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Binary neutron star mergers are studied using nonlinear 3þ 1 numerical relativity simulations and the
analytical effective-one-body model. The effective-one-body model predicts quasiuniversal relations
between the mass-rescaled gravitational wave frequency and the binding energy at the moment of merger
and certain dimensionless binary tidal coupling constants depending on the stars’ Love numbers,
compactnesses, and the binary mass ratio. These relations are quasiuniversal in the sense that, for a
given value of the tidal coupling constant, they depend significantly neither on the equation of state nor on
the mass ratio, though they do depend on stars spins. The spin dependence is approximately linear for small
spins aligned with the orbital angular momentum. The quasiuniversality is a property of the conservative
dynamics; nontrivial relations emerge as the binary interaction becomes tidally dominated. This analytical
prediction is qualitatively consistent with new, multiorbit numerical relativity results for the relevant case of
equal-mass irrotational binaries. Universal relations are, thus, expected to characterize neutron star mergers
dynamics. In the context of gravitational wave astronomy, these universal relations may be used to
constrain the neutron star equation of state using waveforms that model the merger accurately.
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Introduction.—Binary neutron star (BNS) inspirals are
among the most promising sources for the advanced
configurations of the ground-based gravitational wave
(GW) detector network [1]. Advanced configurations of
LIGO and Virgo detectors are expected to listen to
∼0.4–400 yr−1 events starting from 2016–2019 [2].
Direct GW observations will then probe such systems in
the near future. In particular, because the late-inspiral-
merger phase depends crucially on the stars’ internal
structure, the measurement of the tidal polarizability
parameters from GWs will put the strongest constraints
on the unknown nuclear equation of state (EOS) [3–6].
An accurate modeling of neutron star mergers requires

numerical relativity (NR). In recent years, simulations have
become fairly robust, but exploring the physical parameter
space remains a challenge out of reach. Furthermore, the
interpretation of simulation data can be nontrivial: mean-
ingful quantities must be gauge invariant and possibly
have well-defined post-Newtonian (PN) limits. The GW
phasing analysis for multiorbits (∼10) simulations was
performed by some groups, e.g., [7–9]. The BNS dynamics,
expressed via the gauge-invariant relation between binding
energy and angular momentum [10,11], was recently
analyzed in both the nonspinning and spinning case
[12,13]. For both observables a solid analytical framework,
although approximate, is essential for extracting information
from the simulations.
Despite these detailed studies, simple, fundamental ques-

tions about themerger physics still lack quantitative answers.

For instance, a test mass in the Schwarzschild metric of mass
M has a last stable orbit (LSO) at RLSO ¼ 6M, (we use units
with G ¼ c ¼ 1) with dimensionless (or mass-reduced)
orbital frequency MΩSchw

LSO ¼ 6−3=2 ≈ 0.06804. The associ-
ated GW frequency 2MΩSchw

LSO ≈ 0.13608 is commonly
used to mark the end of the quasiadiabatic BNS inspiral,
settingM equal to the total mass of the binary. Similarly, the
specific LSO binding energy ESchw

bLSO ¼ ð8=9Þ1=2 − 1 ≈
−0.0572 is used to estimate the total amount of GWenergy
emitted during the coalescence process. These numbers
appear ubiquitously in BNS-related studies, e.g., Ref. [6],
but are, in principle, no more than order of magnitude
estimates as they neglect both finite mass ratio and finite
size effects. Some questions arise: How to model or include
these effects? How does the merger frequency and binding
energy depend on the main parameters of the binary (EOS,
mass ratio, and individual spins)? How accurate are the
Schwarzschild LSO estimates? In this work, we use new
multiorbit NR data and the analytical effective-one-body
(EOB) approach problem to put forward some answers. We
find that the GW frequency and binding energy at the
moment of merger are characterized only by certain dimen-
sionless tidal coupling constants (a fact also empirically
observed inRef. [5] for the frequency) and the stars spins as a
consequence of a fundamental property of the underlying
conservative dynamics.
EOB and the LSO.—The EOB formalism [14–17]

maps the relativistic 2-body problem, with masses MA
and MB, into the motion of an effective particle of mass
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μ ¼ MAMB=M, with M ¼ MA þMB, moving into an
effective metric. It employs standard PN results (e.g.,
Ref. [18]) in a resummed form, and it is robust and
predictive also in the strong-field and fast-motion regime.
The EOB model can be completed with NR information;
complete (inspiral-merger-ringdown) binary black hole
waveforms for GW astronomy can be produced for
general mass-ratio and spin configurations [11,19]. Tidal
effects can also be included in the model [4,20]. The EOB
model consists of three building blocks: (i) a Hamiltonian
HEOB; (ii) a factorized gravitational waveform; and (iii) a
radiation reaction force Fφ. The EOB Hamiltonian is

HEOB ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðĤeff − 1Þ
q

where, in the nonspinning

case, Ĥeffðu;pr� ;pφÞ≡Heff=μ¼fAðu;νÞ½1þp2
φu2þ2νð4−

3νÞu2p4
r��þp2

r�g1=2, with ν≡ μ=M, u≡ 1=r≡GM=Rc2,
and pφ ≡ Pφ=ðMμÞ is the dimensionless orbital angular

momentum and pr� ≡
ffiffiffiffiffiffiffiffiffi

A=B
p

pr ¼ Pr=μ is a dimensionless
radial momentum; Aðu; νÞ and Bðu; νÞ are the EOB
potentials. The conservative dynamics (Fφ ¼ 0) along
circular orbits (pr� ¼ 0) is determined only by Aðu; νÞ.
Finite-size effects are formally 5PN. They are included in
Aðu; νÞ by adding a tidal term ATðu; νÞ to the point-mass
A0ðu; νÞ contribution, i.e., AðuÞ≡ A0ðu; νÞ þ ATðu; νÞ
[20]. The A0ðuÞ function is analytically known at 4PN
accuracy and formally reads A0

4PNðu; νÞ ¼ 1 − 2uþ
νâ4PNðu; νÞ, where â4PNðu; νÞ≡ a3u3 þ a4u4 þ ½ac5ðνÞ þ
aln5 ln u�u5 [21]. We use here only the 4PN-accurate
analytical information, and we do not add any “flexibility
parameter” calibrated to NR data. The Taylor-expanded
function A0

4PN is resummed using a (1,4) Padé approximant,
i.e., A0ðu; νÞ≡ P1

4½A0
4PNðu; νÞ�, with the logarithmic term

treated as a constant in the Padé approximant. The tidal
part of the interaction potential is known at next-to-
next-to-leading order (NNLO, fractional 2PN) and

reads ATðuÞ¼−
P

4
l¼2κ

T
lu

2lþ2ð1þᾱðlÞ1 uþᾱðlÞ2 u2Þ, with

only ᾱð2Þ;ð3Þ1;2 known analytically [22]. For l ≥ 2, the dimen-
sionless tidal coupling constants are [20]

κTl ≡ 2

�

1

q

�

XA

CA

�

2lþ1

kAl þ q

�

XB

CB

�

2lþ1

kBl

�

; (1)

where q¼MA=MB≥1, XA≡MA=M¼q=ð1þqÞ, XB ≡
MB=M ¼ 1=ð1þ qÞ, kA;Bl , and CA;B are the dimensionless
Love numbers and compactness of star A and B. All
the information about the EOS is encoded in the κTl’s.
For typical compactnesses C ∼ 0.12–0.2, κT2 ∼Oð102Þ,
and κT3;4 ∼Oð103Þ.
Stable circular orbits correspond to minima in u of

Ĥeff for a given value of pφ. For any u, the condition
ĤeffðuÞ0 ¼ 0 yields j2ðuÞ ¼ −A0ðuÞ=½u2AðuÞ�0 for the
angular momentum along circular orbits j≡ pφ (0≡ ∂u).
The orbital frequency reads MΩðu; νÞ ¼ μ−1∂jHEOB ¼

jðuÞAðu; νÞu2=ðHEOBĤeffÞ. The end of the adiabatic (cir-
cular) dynamics is marked by the LSO, i.e., the inflection
point of Ĥeff that yields (uLSO, jLSO) and in turn the LSO
orbital frequency MΩLSOðνÞ. The Schwarzschild LSO
frequency is recovered by construction MΩLSOðν ¼ 0Þ ¼
MΩSchw

LSO . The ν-dependent, nontidal, corrections to A are
globally repulsive, i.e., MΩLSOðνÞ > MΩSchw

LSO [14]. The
tidal contribution AT is, instead, always attractive and
moves MΩLSO to lower frequencies. The LSO frequency
results then as a balance between repulsive and attractive
effects.
Spin effects are included following Ref. [17], which is

robust enough for BNS realistic spin values (dimensionless
magnitude χA;B ≲ 0.1). The spin-orbit interaction is taken at
NNLO [23], the spin-spin interaction at leading order [24].
The spin gauge freedom is fixed according to Refs. [23,25].
To have circular orbits, we only consider spins parallel
(or antiparallel) to the orbital angular momentum. The
LSO computation is analogous to the nonspinning case.
MΩLSO is larger (smaller) than the nonspinning case for
parallel (antiparallel) spins; i.e., the system is less (more)
bound [13,17].
The complete nonadiabatic EOB model (Fφ ≠ 0) allows

one to go beyond the adiabatic-circular-LSO analysis and
to examine the model quantitatively with NR data. For the
radiation reaction Fφ we use the tidal extension of the
point-mass prescriptions of Ref. [4] and also include a
radial component [26]. The point-mass dynamics is taken at
4PN in both the Aðu; νÞ and D̄0ðu; νÞ≡ ½Aðu; νÞBðu; νÞ�−1
functions, using in the latter the linear-in-ν 4PN coefficient
obtained numerically [27,28]. Note that the formal regime
of validity of the model may break when the dynamics is
evaluated for u≳ uLSO since the two stars may be already
in contact at those radial separations [20].
κTl universal relations.—We studied the dependence of

2MΩLSO and the binding energy per reduced mass at LSO,
EbLSO ¼ ðHEOB −MÞ=μ, when varying EOS, compact-
ness, mass ratio, and spin. For each EOS in a sample of
12 realistic ones, we vary the mass of each star between
1.3M⊙ and the maximum mass allowed Mmax ≳ 2M⊙. We
found that both 2MΩLSO and EbLSO are essentially inde-
pendent of the choice of EOS when expressed versus any of
the tidal coupling constants κTl . For example, Fig. 1 dis-
plays 2MΩLSO and EbLSO versus the dominant coupling
constant κT2 for q ¼ 1 and no spins. From the residuals
(bottom panels), one sees that deviations from universality
are below 0.2%. The same quasiuniversal behavior is also
found for unequal mass, spinning BNS. Varying 1 ≤ q ≤ 2
does not lead to curves significantly different from those in
Fig. 1, the only difference being a narrower interval of
variability of κT2 . By contrast, the spin-orbit coupling
significantly changes the EOB LSO frequency and binding
energy already at spin magnitudes χ ∼ 0.01–0.1. An exam-
ple is given by Fig. 2, restricted to EOS ENG for clarity.
The dimensionless spin value is chosen to be χ ¼ �0.1.
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The difference between q ¼ 2 and q ¼ 1 curves is ≲0.5%.
The spin dependence is linear for spins χ ≲ 0.1, as expected
for the spin-orbit interaction. Note that the functional
dependence 2MΩ LSOðκT2 Þ [and similarly EbLSOðκT2 Þ] is

algebraically complicated already for the simplest choice of
the AðuÞ function and cannot be made explicit. Both
quantities can be robustly fitted to a low-order rational
polynomial of the form fðκÞ ¼ fð0Þð1þ n1κ þ n2κ2Þ=
ð1þ d1κ þ d2κ2Þ, where fð0Þ is the point-mass LSO value
½2MΩLSOð0Þ; EbLSOð0Þ� ≈ ð0.1892;−0.0688Þ.
As merger is approached, the dynamics enters a tidally

dominated regime: the values of 2MΩLSO and EbLSO are
strongly influenced by tidal effects. Close to the LSO, the
tidal potential ATðu; νÞ may become comparable or larger
than νâðu; νÞ≡ A0ðu; νÞ − ð1 − 2uÞ, which determines
point-mass (ν-dependent) effects. One can see this in
comparing the various contributions to the “radial force”
dA=dr ¼ −u2½−2þ νâ0ðu; νÞ þ A0

Tðu; νÞ�. For example, at
LSO (EOS SLy, ν ¼ 1=4) one has for C ¼ 0.14 and
κT2 ¼ 274.51, uLSO ≈ 0.1366, which yield νâ0ðuÞ ≈
0.0703 and A0

Tðu; νÞ ≈ −0.1168; for C ¼ 0.18 and
κT2 ¼ 58.52, uLSO ≈ 0.1645, which yield νâ0ðuÞ ≈ 0.1127
and A0

Tðu; νÞ ≈ −0.0669. Concerning the LSO frequency,
one gets MΩLSO ¼ 0.0517 for C ¼ 0.14 and MΩ LSO ¼
0.06674 for C ¼ 0.18 [29]. The values of MΩLSO and
EbLSO are rather close to the Schwarzschild ones, being
the latter determined by Aðu; ν ¼ 0Þ ¼ 1 − 2u. The
behavior is not a property of the LSO, but it is expected
to hold also for u > uLSO, since ATðuÞ ∝ u6; i.e., it holds
during the whole merger process. By contrast, the universal
curves extracted at separations larger than the LSO pro-
gressively flatten (the κTl dependency weakens) and

FIG. 1 (color online). GW frequency (left) and binding energy (right) versus the coupling constant κT2 for equal masses, irrotational
mergers. Main panels: Circles refer to EOB quantities computed at either the adiabatic LSO (2MΩLSO, EbLSO) or the moment of merger
(MωEOB

22mrg, E
EOB
bmrg). Different colors refer to different EOS; crosses (with error bars) refer to NR quantities at the moment of merger

(MωNR
22mrg, E

NR
bmrg). Among these, the black crosses refer to polytropic EOS. The dashed black lines are the fits given in the text. The

dotted red line in the left panel is the phenomenological fit of Ref. [5]. Bottom panels: Differences in 2MΩ LSO and EbLSO with respect to
the fits of the LSO data. An analogue result holds for the nonadiabatic EOB quantities at the moment of merger. The EOS dependence is
negligible: all quantities (EOB LSO, 4PNlog EOB, and NR) show κTl universality.

FIG. 2 (color online). GW frequency (top) and binding energy
(bottom) versus the coupling constant κT2 at EOB LSO: varying
mass ratio and spin magnitude. Only the ENG EOS is plotted for
simplicity. The effect of mass ratio is almost negligible. The effect
of spin is dominated by spin-orbit coupling.
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approach the degenerate point-mass case as the tidal
interaction becomes negligible.
The complete nonadiabatic EOB dynamics can be

continued also after the LSO crossing and the orbital
frequencyMΩðtÞ develops a local maximum [12], likewise,
the point-mass case. The analytical time-domain l ¼ m ¼
2 EOB waveform is characterized by a peak in the modulus
and a peak in the frequency MωEOB

22 , reproducing the well-
known qualitative structure of the NR waveforms, e.g., see
Refs. [5,30]. In this sense, the complete tidal EOB wave-
form qualitatively implements “the merger” already at the
analytical level, i.e., without NR tuning. We define the
moment of merger (in both EOB and NR) as the peak of
the amplitude of the l ¼ m ¼ 2mode of the GW. This is an
idealization since the actual merger process takes place
during the last few orbits of the coalescence. As shown in
Fig. 1, the EOB wave frequency MωEOB

22mrg and the binding
energy EEOB

bmrg at the moment of merger are also charac-
terized by a κTl universality.
Comparison with NR.—The adiabatic tidal EOB analysis

captures the relevant qualitative features of the merger
dynamics. Specifically, the quasiuniversal properties of
MΩ and Eb close to the EOB LSO hold also for the actual
NR merger frequency and binding energy. We stress that
we do not advocate a formal link between the EOB LSO
and NR quantities, but rather give a suggestive argument
for the existence of these universal structures.
We performed new NR simulations of coalescing BNS,

employing the BAM code and the method described in
Refs. [30,31], though. (i) We use the Z4c formulation of
Einstein’s equations [32], and (ii) GWs are extracted from
an extended wave zone [33]. The binaries are equal-mass,
irrotational configurations with different EOSs. A Γ ¼ 2
polytropic EOS model is employed to simulate different
compactnesses CA ¼ CB ¼ ð0.12; 0.14; 0.16; 0.18Þ; EOSs
MS1, MS1b, H4, ALF2, MPA1, ENG, and SLy are
employed for simulations with fixed isolation mass
M ¼ 2 × 1.35M⊙. The evolutions cover about 10 orbits
up to merger. These are among the longest BNS simulations
ever performed and some of the few where an error analysis
is available [8,12]. For each NR data set, we compute the
binding energy per reduced mass ENR

b , subtracting the GW
energy loss from the initial ADM mass, following
Refs. [10,12,13]. Here, different from previous works, all
the multipoles are included. GW frequency and binding
energy are extracted at the moment of merger. We estimate
error bars due to truncation errors and waveform finite
extraction uncertainties from resolution tests for fewer
configurations. More details on these simulations will be
given elsewhere.
Recently, the authors of Ref. [5] proposed a phenom-

enological linear relation between the log of MωNR
22mrg

and the quantity Λ1=5¼ð2
3
k2Þ1=5C−1¼½ð16=3ÞκT2 ðq¼1Þ�1=5

inspecting an independent sample of equal-mass, irrota-
tional NR waveforms for six different EOSs. We believe the

effectiveness of that empirical fit is explained by the κTl
universality.
The NR GW frequency MωNR

22mrg and binding energy
ENR
bmrg at the moment of merger are plotted as functions of

κT2 in Fig. 1. The fit of Ref. [5] complements our numerical
data, with which is perfectly consistent. As indicated by the
figure, theNRpoints are compatiblewith the κTl universality.
Similar to the EOB quantities, the NR data can be fitted to
rational polynomials. We constrain the fit to the “black-hole
limit” by factoring out the values ENR

bmrgðκTl ¼ 0Þ ≈ −0.120
and MωNR

22mrgðκTl ¼ 0Þ ≈ 0.360 as given by equal-mass
binary black hole simulations [10]. The fitting function is
fðκÞ¼fð0Þð1þn1κþn2κ2Þ=ð1þd1κÞ, with ðn1;n2;d1Þ¼
ð2.59×10−2;−1.28×10−5;7.49×10−2Þ for the frequency
and ðn1;n2;d1Þ¼ð2.62×10−2;−6.32×10−6;6.18×10−2Þ
for the binding energy. Considering EbðκÞ and Mω22ðκÞ
as a parametric curve, one obtains a relation between the
binding energy and the frequency at the moment of merger
that is essentially linear,

ENR
bmrg ≈ −0.284MωNR

22mrg − 0.0182; (2)

with MωNR
22mrg ∈ ½0.1; 0.360�. Also, in this case the black

hole limit is incorporated in the fit. Quantitatively, there are
differences between the NR merger quantities (MωNR

22mrg,
ENR
bmrg) and the corresponding EOB ones (MωEOB

22mrg, E
EOB
bmrg);

see Fig. 1. The relative difference on the relevant interval
κT2 ∈ ½50; 350� is between 20–30% for the frequency and
10–20% for the binding energy. This quantitative disagree-
ment is not surprising: hydrodynamics effects and nonlinear
tidal interactions are not modeled in ATðuÞ. At an effective
level, the (uncalibrated) EOB 4PN tidal dynamics basically
underestimates attractive effects and gives a larger (smaller)
frequency (binding energy) at merger. Coincidentally, the
adiabatic EOB LSO gives a rather good numerical approxi-
mation, especially for κT2 ≳ 200. The key, remarkable point
here is that the adiabatic model already captures the κTl
universality, indicating that the latter emerges fundamentally
from the conservative dynamics. Furthermore, the simple
LSO analysis gives reasonable estimates of merger relations
for any EOS, mass ratio, and (aligned) spins.
Outlook.—Modeling GWs from neutron star mergers is a

challenging open problem (see e.g., Ref. [34] for very
recent work) that can be tackled interfacing accurate
nonlinear simulations with the EOB analytical framework.
While pursuing this approach we have identified κTl values
as fundamental “coupling constants” of the binary tidal
interactions, together with κT universal relations and their
physical origin. An extension of the present work would be
more multiorbit and precise NR simulation including, in
particular, spins [13]. Future work will be devoted to
exploring effective extensions of the nonadiabatic EOB
model, e.g., the use of flexibility parameters or different
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resummations of AT [22]. Ultimately, a NR-tuned tidal
EOB model is expected to deliver accurate merger wave-
forms for BNS GW detection, similar to the black hole
binary case [11,19].
The κT universality has consequences for GW

astronomy. For example, using EOB-based merger tem-
plates (containing the characteristic peak) in match filtered
searches one might be able to accurately extract the value of
κT2 from the template’s peak [4]. A single measure of the
frequency at the moment of merger would, thus, constrain
both the EOS and the binding energy. The actual possibility
to pursue this strategy deserves a study on its own. In this
respect, the κT universality characterizing the merger has
similarities with the findings of Ref. [35] and with the
universal relations found for single neutron star properties
[36]. Also, we propose to use the value of the merger
frequency, as given by our fits, to mark the end of inspiral
templates; this will improve the simple Schwarzschild LSO
criterion, e.g., Ref. [6].
Interestingly, due to the coincidental “compensation” of

finite mass effects in the tidally dominated regime, the
Schwarzschild LSO values give very good estimates to the
GW frequency and binding energy at BNS merger for
irrotational binaries with κT2 ∼ 200.
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