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Simulations of binary neutron stars have seen great advances in terms of physical detail and numerical
quality. However, the spin of the neutron stars, one of the simplest global parameters of binaries, remains
mostly unstudied. We present the first fully nonlinear general relativistic dynamical evolutions of the last
three orbits for constraint-satisfying initial data of spinning neutron star binaries, with astrophysically
realistic spins aligned and antialigned to the orbital angular momentum. The initial data are computed with
the constant rotational velocity approach. The dynamics of the systems is analyzed in terms of gauge-
invariant binding energy vs orbital angular momentum curves. By comparing to a binary black hole
configuration, we can estimate the different tidal and spin contributions to the binding energy for the first
time. First results on the gravitational waveforms are presented. The phase evolution during the orbital
motion is significantly affected by spin-orbit interactions, leading to delayed or early mergers. Furthermore,
a frequency shift in the main emission mode of the hypermassive neutron star is observed. Our results
suggest that a detailed modeling of merger waveforms requires the inclusion of spin, even for the moderate
magnitudes observed in binary neutron star systems.
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I. INTRODUCTION

Neutron stars in binaries are spinning objects [1]. The
most famous example is the double pulsar PSR J0737-
3039, for which the orbital period and both spin periods, as
well as both spin-down rates, are known [2]. The faster-
spinning pulsar in this system has a spin period of P ¼
22.70 ms (PSR J0737-3039A) [3], which corresponds to a
dimensionless spin of χ ∼ 0.02 [4–7]. This is the fastest-
spinning pulsar in a binary system observed so far. From
the orbital period we can estimate that this system will
merge in about 85 My due to emission of gravitational
waves (GWs). Over this time period, the faster spin will
decrease by only about 20% if we assume spin-down is due
to magnetic dipole radiation [4]. Thus, we do expect spin
effects near merger, even though the other spin is much
smaller and plays no big role for this system.
A value of χ ∼ 0.02 may appear rather small. For black

hole systems, χ ≤ 1 is expected to approach 1 in some
cases. A theoretical limit for isolated neutron stars
described by a large class of nuclear equations of state
(EOSs) and uniform rotation is χ ∼ 0.7 [8]. Configurations
with χ > 1 are, however, possible if, for example, differ-
ential rotation is allowed, e.g. Ref. [9]. It is not clear
whether or how many of these large-spin single neutron
stars can be found in binaries. Theoretical limits for neutron
stars in binaries depend on the mechanism of binary

formation and binary history and are difficult to predict
precisely [1]. Given that the observed neutron star spin in
binaries is comparatively small, star rotation is often
ignored when modeling likely astrophysical neutron star
mergers.
Binary neutron stars (BNSs) are a primary source of

GWs. Advanced interferometric configurations in LIGO
and Virgo experiments are expected to detect from 0.4 to
400 events per year, starting from 2018–2019 (or even from
2016) [10,11]. At the expected sensitivities, neglecting spin
effects in template-based searches of BNSs can lead to
substantial losses in the matched-filter signal-to-noise ratio
for the inspiral [6,12]. Template waveforms of the inspiral
phase that cover most of the relevant frequency band are
typically constructed with post-Newtonian approximants.
However, of particular interest is also the detection of
the late-inspiral-merger waveforms, because such signals
can be used to constrain the high-density equation of
state of neutron stars [5,13,14]. Differently from the
inspiral case, precise merger waveforms can be constructed
only by means of numerical relativity simulations, e.g.
Refs. [15–18].
Although spin is one of the elementary parameters of a

binary system, most studies of BNSs to date have not
considered neutron stars with realistic rotation. Almost all
BNS simulations have started from initial data which have
been constructed as (quasiequilibrium) stationary solutions
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in circular orbits, within either the corotational [19–21] or
the irrotational [22–27] approach. There is spin in the
corotational case, but it is determined by the orbital period
and describes an unrealistic configuration because of the
low viscosity of neutron star matter [28].
Numerical simulations of BNS mergers in full general

relativity have reached a high degree of precision and
detail. Recent developments include radiation transport
[29], microphysical equations of state [30], and nonideal
magnetohydrodynamics [31], as well as highly eccentric
mergers [32,33]. See Ref. [34] for a review and more
references. In all these simulations the Einstein equations
are solved without any approximation as a 3þ 1 evolution
system for a given initial configuration. Most BNS simu-
lations have focused on irrotational configurations. In this
case the stars’ spin is neglected and not modeled in the
simulations. Away to construct quasiequilibrium BNS initial
data in circular orbits with spins has been recently proposed
in Refs. [4,35]. The constant rotational velocity (CRV)
formalism developed there is, to date, the only consistent
method to produce realistic initial data for BNSmergers with
spins (see Refs. [36,37] for earlier approximate approaches).
In this work, we report dynamical evolutions of BNS

initial data constructed with the CRV approach. We study
the dynamics of the last three orbits, merger and postmerger
phase, of equal-mass BNS configurations with spins
aligned or antialigned to the orbital angular momentum.
The rotational period of each star is moderate and compatible
with astrophysical observations. We propose two simple
ways to estimate the dimensionless spins of the binary and
show that both agree within ∼10%. The dynamics and
gravitational radiation emitted are systematically compared
with an irrotational configuration with the same rest mass.
The orbital evolution is studied by means of gauge-invariant
binding energy vs orbital angular momentum curves [38].
We compare these curves with a binary black hole simulation
and with analytical models, show the consistency of the
results, and extract the different contributions to the binding
energy from spin and tidal interactions. The merger remnant
is also investigated, focusing in particular on the effect of
rotation on the hypermassive neutron star.
Our results are the fundamental first step towards the use

of CRV initial data for modeling rotating stars in BNS
mergers. In particular, we show that even moderate spins
have a significant impact on the merger dynamics and
on the gravitational radiation emitted. Numerical relativity
simulations aiming at an accurate description of the
gravitational waves emitted by these sources should take
into account the rotation of the star.
General relativistic evolution of spinning neutron stars

has been considered for a long time in the corotational
approach, both in full general relativity and in the con-
formally flat approximation; see e.g. Refs. [39,40] and
Ref. [34] for other references. More recently, alternative
approaches have been proposed in Refs. [41,42]. Both

works employ constraint-violating initial data produced by
superposing either two boosted single-star configurations
or an arbitrary velocity pattern. Such data violate both
Einstein constraints and some hydrodynamical stationarity
conditions. It is unclear how these initial data relate with the
ones used in this work. Thus, in the following, we do not
attempt a direct comparison of the results, but just point out
certain similarities.
The paper is organized as follows: In Sec. II we review

main aspects of the initial data and describe how to estimate
the spin of our configurations. The numerical method is
summarized in Sec. III. The dynamics of the numerical
evolutions is analyzed in Sec. IV by considering (i) the
analysis of the orbital motion with binding energy vs orbital
angular momentum curves, and (ii) the postmerger phase
and a mode analysis of the hypermassive neutron star in the
merger remnant. Gravitational radiation is discussed in
Sec. V. We conclude in Sec. VI.
Dimensionless units G ¼ c ¼ M⊙ ¼ 1 are employed

hereafter; physical units are sometimes explicitly given
in the text for clarity.

II. EQUILIBRIUM CONFIGURATIONS

A. A review of the CRV approach

The initial data used here are constructed using the CRV
method [4,35]. For this method we use the Wilson-
Mathews approach [43,44], which is also known as
conformal thin sandwich formalism [45], for the metric
variables together with certain assumptions. The first
assumption is the existence of an approximate helical
Killing vector ξμ, such that

£ξgμν ≈ 0: (1)

We also assume similar equations for scalar matter quan-
tities such as the specific enthalpy h. However, the
4-velocity uμ is treated differently, and it is not assumed
that £ξuμ vanishes. Instead we write

uμ ¼ 1

h
ð∇μϕþ wμÞ; (2)

where ∇μϕ and wμ are the irrotational and rotational parts
of the fluid velocity. We then assume that

γνi£ξð∇νϕÞ ≈ 0; (3)

so the time derivative of the irrotational piece of the fluid
velocity vanishes in corotating coordinates. We also assume

γνi£∇ϕ
hu0
wν ≈ 0 (4)

and

ð3Þ£ w
hu0
wi ≈ 0; (5)

BERNUZZI et al. PHYSICAL REVIEW D 89, 104021 (2014)

104021-2



which describe the fact that the rotational piece of the fluid
velocity is constant along the world line of the star center.
These latter two assumptions lead to the name “constant
rotational velocity method.”
For the data considered here, we set

wi ¼ ϵijkωjðxk − xkC�Þ; (6)

where xiC� is the center of the star (defined as the point with
the highest rest-mass density) and where ωi is an arbitrarily
chosen angular velocity vector. In Ref. [35] we have
verified that this specific choice leads to only a negligible
shear, so that we can avoid any substantial differential
rotation.
This method is implemented in the SGRID code [46–48],

which is used to construct the initial data. We then import
these data into the BAM code (see below) by spectral
interpolation onto BAM’s grid points.

B. Selected configurations

The initial configurations considered in this work are
Γ ¼ 2 polytropes, p ¼ KρΓ, with K ¼ 123.6489, individ-
ual rest mass (or baryonic mass)Mb ¼ 1.625, and different
rotational states. Table I summarizes the main properties of
the models. The rotation state of each star is characterized
by its angular velocity ωi. For the simulations described
here, we have chosen ωi to point along the z direction, with
the values given in Table I. If we use P ¼ 2π=ωz to define a
spin period for each star, the different spinning configu-
rations in Table I correspond to periods of 6.7, 13.4 and
26.9 ms. Notice, however, that these periods are not exactly
the spin periods an observer at infinity would measure. As
we show in Appendix A, the spin periods observed at
infinity are about 10% larger. The initial data employed in
this work are selected from equilibrium sequences similar
to those computed in Ref. [35]; some details are given in
Appendix B.

The individual isolation masses of the irrotational model
are MTOV ¼ 1.51484, which is equivalent to the ADM
mass of a TOV star with the same rest mass as the binary’s
individual Mb ¼ 1.625. All the binary models have about
the same proper separation ofD ≈ 40.4 (59 km). The ADM
masses differ by a maximum of 0.04%. The CRV formalism
[4,35] allows us to construct single rotating star configura-
tions by assuming that the approximate Killing vector ξμ is
the timelike Killing vector ξμ ¼ ð1; 0; 0; 0Þ. We have thus
computed single-star models with half the rest mass of the
binary and the same ωz. Each model is characterized by an
ADMmassMs and an ADM angular momentum Ss. For the
nonrotating model, of course, Ms ¼ MTOV and Ss ¼ 0;
other values are reported in Table I. We will make use of
these values in the following sections. We define M ¼
2MTOV and scale the time in the plots with this mass.
Additionally to these BNS configurations, we consider a

nonspinning equal-masses binary black hole (BBH) run.
The initial configuration is identical to the one in Table III
of Ref. [49] with an initial separation of ≈11 and an
eccentricity of ≈0.0002.

C. Spin estimates

In the CRVapproach, the natural quantity describing the
spinning motion is ωi; however, in the context of GWs it is
convenient to consider “a spin.” Since the spin of a single
star in a binary is not unambiguously defined in general
relativity, we propose here two simple different ways of
estimating the spin magnitude S.
A simple method (which to our knowledge is new in this

context) is to consider single stars in isolation with the same
rest mass and the sameωz, computed as described in Sec. II
B. These stars have a well-defined angular momentum Ss.
We then take the spin to be

S ≈ Ss (7)

TABLE I. BNS configurations considered in this work. All initial data are for equal mass configurations, where each star has a
baryonic massMb ¼ 1.625. The polytropic exponent and constant are Γ ¼ 2 and K ¼ 123.6489. Spins are aligned or antialigned to the
orbital angular momentum. The columns contain the following information: the name of the configuration, the rotational part of the fluid
velocity given in terms of the angular velocity ωz, the ADMmass and ADM angular momentum of the binary, the gravitational massMs
of a single star in isolation, the spin Ss of an isolated star with the sameωz andMb, and the corresponding dimensionless spin χs, the spin
estimate S using the irrotational configuration as a reference point, and the corresponding dimensionless spin χ. Γ configurations are
evolved with Γ-law EOSs; P configurations are evolved with the polytrope (barotropic evolutions).

Name ωz MADM JADM Ms Ss χs S χ

Γ−−
050 −0.00230 2.99932 8.69761 1.51496 −0.11449 −0.0499 −0.10224 −0.0419

Γ−−
025 −0.00115 2.99911 8.79949 1.51487 −0.05710 −0.0249 −0.05130 −0.0198

Γ000 0.00000 2.99903 8.90209 1.51484 0.00000 0.0000 0.00000 0.0000
Γþþ
025 0.00115 2.99907 9.00585 1.51487 0.05710 0.0249 0.05188 0.0252

Γþþ
050 0.00230 2.99926 9.11092 1.51496 0.11449 0.0499 0.10442 0.0480

P−−
100 −0.00460 3.00012 8.49472 1.51533 −0.23128 −0.1007 −0.20368 −0.0861

P000 0.00000 2.99903 8.90209 1.51484 0.00000 0.0000 0.00000 0.0000
Pþþ
100 0.00460 2.99993 9.32688 1.51533 0.23128 0.1007 0.21240 0.0950

MERGERS OF BINARY NEUTRON STARS WITH … PHYSICAL REVIEW D 89, 104021 (2014)

104021-3



and the dimensionless spin to be χs ¼ Ss=M2
s . These values

are reported in Table I.
A second estimate is given by comparing each spinning

configuration with the irrotational one. From Table I we
observe that the spin does not contribute significantly to the
ADM masses. Assuming that the differences in the total
angular momentum are due to the spins of the stars, we
write

S ≈ ðJADM − JirrADMÞ=2: (8)

Dimensionless spin values are given then by χ ¼ S=M2
s.

The results are stated in Table I and differ from the previous
estimate by ∼10%.
A precise value of the dimensionless spin is necessary

to construct binding energy vs orbital angular momentum
curves. We will show that a nontrivial agreement with
analytical results can be obtained using Eq. (7).

III. NUMERICAL METHOD

Simulations are performed with the BAM code [50–53].
The Einstein equations are written in 3þ 1 BSSNOK
form [54–56]. 1þ log and gamma-driver conditions are
employed for the evolutions of lapse and shift, res-
pectively [57–59]; see Ref. [60] for a study of gauge
condition performance in handling gravitational collapse.
General relativistic hydrodynamics (GRHD) equations are
solved in conservative form by defining Eulerian con-
servative variables from the rest-mass density ρ, pressure
p, internal energy ϵ, and 3-velocity vi. An equation of state
closes the system. We consider evolutions with a Γ-law
EOS

p ¼ ðΓ − 1Þρϵ; (9)

with Γ ¼ 2 for most of the configurations. Some control
runs with a polytropic EOS, thus forcing a barotropic
evolution, have also been performed (see Table I.)
The evolution algorithm is based on the method of lines

with explicit fourth-order Runge-Kutta time integrators.
Finite differences (fourth-order stencils) are employed for
the spatial derivatives of the metric. GRHD is solved by
means of a high-resolution shock capturing method
[50] based on primitive reconstruction and the Local-
Lax-Friedrichs central scheme for the numerical fluxes.
Primitive reconstruction is performed with the fifth-order
WENO scheme of Ref. [61], which has been found to be
important for long-term accuracy [16,17]. The numerical
domain is made of a hierarchy of cell-centered nested
Cartesian grids. The hierarchy consists of L levels of
refinement labeled by l ¼ 0;…; L − 1. A refinement level
l has one or more Cartesian grids with constant grid spacing
hl and n points per direction. The refinement factor is 2,
such that hl ¼ h0=2l. The grids are properly nested, in that
the coordinate extent of any grid at level l, l > 0, is

completely covered by the grids at level l − 1. Some of
the mesh refinement levels l > lmv can be dynamically
moved and adapted during the time evolution according
to the technique of “moving boxes.” The Berger-Oliger
algorithm is employed for the time stepping [62], though
only on the inner levels. Interpolation in Berger-Oliger time
stepping is performed at the second order. A Courant-
Friedrich-Lewy factor of 0.25 is employed in all runs. We
refer the reader to Refs. [50,51] for more details.
The grid configurations considered in this work are

reported in Table II. Because we evolve equal-mass
binaries, we use bitant symmetry (evolving only the
half-space z > 0) without loss of generality. We exper-
imentally found that the nonconservative mesh refinement
in BAM can lead to rest-mass violations during the
postmerger phase (when mass crosses AMR boundaries),
and in turn degrade the quality of the simulation in the long
term. In order to minimize this systematic source of error,
the number of points in the moving levels is set equal to that
in the nonmoving ones; see Appendix C for more details.
This is different from what was done in previous BAM

simulations, that instead mostly focused on the orbital
phase, e.g. Ref. [50].
Gravitational radiation is computed by means of the

Weyl scalar [51] on a coordinate sphere of radius r ¼ 400.
The scalar is projected onto spin-weighted spherical har-
monics to compute the multipoles ψ4

lm. The metric multi-
poles hlm are calculated by integrating the relation
ψ4
lm ¼ ḧlm. We use a frequency-domain procedure with a

low-frequency cutoff [63]. The signal is integrated from the
very beginning of the simulation in order to include also the
initial burst of radiation related to the conformal flatness of
the initial data. The radiated energy and angular momentum
perpendicular to the orbital plane are calculated as

Erad ¼
1

16π

Xlmax

l;m

Z
t

0

dt0jr _hlmðt0Þj2; (10)

J z rad ¼
1

16π

Xlmax

l;m

Z
t

0

dt0m½r2hlmðt0Þ _h�lmðt0Þ� (11)

with lmax ¼ 8. In the calculation of the total angular
momentum J rad, we also include the J x;y rad components,

TABLE II. Summary of the grid configurations used for the
evolutions; see Sec. III for a detailed description.

Name L lmv nmv hL−1 n h0

L1 6 2 128 0.225 128 7.20
L2 6 2 144 0.200 144 6.40
M 6 2 168 0.171 168 5.49
H 6 2 192 0.150 192 4.80
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although their contribution is nonzero only in the post-
merger phase and in practice negligible.

IV. DYNAMICS

In this section, we discuss the effect of the star’s rotation
on the binary dynamics. We formally define the merger as
the peak of the amplitude jrh22j (Sec. V), but recall that
the two stars come into contact well before (see e.g. the
discussion in Ref. [16] and below). First we describe the
orbital phase, i.e. evolution up to merger, and then we
consider the postmerger phase.

A. Orbital motion

Figure 1 shows snapshots of the rest-mass density and
fluid velocity ðvx; vyÞ on the orbital plane for the represen-
tative models Γ−−

050, Γ000, and Γþþ
050 (columns). We focus on

these, since they are the Γ-law EOS evolutions with the
highest spin magnitudes. In the plot, the stars orbit each other
counterclockwise. The top row refers to the initial time;
comparing the central panel (Γ000) with the left (Γ−−

050) and
the right (Γþþ

050 ), one can see only a very small difference
in the velocity pattern due to the rotational state of the
CRV data with respect to the irrotational flow. The central
row refers to a simulation time at which the cores of the two
stars come into contact; i.e. the rest-mass-density layers
ρ ∼ 10−4 ð1014 g=cm3Þ of the two stars touch each other in
the characteristic shearing contact, e.g. Ref. [29]. The
proper distance between the stars, as calculated from the
local minima of the lapse function or local maxima of ρ, is
about D ∼ 30 at this moment. Note also the very different
orbital phases of the three models at this moment, revealing
that the moderate initial spins had a significant effect after
only about 1.5 orbits. The last row refers to the merger

FIG. 1 (color online). Snapshots of log10ρ and ðvx; vyÞ on the orbital plane. Rows from top to bottom refer to initial, contact and
merger times. Columns from left to right refer to models Γ−−

050, Γ000 and Γþþ
050 , respectively. Note the different spatial scales.
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time, after approximately three orbits (or 6 to 7 GW cycles;
see below), at which hypermassive neutron stars (HMNSs)
are formed for the three configurations. The HMNSs appear
similar in the snapshots, but their angular momentum is
actually different, and different dynamics follows (see
Sec. IV B).
The orbital dynamics of the irrotational model is con-

sistent with what was previously observed in e.g. Ref. [50]
for the same initial configuration computed with the
Lorene code (see also Appendix C). The star rotation
changes this picture: for spins aligned with the orbital
angular momentum, the inspiral is longer for larger spin
magnitudes, while for antialigned spins, the inspiral is
shorter for larger spin magnitudes. This effect can be
understood in term of spin-orbit interaction [64].
Analogously to what happens to corotating/counterrotat-
ing circular orbits in Kerr spacetimes, the last stable
spherical orbit moves outwards (inwards) for antialigned
(aligned) spin configurations with respect to the non-
spinning case [64]. The analogous result in binary black
hole simulations is sometimes called “hang-up” [65].
In BNS mergers it has been discussed recently in
Refs. [41,42]. Spin-orbit interactions thus change quan-
titatively the binary dynamics, and we quantify this
aspect in the following.
A gauge-invariant way to analyze the binary dynamics

from numerical relativity data is to consider binding energy
vs orbital angular momentum curves, as proposed in
Ref. [38]. In the present context, these curves allow us
to characterize the dynamics generated by CRV initial data.
We compute the dimensionless binding energy and angular
momentum per reduced mass as1

E ¼ ½ðMADMðt ¼ 0Þ − EradÞ=M − 1�ν−1; (12)

l ¼ ðL − J radÞðM2νÞ−1; (13)

respectively, where ν ¼ 1=4 is the symmetric mass ratio
and the isolation massM is taken asM ¼ 2Ms; see Table I.
The initial angular momentum L is computed from the spin
estimates of Sec. II C as

L ¼ JADMðt ¼ 0Þ − 2Ss (14)

and coincides with JADMðt ¼ 0Þ for the irrotational con-
figuration. Equation (13) assumes that J rad only affects l;
i.e. the spin magnitude remains constant. This can be
justified on a PN basis, and in general, it holds for small,
aligned spins.
The numerical data EðlÞ are compared to point-mass

analytical results: a post-Newtonian (PN) and an effective
one-body (EOB) [66,67] curve. In this work, we employ

the 3 PN binding energy expression, including next-to-
next-to-leading-order spin-orbit coupling as given by
Eq. (43) of Ref. [68], and indicate it as E3PNðlÞ. The
results rely on earlier achievements in PN theory, among
others; see Refs. [69–75]. Additionally, we also consider
the curve EEOBðlÞ constructed within the EOB approach
in the adiabatic limit. For simplicity, we use the EOB
model for spinning binaries introduced in Ref. [64].
Similarly, the nonspinning part of the model is taken at
3 PN accuracy [76] only, and it is resummed with a (1,3)
Padé approximant (see Refs. [77–80] for recent theoretical
developments of the EOB model). The next-to-leading-
order [81] and next-next-to-leading-order [68] spin-orbit
couplings are included in the Hamiltonian. We restrict
ourselves to the leading-order spin-spin term for simplicity,
although the spin-spin interaction is known at next-to-
leading order [82].
There is evidence that irrotational, conformally flat

initial data sequences are quite close to the 3 PN result
for a sufficiently large binary separation, e.g. Ref. [27] (and
also Appendix B). However, we recall that the conformally
flat approximation introduces errors already at the 2 PN
level [76]. On the other hand, the 3 PN-EOB adiabatic
curve has been found to correctly reproduce nonspinning
numerical relativity data of different mass ratios up
to l ∼ 3.55 [38]. The same reference has shown that the

FIG. 2 (color online). Binding energy vs orbital angular
momentum curves for models Γ−−

050, Γ
þþ
050 and Γ000. Top: EðlÞ

curves for numerical data (solid lines), 3 PN (dotted lines), and
EOB (dashed lines). Bottom: Differences ΔE ¼ E − EX between
numerical data and 3 PN (dotted) and EOB curves (dashed). The
uncertainty on the numerical data is shown in light gray.

1The notation for the angular momentum is slightly different
from that of Ref. [38].
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3 PN-EOB curve is instead remarkably close to numerical
data up to the last stable orbit of the EOB potential
(l ∼ 3.28), and it is an accurate diagnostic of the
conservative dynamics of the system. (See Ref. [17] for
the case of neutron star mergers with irrotational data.)
The curves EðlÞ at early simulation times are shown in

Fig. 2 for the models Γ−−
050, Γ000, and Γþþ

050, together with the
PN and EOB curves computed with the spin values as
estimated in Sec. II C. These curves are quite sensitive to
small variations in the values of the initial masses, angular
momentum and spins. For example, they requireMADM and
Ms to be accurate up to four digits. The uncertainty on the
numerical data is also shown. It is estimated by considering
Γ000 data at different resolutions (grid configurations H and
L2) and including the uncertainty of the initial ADM values
as measured from different SGRID resolutions. Both errors
are added in quadrature. The bottom panel shows the
differences ΔE ¼ E − EX of numerical data with respect to
the X ¼ 3PN and the X ¼ EOB curves with the relative
spin values.
We experimentally observe that, for all the configura-

tions considered in this work, the spin estimate in Eq. (7)
leads to EðlÞ curves closer than those estimated by Eq. (8)
to the PN and EOB ones at early times. Thus, we use that
estimate in the figure and in the following. Note that this
choice assumes that the spin is almost constant along the
sequences.
As shown in Fig. 2, the dynamics starts between the PN

and EOB curves and rapidly departs from the initial state,
l ∼ 3.87 (see inset). This variation is due to the emission of
the artificial gravitational radiation related to the confor-
mally flat assumption of the CRV data. In complete analogy
with the nonspinning binary black hole case and the

irrotational case, the numerical evolution settles very
quickly close to the EOB curve (with the proper spin)
[17,38]. The difference between the EOB curves and the
numerical data at early times is within the error bars: the
tidal contribution cannot be distinguished with present
data (the same happens comparing BNS and BBH;
see below).
A clear hierarchy among the PN and EOB curves with

different spins can be observed. This effect is due to spin-
orbit interactions: antialigned configurations are more
bound and aligned configurations are less bound than
irrotational (cf. “hang-up”). The numerical curves consis-
tently respect such hierarchy from early times to merger
(see below). During the early-time evolution, the binaries’
binding energies depart systematically from the EOB, and
close to contact (lc ∼ 3.63), the deviation becomes sig-
nificant. Note in the bottom panel how the differences
between the EOB and numerical data for different spins are
essentially indistinguishable. This fact clearly suggests that
the deviation is due to finite size effects.
The curves EðlÞ up to merger are shown in Fig. 3 (left

panel) for the models Γ−−
050, Γ000, and Γþþ

050 together with the
one for the nonspinning BBH run. At early times (see inset),
the BBH system is less bound than the irrotational
configuration, but within the data uncertainty. As observed
for the EOB curve, for l → lc tidal contributions become
progressively more important, and the systems become
more bound, deviating systematically from the BBH curve.
Merger occurs at lm ∼ 3.58, 3.53, 3.50 for Γ−−

050, Γ000 and
Γþþ
050 , respectively. At merger, the aligned spin configura-

tions are more bound than the antialigned one. See also
Table III for a collection of relevant numbers for all the
configurations.

FIG. 3 (color online). Binding energy vs orbital angular momentum curves for Γ models and a nonspinning BBH run. Left: EðlÞ
curves for BNS and BBH data. Diamonds and bullets indicate the approximate moment of contact (corresponding to the snapshots
of Fig. 1) and the moment of merger, respectively. Right: Different contributions to the binding energy in Eq. (15), extracted from
differences of data sets as described in the text. The uncertainty of the numerical data is shown as the gray shaded region. The
vertical dashed lines refer to the approximate moment of contact and to the merger for Γ000. e025T and e050T coincide in this plot.
Doubling the spin approximately doubles the spin-orbit effect in the binding energy. For 0.05, the spin-orbit term is larger than the
tidal term until l ∼ 3.65.
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In order to gain insight into the role of spin and tidal
interactions during the merger phase, we make the
assumption that

E ≈ e0 þ eSO þ eSS þ eT ; (15)

i.e. that the binding energy of a spinning BNS configuration
can be approximated by the sum of four separate contri-
butions: a nonspinning point-mass (black-hole) term e0, a
spin-orbit (SO) term eSO, a spin-spin (SS) term eSS, and a
tidal (T) term eT . The different terms have PN contributions
starting from 1.5 PN (SO), 2 PN (SS), and 5 PN (T).
All four terms in Eq. (15) can be calculated using the
simulation data, e.g. the four runs Γ000, Γþþ

050, Γ−−
050, and

BBH. Below we distinguish between the terms in the ansatz
(ex) and the numerical curves (EY

X, as the relative model
name). The SO term has structure of the form ∝ L · S,
so for aligned/antialigned spins, eSO ∝ 2signðSÞjLjjSj.
Similarly, the SS term has structure ∝ S1 · S2, so it does
not change sign if both spins flip. A þþ binary configu-
ration has a repulsive SO contribution (eSO > 0), whereas
a −− one with the same spin magnitude has an attractive
SO contribution (eSO < 0) to the binding energy. However,
as mentioned above, the aligned spin configurations give a
more negative binding energy at merger than the anti-
aligned configurations (compare with Ref. [64]).
The SO term is calculated by the combination of the

aligned/antialigned spin runs with the same magnitude, i.e.
eSO ≈ ðEþþ

050 − E−−
050Þ=2. Obviously, we pose e0 ≈ EBBH

and e0 þ eT ≈ E000, and we calculate eT from the differ-
ence E000 − EBBH. The SS term is estimated as eSS ≈
ðEþþ

050 þ E−−
050Þ=2 − E000. The different terms ex are reported

in the right panel of Fig. 3. The SS contribution is the
smallest negative, at the level of the uncertainty of the data.
At the moderate spins used here, SS interactions are
essentially not resolved in the simulation. On the other
hand, the curves eSO and eT are well resolved. We observe
that, for χ ¼ 0.05, the eSO is the dominant contribution to
the binding energy up to l ∼ 3.65. After this point, eT
becomes dominant. This corresponds to intuition, since the
dynamics reaches the hydrodynamical regime (see Fig. 1).
Towards merger (not visible in the plot), the differences
between the eSO and eT become progressively larger.

An independent estimate of eSO,eT , and eSS is also givenby
using the data of the other two simulations Γ025; see the right
panel of Fig. 3. We obtain similar results, and in particular the
eT terms exactly coincide as they should. There is one
important difference, though. In the case χ ¼ 0.025, the eT
term is the largest negative term already at early simulation
times. Thus, during the last three orbits the binding energy is
“tidally dominated” as in the irrotational case.
We mention that, while the SS term is poorly resolved, its

presence is clearly suggested by looking at the difference
E000 − Eþþ

050 and E−−
050 − E000. The two combinations

approximate eSO � eSS, with the SS term entering with a
different sign. We find that, as expected, the former is less
bound; the latter is more so by a small amount. Similarly,
inspection of the quantity ðEþþ

050 − E−−
050Þ=2 − EBBH ≈ eT þ

eSS leads to a curve very close to eT , only slightly more
bound. This suggests that there is no significant coupling
between SO and tidal contributions [as assumed in
Eq. (15)], even after contact.
Finally, note that for l≲ lc, the spin term eSO þ eSS is

probably influenced by hydrodynamical effects, so its
correct interpretation may be nontrivial. We also mention
that similar results and conclusions are obtained by using
the EOB curves instead of the BBH data.

B. Merger remnant

All the configurations evolved with the Γ-law EOS form,
at merger, HMNSs characterized by different rotational
states. In our simulations, the HMNS is only supported by
centrifugal forces and thermal pressure (we include neither
magnetic fields nor cooling mechanisms). The angular
momentum support is radiated away in GWs on dynamical
time scales, and the HMNS finally collapses. This happens
after about 1500 M (∼22 ms) from formation in the
irrotational model. The dimensionless angular momentum
magnitude per reduced mass of the HMNS is approxi-
mately j ≈ lm � 2χ=ν (assuming χ ∼ const.), e.g. j ∼ 3.18,
3.53, 3.9 for Γ−−

050, Γ000, and Γþþ
050, respectively. We thus

expect that configurations with antialigned spins will
collapse earlier, whereas configurations with aligned spins
will collapse later.
In Fig. 4 we show the evolution of the maximum rest-

mass density, ρmaxðtÞ, for evolutions with the Γ-law EOS

TABLE III. Dynamical quantities during orbital motion. Simulation time, gravitational wave frequency, angular momentum, and
energy are reported at the moments of contact and merger. Note that the contact time is not a well-defined quantity and is just reported to
give a rough estimate. Frequencies have uncertainties of about 10%.

Name tc=M Mωc lc Ec × 102 tm=M Mωm lm Em × 102

Γ−−
050 499 0.067 3.64 −4.89 551 0.124 3.58 −5.19

Γ−−
025 514 0.065 3.63 −4.90 575 0.128 3.55 −5.36

Γ000 531 0.069 3.62 −4.92 595 0.127 3.53 −5.44
Γþþ
025 549 0.070 3.61 −4.95 618 0.125 3.51 −5.47

Γþþ
050 570 0.071 3.60 −4.99 636 0.123 3.50 −5.48
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(upper panel) and the polytropic EOS (lower panel). The
oscillations visible in the plot correspond to quasiradial
modes (see below and Sec. V). The average rest-mass
density increases linearly in time to about a critical density,
ρc ∼ 2ρmaxðt ¼ 0Þ (ρc ∼ 1.2 × 1015 g=cm3), at which col-
lapse happens. As expected, we observe that model Γ−−

050

collapses after approximately 2 quasiradial oscillations,
model Γ−−

025 after 5, and model Γþþ
025 after 12. Model Γþþ

050

survives for several dynamical timescales and does not
collapse until the end of the simulation (t ∼ 4000 M). We
have not evolved Γþþ

050 further, since (i) long-term simu-
lations can become inaccurate (see Appendix C), and (ii) on
these timescales other physical effects like magnetic fields
and neutrino cooling, presently not included, play an
important role, e.g. Refs. [30,83–85]. However, consider-
ing a linear trend in ρmaxðtÞ, we extrapolate that collapse
should happen at about ∼167000 M (∼272 ms) after
merger.
The lower panel of Fig. 4 refers to configurations

evolved with a polytropic EOS. Since in this case thermal
pressure support is absent, collapse occurs much earlier
than for the Γ-law EOS. The HMNS of the irrotational
configuration collapses after about 1 quasiradial oscillation;
model P−−

100 promptly collapses without HMNS formation,
and model Pþþ

100 collapses after a few oscillations.
During its evolution, the HMNS oscillates nonlinearly

and becomes progressively more compact. The oscillation
modes can be identified as the quasiradial mode, them ¼ 2
f mode, and nonlinear combinations of them, e.g.
Refs. [39,86]. A way to characterize nonlinear modes is
to project the rest-mass density onto spherical harmonics,

e.g. Ref. [87]. For simplicity, we consider ρðx; y; z ¼ 0; tÞ
in the orbital plane z ¼ 0 and the projections [86]

ρmðtÞ ¼
Z

ρðx; y; z ¼ 0; tÞeimϕðx;yÞdxdy: (16)

In Fig. 5 we report the evolution of the first projections
m ¼ 1, 2, 3, 4 for some representative runs. The figure
shows that the dominant mode is the m ¼ 2 mode.
Actually, the projection/mode with larger amplitude is
the quasiradial one (m ¼ 0, also visible in ρmax Fig. 4).
As we shall discuss later, however, this mode has a
frequency too low to be visible in the GW spectrum.
The evolution of ρmðtÞ is qualitatively similar in the
different configurations, with differences only related to
the collapse time. A strong m ¼ 1 mode appears in all
simulations before collapse (see e.g. the central panel) and
also dominates the evolution of Γþþ

050 after t ∼ 3500 M. We
interpret it as a physical hydrodynamical effect due to mode
couplings, but we cannot rule out that it is triggered by
some numerical effect.
In order to extract the mode frequencies, we perform a

Fourier analysis of the ρm projections and ρmax. The
quasiradial mode is best extracted from the latter. The
Fourier transform is performed only in the part of the signal
after merger, i.e. t > tm. Some of the relevant results are
summarized in Fig. 6, where we show on the left the spectra
of ρmax for lower frequencies and ρ2 for higher frequencies
for different models and on the right the spectrogram of
model Γþþ

050. Focusing on the left panel, we observe that the

FIG. 4 (color online). Evolution of the maximum mass-density
ρðtÞ (normalized by its initial value) for the configurations
Γþþ
050 , Γþþ

025 , Γ000, Γ−−
025 and Γ−−

050 (upper panel) and for the
configurations Pþþ

100 , P000 and P−−
100 (lower panel). Note the

different x axes.
FIG. 5 (color online). Evolution of projections ρmðtÞ form ¼ 1,
2, 3, 4 and different models. From top to bottom: Γ−−

050, Γ000, Γþþ
050 .
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spectrum is composed of few frequencies; we identify
m ¼ 0, 1, 2 modes together with nonlinear couplings
“2� 0” [86–88]. For model Γþþ

050, the highest power is
actually found at the “2 − 0” frequency in ρ2.
The peak frequencies for the different modes and models

are stated in Table IV for the relevant case of spin aligned
with the orbital angular momentum. The frequency peak
of the m ¼ 2 mode becomes larger the smaller the HMNS
rotation is. This is because the HMNS with more angular
momentum support is less compact, and the proper frequen-
cies decrease if the compactness decreases (compare with
sequences of a single rotating star with the same rest mass
in Ref. [88]). Notably, for model Γþþ

050, the observed
frequency shift with respect to the irrotational configura-
tion is 236 Hz. The value is significant at the 1σ level; see
Table IV. Differently from the m ¼ 2 mode, the frequency
of the quasiradial mode (m ¼ 0) is found to increase for
HMNSs with larger angular momentum. As discussed in
Ref. [86], the quasiradial mode frequency depends on the
compactness of the HMNS and on how close the star
model is to the collapse-instability threshold. The larger
the compactness, the larger the mode frequency is, but
configurations close to the instability threshold can have
smaller frequencies, since the instability threshold is a
neutral point. We interpret our results according to the
above argument: HMNSs with larger angular momentum
support are further from the collapse threshold and thus
have higher frequencies.
The spectra lines appear broad due to the highly

dynamical nature of the HMNS. Investigating the dynami-
cal excitation of the modes by a spectrogram, we find that
(i) the modes are “instantaneously” characterized by
relatively narrow peaks; (ii) different modes dominate
different parts of the signal; and (iii) some of the peaks
“drift” towards higher frequencies as the HMNS becomes
more compact. The right panel of Fig. 6 shows the
spectrogram of the quantity ρ12ðtÞ≡ ρ1ðtÞ þ ρ2ðtÞ for

Γþþ
050. At early times, the m ¼ 0 (quasiradial) mode domi-

nates the ρ12 spectrum, but around t ∼ 2000 M, the m ¼ 2
becomes the main oscillation mode. A “drift” of the m ¼ 2
mode towards higher frequencies is visible, which corre-
sponds to the fact that the HMNS becomes more compact.
The “2 − 0” coupling remains the secondary peak during
the whole simulation. The m ¼ 3 and “2þ 0” modes are
also visible. At the very end of the evolution, the m ¼ 1
mode has the largest power.
Finally, we briefly discuss the black hole and the

remnant disk. All simulations (except Γþþ
050) result in a

black hole surrounded by a nonmassive accretion disk.
Table V summarizes the irreducible mass and the dimen-
sionless spin of the black hole, and the rest mass of the disk.
The black hole mass is larger for antialigned spin configu-
rations and spin magnitude, and a monotonic trend is
observed for smaller spin and aligned spin configurations.
The opposite holds for the disk mass. The spin of the black
hole is larger for aligned configurations in barotropic
evolutions. This effect is not visible in the Γ-law simu-
lations, in which the more massive disk probably also has
larger angular momentum. The maximum spin produced is
0.84, which is consistent with the upper limit found in
Ref. [41]. Notice that all reported quantities are affected by
large uncertainties, and they should be considered only as a
qualitative indication. For example, the uncertainty on the
black hole mass calculated from L2 and H runs of the
irrotational configuration is ∼0.01.

V. GRAVITATIONAL RADIATION

The dynamics described in Sec. IV is relatively simple
(but far from trivial). For sufficiently high spin magnitudes,
χ ∼ 0.05, the SO interaction is a significant repulsive
(attractive) contribution for aligned (antialigned) spin
configurations. For aligned configuration, the SO competes
with finite size effects. At merger, however, binaries with

FIG. 6 (color online). Fourier analysis of the rest-mass projections ρm. Left: Power spectral density (PSD) of ρmaxðtÞ and ρ2ðtÞ for Γ000,
Γþþ
025 , Γ

þþ
050 . Right: Spectrogram of the quantity ρ12ðtÞ≡ ρ1ðtÞ þ ρ2ðtÞ in model Γþþ

050 .
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aligned spins are more bound. HMNSs are formed with
more or less angular momentum support than in the
irrotational configuration (j ∼ lm � 2χ=ν); thus, they are
either closer to or farther from the collapse threshold (radial
instability point). We discuss in this section how the
emitted gravitational radiation encodes all this.
The total energy and angular momentum emitted in GWs

quite differ in the different models, as can be seen from
Fig. 7. The irrotational configuration emits about 1.2% of
the initial ADM mass and 18% of the initial angular
momentum. Γ−−

050 emits about the same amount, but in
about half the time. To the end of the simulation, Γþþ

050 has
emitted 0.8% of the initial mass and about 15% of the initial
angular momentum. In all the cases, the main emission
channel is the l ¼ m ¼ 2 multipole that alone accounts for
∼97% of the emitted energy. However, in the postmerger
phase other channels are clearly excited; the largest
amplitudes are observed in the l ¼ 2, m ¼ 0; the l ¼ 3,
m ¼ 3; 2; and the l ¼ m ¼ 4 modes (in that order).
Figure 8 (left panel) shows the l ¼ m ¼ 2 inspiral

waveforms, focusing again on the models Γ−−
050, Γ000 and

Γþþ
050 for clarity. Intermediate results are, of course, found

for the other models. The upper-left panel shows the real
part and amplitude of the l ¼ m ¼ 2mode of the GWs, and
the lower-left panel shows the GW frequency Mω22 ¼
−ℑð _h22=h22Þ; note the retarded time in the x axis. The
merger times, computed at the peak of jrh22j, are tm ∼ 595,
551, and 636M for Γ000, Γ−−

050 and Γþþ
050, respectively (see

also Table III). The peaks of the wave amplitude are all very
close to ∼0.7. The GW frequency corresponding to the
peak of the wave amplitude is smallest for aligned spin. At
merger,Mω22 ∼ 0.127, 0.124, and 0.123 for Γ000, Γ−−

050, and
Γþþ
050, respectively. At contact, instead, Mω22 ∼ 0.069,

0.067, 0.071. Note that these frequencies have uncertainties
of about 10%. The effect of spin-orbit interaction is clearly
visible from the plot. Computing the accumulated phase of
the GW, we find that the irrotational configuration emits
7.0 GW cycles to merger; Γ−−

050 emits 6.3 cycles and Γþþ
050

emits 7.3 cycles. This phase difference results from the
dynamics discussed in Sec. IVA and encodes the interplay
of spins and tidal interactions.
Let us finally discuss the emission from the HMNS.

Figure 8 (right panel) shows the l ¼ m ¼ 2 complete
waveform. The earlier the HMNS collapses, the larger
the amplitude of the wave in the postmerger phase is. As
also shown in Fig. 7, model Γ−−

050 emits more energy and
angular momentum than Γ000 and Γþþ

050 during the first
∼600 M after merger. In order to identify the origin of the
emission, we perform a Fourier analysis of the l ¼ m ¼ 2
and l ¼ 2 m ¼ 0 multipoles and compare this with the
mode analysis of Sec. IV B. As in the previous section, we
consider only the signal at t > tm. A relevant example of
this analysis is summarized in Fig. 9. The spectra of the
waves and matter modes strongly correlate: the HMNS
modes are the main emitters during the postmerger phase
[86]. We stress that the complete GW spectrum includes
also the inspiral part of the GW signal. In particular, the
merger happens at GW frequencies of ∼1.2 − 1.3 kHz, and
up to these frequencies, the spectrum is dominated by the
inspiral. Thus, the quasiradial mode frequency of the
HMNS is not observable, whereas the m ¼ 2 and
“2� 0” peaks form the main postmerger signal.
In Refs. [40,89] (see also Ref. [84]), it is shown that the

frequency of the peak of the GW (postmerger) spectrum is
strongly dependent on the EOS, and to a lesser extent, on
the total mass, mass ratio, and spin. The latter aspect
has been investigated by comparing irrotational and corota-
tional configurations for a few models, and no significant
frequency shift was observed. The long wave train of model
Γþþ
050 allows us to resolve a significant frequency shift,

suggesting that spin effects may be more important than
previously thought. Note that a shift towards lower frequen-
cies can favor GW detection by advanced interferometers.

TABLE IV. Peak frequencies of the power spectral density
(PSD) of ρm and ρmax. They are estimated by fitting a Gaussian of
standard deviation σ. The value of the latter is reported in
parenthesis.

m ¼ 0 m ¼ 1 m ¼ 2

Γ000 584 (34) 1543 (38) 2974 (114)
Γþþ
025 594 (34) 1482 (38) 2871 (103)

Γþþ
050 671 (13) 1341 (13) 2738 (76)

TABLE V. Important quantities for the merger remnant. Stated
are the black hole mass, the dimensionless spin of the black hole,
and the absolute disk mass of the surrounding disk, as well as the
percentage with respect to the total baryonic mass.

Γ−−
050 Γ−−

025 Γ000 Γþþ
025 P−−100 P000 Pþþ

100

MBH 2.92 2.88 2.85 2.86 2.95 2.94 2.89
χBH 0.80 0.79 0.78 0.79 0.81 0.83 0.84
Mb ;disk 0.039 0.068 0.081 0.082 0.006 0.021 0.065
Mb ;disk=Mb 1.2% 2.1% 2.5% 2.5% 0.2% 0.6% 2.0%

FIG. 7 (color online). Energy (solid lines) and angular mo-
mentum (dashed lines) radiated in GWs for models Γ−−

050, Γ000,
and Γþþ

050 .
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VI. CONCLUSION

We have studied BNS mergers in numerical relativity
with a realistic prescription for the spin. Consistent initial
data have been produced with the CRV approach and
evolved for the first time.
We have considered moderate star rotations correspond-

ing to dimensionless spin magnitudes of χ ¼ 0.025, 0.05,
and direction-aligned or antialigned with the orbital angular
momentum. The dimensionless spins χ are estimated by
considering the angular momentum and masses of stars in
isolation with the same rotational state as in the binary. We

have investigated the orbital dynamics of the system by
means of gauge-invariant EðlÞ curves [38].
Our simple proposal for the estimation of χ proved to be

robust and allows us to show consistency with PN and EOB
energy curves at early times. Using energy curves, we have
also compared, for the first time to our knowledge, BNS
and BBH dynamics (see Ref. [90] for a waveform-based
comparison of the case BBH–mixed binary). We extracted
and isolated different contributions to the binding energy,
namely the point-mass nonspinning leading term, the spin-
orbit and spin-spin terms, and the tidal term. The analysis
indicates that the spin-orbit contribution to the binding
energy dominates over tidal contributions up to contact
(GW frequenciesMω22 ∼ 0.07) for χ ∼ 0.05. The spin-spin
term, on the other hand, is so small that it is not well
resolved in the simulations. No significant couplings
between tidal and spin-orbit terms are found, even at a
stage in which the simulation is in the hydrodynamical
regime (at this point, however, the interpretation of “spin-
orbit” probably breaks down).
The spin-orbit interactions significantly change the GW

signal emitted. During the three-orbit evolution, we
observe accumulated phase differences up to 0.7 GW
cycles (over three orbits) between the irrotational configu-
ration and the spinning ones (χ ¼ 0.05)—that is, we obtain
first quantitative results for orbital “hang-up” and “speed-
up” effects. A precise modeling of the late-inspiral-merger
waveforms, as in Ref. [17], needs to include spin effects
even for moderate magnitudes. Long-term (several orbits)
simulations are planned for a thorough investigation of this
aspect, together with detailed waveform phasing analysis
and comparison with analytical models. Extensive simu-
lations with different EOSs will also be important to check
the universal relations recently proposed in Ref. [91].

FIG. 9 (color online). Fourier analysis of the l ¼ 2
postmerger waveform multipoles and matter projection ρ2 for
model Γþþ

050 . The waveform frequencies strongly correlate with the
fluid’s modes.

FIG. 8 (color online). Gravitational wave signal for models Γ−−
050, Γ000, and Γþþ

050 . Left: Inspiral waveforms ℜðrh22Þ and rjh22j, and
frequency Mω22. Right: Full signal ℜðrh22Þ.
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We have also investigated spin effects on the formation
and collapse of the merger remnants (HMNSs) and the
hydrodynamical evolution of the HMNS modes [86]. The
star rotation influences the HMNS produced at merger
by augmenting (aligned spin configuration) or reducing
(antialigned) the angular momentum support. Earlier or
delayed collapse of several milliseconds is thus observed
depending on the spin’s orientation. We have found that
characteristic frequencies of the HMNS are shifted to
lower values by rotation. This suggests that spin effects
may be more important than previously thought. HMNS
modes are the main emitters of GWs in the postmerger
phase, and they may allow for a precise determination of
the neutron star radius in a GW detection [89]. Extensive
evolutions of CRV configurations for various EOSs and
spins are needed in order to assess the role of spin and to
obtain accurate phenomenological relations for frequency
vs radius.
Future work should also be devoted to understanding the

impact of our result on GW astronomy. We expect that
some aspects of spin in BNS can be modeled similarly
to the GW analysis for nonprecessing spinning BBHs
[92–95]. Furthermore, it would be important to explore
the relevance of spin-orbit corrections in the construction of
templates for detecting the star’s EOS [5,96], possibly
applying realistic data analysis settings [14]. In the relevant
case of aligned spin configurations, spin-orbit effects
actually compete with finite size effects. One might expect
that, for some realistic spin magnitudes, this could affect
the measurability of the EOS (tidal polarizability param-
eters) when spin is not properly taken into account.
Similarly, if the spin is estimated from the early inspiral,
a bias in the spin magnitude could significantly affect the
measure of the tidal parameters [5].
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APPENDIX A: SINGLE SPINNING STARS

In the CRV approach, one assumes the existence of an
approximate helical Killing vector. In an inertial frame it
has the form [35]

ξμ ¼ ð1;−Ω½x2 − x2CM�;Ω½x1 − x1CM�; 0Þ: (A1)

Here xiCM denotes the center-of-mass position of the
system, and Ω is the orbital angular velocity, which we
have chosen to lie along the x3 direction.
For a single star, xiCM coincides with the star center xiC�.

Furthermore, if we follow the CRVapproach, Ω ¼ 0, since
a single star is not orbiting. Thus, the approximate Killing
vector simply points along the time direction. We can then
set the ωj in Eq. (6) to the same value as in the case of
binary stars. If we now solve the CRVequations, we obtain
initial data for a single spinning star. This spin can be
unambiguously computed from the ADM angular momen-
tum and reported in the Ss column of Table I.
However, there is at least one other way to obtain single

spinning stars. We can set Ω to a nonzero value and assume
that the approximate Killing vector is truly helical. If we then
assume that the fluid velocity is along the Killing vector

uμ ¼ u0ξμ; (A2)

we obtain the standard assumptions for a corotating con-
figuration, but for a single star only. If we now solve the
usual equations for the corotating case (see e.g. Ref. [47]),
we also obtain initial data for a single spinning star. Notice,
however, that the star spin in this corotating approach is
about 10% higher than in the CRV approach if we set
Ω ¼ ω. This means that Ω and ωj do not have the same
meaning, which is not too surprising, considering that ωj is
just an auxiliary local field in the CRV construction, whileΩ
is the angular velocity seen by observers at infinity.
The above observations can be used to estimate the

angular velocity seen by observers at infinity when using
the CRV approach for single stars. We first construct a
single star using the CRV approach for a particular ωj and
compute its spin Ss. We then choose Ω such that the

FIG. 10 (color online). Top: Binding energy vs orbital angular
momentum curves for equilibrium configurations, together with
3 PN and EOB results. Bottom: The differences ΔE ¼ E − EX

with X ¼ 3 PN, EOB (lower panel).
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corotating approach results in the same spin. We can then
interpret this Ω as the angular velocity seen by observers at
infinity for a single star with spin Ss. If we follow these steps
for e.g. ωz ¼ 0.0046, we find that we have to choose Ω ¼
0.0042 to obtain the same spin with the corotating approach.
Thus, the angular velocity seen at infinity for ωz ¼ 0.0046 is
really only 0.0042, which makes sense considering that any
local frequency will be redshifted by the time it is observed
at infinity. Thus, the spin period observed at infinity is about
10% larger than what we get from 2π=ωz.

APPENDIX B: EQUILIBRIUM SEQUENCES

In this appendix, we present the equilibrium sequences
of CRV data, considering in particular the curves EðlÞ,
where l ¼ ðJADM − 2SsÞ=ðM2

sνÞ, and E ¼ ðM ADM=
Ms − 1Þ=ν; see also Eqs. (12) and (13). The numerical
data are again compared to PN and EOB [66] results, as
described in the main text.
In Fig. 10, we report the curves EðlÞ for sequences with

ωz ¼ 0;�0.0023. The 3 PN and adiabatic EOB curve are
very close to the data for large separations. The differences
are quantified in the right panel, by plotting ΔE ¼ E − EX

with X ¼ 3 PN, EOB. For the closest separation computed,
the sequences equally deviate from EOB and 3 PN curves,
but while the 3 PN result predicts a less bound binary,
the EOB method predicts a more bound one. Note also a
systematic difference in ΔE for different spins.

APPENDIX C: ROBUSTNESS OF SIMULATIONS
IN THE POSTMERGER PHASE

The accuracy of the simulations in the orbital phase
has been studied in different recent works. In particular,
Refs. [16,50] presented the first convergence tests of
waveforms’ phase and amplitude in three- and nine-to-
ten-orbit inspirals. We do not repeat that analysis here. The
same works pointed out that after merger, convergence
cannot be monitored in the waveforms and, in general, the

results are much more dependent on the resolution and grid
setup employed. See also Ref. [97] for similar conclusions
obtained with other codes. In this appendix, we discuss the
robustness of the simulations in the postmerger phase, in
particular regarding the merger remnant, i.e. HMNS. We
consider two different series of tests: (i) an internal test
based on a resolution study and different grid setup, and
(ii) an external test that compares the same evolution of
similar initial data obtained with SGRID and Lorene. We
focus on the irrotational configuration.
Fig. 11 shows the evolution of the maximum rest-mass

density on the finest refinement level for the different
resolutions considered in this work (see Table II). The
results show a converging behavior of this quantity with
increasing resolution, making us confident that the chosen
setup gives, at least qualitatively, correct results. As
observed in previous works, it is impossible to prove strict
convergence either in this quantity or in the waveforms.
Extensive tests in an early stage of the work have shown

that the nonconservative mesh refinement of BAM is not
optimal for long-term evolution of the HMNS. During the
inspiral, the compact stars are contained and completely
resolved in a single Cartesian box at the finest refinement
level. In the postmerger phase, however, a significant
amount of matter can cross grid boundaries, unsurprisingly
leading to severe violations of the rest-mass conservation.
Only when the inner box encloses most matter can we
expect systematic convergence.
As an example, we consider the grid configuration L2

and an equivalent configuration in which the number of
points in the moving levels are reduced from nmv ¼ 144 to
nmv ¼ 96 (but the same resolution is used). With smaller
boxes, the outer layer of the HMNS are not covered by the
finest refinement level. The larger mass violation of the
setup with nmv ¼ 96 led to earlier (in this case study) black
hole formation by about Δt ∼ 700 M. Note, however, that
the rest mass is conserved for the L2 grid up to ∼2% to
collapse, while for the H grid it is up to ∼0.8%.

FIG. 11 (color online). Evolution of the maximum rest-mass
density ρðtÞ (normalized by its initial value) for Γ000 using
different resolutions.

FIG. 12 (color online). GWs from runs with SGRID and Lorene
initial data. Note that the two initial configurations have different
separations. Shown is the l ¼ m ¼ 2 mode; the Lorene data are
suitably shifted for the comparison. The black line refers to the
phase difference up to merger.
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In a second series of tests, we compare the evolutions
obtained with the SGRID initial data with Lorene data [98].
The Lorene data considered here have been employed in
several works in the past, e.g. Refs. [50,97]. The initial
separation slightly differs in the two cases: the proper
distance is ∼13.3 M for SGRID data and ∼13.0 M for
Lorene data. Lorene data employ four domains, and the
number of collocation points for each domain is
N ¼ 33 × 25 × 24. SGRID uses four compactified domains
with N ¼ 24 × 24 × 8 points and two Cartesian domains
with N ¼ 20 × 20 × 20. The grid configuration used for
the evolution in BAM is H.
Figure 12 shows the l ¼ m ¼ 2waveforms aligned before

merger on the time window t=M ∈ ½250; 739� (support of the
black line.) Thewaveforms are very similar; phase differences
(black line) are below Δϕ≲�0.2 rad. This uncertainty is of
the same order of magnitude of a conservative error bar

estimated from convergence tests. On the other hand, the
HMNSs collapse within 150 M (2 ms) of each other.
We conclude that the results consistently approach a

continuum limit when smaller grid spacings and suffi-
ciently large boxes are employed. Results from different
initial data are also consistent. However, care should be
taken considering HMNS simulations of several millisec-
onds, since relatively small mass violations can lead to
quantitatively different behaviors. We have tested different
grid setups, grid resolutions, and independent initial data
(when possible). Based on these results, we expect an
uncertainty on the HMNS lifetime up to a maximum of
300 M, which is considerably shorter than the difference
between model Γ000 and Γþþ

050. Although not commonly
used in numerical relativity, a conservative AMR [99] is
desirable; see Refs. [100,101] for the first recent applica-
tions in the field.
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