the conformal variables. Now,
as in BAM, we compute it by transforming first to the
ADM variables. The two versions of the calculation
differ by additions of Θ and Z̃i, and obviously the
finite difference approximation. The AMSS-NCKU
code appears to produce slightly larger errors at mesh
refinement boundaries than those of BAM. The reason
for this is currently unclear, but may be the cause
of the larger errors that we find in the AMSS-NCKU



13

150 200 250 300 350 400 450
−3

−2

−1

 0

 1

 2

t/M

∆ 
A

22

 

 

L−M
M−H
3.01*(M−H)

200 250 300 350

10
−6

10
−4

10
−2

x 10−2

150 200 250 300 350 400 450
−1.5

  −1

−0.5

   0

 0.5

   1

t/M

∆ 
A

22

 

 

L−M
M−H
3.01*(M−H)

200 250 300 350

10
−6

10
−4

10
−2

x 10−2

150 200 250 300 350 400 450

0

0.5

1

1.5

2

2.5

∆ 
Φ

22

t/M

200 250 300 350
10

−4

10
−2

10
0

150 200 250 300 350 400 450

0

0.2

0.4

0.6

0.8

1

∆ 
Φ

22

t/M

200 250 300 350

10
−4

10
−2

10
0

FIG. 8: Convergence plot of binary black hole inspiral for the resolutions h = 1/56, 1/80, 1/112 (Runs BBH1, BBH4, and
BBH7). The left panel shows results for BSSNOK, the right panel for Z4c. All the differences are scaled for 3rd order
convergence. The extraction radius is at 150M .

wave-forms. Nevertheless we still find, as in Fig. 8 that
the Z4c wave forms are roughly twice as accurate in
phase and amplitude.

B. Equal-mass, irrotational BNS

Basic features of the dynamics. Let us discuss the
evolution of BNS. The binary evolves approximately two
orbits before contact, then merges forming a hypermas-
sive neutron star (HMNS) which finally collapses on dy-
namical timescales. Dynamics and related gravitational
wave emission were described in detail in our previous
work [43] so we do not repeat them here. We only
mention that the gravitational emission is characterized
by approximately six cycles during which the GW fre-

quency increases monotonically (even after contact), the
merger time is defined conventionally at peak of the am-
plitude’s (2, 2) mode, nonlinear (quasi-radial and non-
axisymmetric) oscillations of the HMNS generate the
post-merger signal which decays exponentially after col-
lapse. Figure 9 shows snapshots of the rest-mass density
on the orbital plane around merger for a typical simula-
tion obtained with the two formulation (and same setup).
There are visible differences in the “dynamics”, and in
the Z4c run the contact and merger happens at a later
simulation time. As in the case of the BBH puncture
tracks, these plots are gauge dependent but they refer to
the same gauge choice up to truncation errors and so they
can be compared. In this respect, note that the centroids
of the stars are offset, this is a coordinate effect due to
the choice η = 2 in the shift condition and was studied
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FIG. 9: Evolutions of the rest-mass density on the orbital plane as computed with the grid setup BNS6 from Tab. I. The results
from the BSSNOK runs are plotted in the top panel and those from Z4c underneath. Similar comments to those in the caption
of Fig. 6 apply; namely, it seems that the compact objects merge earlier in the BSSNOK data. In this case however there is
already an expectation that the Z4c data will be more accurate because in earlier work [43] it was found that the objects merge
later and later as resolution is increased with the BSSNOK formulation.

in detail in [43].

Constraint violation. The L2 norm of the Hamilto-
nian constraint violation during the evolution is reported
in Fig. 10. On the refinement level l = 2 one can observe
an improvement of a factor ∼ 100 during the whole evo-
lution if Z4c is employed. By contrast the norms of each
component of the momentum constraint agree for both
evolutions, an almost constant violation around 10−7 is
observed. The Hamiltonian violation on the orbital plane
around merger time is shown in Fig. 11, which includes
now refinement levels l = 2 and l = 3. Even using the
highest resolution run (BNS6) we register a two-to-three
order magnitude difference in the absolute value of the
Hamiltonian constraint. It is noteworthy that the viola-
tion has an almost spherical pattern on and around the
strong field region of the binary, which suggests that the
violation is not dominated by rectangular mesh refine-
ment boundaries.

Gravitational wave accuracy. The differences at finite
resolution between BSSNOK and Z4c described so far
have an impact on the computation of physical quan-
tities: gravitational waves and ADM mass. Figure 14
shows the result of a standard three-level self-convergence
test for phase and amplitude of the (2, 2) mode of the
gravitational radiation emitted. For the particular triplet
shown BSSNOK data cease converging before contact.
An analogue result was already found at similar resolu-

tions in [43] (see also the detailed discussion in [54, 55]).
On the other hand the Z4c data are found to converge
at approximately second order rate beyond contact and
up to merger (t ∼ 650M). Similarly to the BBH case,
Z4c waveforms are found to be more accurate by a fac-
tor three-to-four in accumulated phase and amplitude to
merger time. We relate this behavior with the improve-
ment obtained in Hamiltonian constraint preservation.
Because truncation errors and the Hamiltonian violation
(especially in the matter region) in BNS simulations are
generically larger, the use of Z4c makes a significant dif-
ference for the accuracy of these simulations.

Mass and angular momentum conservation. As in the
case of a single spinning puncture we consider the ADM
mass integral, Eq. (32), and the energy radiated in GWs,
Eq. (34). In Fig. 12 we show that Z4c permits a reli-
able computation of EADM(r). When corrected for the
GW energy, the conservation of the ADM mass is of or-
der of 0.1%. By contrast BSSNOK data do not even
allow for a reliable estimate of MADM. Note that the
ADM mass can be also estimated by means of a volume
integral rather than a surface integral, see e.g. [75, 76].
The more expensive volume integral computation can be
more accurate and is found to give better results for BSS-
NOK in the case of black hole binaries [76]. Figure 13
shows the ADM angular momentum integral, both with
and without a correction by radiated angular momen-
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the evolution.

tum, at an extraction radius of 300M , for both BSS-
NOK and Z4c with CPBCs. The outer boundary for this
run (BNS2a in Tab. I) is at approximately 360M . Evi-
dently at either radius the BSSNOK data is very poorly
behaved, and has large error. In contrast in the Z4c
evolution the corrected angular momentum are well con-
served until the merger signal, which we expect to be
much less accurate, reaches the extraction sphere. Early
in the simulation the BSSNOK data are also conserved,
but there is a jump at exactly the time t = 60M when
the outer boundary becomes causally connected to the
extraction radius. We checked that this feature holds on
every extraction sphere. This demonstrates clearly that
the Sommerfeld boundary condition has an effect on the
behavior of physical quantities inside BSSNOK simula-
tions. One way to avoid the feature would be to place
the outer boundary further away, which, depending on
the physics of interest, may not be prohibitively expen-
sive with the spherical shells for the wave zone, but it is
not desirable to discard every extraction sphere as soon
as it becomes causally connected to the outer bound-
ary, because a larger domain would ideally be used for
more reliable wave extraction, rather than as a buffer for
poor boundary conditions. For comparison it would be
very interesting to see data from BSSNOK simulations,
where there is still a zero-speed mode in the constraints,
with an implementation of the constraint preserving con-
ditions of [23]. It is natural to compare the early times in
Figures 12 and 13 to Fig. 11 of [77], a similar plot, com-
puted with the spectral Einstein code, for inspiralling
black hole neutron star binary data. The Z4c results are
competitive, although it remains to be seen if they will
continue to be so over many orbits.

VI. CONCLUSIONS

This paper is the conclusion of a series [1–5], the aim
of which was to bring the advantages of the generalized
harmonic formulation to the moving puncture method.
We presented here for the first time 3D numerical rel-
ativity simulations of compact binaries performed with
Z4c, a conformal decomposition of the Z4 formulation.

We started with evolutions of single compact objects
and found that the expectations obtained by earlier work
in spherical symmetry are largely borne out in the 3D nu-
merics. The most striking feature in these tests is that,
in the evolution of a single stable star by t = 1000M at
the resolutions used in our tests, is that the norm of the
Hamiltonian constraint is approximately three orders of
magnitude smaller in the Z4c data. For the first time
we have presented results which combine radiation con-
trolling, constraint preserving outer boundary conditions
with the moving puncture method. These boundary con-
ditions removed a perturbation to the central rest mass
density of the star which is present when using Sommer-
feld boundary conditions. At the resolutions of our tests
however the outer boundary is typically not the leading
order contribution to numerical error. In evolutions of
a single spinning puncture we found that the Z4c with
the new outer boundary conditions remove certain con-
straint violating features present in the BSSNOK data,
but at least at early times the qualitative physical picture
is unaltered.

We then compared evolutions of compact binary space-
times. In these tests we placed the outer boundary much
farther away from the central body so as to simplify the
discussion. Throughout the evolution of binary neutron
star initial data, we find that at the same resolutions the
Z4c formulation has between one and two orders of mag-
nitude less Hamiltonian constraint violation in the norm.
Interestingly the Hamiltonian constraint violation in the
Z4c tests in this case stays at or below the level in the
initial data, at least until the stars merge, and the simu-
lations may therefore even be competitive with those of
a constrained formulation. We find similar, albeit much
less pronounced effects in the constraint violation in bi-
nary black hole simulations, but the change of formula-
tion does nothing to cure the dominant constraint vio-
lation at the punctures themselves. The higher quality
of the Z4c data is also apparent in physically meaning-
ful quantities. In terms of gravitational wave accuracy
we find that with any triplet, satisfying certain criteria,
for either binary neutron star or binary black hole data,
the absolute error in either amplitude or phase of the
extracted gravitational waves is between two and four
times smaller in the Z4c evolutions. The difference, in
the evolution of compact binaries, between conservation
of the ADM mass integral with the two formulations is
remarkable. In the BSSNOK simulations one can not re-
liably correct the integral with the radiated gravitational
wave energy to arrive at a constant. In the Z4c simula-
tions near perfect conservation is achieved. Furthermore,
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FIG. 11: Hamiltonian constraint violation in BNS simulations at time t ∼ 511M (around merger) on the orbital plane and in
the strong field region with the grid setup BNS6 from Tab. I as in Figs. 9 and 10. The plots show log

10
|H |; this plot is to the

BNS data what Fig. 7 is to the BBH data. In this case there is no sign of the Cartesian grid structure in the violation. Most
of violation in the BSSNOK simulation appears inside the stars. The Z4c violation seems to be on average one or two orders
of magnitude smaller than the BSSNOK violation, as seen more clearly in Fig. 9.
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FIG. 12: ADM mass and radiated energy for BNS simulations with the grid setup BNS2a from Tab I. Both are extracted inside
the shells at R = 300M . The GW energy is computed from ψ4 according to [40]. The left panel shows results for BSSNOK,
the right panel for Z4c; in comparison the latter demonstrates remarkable conservation.

despite placing the outer boundary at a large coordinate
radius, we find that the BSSNOK data are corrupted,
for example in the angular momentum, by the Sommer-
feld boundary condition, whereas the Z4c data are free
of this problem. If nothing else this motivates the use of
constraint preserving boundary conditions with the BSS-
NOK formulation.

In summary we have presented a large suite of nu-
merical experiments in which the Z4c formulation was

shown to give more accurate results than BSSNOK, both
in terms of constraint violation and extracted physical
quantities. We therefore expect that the Z4c formulation
will become a standard tool for numerical relativity.
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Appendix A: Spherical patches

In this appendix the implementation of the spheri-
cal patches in the BAM and AMSS-NCKU codes is de-
scribed. We follow closely [41, 57], to whom we refer for
further details. We describe first the BAM implemen-
tation and then highlight the differences in the AMSS-
NCKU code.
The grid structure. The BAM grid is made of a hi-

erarchy of nested Cartesian grid boxes, each level is la-
beled by the integer l = 0, 1, .... The level l = 0 (outer-
most box) is replaced with six patches with local coordi-
nates aj = {R, φ, θ}. The grid of each patch is uniformly

spaced in local coordinates. The maps between the local
coordinates and the Cartesian coordinates are

±xpatches: φ = arctan(y/x), θ = arctan(z/x) (A1)

±y patches: φ = arctan(x/y), θ = arctan(z/y) (A2)

±z patches: φ = arctan(x/z), θ = arctan(y/z) (A3)

where (φ, θ) ∈ (−π/4 : π/4) × (−π/4 : π/4). The local
radial coordinate R is a fisheye coordinate [78–80]

R = f(r) − f(0) , (A4)

as function of the radius r =
√

x2 + y2 + z2. The par-
ticular function function f(r) implemented is

f(r) = Br +Aǫ log(cosh[(r −R)/ǫ)] (A5)

∂rf(r) = A tanh[(r −R)/ǫ] +B , (A6)

where the parameters A and B determine the stretching
of the coordinate and ǫ the transition region. The con-
dition f(r) = r at interface between spherical patches
and the boxes is important to avoid a step behavior and
minimize interpolation errors. In this work we did not
employ the fisheye coordinate, i.e. we set A = 0, B = 1.

Spatial derivatives. Field derivatives at a grid point
inside the patches are calculated by finite differences on
the uniformly spaced local grid. The derivatives in Carte-
sian coordinates are obtained using the chain rule and the
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FIG. 14: Convergence plot of binary neutron star inspiral for the resolutions h = 1/48, 1/64, 1/80 (runs BNS0, BNS2, and
BNS4). The left panel shows results for BSSNOK, the right panel for Z4c. All the differences are scaled for 2nd order
convergence. The extraction radius is at R = 400M within the shells. The qualitative behavior of all curves does not change
at different extraction radii.

Jacobian of the transformation xi(aj),

∂

∂xi
=

(

∂rj
∂xi

)

∂

∂rj
, (A7)

∂2

∂xi∂xj
=

(

∂rk
∂xi

∂rl
∂xj

)

∂2

∂rk∂rl
+

(

∂2rk
∂xi∂xj

)

∂

∂rk
, (A8)

note that the last term in these equations fixes a typo in
equation (5b) in [41].
Grid schematic. The grid structure is sketched in

Fig. 15. The dark solid lines represent the physical grid,
the lighter lines denote the ghost points which are needed
for the finite differences. The green shaded regions de-
note the ghost zones populated by inter-patch interpola-
tion, and overlap with the neighbor patches. The other

colored areas overlap with the l = 0 level, and the res-
olution of the Cartesian box is the same as the one of
the radial one in the patch. The number of grid points
in all the ghost zones (cyan, green, yellow) is equal. The
distance between the points r0 and r1 is equal to that
between r1 and r2.

Data communication. Spherical patches overlap on
ghosts zones. Two neighboring patches share the radial
coordinate and the angular coordinate perpendicular to
the mutual boundary. Therefore only a 1D interpolation
parallel to the boundary has to be performed in the green
regions of Fig. 15. A Lagrange interpolation (sixth or-
der in this work) which uses the most centered possible
stencil is employed. Interpolation between patches and
the l = 0 level is performed with Lagrangian polynomial
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FIG. 15: 2D scheme of the spherical patches. The darker
regions denote the physical grids, the translucent numerical
ghostzones. See the text for details of the various radii and
how the color scheme relates to the numerical method.

interpolation in 3D (colored regions of Fig. 15). The var-
ious interpolations are done in the following order: i) in-
terpolate from box to shell (yellow region), ii) interpolate
between shells (green region), iii) interpolate from shell
to box (cyan and red regions), iv) set symmetries in box.
For simplicity, grid symmetries are not applied in the
shells during evolution. Each patch is evolved entirely
and only afterward values at symmetry points are over-
written by copying them. We note that because the in-
terpolation of the red region in Fig. 15 depends on points
in the cyan region, the ordering of the different interpo-
lation can give, in principle, different results. On the
other hand, not interpolating the red region results in a
“double evolution”, which we find leads to high frequency
oscillations.

Dissipation. Artificial dissipation is necessary for nu-
merical stability during the evolution. In particular to
maintain stable box-shell interface regions. Experimen-
tally we found it important to apply different amounts of
dissipation in box and spherical patches. In particular we
use a lower dissipation on the spherical patches than in
the box. For this work we tested only sixth order Kreiss-
Oliger dissipation operators, using artificial dissipation
coefficients σ = 0.5 in the bulk and σ = 0.1 in the shells
(see [40] for our terminology). The number of angular
points has been chosen according to the size of the l = 0
box, nθ, φ ∼ n/2. Placing the box-shell interface close to
the strong field region may also cause large growth of the
error, even causing the code to crash, or affect the choice
of the dissipation parameters required for stability.

Parallelization. In order to reduce global MPI com-
munication during shells synchronization, we use an opti-

mized parallelization. The computations on the patches
are distributed only in the radial direction. Every pro-
cessor has six patch parts with the same radial exten-
sion, hence the synchronization in the angular directions
is performed locally by each MPI job. Note that this
method implies a minimum number of radial points is
necessary for a given number of processors. In some early
tests we found that avoiding interpolation in this way can
result in computations that are an order of magnitude
faster in the shells.

Variations of the numerical method in the AMSS-
NCKU code. There are several differences in the im-
plementation of shells in AMSS-NCKU with respect to
BAM. In AMSS-NCKU there is no option to use a ra-
dial fish-eye coordinate. Relating to the interpolation
between box and shell, the scheme is somewhat different
to BAM. We set the length between the point r0 and r1 as
the length of six points and we take these points as buffer
points. We set the distance between r1 and r2 larger than
the distance between r0 and r1. We take this part of re-
gion as the double cover region of both box and shell. We
set six points for the box outside of r2 and take them as
buffer points. Similar to the treatment of the mesh refine-
ment interface, we fill the buffer points for box and shell
only at the end of a full RK4 step. As opposed to BAM
we do not interpolate the points between r1 and r2. Due
to this double cover region, we can interpolate between
box and shell in parallel fashion. But before that we have
to synchronize the data between different shell patches.
In the MPI communication, we divide the data in both
radial direction and angular directions but try to make
resulting blocks as cubic as possible for minimization of
inter processor data change.

Box-Shell comparison. Let us briefly discuss code
performance and waveform quality by comparing runs
which employ spherical patches (“shell runs” hereafter)
in the wave zone to those that do not (“box runs” here-
after). For shell runs, radial and angular resolution can
be adjusted separately, at linear scaling in the number of
grid points in radius and quadratic scaling for both an-
gular directions. Nested boxes imply effectively constant
angular resolution for increasing radius and decreasing
radial resolution. Increasing radial resolution leads to a
cubic scaling in the number of grid points, because an-
gular resolution increases simultaneously. This can be
partially compensated by choosing larger boxes in the
wave zone, which are comparatively cheap in run-time be-
cause of Berger-Oliger time adaptivity, and typical runs
are limited by run-time rather than memory. Constant
radial resolution is helpful for tracking waves traveling to
infinity, on the other hand decreasing radial resolution is
a recipe sometimes employed deliberately for filtering fea-
tures going to and coming from the outer boundary. An
entirely different type of filter is effectively in use when
extracting only (2, 2) modes. Features due to rectangular
outer boundaries and rectangular refinement boundaries
(cmp. Fig. 2) are not visible at l = 2, but start to show
at l = 4. A spherical outer boundary has the advan-
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FIG. 16: The BSSNOK box-shell comparison. The top row shows the errors in extrapolated waveforms when the wave zone is
covered by Cartesian boxes as described in the text. The lower row shows the shell results. The left panel shows the amplitude
and the right the phase of the (2, 2) mode of r ψ4. The amplitude is improved by at least an order of magnitude and the phase
by a factor around five.

tage that a unique normal vector to the boundary exists,
in fact our early (and incomplete) experiments with the
new Z4c boundary conditions failed for a cubical outer
boundary. However, a spherical boundary can also lead
to a focused inward reflection of outgoing waves, while
a rectangular boundary scatters spherical waves leading
to a diffuse reflection. For example, the back-reflection
feature in Fig. 4 is much smaller for cubical outer bound-
aries, as are oscillations of a neutron star induced by
boundary reflections. A clean treatment of a spherical
boundary is nevertheless preferable since the reflections
can be minimized, and even though a constraint violation
from a cubical outer boundary may not be as visible, it
is still present in the inner domain. The choice between
box or shell runs actually depends on the waveform accu-
racy goal, and requires a balance between accuracy and
computational cost. We discuss two examples employing
the BSSNOK formulation.

BAM example. As a first example, we find that BAM
BBH box runs with L = 9, Lmv = 4, nmv = {48, 56, 64},
n = {82, 96, 110}, and h9 = {0.0365, 0.0313, 0.0293},
give results comparable to shell runs with L = 7,
Lmv = 2, nmv = {48, 56, 64}, n = {82, 96, 110},
nr = {686, 800, 914}, nθ,φ = {14, 16, 18}, and h6 =
{0.0365, 0.0313, 0.0293}. Both series of simulations have
the same resolution in the Cartesian boxes and a simi-
lar computational cost. The resolution in the wave zone
differs a factor two in the wave zone (lower in the box
runs). The waveform errors and convergence properties
are the same in both series.

AMSS-NCKU example. As a second example we
compare AMSS-NCKU BBH box runs with L =
11, Lmv = 8, nmv = {56, 64 72}, n = {112, 128 144}
and h11 = {0.505/112, 0.505/128 0.505/144}M . With
shell runs when the four coarsest levels are substituted
by spherical patches that approximately extend to the
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same outer radius. The computational cost of the shell
runs is approximately twice the box runs. Using this
triplet, third order self-convergence is achieved in the
shell runs at all the extraction radii, while in the box
runs self-convergence is lower than three at small radii
and progressively degrades when the extraction is per-
formed on coarser levels. The waveform in box runs is
more noisy. Phase and amplitude of the waveform can
be extrapolated according to

f(u,R) =

K
∑

k=0

f(u)R−k (A9)

where f(u,R) is the quantity to extrapolate extracted at
radius R, u is a retarded time, and R the Schwarzschild
radius, see e.g. [55, 81]. A measure of the extrap-
olation error is the difference between the extrapo-
lated function and the last radius values. This er-
ror is reported in the upper row of Fig. 16 for box
runs and the lower row for shell runs, using the radii
R = {150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50}
and different values of K, i.e. different polynomials. As
evident from the figures the extrapolation for shell runs
is more accurate, and results for different K are consis-
tent with each other (no oscillations and overshooting).
The “zig-zag” behavior in the left panel of the lower row
of Fig. 16 is due to the limited number of digits used in
the output. For these data the choice K = 1 seems to be
optimal.

Appendix B: Evolution of Teukolsky waves

In this appendix we evolve, for code validation, Teukol-
sky’s wave solution with the BAM code.

Motivation. The codes used in this work have sources
of error of different polynomial order in the grid spacing,
but the operations performed most often, finite differenc-
ing and time integration, are performed at fourth order.
It is perhaps not surprising that we never find clear fourth
order convergence in our evolutions of compact binaries.

For the hydrodynamics simulations this behavior can
be excused because the HRSC scheme we employ is only
second order accurate. But for our vacuum simulations
the situation is less clear. We therefore also studied the
evolution of Teukolsky’s solution [82] to the linearized
Einstein equations. This solution represents a weak grav-
itational wave propagating on a flat background. It sat-
isfies the constraint equations of General Relativity at
linear order. We use this solution as initial data and then
evolve forward in time with the BAM code. Note that
extensive convergence testing demonstrating fourth or-
der convergence, in test cases, was shown for the AMSS-
NCKU code in [4].

Teukolsky wave initial data. The metric has the form

ds2 = −dt2 + (1 +Afrr)dr
2 + 2Bfrθrdrdθ

+ 2Bfrφr sin θdrdφ + (1 + Cf
(1)
θθ +Af

(2)
θθ )r2dθ2

+ 2(A− 2C)fθφr
2 sin θdθdφ

+ (1 + Cf
(1)
θθ +Af

(2)
θθ )r2 sin2 θdφ2 (B1)

where we have

frr = sin2 θ(cos2 φ− sin2 φ) , (B2)

frθ = sin θ cos θ(cos2 φ− sin2 φ) , (B3)

frφ = −2 sin θ sinφ cosφ , (B4)

and also

f
(1)
θθ = (1 + cos2 θ)(cos2 φ− sin2 φ) , (B5)

f
(2)
θθ = −(cos2 φ− sin2 φ) , (B6)

fθφ = 2 cos θ sinφ cosφ , (B7)

f
(1)
φφ = −f (1)

tt , (B8)

f
(2)
φφ = cos θ cos θ(cos2 φ− sin2 φ) , (B9)

with

A = −3

(

F (2)λ
5

r3
+ 3F (1)λ

5

r4
+ 3F

λ5

r5

)

, (B10)

B =
(

F (3)λ
5

r2
+ 3F (2)λ

5

r3
+ 6F (1)λ

5

r4
+ 6F

λ5

r5

)

, (B11)

C = −1

4

(

F (4)λ
5

r
+ 2F (3)λ

5

r2
+ 9F (2)λ

5

r3

+ 21F (1)λ
5

r4
+ 21F

λ5

r5

)

. (B12)

This corresponds to an outgoing wave that is a pure m =
2 mode. The generating function F is given by

F = a
(t− r)N

λN
exp(− (t− r)2

λ2
). (B13)

Derivatives of order n of F are denoted by F (n). Apart
from choosing a different generating function our wave is
very similar to what was used in [83]. For our runs we
have chosen a = 10−4, N = 10 and λ = 10.
Setup. We have evolved such a wave with an initial

lapse of one and a shift of zero. For the evolution, as
in the rest of the work, we have chosen the standard
1+log and Gamma driver evolution equation for lapse
and shift (11-12) with µL = 2/α , µS = 1/α2. We use
four levels of box mesh refinement, and attach the spher-
ical grids at r ∼ 30. In the lowest resolution runs each
box has n = 48 points per direction, and the resolution
of level l = 4 is h4 = 0.167. We choose nθ, φ = n/2 an-
gular and nr = n radial points in each spherical patch so
that the outer boundary is located at r = 100. Runs at
resolutions n = 48, 64, 80 (with the grid spacing scaled
in order to maintain the same grid setup) are performed.
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FIG. 17: Convergence plot for Teukolsky waves of the (2, 2) mode of r ψ4 scaled for fourth order convergence. Convergence
series with n = {48, 64, 80}, and h4 = {0.167, 0.125, 0.100}. The left panel shows the BSSNOK data, the right the Z4c.
Extraction radius is at r = 80.

Results. We find that both the BSSNOK and the Z4c
system can successfully be used to evolve these waves.
For Z4c we have set κ1 = 0.02 and κ2 = 0. Since there are
no strong gravitational fields we can extract the waves at
any radius. Figure 17 shows a convergence plot for waves
extracted at a radius of r = 80. The solid lines shows
the difference between ψ4 at low and medium resolution
(L−M), while the dash dotted lines show the difference

between medium and high resolution (M − H). When
scaled with the proper factor of 3.66 for fourth order
convergence, we see thatM −H coincides approximately
with L−M . For this data set the observed order of con-
vergence is around 3.5. The left panel shows the results
for BSSNOK, the right panel shows those for Z4c.
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Rev. D 84, 044012 (2011), 1104.4751.
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